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Adaptive Prediction Models for Data Center
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Abstract—Accurate estimation of data center resource utiliza-
tion is a challenging task due to multi-tenant co-hosted appli-
cations having dynamic and time-varying workloads. Accurate
estimation of future resources utilization helps in better job
scheduling, workload placement, capacity planning, proactive
auto-scaling, and load balancing. The inaccurate estimation leads
to either under or over-provisioning of data center resources.
Most existing estimation methods are based on a single model
that often does not appropriately estimate different workload sce-
narios. To address these problems, we propose a novel method
to adaptively and automatically identify the most appropriate
model to accurately estimate data center resources utilization.
The proposed approach trains a classifier based on statistical
features of historical resources usage to decide the appropriate
prediction model to use for given resource utilization observa-
tions collected during a specific time interval. We evaluated our
approach on real datasets and compared the results with multiple
baseline methods. The experimental evaluation shows that the
proposed approach outperforms the state-of-the-art approaches
and delivers 6% to 27% improved resource utilization estimation
accuracy compared to baseline methods.

Index Terms—Data center, resource management, data clas-
sification, modeling and prediction, dynamic prediction model,
feature extraction.

I. INTRODUCTION

TECHNOLOGICAL advances in server virtualization and
cloud computing allow cost-effective hosting of multiple

applications in a secure, customizable, and isolated comput-
ing environment managed by modern data centers. This yields
higher resources utilization with reduced costs.
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Additionally, cloud consumers can acquire compute, storage
and networking resources on-demand from Infrastructure-as-
a-Service (IaaS) providers on pay-per-use basis. IaaS users can
control the leased resources and scale them to optimize their
usage accordingly to their needs. To ensure better Quality of
Service, IaaS providers distribute data center resources across
multiple geographical locations to enhance proximity to the
application users. Also, virtualization and holistic data cen-
ter management enable providers to maximize the data center
utilization while minimizing their operational cost [1].

Efficient methods for estimating resource utilization in data
centers can significantly ease self-management and usage
optimization for both users and providers. Users can dynami-
cally adjust the leased resources to minimize costs for hosting
their applications while maintaining the desired performance
and service quality [2]. Further, accurate estimates of resources
utilization enable the providers to efficiently allocate virtual
machines (VM) and other virtual resources to workloads,
migrate VMs to consolidate or balance resource usage [3],
[4], plan in advance resource capacities [5], [6], also take
awareness of energy requirements in advance for expected
workloads and users [7], [8].

Accurate estimation of future resources utilization for data
centers is challenging due multi-tenant co-hosted applications
having dynamic and time-varying workloads. While there are
several estimation methods for cloud resource utilization using
time-series learning or deep-learning networks [9], [10], [11],
all use a single model that often does not accurately capture
the workload dynamics. To address these problems, we pro-
pose a novel method to adaptively and automatically identify
the most appropriate model to accurately estimate data cen-
ter resources utilization. Our adaptive multi-methods approach
considers different scenarios encountered in a production data
center and enables selecting the the predictive method that
learns best. Our approach focuses on training estimation mod-
els using different methods then selecting the one that will
yield the best prediction given the current scenario and the
previous batch of collected data.

To test and validate our selective multi-method approach,
we have conducted experiments using Alibaba [12] and
Bitbrains [13] data center utilization datasets. We com-
pared the results of our experiments with exiting base-
line approaches that use a single model such as Linear
Regression (LR), Support Vector Machines (SVM), Gradient
Boosting Tree (GBT) and Gaussian Process also known as
Krigin (KR). Figure 1 shows the motivation to adaptively
select an appropriate method to effectively estimate resource
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Fig. 1. CPU estimation using different methods and scenarios for Alibaba
data set. Different predictors yield better estimation, each for different
scenarios.

utilization for different scenarios. The figure shows CPU uti-
lization estimations using different methods for four different
machines from Alibaba data set. Each estimation method is
trained using 55 minutes time interval data and estimated the
utilization for the next 5 minutes. We observed that different
predictors yield better resource utilization estimation for dif-
ferent scenarios. Therefore, it adds value to build a system to
identify the best predictor for forecasting resource utilization
at each time interval.

In this paper we focused on classical machine learning
approach and did not use deep learning as the learning pro-
cess is considered as black-box [14] and to understand the
reasoning of the model’s prediction behavior is not apparent.
Deep learning works well with a large amount of high dimen-
sional data, and it is also extremely computational expensive
due to which, it requires a specialized type of hardware. The
resource utilization of data centers is a low dimensional data,
and traditional machine learning methods can be effectively
used for estimations. Moreover, deep learning performs quite
well once trained for a particular problem; however, model
miserably fails when applying on a similar type of other prob-
lems and required to retrain. Due to these reasons, we selected
the traditional machine learning approach and propose a novel
adaptive model selector method, to dynamically identify the
best prediction method for estimating resource utilization of
data centers, from a bag of trained methods with different char-
acteristics and accuracy over different data center behaviors.
The data center telemetry contains burstiness behavior which
represents sudden spikes and peaks of resource utilization. In
general, it is challenging to predict the burstiness behavior,
and we address this issue with the help of an adaptive selec-
tion of an appropriate prediction method at every estimation
step. After some experiments and model selection, we chose
Random Decision Forests (RDF) as the best mechanism for
learning the expected accuracy for each candidate predictor.

Our proposed method trains on the statistical features of his-
torical resource utilization and predictor correctness for sliding

windows of a specific size, to identify which predictor will
produce the best forecast given the current resource utilization.
We evaluate our method by comparing its decision and fore-
casting capabilities with baseline methods, using datasets from
Alibaba and Bitbrains monitored data centers. Results show
that the proposed method outperforms the baseline methods
for both of the datasets. Notice that in this work we focus
on CPU resource consumption as the primary resource on
high-performance computing data centers, but our solution is
generic and can be used to predict utilization of all system
resources. The main contributions of this work are:

• A novel method to dynamically select the best prediction
model for estimating and forecasting cloud resource uti-
lization for a given recent time window of observed
resource utilization.

• Use RDF for choosing an appropriate prediction model
to be used for estimating data center resource utilization.

• A comparison of different baseline models, currently used
in the state-of-the-art, as candidate models for resource
utilization estimation, aside of validation for the presented
approach.

• Analyze the impact of different window sizes on the
proposed resource estimation systems.

The rest of the paper is organized as follows. Related
work is presented in Section II. Our proposed resource
estimation system is explained in Section III. Prediction meth-
ods and Adaptive Model Selector (AMS) are explained in
Section IV. Feature extraction and selection is discussed in
Section V. We provide details about the experimental evalua-
tion in Section VI. The experimental results are presented in
Section VII. Finally, conclusion and future work are discussed
in Section VIII.

II. RELATED WORK

Data center resource utilization and workload prediction
is an active research area. Recently, there have been sev-
eral attempts to use machine learning methods for predictions
of data center resources. For example, recent work by
Kim et al. [15] proposed an ensemble approach which
uses multiple predictors together to produce an output. The
proposed ensemble technique uses Linear Regression, SVM,
ARMA, and ARIMA together to predict future workload for
the data centers by dynamically determining the weight of
each predictor using the regression method. Another recent
work by Rahmanian et al. [16] also proposed an ensemble-
based approach to predict CPU utilization of application
usage of VMs. The proposed approach uses automata the-
ory to adjust the weight for each predictor in the ensemble
method to predict the CPU usage. Subirats and Guitart [17]
proposed an ensemble-based prediction strategy which fore-
casts the infrastructure energy requirement by predicting
the future CPU utilization of VMs. Their ensemble-based
approach uses the moving average, exponential smoothing,
linear regression, and double exponential smoothing methods.
Chen et al. [18] propose an ensemble model based on the fuzzy
neural network to predict the resource demand. They use the
second moving average (SMA), exponential moving method
(EMA), autoregression model (ARM), and trend seasonality
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model (TSM) as base predictors. Cetinski and Juric [19]
combine statistical and machine learning methods to predict
application specific workload volume. Tseng et al. [20] used a
multi-objective genetic algorithm to forecast resource utiliza-
tion and energy consumption in data centers. Jiang et al. [21]
proposed ensemble prediction mechanism to predict the cloud
workloads for capacity planning in data centers. They used
five prediction algorithms named as moving average, autore-
gression, artificial neural network, support vector machine, and
gene expression programming to predict the future workload
estimations.

There have been several efforts to use typical time series
solutions to predict data center resource utilization. For exam-
ple, Calheiros et al. [22] used autoregressive integrated moving
average (ARIMA) method to predict the arrival rate for the
applications hosted on the cloud. Liao et al. [23] use typ-
ical time series prediction methods namely autoregressive
moving-average, moving average, and auto-regressive together
as an ensemble approach to predict CPU usage of VMs.
The proposed method combines the output of time series
prediction techniques as input to another linear prediction
model to predict CPU utilization of VMs. Vazquez et al. [24]
used various time series prediction models to forecast the
number of requests which helps in the dynamic scaling of
cloud resources proactively. For this purpose, they evaluated
the autoregressive model (AR), moving average model (MA),
simple exponential smoothing, double exponential smoothing,
automated ARIMA method, and neural network autoregression
method. Dmytro et al. [25] use ARIMA to forecast load on
the cluster which helps in scheduling the data center resources
by migrating the VMs. Fang et al. [26] used ARIMA to
predict the future CPU utilization and several requests for the
applications hosted in the cloud.

There have been several efforts to employ deep learn-
ing methods for predicting data center resource utilization.
For example, Zhang et al. [9] use autoencoders to predict
the CPU utilization of VMs. The authors used tensor rank
decomposition technique to reduce the training time by com-
pressing the input parameters. Qiu et al. [27] used a deep
belief network using multiple-layered restricted Boltzmann
machines (RBMs) and a regression layer to predict the CPU
usage of VMs. The RBMs are used to extract high-level
features, and the regression layer is used to predict CPU uti-
lization. Zhang et al. [11] also use RBMs to predict CPU
and RAM utilization in data centers. They use backprop-
agation as global supervised learning to minimize the loss
function. Mason [10] predict the CPU consumption of the
host by using evolutionary Neural Networks (NN). To train
the network weights of neural networks, they used Particle
Swarm Optimization (PSO), Differential Evolution (DE),
and Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES). Song et al. [28] use long short-term memory
(LSTM) model to predict the host load. To train the recurrent
networks, the authors used truncated back-propagation through
time technique. Duggan et al. [29] predict host CPU utiliza-
tion by using Recurrent Neural networks. They also use the
back-propagation through time (BPTT) technique to train the
network.

Recurrent Neural Networks are a hot topic on many
modeling scenarios, including resource management for Data-
Centers. However, RNNs imply a set of trade-offs to have
into consideration on scenarios where data-streams must
be constantly modeled or evaluate. Moreover, the selection
of hyper-parameters for RNNs and their different methods
(LSTMs, GRUs, etc.) imply extra decisions to be searched
and tuned, while simpler methods can provide similar accuracy
(or lower but good-enough accuracy) with less computational
and human-tuning effort. One of the problems of time-series
algorithms like RNNs, time-series related NNs like CRBMs,
or filters like period-adaptive-Kalman, is that most rely on a
delay or memory hyper-parameter on their design, on a sce-
nario where behavior regimes and their length may not be
known a-priori. Not to say that interpretability is a require-
ment on knowledge discovery, to help data-center architects
to improve the DC infrastructure. In conclusion, it is true that
advances have been done on RNNs towards DC management,
but in this work, we advocate for more simpler (in terms of
training and operability) and more readable models.

The work in this area most relevant to ours [30] adap-
tively picks either Regression (LR) or Support Vector Machine
(SVM) predictors to estimate CPU utilization of VMs. The
proposed method dynamically select LR for slow chang-
ing workloads and SVM for rapidly changing workloads.
Moreover, most of the existing works use ensemble-based
approaches in which multiple estimation methods are col-
lectively used to produce the final output whereas in our
proposed solution the final output is produced using only a
single machine learning predictor which is dynamically iden-
tified using the recent resource utilization observations. Our
approach uses four different estimators and dynamically iden-
tifies the estimator using a machine learning approach and time
series features. To the best of our knowledge, no existing work
which uses time series features to adaptively identify and use
the best prediction method to minimize the estimated error of
cloud resource utilization. Table I presents the comparison and
explain how proposed solution is different from existing state
of the art work.

III. PROPOSED SYSTEM OVERVIEW

The overall proposed system is illustrated in Figure 2.
Different steps are numbered and labeled to explain the work-
ing flow of the system. The system work in the following
steps:

• Historical resource utilization logs of the data center
are divided into sliding windows of a fixed size con-
sists of the last k intervals. Then each sliding window
data is used to fit different prediction models includ-
ing Linear Regression (LR), Support Vector Machine
(SVM), Kriging (KR), and Gradient Boosting Tree (GBT)
to predict the next interval resource utilization. The
system selects the prediction method yields a minimum
prediction error for the given sliding window data.

• For each sliding window, the system identifies a specific
set of features as explained in Section V.
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TABLE I
COMPARISON OF RELATED WORK WITH PROPOSED SOLUTION

Fig. 2. Purposed system overview to learn adaptive model selector and using
it to estimate the data center resource utilization.

• The selected features and identified prediction methods
are logged as training data. For each historical sliding
window, the training data set contains the corresponding
feature vector and the best prediction method.

• Once training data is prepared, the system builds a clas-
sifier using Random Decision Forest (RDF) to predict the
best model for a given sliding window data. We call this
classifier “Adaptive Model Selector”. We explain this in
Section IV-B.

• Once the Adaptive Model Selector is trained than the
system predicts the data center resource utilization in real
time. For the current time interval t, system select last k
observation to extract features and then use the Adaptive
Model Selector to identify the best prediction method to
predict the resource utilization for the t+1 time interval.

• The selected prediction method is used to train a regres-
sion model using the last k interval’s observed resource
usage data to estimate the resource utilization for the t+1
future time interval.

IV. MACHINE LEARNING METHODS

In this work we use Machine Learning (ML) techniques for
two main purposes: first, predict future workload behaviors
and traces; second, from a set of ML methods and a context,
choose one that predicts the workload better. The ensemble
presented here focuses on different algorithms for regression
used to predict the workload, while a trained decision maker
selects at each time a regression model that is expected to
produce the most accurate prediction.

In this section, we introduce the different algorithms used
for the prediction and decision-making processes.

A. Workload Prediction Methods

To predict workload, we explore a diversity of Machine
Learning techniques commonly used in the literature, ones
more complex than others with different properties each. The
learned regression models are to predict our target variable
which is next data point in time series from known input
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features [33] such as skewness, standard deviation, kurtosis,
autocorrelation for different lags, absolute sum of changes,
etc. As the data we are dealing is in the form of a time series,
evaluation of prediction must be based not just on accuracy
but also on the significance of results which is often a difficult
problem on regression analysis.

Our presented methodology shows a multi-model approach,
where different models are trained, each one with a different
set of strong and weak properties. The models are applied to
a dynamic window to predict future interval workloads. The
studied models for workload prediction are: Linear Regression,
Support Vector Machines for regression, Gradient Boosting,
and Gaussian Process Regression.

Linear Regression: Linear Regression (LR) is one of
the simplest but effective approaches in machine learning
modeling and prediction specifically when a linear relation
exists among variables. LR assumes there is a linear rela-
tion between output variable Y and input variables X =
{x1 . . . xn}, and attempts to find a vector W T = {w1 . . .wn}
and a scalar b where Ỹ = X · W + b while minimizing the
error ε = |Y − Ỹ |. Minimization is usually performed using
the Least Squares Error approach, although other approaches
using the deviation or specific cost function exist. LR vari-
ants include Polynomial and Multinomial Regression, where
variable relations are assumed more complex, thus learning
algorithms also become more complex.

Support Vector Regression: Support Vector Machine (SVM)
methods are common for classification although they can be
used for regression as Support Vector Regression machines
(SVR) [34]. The advantage of SVMs is that non-linear func-
tions can be learned as linear ones thanks to a transformation
of data known as the kernel trick.

SVMs allow learning non-linear functions by mapping them
into a higher dimensional feature space, using a defined kernel
function. Input X are mapped into an h-dimensional feature
space using a predefined non-linear kernel function to produce
a linear model. Similar to LR, we can express SVMs as Ỹ =
k(X ) · W + b, where k is the function making the space for
X linear. SMVs error minimization consists on building two
margin functions (support vectors) X ·W + b ± ε, where final
error ξ is computed for those elements outside the margins.
As a disadvantage, margin ε can become an hyper-parameter.

Gradient Boosting: Gradient Boosting is the combination
of the Gradient Descent optimization and Boosting tech-
niques [35], [36]. As any other boosting technique, the learned
model is the composition of weaker models focusing on
subsets of data, forming a stronger model when combined.
Usually, decision and regression trees are used on Gradient
Boosting techniques, but any other modeling technique can be
used for boosting.

On Gradient Boosting, a model is fitted as Ỹ = f (X ) min-
imizing ε = |Y − Ỹ |. Then function f can be fine-grain tuned
using another function h fitted to ε, learning and correcting
the errors on the first function, and so on recursively. This
recursion can continue until we rest satisfied with the resulting
aggregation of models.

Gaussian Process Regression: Gaussian Process Regression
(also known as Kriging) [37] is a non-parametric regression

method, where the modeled function is trained after a Gaussian
process using the covariances of previous examples. This pro-
cess is used mainly for interpolation which requires some
example observation points. Kriging method predicts by com-
puting the weighted average of the values for neighbors from
the known examples. Kriging models can model non-linear
as well as linear behavior. Typical regression methods are
extended by statistical models based on stochastic processes.
However, Kriging also estimates the associated statistical vari-
ations using the distribution and correlation of observed data.
Recently, Kriging is used for self-adaptive provisioning of
resources in cloud-hosted applications [38].

B. Adaptive Model Selector (AMS)

On multi-model methodologies, different regression models
produce predictions altogether, and a trained expert system
decides which prediction is followed, or how they are aggre-
gated into a final prediction. Such a trained expert can be
a machine learning model, like in Boosting methods. In our
proposed solution, before producing workload predictions, we
use a trained decision maker to choose the best predictor to
be used. The decision maker will classify each scenario into
the best-expected predictor for it.

Our decision maker input will be features [33] such as
skewness, standard deviation, kurtosis, autocorrelation for dif-
ferent lags,the absolute sum of changes, etc., and it will output
the regression method which is expected to be the best. At
each time step, the decision maker predicts the best regres-
sion model and then produces the workload prediction using
the predicted regression model. Here we present the different
classification models studied in this work.

K-Nearest Neighbors: The k-Nearest Neighbors (k-NN)
algorithm allows to memorize a set of characteristic exam-
ples, and classify new data instances by finding the k nearest
neighbors, and returning the class of the majority (or the prob-
abilities per class on those k examples). The nearest neighbors
are those examples with minimum distance, often euclidean,
Hamming or Manhattan distances. Here we select k-NN as
one of the tentative classifiers, as it is one of the easier mod-
els to train (it memorizes the training set), in exchange of
the not-so-easy search process when predicting a new data
instance.

Naïve Bayes: The Naïve Bayes algorithm is a classifier
based on computing the likelihood of a feature given each
class, then use the Bayes theorem to compute the condi-
tional probability of a class given that feature. The method
extracts from data the probabilities of each feature value
P(Feature = X), each class P(Class = C), and each likeli-
hood of features per class P(Feature = X | Class = C). This
method assumes independence among features, in contrast to
Bayesian Networks. The probabilities per class are the prod-
uct of their probabilities per feature, and the algorithm returns
the class with a higher probability (or the rank of classes per
probability).

We selected Naïve Bayes as one of the classifiers for its low
complexity, as training implies keeping the count of element
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occurrences, then probabilities can be computed on demand at
prediction time.

Multilayer Perceptron: Multilayer Perceptron (MLP) is a
kind of Artificial Neural Network (ANN) used for both clas-
sification and regression problems for non-linear systems.
The most commonly used ANN for classification problem is
“one-hidden layer” Feed-Forward ANN, where the ANN is
composed of a single layer of perceptrons (neuron units) and
an output layer.

Data passes through the hidden layer to the output produc-
ing a value for each class, then the class with a higher value
is chosen. Neurons aggregate input data, usually through a
linear function Xo = Xi · W + bias , then passes outputs
Xo to the next layer (here the output layer). Output neurons
also pass their produced aggregation through sigmoid func-
tions to approximate their outputs to 0 or 1 Y = sigm(Xo).
Fitting those functions is done by passing data repeatedly
and comparing the network output with the real output, then
updating neurons weights W and bias using Gradient Descent
techniques.

Neural networks can be complicated to fine-tune, as their
architecture must be treated as a hyper-parameter, decid-
ing how many neuron units are in the hidden layer, how
many times data must be passed for training, etc. We used
Keras [39] sequential model to implement MLP for classi-
fication. We evaluated MLP with different number of hidden
layers and found that with three hidden layers, it yields the best
results.

Since we are using four machine learning predictors for
evaluation purposes, the output layer contains 4 neurons.
We use “relu” as the activation function for hidden lay-
ers and “softmax” for output layer. We use “adam” as
optimizer and “categorical crossentropy” as loss function.
The total epochs used are 1000 with batch size equal
to 2000.

Random Decision Forest: Random Decision Forests (usu-
ally referred as Random Forests) are an ensemble method
for classification and regression, based on the aggregation
of specialized decision trees [40]. The ensemble builds
a set of decision trees, trained from different data sub-
sets, then predicted data is classified as the most voted
class from all decision trees (the trend). The main rea-
son to use random forests is to prevent over-fitting single
decision tree models and get a more accurate and stable
prediction.

Random Forests are known to produce decent results for
classification and regression problems, without the need for
much tuning or hyper-parameters. For our experiment, we tune
the number of trees and set it to 50.

Gradient Boosting: Gradient Boosting can also be used
for both regression and classification problems. For meth-
ods where the boosted algorithm is already a classification
problem, the most voted class from all partial models is
selected. For regression boosted algorithms, we can turn out-
puts into binary values using similar approaches like in SVMs,
considering each value as a class and its value between
−1 and 1 as its scoring.

Fig. 3. Example of time series features that are extracted from TSFRESH [41]
library. These features consist of statistical and time series features such as
minimum, maximum, variance, standard deviation, number of peaks, auto-
correlation at different lag intervals, entropy, kurtosis, skewness, fourier
transformation, mexican hat wavelet transformation, and etc.

V. FEATURE EXTRACTION AND SELECTION

Appropriate features can play an important role to improve
the prediction accuracy of machine learning models. In our
data set, the resource utilization of data centers is available as
a time series data. We explore multiple ways to extract time
series features from the given data set which includes manual
extraction, automatically extraction by the help of open source
libraries such as Cesium [42], TSFRESH [41]. However we
selected TSFRESH as it provides us most useful and a com-
prehensive set of time series features which is not available
in any other library. Time Series Feature extraction based on
scalable hypothesis tests (TSFRESH) [41], [43] is an open-
source Python library available to extract features for a given
time series data. In our proposed system, we used TSFRESH
to extract features for data center resource utilization data
available as time series. TSFRESH automatically calculates
a large number of time series characteristics based on scalable
hypothesis tests.

Figure 3 shows some of the features that TSFRESH extracts
for the given time series data. It provides hundreds of statis-
tical and time series features including minimum, maximum,
variance, mean, standard deviation, sum of values, autocor-
relation of the specified lags, measure of non linearity in the
time series, Mexican hat wavelet, first and last location of min-
imum and maximum, number of peaks, quantile, and sample
entropy etc. However all of these features are not necessary,
and appropriate features should be identified to improve the
performance of machine learning methods [44], [45].

The proposed system filters the features obtained from
TSFRESH using another open-source library available for
feature selection [46]. We selected this library because
it includes a comprehensive set of functions to filter
the features by using different approaches for identify-
ing the most appropriate features for time series clas-
sification. The library provides five different methods to
filter features for missing values, single unique
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Fig. 4. Box plot of CPU utilization for randomly selected 100 machines from Alibaba data set.

values, collinear features, zero importance
features, and low importance features. However,
in our proposed system, we only used three methods
to filter the features obtained through TSFRESH. First,
we apply three methods to filter the feature. First, we
apply single unique value method which remove the
features with identical unique values. Second, we apply
identify collinear which remove the features which
are highly correlated with one another. We used 98% cor-
related threshold in this method to ensure only remove the
features which correlated 98%. Finally, we apply zero
importance features which uses Gradient Boosting
Machine (GBM) learning model to identify the features which
have zero importance for the given set of features. After apply-
ing these methods, we obtain one hundred and six features
in total which include standard deviation, kurtosis, skewness,
absolute some of the changes, auto-correlation at different
lags, partial auto-correlation at different lags, the first location
of minimum, linear least-squares regression [47], and many
others.

VI. EXPERIMENTAL EVALUATION

In this section, we explain the datasets used to evaluate our
proposed method, the details about the experiments used to
validate it, the baseline methods used for comparison, and the
used evaluation metrics.

A. Datasets

1) Alibaba Data Set: The first data set we use is the Alibaba
cluster logs [12], publicly available, containing performance
traces of 1,313 machines for 12 hours duration. The Alibaba
monitored cluster provides interactive services and batch pro-
cessing workloads. The metrics represented are CPU, memory
and disk utilization for all machines, aggregated on 5-minute
averages. For simplification purposes, we are focusing and
experimenting with CPU time series. The average CPU uti-
lization in the Alibaba data set is 26.46%, with a standard
deviation of 10.66% CPU. Figure 4 shows a CPU utilization
sample for 100 randomly selected machines from the data set.

2) BitBrains Data Set: The second data set we use is
the Bitbrains data set [13], publicly accessible, containing

Fig. 5. Box plot for Bitbrain data set of 20 randomly selected VMs for
one-day data.

performance logs of 1,750 VMs for 30 days of data. The
Bitbrain monitored cluster provides interactive services and
batch processing workloads. The metrics represented are CPU,
memory, network and disk utilization for all the virtual
machines, aggregated on 5-minute averages. From this data set,
we randomly selected 20 VMs with average CPU utilization
greater than 30%, as most of the VMs with low usage do not
show critical metric patterns or utilization tends to be constant
on the lowest part of the spectrum demand. Figure 5 shows
the box-plot for one-day data of the average CPU utilization
for the selected machines.

3) Google Data Set: The Google cluster traces [48] are the
publicly available traces published by Google. To create the
CPU and the Memory utilization, the tasks of each job were
aggregated by summing their CPU and Memory consumption
every five minutes in a period of 24 hours. The dataset was
extracted over the first ten days period by filtering the utiliza-
tion of CPU and memory from 5 to 90 percent, resulting in
a total of 1,600 VMs [49]. We randomly selected 500 VMs
from this data set for the experiments and the average CPU
utilization in the selected data set is 21.89%, with a standard
deviation of 3.63% CPU.

B. Methodology

For the current experiments, we are using the Alibaba data
set to show a comprehensive evaluation of the proposed solu-
tion. Whereas, the BitBrains data set is used for testing to
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Fig. 6. Box plot for CPU utilization of selected four machines with different
characteristics from the Alibaba data set. M1 = high load, M2 = low load,
M3 = high variation, and M4 = low variation.

show that the proposed methodology does not over-fit to the
main data set (Alibaba).

To train and validate the machine learning models in the
AMS classifier, we are using a random split of 80% data for
training, and the remaining 20% for validating the models. The
test data also includes the four machines which are discussed
in the following paragraph.

As applications running on data-centers can have different
profiles, we selected four machines from the Alibaba data set
with very distinct CPU demands, to test the resource estima-
tion on different demand behaviors. Figure 6 shows the box-
plot of CPU utilization of the four selected machines: Machine
M1 serves a workload demanding high CPU resources;
machine M2 serves a workload requiring low CPU resources;
machine M3 serves a workload requiring CPU resources with
highly fluctuating demand; and finally machine M4 serves
a workload requiring CPU resources with low fluctuating
demand.

Our proposed solution is then compared with the aforemen-
tioned baseline methods, proposed by Liu et al. [30], using
Linear Regression (LR) and Support Vector Machines (SVM)
methods to estimate adaptively CPU utilization of VMs. The
combination of the two methods, LR for the slow-changing
workloads and SVM for the fast-changing ones, are here
labeled as “Liu” method. In addition, we also add the methods
namely LR, SVM, Kriging (KR) and Gradient Boosting Tree
(GBT) to consider for comparison with ours.

C. Experimental Details

1) Adaptive Model Selector Evaluation: The Adaptive
Model Selector (AMS) is in charge to estimate which of the
available ML algorithms will provide better modeling for the
current data being monitored. We performed a set of experi-
ments to evaluate different methods to make such estimation
by comparing different classifiers namely Random Decision
Forest (RDF), Gradient Boosting Tree (GBT), Multi-layer
Perceptron (MLP), K-Nearest Neighbors(k-NN), Gaussian
Naive Bayes (NB), and Support Vector Machine (SVM) with
linear kernel. These classifiers are trained and validated using
the Alibaba data set. We trained all classifiers on 80% of the

entire Alibaba data set and then tested on the remaining 20%
data to compare and identify the best classifier to used in AMS.

Training and validation data will be structured in time
windows, as explained in Section VI-C3. The classifiers are
evaluated through True/False Positive Rates (TPR and FPR),
accuracy, recall, f-measure, and precision. We also consider
the performance of the AMS by measuring the training time,
prediction time, and the size of the model on disk.

2) Resource Estimation Evaluation: Finally, when integrat-
ing the different techniques of model selection and resource
modeling, we perform a set of experiments to evaluate the
resource estimation using our proposed adaptive ensemble.
The final goal is to identify, on-line, the best regression
method that will build a prediction model for estimating the
resource utilization of the next future interval, given the current
monitored data.

As this problem is a regression one, we evaluate the com-
plete mechanism using the Root-Mean Square Error (RMSE)
as shown on Equation 1 to show how our method deviates from
the truth, also the Mean Absolute Error (MAE) as shown on
Equation 2 to show the absolute magnitude of the produced
error. Here at is the true CPU utilization and pt is the esti-
mated CPU utilization at time interval t, and n is the number
of performed estimations.

RMSE =

√∑n
t=1 (at − pt )2

n
(1)

MAE =
1
n

n∑
t=1

|at − pt | (2)

Again, training and validation data will be structured in time
windows (Section VI-C3), and then for each sliding window,
we use the AMS to identify the best regression method to
estimate the resources for the following intervals.

3) Window Size Sensitivity: A specific observation win-
dow size is required to train the AMS. In this experiment,
we evaluate the effect of different window sizes on the
proposed solution by quantifying the estimation error using
Alibaba dataset. We tested window sizes of 20, 40, 60, 80 and
90 minutes of data to train and validate the proposed solution
for resource estimation. To segment the data set into train-
ing/validation sets, we performed a random split 80%/20%.
We organized the training data into windows of the aforemen-
tioned sizes, and evaluate the models and ensemble, using
the RMSE and MAE metrics to quantify the effect of each
different window size.

VII. EXPERIMENTAL RESULTS

A. AMS Evaluation

The Adaptive Model Selection method is evaluated through
the aforementioned quality metrics for different classifiers, and
check not only accuracy but also the performance requirements
for each, like time for training and predicting, and size of the
resulting model.

Table II shows the evaluation results of the AMS using
the selected features of the raw data set to identify the best
prediction method for CPU resource utilization estimation
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TABLE II
AMS EVALUATION RESULTS USING DIFFERENT CLASSIFIERS

FOR ALIBABA DATA SET

TABLE III
TIME AND SPACE EFFICIENCY OF AMS USING DIFFERENT

CLASSIFIERS FOR ALIBABA DATA SET

using Alibaba data set. The table shows true positive rate
(TPR), false positive rate (FPR), true negative rate (TNR),
false negative rate (FNR), precision, recall, f-measure, and
accuracy for using kNN, Multi-layer Perceptron, Naive Bayes,
RDF, and GBT as classification methods in AMS to identify
the prediction method which can be used to estimate the CPU
resources with high accuracy. The RDF outperforms all other
classifiers. We observed that KNN, as second best classifica-
tion method in AMS also provides comparable and closest
results to RDF.

To profile the time and space efficiency of different classi-
fiers for AMS using Alibaba data set, we profile training time,
testing time, and the size of the trained model on the disk.
Table III shows the time and space efficiency of AMS using
different classification methods. We observed Naive Bayes
classifier is efficient by consuming the least time to train
and test the AMS. Whereas, the classification performance of
Naive Bayes is significantly lower than RDF specifically for
precision, recall, f-measure, and accuracy.

Although kNN classification performance is comparable to
RDF, however, training, testing, and disk size of AMS using
kNN is worst comparing to other classification methods. The
RDF training and test time are reasonably good, and it outper-
forms other classification methods for all evaluation metrics.
Therefore, we chose RDF classifier to use in our proposed
AMS.

Figure 7 shows the Receiver Operator Characteristics (ROC)
curve using RDF with AMS for different classes. ROC curves
for all the classes are better than the random classifier. We
observed that the proposed AMS with RDF efficiently classi-
fies the test data for all the classes. The area under the ROC
curves is 0.84, 0.89, 0.90, and 0.90 for SVM, LR, GBT, and
KR labels respectively.

Overall, we observed that using RDF in AMS performs
excellently to identify appropriate prediction method to use
adaptively for the given data for resource estimations.

B. Resource Utilization Estimation

Table IV shows RMSE and MAE for CPU utilization esti-
mations on test data of Alibaba data set for the proposed

Fig. 7. ROC curves using RDF with AMS for different classes.

TABLE IV
RMSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR ALIBABA DATA SET

Fig. 8. Comparison of normalized RMSE for baseline methods with the
proposed method using Alibaba data set.

Fig. 9. Box plot of absolute error computed for each estimation using baseline
and proposed methods for Alibaba data set.

and baseline methods. The proposed method outperforms all
baseline methods by yielding minimum RMSE and MAE.

To compare the proposed method with baseline methods we
normalized the RMSE with relative to the proposed solution,
as shown in Figure 8. We observed 27%, 35%, 37%, 38%,
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Fig. 10. Actual vs proposed method CPU prediction for Alibaba data set for four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4 = Low variation. The window size used to train the prediction model is 60 minutes.

Fig. 11. Model selection of Adaptive Model Selector (AMS) for Alibaba data
set for four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4 = Low variation.

and 41% less estimation error comparing to GBT, LR, KR,
Liu, and SVM baseline methods.

Figure 9 shows the box plot for absolute error computed for
each estimated CPU utilization using Alibaba data set for the
proposed and baseline methods. We observed the proposed
method outperforms the baseline methods to minimize the
absolute error.

Figure 11 shows the recommendations proposed by AMS
as a function of time for the selected four machines. The
proposed method dynamically selects the most appropriate
prediction model based on time series features of recent win-
dow. Figure 10 shows the comparison of actual and estimated

Fig. 12. Absolute error frequency of CPU utilization estimation for machine
M1 (High Load).

CPU resources using baseline methods and with the proposed
system for the four selected machines. The proposed method
to estimate the CPU utilization shows significantly closer to
the actual resource utilization for all of the machines serving a
significantly different type of workloads. Moreover, it is hard
to forecast in the presence of burst. For example, Figure 10 for
M3 we observe a burst between 460 to 530 seconds, and the
proposed solution tries to minimize the estimation error using
different estimator as reflected in Figure 11. The proposed
solution dynamically switches between different estimators to
yield prediction with better accuracy.

To quantify and visualize the error for each estimation, we
show absolute error frequency computed for machines M1
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Fig. 13. Absolute error frequency of CPU utilization estimation for machine
M3 (High Variation).

and M3 using baseline and proposed methods in Figure 12
and Figure 13 respectively. Where M1 serves a workload
demanding high CPU resources consistently, and M3 served
a workload requiring CPU resources with fluctuating demand.
We observed that the proposed method always yield minimum
error to estimate the CPU resource utilization for a different
type of workloads. We also observed that the proposed method
yield minimum absolute error for each estimation comparing
to the baseline methods for both M1 and M3 machines.

C. Window Size Sensitivity Analysis

Figure 14 shows the RMSE and MAE for different windows
sizes with the proposed system to estimate CPU resource esti-
mation. We observe that increasing window size reduce the
estimation error untill window size 60; however, after that, the
error starts rising. The 20 minutes window size only contains
four observations to fit the prediction models for an estimation
which yields a maximum error. This experiment identifies that
60 minutes window size is optimal to use with the proposed
system to minimize the estimation error. Therefore, in all of
our experiments, we used 60 minutes window size with the
proposed and baseline methods.

D. Evaluation Using BitBrains Data set

Table V shows RMSE and MAE for estimating CPU uti-
lization on test data using Bitbrains data set for the proposed
and baseline methods. The proposed method outperforms all
baseline methods by yielding minimum RMSE and MAE.

To show the comparison of the proposed method with base-
line methods, we normalized the RMSE with relative to the
proposed solution. Figure 15 shows the comparison of baseline
methods with the proposed solution by calculating normalized
RMSE for the Bitbrains data set. We observed 6%, 39%, 42%,
54%, and 54% less estimation error comparing to GBT, LR,
KR, SVM, and Liu baseline methods, respectively.

Figure 16 shows the box plot for absolute error computed
for each estimated CPU utilization using Bitbrains data set
for baseline and proposed methods. We observed the proposed

Fig. 14. RMSE and MAE using different window sizes with the proposed
system for resource utilization estimation.

Fig. 15. Comparison of normalized RMSE for baseline methods with the
proposed method using Bitbrains data set.

TABLE V
RMSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR BITBRAINS DATA SET

method produces less absolute error compared to the baseline
methods.

E. Evaluation Using Google Data set

After performing additional experiments using the Google
dataset, the same used by Liu [30], we realized that while such
dataset presents a behavior with less variance than Bitbrains
(more than 80% of the machines report standard deviations
below 4 in a range of 0 to 100), and all methods behave with
similar good accuracy, also both methods Liu’s and ours are
better than the individual machine learning algorithms. But
then, for the Bitbrains and Alibaba datasets with higher vari-
ance and more extreme behavior, and while Liu’s method does
not adapt that well, our method still does and improve the
individual algorithms. Table VI shows RMSE and MAE for
estimating CPU utilization on test data using Google data set
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Fig. 16. Box plot of absolute error computed for CPU utilization estimation
using baseline and proposed methods for Bitbrain data set.

TABLE VI
MSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR GOOGLE CLUSTER DATA SET

for the proposed and baseline methods. The proposed method
outperforms all baseline methods by yielding minimum RMSE
and MAE.

VIII. CONCLUSION

Building new methods for estimating resource utilization in
data centers is an active and challenging problem, as most
of the state-of-art techniques are based on specific machine
learning methods, able to adjust to particular scenarios, but
ineffective on extremely diverse environments. Therefore, we
present a novel approach to adaptively and automatically iden-
tify the most appropriate machine learning method to be
used for predicting future resource utilization, given recent
observations of such resources.

In our proposed methodology, we use Random Decision
Forest classifiers to determine, from a set of available
machine learning techniques, which one is most appropriate
for predicting resources on a next time interval, having mon-
itored the previous one. The RDF is trained on the statistical
features extracted from historical observations and samples of
the best method identified for each time window. Our selected
available methods include several techniques used in the cur-
rent state of the art, as regression methods, neural networks,
statistical learning, and bayesian approaches.

The proposed method is evaluated on real traces collected
from Alibaba and Bitbrains data-center monitoring datasets,
and our proposed approach can improve prediction accuracy
from 6% to 27% over current methodologies. We also focused
on the importance of monitoring time window sizes when
modeling and predicting and evaluated different sizes. We
found that 60 minutes of historical resource utilization obser-
vation can effectively be used to build the prediction model to
estimate the future resource utilization.

We conclude that our methodology can help to identify the
appropriate machine learning methods for each specific sce-
nario over time, and future work will focus on investigating
adaptive window size for modeling and predicting data cen-
ter resource utilization. We also plan to extend the proposed
system for online retraining automatically to adapt for chang-
ing characteristics. Moreover, we also intend to investigate the
prediction for t + n intervals.
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