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Abstract—XTRA (XFSM for Transport) aims at providing a
first attempt towards a “code-once-port-everywhere’ platform-
agnostic programming abstraction tailored to the deployment of
transport layer functions. XTRA’s programming abstraction not
only fits SW platforms, but is specifically designed to harness,
with no re-coding effort, the offloading opportunities offered
by CPU-less HW boards or smart NICs. We demonstrate the
viability of XTRA with three completely different implementa-
tions of the underlying execution engine (HW proof-of-concept
on a NetFPGA board, User-space SW over Linux’ Open Data
Plane, and NS3 emulator). Flexibility is shown via a number
of example applications, ranging from a variety of congestion
control algorithms, to a middlebox-type TCP proxy functionality,
up to a customized “Timer-Based” (TB) TCP which leverages
the native reliance of XTRA on timers, so as to produce a
loss recovery operation which, despite being formalized only via
a handful of code lines, performs almost comparable with the
highly optimized Linux and FreeBSD implementations.

Index Terms—SDN, NFV, FPGA, DSL, APIs, state machines.

I. INTRODUCTION

The ability to program, configure and efficiently deploy
virtualized network functions irrespective of the underlying
devices and platforms, be they HW or SW, is key for a
simple and effective network management. Modern fully pro-
grammable data planes (e.g., P4 [1], [2]) have permitted to
attain wire-speed operation by software-implemented network
functions. Still, they do support only stateless lower-layer
functions driven by packet arrivals, and hardly fit with the
inherently state-oriented functions of the transport layer which
are not only driven by packet forwarding events, but also by
time-related events. For example, a TCP-like protocol needs to
carry out functions when a timer (based on stored information)
fires, not just when a packet arrives, and need to use and update
stored information well beyond packet header fields.

With this paper, we posit that network management and
innovation in network protocols will greatly benefit from the
availability of programming abstractions that allow to imple-
ment stateful higher-layer network functions. We specifically
focus on transport-layer tasks which involve network functions
beyond packet-level “on-the-fly” operations — operations that
fully depend on protocol states, timers, opportunistic packet
buffering, signalling messages, etc. These functions are used
in very different parts of modern networks, and range from rel-
atively simple connection tracking to mechanisms that require
a full transport protocol implementation, e.g. TCP link splitters
or other types of proxies. The need to support flexibility

at higher layers is highlighted by recent proposals such as
Microboxes [3]; yet Microboxes are constructed around TCP
and are not directly focused on code portability.

“Code-once-port-everywhere” — Our main design objective
was to identify programming abstractions which retain a flex-
ibility comparable to a “standard” software implementation,
but at the same time guarantee the possibility to operate at
wire speed when “ported” on tailored hardware. This permits
to challenge the portability from SW end-systems to bump-in-
the-wire HW devices — e.g. smart NICs [4]–[7]. NICs capable
of relieving the cloud from CPU-costly protocol tasks would
cheaply enable a number of performance optimizations (e.g.
accurate pacing [8], [9] at no CPU cost), as well as offloading
scenarios such as connection management and handshake
protection (see the SYN-proxy use-case in Section VII-C).
A sufficiently expressive programming abstraction could ulti-
mately permit offloading of the entire transport protocol stack
in hardware, or even implementing more sophisticated cloud-
like functions [10].

Flexibility/performance/openness trade-offs — One way to
address the trade-off consists in providing fine-grained control
of the (hardware) platform via a programming language,
meanwhile “hiding” the platform’s internals via a compiler.
This approach was successfully applied to P4 programmable
switches [1], [2], and was later used by ClickNP [11] to
provide a modular programming abstraction tailored to FPGA
platforms, but resembling the Click Modular Router with
elements programmed using a C-like language. A similar
strategy was more recently envisioned for higher layer net-
work functions by Emu [12], which relies on a compiler to
cast C# functions into a NetFPGA SUME Verilog hardware
description. Still, run-time HW production from higher level
descriptions does not come free of concerns. Especially when
targeting actual product development, practical programming
needs further design phases dedicated to HW verification and
to back-end implementation (i.e. synthesis, placement and
routing tasks, which require a deep understanding of digital
design techniques), and necessarily restricts deployment to
programmable HW — e.g., FPGA boards, as opposed to more
efficient ASICs.

Programming abstractions based on “atomic” primitives
— A way to gain in viability (and further meet the vendors’
need for closed platforms [13]) is to slightly compromise
on flexibility and identify programming abstractions which
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offer i) a set of elementary, “atomic”, primitives, efficiently
pre-implemented once-and-for-all in the platform, along with
ii) HW-amenable ways to combine these primitives so as to
deploy a desired protocol logic or network function behavior.
While the majority of data plane programming abstractions
proposed so far agree on the above principle, they significantly
differ in i) the choice of the “atomic” primitives, and in ii) the
way in which these primitives are combined.

For what concerns the first aspect, even if the choice of
elementary building blocks is crucial, at least it does not have
to be taken once and forever. A set of instructions can easily
be extended as long as we can afford to deploy a new standard
or product — see for instance how the actions supported by
OpenFlow evolved from the original proposal [13] to the latest
publicly available version 1.5.1 [14]. In this paper we are thus
more concerned with the second aspect mentioned above: how
to combine elementary primitives so as to formally describe
a meaningful transport layer function — or even a whole
TCP-like protocol. Here, the challenge is to devise a solution
which, unlike other programmable approaches for transport
layer tasks such as [15], is not bound to a SW implementation,
but can be ported to CPU-less HW boards.

We argue that extended Finite State Machines (XFSMs)
are a compelling answer. First, they are a natural way to
describe a stateful process such as a transport layer protocol
or task. Second, they are suited for HW offloading. The
stateful process can be realized using a match/action table
lookup, as will be discussed in Section III-A. This approach
is able to apply the required transition in a fixed number
of clock cycles, regardless of the number of states and the
number of relevant transitions. Finally, and most importantly,
managing timers or asynchronous events is not possible with
programming languages such as P4 [1] or click-like [16]
data-flow-based [17] compositions that are extensively used
in companion SW platforms [18], [19] — their operation is
driven by packet arrivals. Conversely, (X)FSM “events” are
natively asynchronous and can be triggered by either timers
or signals associated to an internal buffer or other components,
including packet arrivals.
“XTRA” (XFSM for TRAnsport) contributions. — Goal
of this paper is to show that state-machine-based abstractions
do not restrict to packet-level on-the-fly HW-based flow pro-
cessing, as in our previous work [20]–[22], but can be cast to
the broader and more challenging context of transport layer
functions. We here specifically contribute as follows:
• We promote XFSMs as a viable programming abstraction

for transport layer functions, and we design XTRA, an
operating environment able to execute a state-machine-based
formalization of a desired protocol operation;

• We show how an XFSM-based design of (almost) the
entire TCP protocol logic—not only its congestion control
algorithm—can be summarized in just about 20 table lookup
entries;

• We show1 that XTRA enables portability of the same XFSM
code across three extremely different platforms (OpenData-

1XTRA portability was actually demonstrated live at ACM SIGCOMM
2018 [23], using a preliminary XTRA TCP implementation.

Plane SW, FPGA HW, NS3 emulator);
• Via selected use-case examples we show performance limits

in the management of timers over different platforms (ex-
ponential pacing example), and we show the adaptability
of our approach to also support middlebox-type transport
functions (SYN-proxy example).

With respect to previous work such as HotCocoa’s [24]
HW-programmable congestion control, XTRA has a wider
scope: we challenge programmability of a broad spectrum
of transport-level functions (pacing, connection management,
proxy operation, etc). XTRA can be considered as a first
step in such a direction, and as such is certainly not ex-
empt from limitations, the major one being completeness.
For instance, our implementation still lacks a programmable
segmentation module and a programmable “scoreboard” data
structure analogous to that employed in current high-end TCP
implementations managing SACKs. We also cannot claim, at
this stage, support for SCTP-like multi-streaming or QUIC-
like encryption, although we believe that these protocols will
not break the XFSM-based programming model fostered in
this paper. They will “simply” yield more complex XFSM
specifications and the need to extend the XTRA API with
additional actions (e.g. encryption modules).

II. RELATED WORK

Programming abstractions for network functions: Most
recent work on data plane programmability has built upon P4
[1], an influential programming language introduced in 2014
for HW-based programmable switching functions. Despite the
community’s interest in P4, we considered it too far from our
session-based programming needs and technical requirements
(reliance on timers, calendar, need for asynchronous packet
buffers, etc), whose support would require huge extensions
to the current P4 specification [2]. Recent NFV programming
models such as Netbricks [18], ClickNF [19], CLIMB [25],
or tools such as eBPF [26] are closer to our transport layer
needs, but their focus is on software platforms, while we also
wanted to cover HW implementations with the same portable
programming abstraction.
State-machine-based programming models: So far, in the
field of network programmability, state machines have been
proposed either as a way to model high level SDN-type
control policies [27], [28], or—closer to our goals—as low-
level abstractions for describing packet-level processing tasks
agnostic to the underlying (HW or SW) platform [20], [29].
HW implementation of XFSMs has been carried out in our
previous work FlowBlaze [22], a stateful packet processing
abstraction based on XFSMs. XTRA partially leverages this
previous HW implementation work, but casts it into a com-
pletely different layer—protocol implementation versus flow
processing—and significantly extends the set of events and
technical constructs so as to manage time-related events and
relevant calendar. XTRA’s API has been also radically mod-
ified to support the development of transport layer functions
by adding asynchronous timers and a user level interface for
buffer management, in addition to the more “usual” on-the-
fly packet parsing/processing. FSMs were also considered by
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NetASM [30] to act as an intermediate and portable abstract
representation between high level programming languages
such as P4 [1] and the underlying target-specific machine code.

More flexible transport layer: The quest for flexible transport
functions appears to have a twofold root. First, it is hard to
dismiss the fact that, after more than 30 years since their
inception, the debate on transport protocols and on the very
first principles of congestion control is still open — see e.g.
[31]. Second, heterogeneous networking contexts (wide area,
wireless, data center, etc) and service scenarios (user-generated
traffic, map-reduce-type patterns, machine-type communica-
tion, etc) hardly permit a one-size-fits-all approach, but rather
call for specialized congestion control protocols tailored to
specific environments [32]–[35]. Perhaps, the most significant
work in terms of flexibility is the very recent proposal of a
Congestion Control Plane (CCP) [15], which employs an user
space program able to modify parameters such as congestion
window and sending rate to program the congestion control of
the underlying TCP implementation. XTRA distinguishes from
CCP in two aspects: we primarily target HW offloading, op-
posed to CCP’s focus on SW, and our programming abstraction
aims to be more general, i.e. it is not specifically designed for
congestion control. Transport flexibility has recently also been
addressed in standard bodies: most of the work carried out in
the IETF TAPS Working Group, as well as in proposals such
as ModNet [36], Socket Intents [37] and NEAT [38], tackles
transport layer flexibility by letting applications choose the
most suitable transport service. None of them, however, render
the transport protocols themselves flexible.

Portable TCP implementations: A large amount of recent
work discusses how to efficiently implement transport pro-
tocols in user space [39]–[42]. Going beyond any form of
hard-wiring, NetKernel realizes an idea of “network stack as
a service”, where the entire stack is implemented in a VM,
unknown by the guest OS [43]. This could be seen as the next
logical step after mechanisms such as vCC [44] or AC/DC
TCP [45], which leave the guest OS unchanged yet harmonize
the congestion control in data centers by manipulating the
receiver window. Moving only the congestion control logic
out of its usual position in the implementation is also proposed
by [15], [46] in a way that is reminiscent of the Congestion
Manager [47], but designed to get out of the way of the data
path. While most of the existing references focus on software
platforms, to the best of our knowledge, HotCocoa [24] is
the first mechanism that addresses the design of hardware-
aware abstractions that make it possible to implement a
congestion control algorithm in programmable NICs. While
this work is probably the closest to ours, it shows significant
differences, both in scope (restricted to congestion control)
and technical implementation choices—it uses a state machine
only for credit control, whereas our proposed XFSM approach,
embedding update functions and explicit computing primitives,
appears more flexible and general.

Timers and pacing in TCP: Using timers to improve the
performance of TCP is not a new idea: the “TCP Loss Probe”
(TLP) timer was introduced in [48] to cope with tail loss, pre-
venting an unnecessarily long wait for an RTO; several recent
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Figure 1. Example XFSM rule entry

papers describe efficient methods for a software/hardware-
based implementations of pacing [8], [49], [50], and pacing is
an essential ingredient of congestion control with mechanisms
such as BBR [51] (which uses FQ/pacing in Linux) or HULL
[52], or to quickly start a new flow [53].

III. APPROACH

This paper fosters a programming model where extended
Finite State Machines do govern a set of elementary building
blocks specifically designed for transport layer tasks. Finite
State Machines permit to abstract the behavioral description
of a desired application/protocol logic, namely how a state
attributed to an entity (e.g. a transport session) shall update
and evolve in time, from the set of specific events (“input”
symbols) which cause such an evolution, and the specific
actions (“output” symbols) that are triggered by such state
transitions. The neat and upfront separation between “stateful
logic” and “stateless bricks” makes them an extremely flexible
modeling tool, adaptable to the specific needs of a desired
application’s domain—it generally suffices to identify and
specify the domain-specific building blocks.

More specifically, eXtended Finite State Machines (XFSM),
as formally specified in [54], appear to well fit our needs.
In a nutshell, XFSMs permit to transform the problem of
abstracting a desired protocol operation into a list of structured
“if-then” statements, , i.e. a table of rules whose hardware
“execution” (perform the “then” part if the “if” part matches)
can be made extremely efficient (very few clock cycles per
each state transition using TCAMs and ALUs [22]).

A. The case for finite state machines

XFSMs’ “if” part. As shown in the toy example of Figure
1, the “if” part of a rule evaluates three different types of
information: the programmer-specified state label (a string),
the event which triggers a state transition from such state,
and the further conditions that must be verified in order
to trigger a state transition. With respect to their baseline
counterpart, XFSMs permit to further verify conditions on
custom quantities — internal memory “registries” — before
triggering a state transition. For instance, the arrival of a packet
while in state “wait” is not sufficient: the programmer may
further condition the transition to the verification that A > 7
and that the content of the programmer-defined register #1 is
equal to 2.
XFSMs’ “then” part. While a standard FSM just triggers a
state transition–e.g. to the next state “active” in the example—
and a Mealy machine further permits to invoke output actions,
the most powerful feature of XFSMs is the ability to further
initialize or update the internal memory registers via a set of
“update” functions. For instance, in the example of Figure 1,
the transition causes an update for register #1, and permits
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Figure 2. XTRA architecture. The lookup block receives the events from
different sources (i.e. the input queues, the timers and the user applications)
and extract the session ID. This Id is used to retrieve the session state stored
in the per-flow memory. This information is used by the rule engine to execute
the relevant actions (packet forwarding, memory update and timer scheduling).

the programmer to cache an hash fingerprint of packet C just
stored into register #2. We remark that an XFSM does not
permit to program actions or update functions: continuing the
example of Figure 1, transmission of a packet, scheduling of
a timer, and local storage of a packet are pre-implemented
actions/functions which the programmer can “only” use ac-
cording to her desired logic.

B. XTRA: XFSM execution engine

XTRA is an XFSM execution engine specialized to support
the programming needs emerging in the design of transport
protocols with their congestion control schemes. XTRA’s
architecture, high-level sketched in Figure 2, is a computing
system comprising i) a processing unit (Rule Engine) tailored
to execute extended state machines, ii) the memory necessary
to store registers and states for the (generally multiple) ses-
sions supported, and iii) dedicated SW or HW modules which
(pre-)implement and/or manage the domain-specific actions
and events handled by the XFSM.

As shown in Figure 2, whenever a network-level or user-
level event occurs, the module devised to parse such event and
transform it into an internal system event identifies the session
which this event belongs to (e.g. in the case of packet/ACK,
the flow identifier inside the packet header). The session ID
permits lookups in a session database which stores all the
state information, i.e. state label and associated registries (e.g.
standard or customized RTT estimate, transport session param-
eters, and custom registries) for the given transport session.
Such information is then used by the rule engine to i) identify
which rule (XFSM entry) is matched, and ii) trigger the
associated actions. Finally, the session DB is updated (for the
given session) with i) the next state returned by the matched
rule, and with ii) the update of the registries as specified by the
update field in the matched rule. Table I summarizes actions
and events supported; a more extensive presentation of the
XTRA API and of the actions/events parameters is provided
in the repository [55]. In what follows we briefly discuss its
most relevant aspects.
Events and Actions. As discussed before, an XFSM takes
as input a finite set of events, and triggers a finite set of
actions. Events and actions are as such exogenous, and need

to be provided (i.e. pre-implemented) by the XTRA platform
via dedicated stand-alone modules. XTRA events may be
classified in three different categories: i) network-level events,
i.e. triggered by packet/ACK arrivals, ii) user-level events
triggered by the application layer, and iii) firing of timers.
Similarly, actions include packet/ACK generation, transmis-
sion, scheduling of timers, and management of memory stores,
as discussed in more details later on. It is worth to remark
that the programmer does not need to know how a specific
event or action is internally implemented; the list of events and
actions supported by a given platform and (when applicable)
the relevant parameters, is all the programmer needs.
Timers. With respect to works focusing on packet/flow pro-
cessing (from OpenFlow [13] and OpenState [20] to P4 [1] and
FlowBlaze [22]) where the only events handled are related to
explicit packet arrivals, transport protocol mandate the explicit
management of timers. Indeed, time management emerges in
several tasks and at different time scales, from the loose time
scale of (re)transmission timeouts (order of tens or hundreds
ms) down to the tight granularity required by packet pacing
over high speed links. To accommodate timers, the XTRA
architecture internally implements a tailored calendar data
structure providing support for a timer scheduling action as
well as generation of an event towards the XTRA central
processing unit when a previously scheduled timer fires. Ef-
fectiveness of timer handling of course largely differs between
SW and HW (see Section V’s assessment).
Local Packet Memory (key-value store). While the session
database, accessed via a session ID, permits to store and
systematically manage all the state information associated to
a given session, there are scenarios (see e.g. the SYN-proxy
example presented in Section VII-C) in which memory is
exploited for temporary storage purposes. For maximum flexi-
bility, we provided XTRA with a local key-value store capable
of accommodating incoming packets, as well as specialized
actions in the API for conveniently managing access to such
memory. The API actions manage the Local Packet Memory
as a per-connection ID queue in which the packets can be
stored and retrieved.
Extensibility. The power of the XFSM model suggests that
extensions to support more complex transport protocols needs
may be possible just via a suitable extension (and relevant
implementations) of the register update capabilities, and of
the set of events and actions supported, i.e. without any
drastic revision of the foundational aspects of XTRA and its
proposed XFSM abstraction. Indeed, it is worth to remark
that, if no restrictions are imposed on the data types stored
in the registries and on the update functions used for updating
such registries, the XFSM model is Turing-equivalent[56]—
i.e., with same data types and instruction set, anything that
can be coded using a general purpose programming language
can also be specified via an XFSM.

IV. IMPLEMENTATION

XTRA has been implemented on three widely different plat-
forms: a 10G HW netFPGA SUME board, the NS3 simulator,
and in User-Space over OpenDataPlane [57]. The FPGA, NS3
and ODP source code is available on the repository [55].
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Action Explanation

sendPacket(pktRef, iface) send a packet pktRef on the specified port (iface)
update(op1, op2, dst, op-
Code)

update a (dst) register with an arithmetic operation
(opcode) on two registers (op1, op2) or constant

store/deletePacket(pktRef) save/clear a packet (with pktRef pointer) in its buffer
setField(field, pktRef, val) set an header field (field enumeration) of a pktRef

packet with a value (val: register or constant)
deleteInstance() delete the session state stored in the per-flow memory

of the current flow
random() returns a random unsigned integer
closeSocket() deallocate socket after teardown
notifyRcvd() notify applications the reception of new packets
setTimer(data0, data1, t) schedule a timer at a relative time t which carries data

(data0, data1)
removeTimer(t) remove the scheduled timer at relative time t

Event type Event Explanation

Timeout event timeout(data0,
data1)

timer expired carrying data (data0,
data1)

Network event pktRcvd(iface) data packet arrived on the iface

User event
connect() app binds the socket
close() app unbinds the socket
appData(data) new data from applications

Table I
XTRA API

A. HW implementation

To demonstrate hardware feasibility and identify issues and
possible bottlenecks, we designed and implemented a HW
proof-of-concept implementation of XTRA using the latest
version of the NetFPGA board as target device.
The main FPGA implementation blocks are:
Calendar: stores events that are sent to the XFSM. A detailed
description of this block is available at [9].

Packet parser: receives packets from the network, parse
them and provide data to the XFSM. In particular it provides
the events related to the arrival of an ACK packet, together
with the relevant parameters for the XFSM such as the TCP
ACK number and the Timestamp Echo Reply value used to
compute the RTT.

Session database: holds the state of each TCP connection
in a hash table as a {key,value} pair. The key is the 5-
tuple connection ID while the value is composed by the
XFSM state together with the set of registers associated to
the connection.

XFSM executor: a small TCAM in which each row corre-
sponds to a possible transition of the XFSM to execute.

Packet sender: read the data stored in the Local Packet
Memory and generates the packets to transmit when the
XFSM launches the sendPacket action. The Local Packet
memory is filled by the host with the data to transmit. The
host signals the presence of new data to transmit using the
appData event.
The proof-of-concept exploits the standard IP blocks pro-

vided by the NetFPGA framework [58] to provide the 10GbE
input/output interfaces. In particular, the packet parser is
connected to an input interface and activated by any packet
that arrive to the interfaces, while the packet generator is
connected to the corresponding output interface and sends the
TCP packets outside the NetFPGA. The packet generator is
a very simple hardware block that does not present specific
engineering and design issues.

The hash table for session management contains 12 × 32

bits registers for each flow and 128 bits to store the flow ID
key, therefore each table row is composed by 64 bytes. Our
proof of concept utilizes a hash table of 4K rows realized
using 64 block RAMs. The hash table is realized using a 4x1
cuckoo hash table [59] similar to the one presented in [22].

The XFSM executor contains several arithmetic operations
that are used to update variables like RTT and cwnd. While
some are simple additions or multiplications, we also need
divisions, i.e., to compute RTT and pacing delay. In order to
limit hardware complexity and keep clock frequency at 156.25
MHz (corresponding to 10 Gbps when the data bus is 64 bits)
we compute divisions A/B as products A × 1/B and we
retrieve values 1/B from a look-up table that we pre-compute.
The table is a 1024x16 bits (2KB) memory block addressed
with the 10 least significant bits of the divisor B. We use
similar approaches for other functions, like log2 (1+1/n), that
we use for exponentially pacing the TCP slow start described
in Section V: for this table we reserved 16KB of memory. We
discuss details about tables in Section V.

The requirements of the calendar block in terms of number
of timers, time resolution and complexity to insert a new
timer are critical for the proof-of-concept implementation and
require specific design choices. The readers interested in the
details of the hardware implementation of the calendar block
and on its use to provide programmable pacing can refer to
[9]. In the following we simply provide a brief discussion
of the main design choices. In order to achieve a good time
resolution we clocked the calendar at 200 MHz, corresponding
to a 5ns clock tick. The calendar uses a d-left hash table [60]
to store expiration times: we allocate its tables in the dual port
Block RAMs of the FPGA. As several MB of such memory are
available, the calendar can store tens of thousands of timers.
Dual port RAMs allow using one port to insert new timers and
the other one to check if a timer has expired. The insertion
in the calendar is done as follows: (1) the expiration time is
computed by adding the present time (with 5ns resolution) to
the interval time; (2) the calendar checks if a slot is available
in the d-left hash table, and in that case insertion is successful;
(3) otherwise, the calendar keeps increasing the expiration time
with clock-tick steps until insertion is successful.

We highlight that adding a clock tick to solve a collision
occurring in a hash table is a novel approach that can be
applied in our case since the shift of a few nanoseconds when
a collision occurs gives a negligible impact on the accuracy of
the calendar, as it will be shown in Section V-C. Alternative
(and more complex) approaches such as cuckoo tables [59] or
de-amortized cuckoo hashing [61] provide an insertion time
that is at best comparable to the one achievable by adding a
clock tick. Moreover, standard collision resolution techniques
are based on the hypothesis that multiple occurrences of keys
with the same value cannot exist. Instead, for the calendar it is
possible to have different timers with the same expiration time.
Adding a clock tick also solves this “hard collision” event that
cannot be managed with standard techniques. The operation
of checking if a timer expires is trivial, since it only requires
to check if a query to the hash table with present time as key
provides a positive answer.

The prototype implementation uses 42895 LUTs, i.e., less
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than 10% of the FPGA logic resources, and 288 Block RAMs,
i.e. around 18% of the total available capacity. The calendar
takes 32 Block RAMs (2% of available Block RAMs), corre-
sponding to 128 KB and can store more than 16 000 timers;
the lookup tables used to offload complex operations require
another 18 Block RAMs.

B. SW implementations: NS3 and ODP

We chose ns-3.27 as reference software platform for evalu-
ating XTRA performance. We ported XTRA in the simulator
by reusing only those parts of the original TCP code related
to packet/header generation, packet parsing and buffer man-
agement. We extensively patched tcp-socket-base.cc
source: there we added hooks for triggering XFSM activation
as soon as transport layer events arise. We implemented the
corresponding handlers in tcp-xfsm.cc that encodes the
complete logic behind the XFSM abstraction layer.

Tests in ns-3 were conducted on a dumbbell topology with
configurable parameters, they are available in [55].

Besides NS3, we implemented XTRA on top of the high
performing OpenDataPlane [57] network stack, that makes
coding and debugging faster than with a kernel based ap-
proach. For our proof-of-concept we did not exploit all the
functionalities available in ODP, in particular those that target
system optimization. For this reason our demonstrator runs in
a single thread that transforms received packets and expired
timers into events: on their occurrence, the same thread parses
the XFSM and evaluates the conditions and executes the
actions associated with determined state transitions. We use
an odp_pktio object attached to a configured network
interface for receiving and transmitting TCP segments that are
respectively fed to and obtained from the XFSM description,
and an odp_pool of timeouts for arming timers that we
schedule inside an odp_queue. Timers are kept ordered in a
circular array whose tail advances as the XFSM arms new
ones. To support multiple flows, we used a hash table to
store the states associated to an instance. The key used is
configurable as an array of header fields (e.g. the 5-tuple IP
src, IP dst, IP proto, src port and dst port). When an event
is triggered, it contains the flow key that is used to retrieve
the context. If there isn’t any matching instance, a new one is
created and inserted to the hash table.

C. The XFSM-Lang

In order to describe the state machines, we developed a
Domain Specific Language (DSL) named XFSM-Lang that
provides high level abstraction with a clear notion of state. We
also developed a compiler for translating a program written in
XFSM-Lang into platform independent JSON code. The same
JSON code, that includes all conditions, states, table entries
and registers describing the XFSM, can be uploaded to the
different platforms and directly executed without any need to
change it.

We opted for developing a new language rather than
using an existing one for two main reasons. First, even
though several programming languages easily handle events,
none of them can be used for controlling network related

events: i.e., they are usually focused on the development of
user interfaces, or tailored to both describe hardware blocks
(VHDL/Verilog are event driven languages) and check their
responsiveness [62]. Second, languages that can be used for
describing FSM are either too domain specific, like in the case
of Esterel [63], or not completely developed, so that they lack
many of the features that are required in our case.

In the end, we develop XFSM-Lang from scratch with the
following features:
• it provides the primitives needed for network processing,

such as packet header definition, packet manipulation;
• it is able to describe an XFSM;
• it is able to support per-flow state management;
• it is able to describe how the system reacts to different

events (network events, timers, application requests etc).
A program in XFSM-Lang begins with register declarations

and macro action definitions. A macro action is a set of
primitives and other macro actions, and can be used to reduce
redundancy in the code. For instance in the proxy code (Figure
13), the macro reply is used in the syn-proxy in order to
reply to a packet, switching ports and addresses. After registers
and macro definition the flow ID definition is provided. This
ID is used to associate the incoming packets to different flow,
thus allowing the per-flow state management. For example, in
the case of a TCP connection the flow ID corresponds to the
5-tuple and a different XFSM is instantiated for each different
flow ID. After the program lists all the states of the XFSM,
with events and conditions considered for every state.

For each state we can define some actions to be executed
every time the XFSM comes into that state, and we can define
events. For every event, we can have actions executed when the
event happens. Inside an event we can define some conditions
which when are satisfied, cause the actions inside the condition
block to be executed. As an example, Figure 3 shows the
slowStart state definition in the TB-TCP implementation.
Inside the state block, we have two on blocks that are used
to define the XFSM behavior when a timeout (line 2) or a
pcktRcvd (line 15) event happens in the slowStart state.
Inside the two on blocks, if blocks define a set of conditions
that have to be verified (line 3 and 9 for the timeout event
and line 16 for the condition associated to the pktRcvd
event). Inside the if blocks we have some actions, like a
setTimer (to schedule a timer, line 6 and 19), some updates
(e.g. line 5, 11, 17 or 20) and macro action calls (e.g. line 4,
7, 12 or 21).

Associated with an event, the programmer can access to
the informations carried by the event itself, like for instance
timeout.data0, which returns the data-field 0 carried
by the timer, or in the case of a packet received event,
pktRcvd.port returns the port where the packet has been
received. The programmer can also access to the field of the
packet, using the dotted notation protocol dot field name, e.g.
tcp.ackNo, ip.src o udp.sport.

D. Debug interfaces

The XFSM-Lang provides a set of features that facilitate
functional debugging. The main target of these features is to
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expose the internal state of the XFSM to the programmer. We
developed three types of debugging interfaces.

1) Event based debug interface - we introduce a specific
“debug event” that generates a snapshot of the flow
registers associated to the flow ID under execution plus
the current timestamp. The NetFGPA prototype transmits
the snapshot to the host via the PCIe interface, embedded
in a special packet. The debug event, that is similar
to a state transition (i.e., it is activated from a specific
state when a certain condition occurs) is defined by the
XFSM-Lang using the #debug directive. If placed before
a state declaration (e.g. before line 1 in Figure 3), it
fires every time the XFSM goes into that specific state
independently of events and conditions. If placed before
an event (e.g. before line 2), it fires only if that event
occurs in the state that defines the event block itself
(in this case slowStart). Finally, if placed before a
condition statement (e.g. before line 3), it fires only on
these specific conditions and when the event on which
these conditions are associated occurs.

2) Sampling based debug interface - the XFSM execution
engine can automatically generate a snapshot of specific
flow registers with configurable frequency. In XFSM-
Lang this is obtained by placing debug directives at
the beginning of an XL program, with syntax #debug
reg interval, where reg is the register to sample
and interval is the time period in microsecond. The
NetFPGA prototype implements this debug mechanism
by using an internal timer: when it expires, the FPGA
generates a special packet with the requested information
similarly to the previous debug interface.

3) Flow context table inspection/manipulation - the flow
table can be accessed from the external to monitor the
state of the XFSM engine, to count how many flows are
active, to query the state of specific flows, etc. Using this
mechanism, we can also modify the flow table.

V. PLATFORMS’ EVALUATION

Our current HW NetFPGA prototype, mainly meant to
prove the feasibility of our concept, is still driver- and
memory-limited and cannot yet support a large number of
flows. Nevertheless, it is fully functional at wire speed (once

1 S t a t e s l o w S t a r t {
2 on ( t i m e o u t ) {
3 i f ( t i m e o u t . d a t a 1 <= 0 , a v a i l W i n > 0) {
4 sendAndUpdateWithTimeout ( ) ;
5 highTxMark = nextTxSeq + 1448 ;
6 setTimer ( nextTxSeq , 0 , 1 ) ;
7 updateAvailWin ( ) ;
8 }
9 i f ( t i m e o u t . d a t a 1 > 0 , t i m e o u t . d a t a 0 >= l a s tAckedSeq ,

10 c u r r e n t R e t x R o u n d < t i m e o u t . d a t a 1 ) {
11 c u r r e n t R e t x R o u n d = c u r r e n t R e t x R o u n d + 1 ;
12 i n i t P a c i n g ( ) ;
13 }
14 }
15 on ( pktRcvd ) {
16 i f ( t c p . f l a g s > 2 , l a s t A c k e d S e q ! = t c p . ackNo ) {
17 cwnd = cwnd + 1448 ;
18 l a s t A c k e d S e q = t c p . ackNo ;
19 setTimer ( nextTxSeq , 0 , 1 ) ;
20 r t t = max ( r t t , t c p . t imes tampEchoReply ) ;
21 updateAvailWin ( ) ;
22 }
23 }
24 }

Figure 3. An example of state definition in XFSM-Lang

a content file is preloaded in the board), and can be used to
gather a number of interesting performance insights in relation
to latency and timing accuracy improvements with respect to
its ODP SW counterpart.

A. Latency assessment: HW vs SW

A major reason to move from SW to HW is to more
efficiently support “thin stream” [64] applications with very
stringent temporal requirements. Indeed, applications such as
Voice-over-IP, multiplayer games, remote control systems, or
online trading usually are not bandwidth-hungry (though in
some cases they also might be, e.g. in some datacenter appli-
cations or 5G scenarios). Rather, they usually communicate via
short sized packets, which have critical latency requirements
not only in absolute terms, but also in terms of variability,
worst-case (tail-latency) requirements, and sensitivity of la-
tency to the processing load [65].

In the experimental setup we forced XTRA to execute
a simple stop-and-wait ARQ in which after the connection
establishment the sender waits for an ACK before sending
another packet. The latency is measured as the time difference
between the arrival of one ACK and the sending of the next
packet. The measurement of the latency was done with a
NetFPGA configured to monitor the traffic between the sender
(implementing the XTRA machine) and a receiver and to
copy the monitored packet to a mirror port adding a 6.4ns
resolution timestamp. The use of the NetFPGA allows a very
efficient and reliable tool for latency measurement since avoids
the typical error sources of a software measurements (NIC
latency, uncontrolled offloading features, unexpected interrupts
etc) that can affect the measure.

The measures have been performed with the SW (ODP)
and HW (NetFPGA) prototypes executing the same stop-and-
wait ARQ application and changing the number of active
connections from 1 up to 100 connections. In particular for
each experiment we logged 10000 latency samples and we
computed the average latency and the 99th and the 99.9th
percentile. The collected results are shown in Figure 4. Since
the results with the FPGA are insensitive to the number of
active flows, for this implementation we only report the case
of 100 connections. In fact, for the software implementation
the time needed to retrieve the flow context can vary depending
if the data are already in the cache or must be retrieved from
the main memory. Instead, the FPGA uses a plain memory
structure and the access time to the hash table storing the
flow context is fixed.

From the Figure it is possible to see that the SW not
only has a higher latency than the FPGA implementation, but
its variability is extremely high. In particular, the software
implementation has an average latency between 13-15µs and
increase slightly with the number of active flow, while the
FPGA is constantly at 4µs of average latency. The variability
of the latency for the software is significant, since the 99.9th
percentile go up to 190µs with 100 active connection. On the
other hand, the FPGA implementation delivers the packet with
a latency that is 5µs in the worst case.
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Figure 4. Latency comparison with ODP and FPGA, changing the number
of active flows.

B. HW flow scalability

The current implementation of the XTRA prototype uses
the internal block RAMs of the NetFPGA to store the flow
context for each active connection. The current prototype is
limited to 4K rows and use around 5% of the internal FPGA
memory resources. Since the internal RAMs are used also for
other purposes (e.g to implement the internal tx/rx queues) it
is not possible to reserve more than 50% of Block RAMs to
allocate the flow context. This limits the scalability of the
number of flows using the internal BRAM to a maximum
of 40K concurrent flows. However, the NetFPGA, as almost
all the available FPGA based SmartNICs, are equipped with
several external memories that can be used to scale the number
of flows that the system is able to manage. In particular, the
NetFPGA is equipped with two kind of external memories:
i) the QDR-II memories able to provide an additional 9 MB
of storage and ii) 8GB of DRAM memories. Since DRAM
memories have access times in the order of tens of clock
cycles, the use of these memories for extending the number of
active flows is quite challenging and the actual performances
are deeply dependent on the traffic distribution. In fact, using
the DRAM as the main memory for storing the flow context
and the internal FPGA memory as a fast access cache memory
is effective only if most of the traffic is due to a limited
number of flows, which can be stored in the BRAM, limiting
the number of access to the external memories. Instead, the
use of QDR is much more efficient, since this memory can be
accessed in just one clock cycle (when the clock frequency is
less than 167 MHz) and it is able to scale up to 150K flows.

C. Timing flexibility and accuracy

Another reason which calls for HW offloading of transport
layer functions is accurate management of timing. Besides
the ability to accurately control transmission schedules (e.g.
in terms of pacing requirements mandated by many recent
congestion control mechanisms [35], [51]–[53]), a fine-grained
SW implementation (e.g., based on spin locks) may incur
in severe CPU resource consumption. Improvements such as
relying on the Linux kernel’s FQ scheduler (considered for
BBR [51]), or careful designs such as Carousel [8] may
come along with limited flexibility, and cannot provide support
beyond constant (or, at best, piecewise-constant) schedules.
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Figure 5. HW Timer accuracy (exponential pacing): absolute (right y-axis,
nanosecond) and relative (left y-axis) errors versus packet #.

Conversely, the ability of a state-machine-based specifi-
cation to natively handle arbitrarily timed events directly
in the HW permits to trivially incorporate management of
transmission times inside the protocol implementation itself.
To prove this point, we show how simple the deployment of
an uneven pacing strategy would become with XTRA.

VI. RESULTS

We report in this Section results we collected to better
evaluate the timer-scheduling complexity in both the NetFPGA
HW prototype and the ODP software-based implementation.
Insertion time and accuracy of hardware calendar. To
test the effects of the insertion algorithm of the hardware
calendar we compared both the average insertion time and
the worst case insertion time of a standard cuckoo hash with
those achievable with our algorithm. For this experiment we
simulated a hash structure composed of 4 tables of 4096 rows
which first is loaded to a specific load value, and then a
dynamic insertion/remove procedure is applied. The procedure
substitutes each expired timer with a new one maintaining the
same load factor for each insertion. This substitution has been
applied 1000 times for each test. The comparison with the
insertion time of the standard cuckoo algorithm is reported in
Figure 6. For all the graphs the x-axis reports the load factor
at which the hash table is loaded before starting the insertion
and removal procedure. The plot in Figure 6.a) reports the
average insertion time for the standard and for the calendar
insertion algorithms, while the plot in Figure 6.b) reports the
worst case insertion time for the two algorithms. As expected,
the calendar insertion is always faster than the standard one,
both on average and in the worst case. For this last parameter,
it is worth to notice that the overall worst case, which occurs
when the table is fully loaded (97%), is only of 71 clock cycles,
corresponding to 355 ns. As expected, the time resolution of
the calendar is much better than the target resolution of 1µs.
Exponential Pacing: Hardware Assessment. For our as-
sessment we borrowed the “exponential pacing” proposed in
[9]. A “paced Slow Start” can be implemented by ensuring
that the interval of time between transmission of segment n
and segment n + 1 is log2

(
1+ 1

n

)
RTT . We have verified

the pacing accuracy of the HW prototype, by uploading and
executing a single state / single event (one line) XFSM

8
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Figure 6. Comparison between average insertion time of standard cuckoo and
calendar. a) the plot reports the average insertion time. b) the plot the worst
case insertion time.

implementing the above rule with a constant RTT . As already
mentioned in Section IV-A we extended the update functions
with a precomputed 16K entries’ lookup table which takes
n as input and provides a 32-bit fixed point representation
of log2

(
1+ 1

n

)
, so as to support time scales ranging from

about 1 µs—roughly the time that saturates a 10Gbps link with
1500-byte packets— to several milliseconds. Figure 5 shows
that such time scales are not nearly challenging for a HW
implementation, with an absolute error with respect to the
theoretical computation even dropping below the nanosecond,
and a relative error always in the order of 6 · 10−5 (it grows
just because the scheduled time intervals get smaller as the
packet index increases).

Software-based Timers. Albeit quite obvious, HW timing
accuracy is best appreciated when compared with its ODP
software counterpart. Here, we assumed the most challenging
scenario where a node powered by an Intel Core-i7 CPU
clocked at 4.2GHz is pacing 1500B long TCP segments over
an Intel X520 10Gb/s NIC. We report in Figure 7 the timers’
accuracy evaluated with the help of an Anritsu MD1230B
Data Quality Analyzer for exponentially decreasing scheduling
delays. The central mark is the median, the box includes data
between the 25th and 75th percentiles, and whiskers exclude
those points considered as outliers that are plotted individu-
ally. As ODP could not schedule reliably segments with the
minimum pacing delay permitted by the channel, i.e., 1.22µs,
we excluded it in the top diagram that reports the relative
error achievable by ODP. In the bottom diagram, instead, we
report the absolute error that we achieved after replacing the
ODP timers with spinlocks that check the realtime clock of the
system. While not limiting the portability that we envision (in
the end we used the POSIX function clock_gettime), this
modification brings in two positive effects: it enables minimum
pacing delays and decreases CPU load from 160% when using
ODP to 110%. We can appreciate a median error very close

to zero for all explored delays.

VII. APPLICATION EXAMPLES

To show the breadth of XTRA’s applicability, we first
implemented a version of TCP that performs comparable
to up-to-date Linux and FreeBSD implementations and is a
basic and simplified yet “complete” implementation of the
protocol (complete enough to correctly communicate as a
sender with ncat and iperf receivers). Then, to show that
we are not limited to TCP, we implemented a version of
LEDBAT congestion control [66] over UDP. To understand
whether our code is expressive enough to cover an even
broader range of congestion controls, we ported one of the
mechanisms from the most closely related work—TIMELY
from HotCocoa [24]—to XTRA, and found that we can do
this without problems and with a similar number of code
lines. Finally, we implemented a simple SYN Proxy, which
implements a stateful middlebox operation on a switch. We
discuss all of these implementations in the following.

A. TB-TCP: TCP with Timer-Based Loss Recovery

TCP’s connection (LISTEN, SYN-SENT, etc.) and conges-
tion control (Slow Start, Congestion Avoidance, Fast Retrans-
mit / Fast Recovery) state machines can be readily transformed
into an XFSM. The Fast Recovery phase itself, however,
is exceedingly complex: over the years, the recommended
standard behavior in this phase [67] has been extended and
updated in many ways, addressing issues such as wrongly
reacting to packet reordering [68], creating unnecessary bursts
(“Proportional Rate Reduction” (PRR) [69]), or timeouts after
losses at the end of a burst (“tail loss”) [70]. Generally, these
algorithms are sets of rules operating on a data structure
called the “scoreboard”. While it is in principle no problem to
transfer them to an XFSM, we found this added complexity
to be unnecessary thanks to one of the most recent additions
to the Linux code, RACK (“Recent ACKnowledgment”) [71].

RACK significantly changes the underlying logic of TCP’s
loss recovery: it detects losses and decides to retransmit
segments using time instead of counting segments or byte
sequences. When an ACK arrives that acknowledges some
but not all transmitted segments, any segments that were sent
earlier (by a minimum time called “reordering window”) than
the acknowledged segments are assumed to be lost. This way
RACK can detect more losses than other algorithms, and it can
effectively replace all of them with its straightforward logic,
rendering the entire recovery phase much simpler.

RACK is now deployed and enabled by default in
Linux [71]. While it relies on (SACK) information from
DupACKs, it seems obvious that the idea of considering the
amount of time that has expired since a segment was sent
could also be implemented more directly, by using a timer for
every transmitted segment. Indeed, the authors of RACK state
that it “conceptually arms a (virtual) timer on every packet
sent” [72]. Because per-packet timers are affordable in our
implementation, we implemented a strictly timer-based variant
of RACK that we call Timer-Based TCP (TB-TCP). Our goal

9
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Figure 7. Scheduling error achievable with the software implementation: top,
relative error with ODP; bottom, absolute error with spin lock.

for TB-TCP was to be as simple as possible while operating
roughly as good as a standard TCP implementation.

Standard loss recovery methods seek to avoid large bursts
and ensure that the correct number of segments are kept in
flight by maintaining an “ACK clock”. The need for an “ACK
clock” is obviated by the ability to pace every transmission
in a strict timer-based implementation, causing some subtle
changes in the RACK logic. For example, because pacing
is not assumed in the normal TCP standard, RACK needs
a different way to limit the number of segments that are
immediately transmitted (as a burst) when it learns that many
packets were dropped. Hence, it is recommended in [72] to
combine RACK with PRR, which uses Slow Start as a way
to quickly clock out packets while limiting burstiness to some
degree. For TB-TCP, we can do this differently.

Our algorithm works as follows:2

1) Whenever a new segment is transmitted, a timer is armed
with 2×RTT (from the most recent RTT sample). This is
similar to RACK’s “Tail Loss Probe” (TLP) timer.

2) When a timer fires, TCP enters the recovery period.
We backup ssthresh and cwnd (as ssthresh prev
and cwnd prev, respectively) and then reduce their
values following the congestion control algorithm. We
also remember the state (Congestion Avoidance or Slow
Start). Then, we calculate the minimum pacing delay as
RTT/ssthresh, where we use the most recent RTT
sample. Similarly to PRR, this limits the sending rate to
ssthresh/ssthresh prev times the rate before recovery.

3) For each firing timer, a segment is retransmitted. In doing
so, it is ensured that the minimum pacing delay is kept, by
delaying transmissions if necessary.

4) Generally, whenever an ACK arrives, any outstanding
timers of segments that are acknowledged (either cumula-
tively or via SACK) are cancelled. If we are in recovery, a

2To simplify this description, ssthresh and cwnd are assumed to be in
segments, not bytes. In reality, our code divides them by the segment size for
all pacing calculations.
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“full ACK” (i.e., covering all the data that was outstanding
when loss was detected) ends the recovery period.

A full ACK informs us that all segments have been suc-
cessfully retransmitted, and there are no more segments in
flight; yet, we have a cwnd worth of segments to send at the
end of recovery, and there will be no more incoming ACKs
that allow us to send them. Therefore, to gracefully “hand
over” to normal ACK-clocked TCP behavior, we need to pace
these segments too, in a phase that we call “Post Recovery”.
We calculate the pacing delay as pktsToPace/RTT , where
pktsToPace is initialized with cwnd prev and RTT is the
most recent RTT sample.3 From now on, segments are paced
with this rate until the available window becomes zero; at
this point, TB-TCP “hands over” to Congestion Avoidance.
To ensure that the available window becomes zero at some
point, we gradually increase our rate in this phase whenever
we notice that the available window has increased, by adding
1 to pktsToPace. This is more conservative than standard
implementations, which typically use Slow Start to send out
all the allowed segments before Fast Recovery terminates.

As with normal RACK, reacting to lost retransmits is easy
with TB-TCP: with every scheduled timer, we also store a
“transmission round”, which initially is 1. Then, in step 2
above, when the first timer fires, we compare this transmission
round with a global transmission round variable (initially 0),
and reduce ssthresh and cwnd when the timer’s round is greater
than the global one. In doing so, we also increase the global
round. Because this exponentially decreases the sending rate
every 2 RTTs when there is congestion (resembling standard
TCP’s reaction to ECN-Echo), the effect quickly becomes
similar to a Retransmission Timeout (RTO). We therefore
see no need to additionally calculate an RTO and return to
Slow Start in an ongoing connection. Surely, situations can
be constructed where an RTO with Slow Start would either
be better or worse than our approach; given our goal to be
simple, introducing Slow Start’s bursty and aggressive increase
after congestion does not seem to be better justified than using
Congestion Avoidance after an exponential back-off, and so we
omit it from our design.

To better understand the practical impact of our changes to
RACK, we compared TB-TCP against the Linux and FreeBSD

3We use cwnd prev because it gives us the ACK-clocked sending rate, yet
the total number of segments that we will send is less than cwnd prev. The
rate before congestion may have been fine, but the total number of segments
that were sent before waiting for an ACK was too large.
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Figure 9. Time-sequence diagram of TB-TCP and Linux loss recovery at the
end of Slow Start. The bottleneck capacity was 10 Mbit/s, the configured RTT
was 20 ms and the bottleneck queue had a buffer of 10 packets

kernel TCP implementations (v4.10 and v11.0, respectively)
in a local single-bottleneck testbed, using ns-3’s emulation
facility to send real traffic to an ncat receiver. We configured
“newreno” congestion control everywhere. Also, because ns-3
does not implement Appropriate Byte Counting (ABC) [73],
it would increase cwnd slower than the other implementations
when Delayed ACKs are used, which we therefore disabled.

In the investigated scenario, six flows start at the same time.
We consider the Flow Completion Time (FCT)—which we
define as the time between transmission of the first data packet
and the time of arrival of the last ACK—of the slowest flow.
Figure 8 shows the distribution of FCTs as the number of
RTTs, obtained by varying the bottleneck capacity (1-5, 10
and 15 Mbit/s; this covers 72% of worldwide access links in
Q1 2017 [74]), the RTT (10, 20, 40, 80, 100, 150, 200 ms;
this covers more than 80% of Internet base RTTs [75]) and the
length of the bottleneck queue (5, 10, 50, 100, 200 packets).
After filtering out some cases where flows did not reach the
considered length during the measurement period, we were
left with 168 and 227 experiments for the flow length=50 and
500 packets cases, respectively.

We compare TB-TCP with Linux TCP in Figure 9. We
collected the time-sequence data by connecting TB-TCP to
a ncat receiver, while we used iperf for Linux TCP case.

We can see how TB-TCP reacts slightly later than Linux
TCP because it ignores the first DupACKs and waits for a
2 × RTT timer to fire before entering loss recovery. Then it
starts retransmitting lost segments until the end of recovery
is reached at around 0.2 seconds. From then on, TB-TCP is
in Post Recovery; notice how the rate grows (the angle of
the TB-TCP line slightly increases) until about 0.23 seconds,
which is when we hand back to Congestion Avoidance. In
case of Linux, after sending two more segments when the
ACK line becomes flat (Limited Transmit [8]), the RACK
algorithm decides that two segments were lost and should be
retransmitted. Next, cwnd and the “pipe” variable allow the
sender to transmit four new segments; it is not yet clear to the
sender whether more packets were lost. Around 0.12 seconds,
a new SACK block arrives—RACK uses this information to
decide that all segments that were sent at least a “reordering
window” earlier were lost and retransmits them. The benefit

Figure 10. RTT in the same scenario as in Figure 9

of sending out packets early and keeping the recovery phase
short is visible in Figure 10: the Linux line is generally above
the TB-TCP line, which means that it has come further ahead
in the data stream and can finish the transfer earlier. However,
as Linux finishes the recovery phase after 0.14 seconds, it
transmits a burst (note the steep angle of the sequence line
here). Figure 10 shows the impact of this burst: the delay
grows, and it has a higher starting point for growing further
every RTT as Congestion Avoidance increases the cwnd. TB-
TCP reaches a similar delay later, when it terminates its Post
Recovery at around 0.25 seconds.

The time-sequence diagram in Figure 11 visualizes just how
close the behavior of the three implementations is. This test
was carried out using a single sender and receiver, intercon-
nected with a physical link and using linux Traffic Control
(TC) netem module. The parameters were: capacity 6 Mbps,
queue length 20 packets and one-way delay 10 ms. At around
t=0.25, the diagram shows the characteristic “Post Recovery”
part of TB-TCP in which we gradually increase the pacing
rate until we can finally hand over to Congestion Avoidance.

We can also see minor deviations between the three im-
plementations, which are caused by small timing differences
in how packets are clocked out. For instance, ns-3 is slightly
slower at transmitting packets using emulation. The hardware
implementation appears to be a little faster, which is due to
the lower precision for divisions.

We were surprised to find that our simplified timer-based
implementation was able to compete quite well with the
state-of-the-art Linux and FreeBSD TCP implementations
and in some cases even surpass them. This is evident in
the 500-packet case towards the tail of the distribution, and
with quickly terminating 50-packet flows (these were large
Bandwidth×Delay Product (BDP) cases, where packet loss
was more severe than when the BDP was smaller).

The complete TB-TCP XFSM table is available in our
public repository [55]: lines 9+ implement congestion control.
Obviously, at this length, this implementation lacks some
features (e.g., the sending application is assumed to be greedy,
all segments have the same size, there is no Path MTU Dis-
covery, no ECN, ...). However, we stress that, with only packet
parsing and header generation (with checksum offloading)
being hardcoded inside XTRA, this implementation is already
a quite “complete” TCP, as it was able to communicate as a
sender with real ncat and iperf receivers in our tests.
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Figure 11. Time-sequence diagram of a TB-TCP flow beginning in Slow
Start, then losing a packet, and concluding with our timer-based Fast Recovery
phase.
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Figure 12. LEDBAT throughput measurement

B. LEDBAT over UDP

Our LEDBAT implementation follows the basic “overview”
algorithm in Section 2.4.1 of RFC 6817 [66], without consid-
ering Slow Start. Similar to BitTorrent, we used an unreliable
implementation over UDP, adding sequence numbers and a
timestamp in the first 8 bytes of the payload. Instead of
the One-Way Delay (OWD) recommended in [66], we used
the Round-Trip Time calculated from a timestamp echo-reply
similar to TCP to determine the target queuing delay. Our XL
implementation of LEDBAT had 54 lines of code and only
two states (including the initial state).

To evaluate our LEDBAT implementation on XTRA we
used the OpenDataPlane platform in a Linux machine. We
connected two interfaces in loopback and used the Linux
Traffic Control (TC) netem module with the following pa-
rameters: one-way delay of 25 milliseconds and 20Mbps of
capacity. The receiver was a simple server implemented in
python which solely responded to incoming udp packets by
echoing an UCP “acknowledgment” with a 32 bit sequence
number and a 32 bit timestamp echo-reply. To emulate newly
arriving foreground traffic that LEDBAT should react to, the
link capacity was reduced to 10Mbps at 6 seconds and reset to
20Mbps around 10 seconds. Figure 12 shows how LEDBAT
correctly reacts; after the capacity drop, at around 10 seconds
it quickly increases its rate up to the capacity limit.

C. A SYN proxy

We believe that a compelling application of XTRA is the
ability to offload, with no coding effort whatsoever, transport
functions from software servers to HW NICs. Although sim-
plistic, the following SYN-proxy application is sufficiently

elaborate to challenge the usability of XTRA also inside
intermediary agents. A well known way to defend against
SYN-flooding attacks consists in deploying a dedicated agent
which replies with a SYNACK on behalf of the backend server.
Only when this handshake is completed (i.e. a remote client
is not spoofed but exists), the agent starts a new connection
setup towards the main server for the client, but (unlike an
ordinary proxy) replaying the real client’s initial SYN (duly
stored for the purpose) and, later on, the real client’s ACK
as well. From now on, communication between the client and
server is “direct” (no need for the agent to act as a real proxy).
However there is a caveat: since the client expects sequence
numbers starting from the one that the proxy originally wrote
into the SYN/ACK message, the data packets from the server
would not be acceptable to the client. Thus, the agent must
continuously perform a NAT-like translation of sequence and
acknowledge numbers until the connection is closed—a fast-
path processing task which would clearly benefit from HW
offloading. Figure 13 shows that an XFSM-Lang description
of the above function reduces to few rules, which could be
entirely offloaded to a HW NIC supporting XTRA!

The proxy code is also available from the repository, along
with a pcap trace file showing its operation (a TCP client
connecting to a server via the proxy).

D. Flexibility assessment: HotCocoa

The most closely related work, HotCocoa [24], offers pro-
gramming abstractions that allow to implement a congestion
control fully in hardware. The authors of [24] show that their
language is very expressive by porting a number of congestion
controls to their abstraction. Since we claim that our XFSM
approach is broader, it can be regarded as a superset of
HotCocoa. To support this claim, we converted the “TIMELY”
congestion control from HotCocoa code to XL.

In Table 1 of [24], TIMELY is described to have 60 lines
of code in total. The full code available from the github
repository referenced in the paper contains 83 lines of code,
probably from counting static blocks like function signatures
and such. After converting TIMELY to an XFSM, we ended
up with 68 lines of code, putting us in the same rough
ballpark. The reason why XTRA uses slightly more lines of
code than HotCocoa primarily stems in the fact that XTRA,
at least at this stage, does not yet provide any dedicated
data structure for congestion control. We remark that our
reduced specialization is in line with our goal of covering
the programmability of the whole set of transport layer tasks,
opposed to HotCocoa’s focus on “just” its congestion control
part. Indeed, we demonstrated the feasibility of applications
such as LEDBAT or a SYN Proxy, which do not seem easily
implementable on HotCocoa, owing to its focus on congestion
control only.

VIII. CONCLUSIONS

The main conclusive message of this paper is that seamless
portability of suitably coded transport level functions across
widely heterogeneous SW and HW platforms is viable, and
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1 R e g i s t e r temp , d i f f ;
2 Ac t i on r e p l y {
3 //switch ports
4 temp = t c p . s p o r t ;
5 s e t F i e l d ( t c p . s p o r t , CURR PKT,
6 t c p . d p o r t ) ; t c
7 s e t F i e l d ( t c p . d p o r t , CURR PKT, temp ) ;
8 //switch IPs
9 temp = i p v4 . s r c ;

10 s e t F i e l d ( i p v4 . s r c , CURR PKT,
11 i p v4 . d s t ) ;
12 s e t F i e l d ( i p v4 . d s t , CURR PKT, temp ) ;
13 //switch MAC addresses
14 temp = e t h . s r c ;
15 s e t F i e l d ( e t h . s r c , CURR PKT, e t h . d s t ) ;
16 s e t F i e l d ( e t h . d s t , CURR PKT, temp ) ;
17 }
18 A c t i on se t ackno {
19 temp = t c p . seqNo + 1 ;
20 s e t F i e l d ( t c p . ackNo , CURR PKT, temp ) ;
21 }
22 S t a t e i n i t i a l i n i t {
23 on ( pktRcvd ) {
24 //Syn from the external iface
25 i f ( t c p . f l a g s == 2 ,
26 pktRcvd . p o r t == 1) {
27 s t o r e P a c k e t (CURR PKT ) ;
28 r e p l y ( ) ;
29 se t ackno ( ) ;
30 d i f f = random ( ) ;
31 s e t F i e l d ( t c p . seqNo , CURR PKT,

32 d i f f ) ;
33 //Setting the SynAck flag
34 s e t F i e l d ( t c p . f l a g s , CURR PKT, 1 8 ) ;
35 sendPacket (CURR PKT, 1 ) ;
36 setTimer ( 1 , 500000000 , 1 ) ;
37 s e t N e x t S t a t e ( s y n r c v d ) ;
38 }
39 }
40 }
41 S t a t e s y n r c v d {
42 on ( pktRcvd ) {
43 //Ack from the external iface
44 i f ( t c p . f l a g s == 16 ,
45 pktRcvd . p o r t == 1) {
46 sendPacket (CURR PKT, 2 ) ;
47 s e t N e x t S t a t e ( s y n s e n t t o s e r v e r ) ;
48 }
49 }
50 on ( t i m e o u t ) {
51 //No answer,delete the XFSM instance
52 d e l e t e I n s t a n c e ( ) ;
53 }
54 }
55 S t a t e s y n s e n t t o s e r v e r {
56 on ( pktRcvd ) {
57 i f ( t c p . f l a g s == 18 ,
58 pktRcvd . p o r t == 2) {
59 //synAck from the internal iface
60 r e p l y ( ) ;
61 d i f f = d i f f − t c p . seqNo ;
62 temp = t c p . ackNo ;

63 se t ackno ( ) ;
64 s e t F i e l d ( t c p . seqNo , CURR PKT,
65 temp ) ;
66 s e t F i e l d ( t c p . f l a g s , CURR PKT,
67 1 6 ) ;
68 sendPacket (CURR PKT, 2 ) ;
69 s e t N e x t S t a t e ( f o r w a r d ) ;
70 }
71 }
72 }
73 S t a t e f o r w a r d {
74 on ( pktRcvd ) {
75 //ACK from the external iface
76 i f ( t c p . f l a g s == 16 ,
77 pktRcvd . p o r t == 1) {
78 temp = t c p . ackNo − d i f f ;
79 s e t F i e l d ( t c p . ackNo , CURR PKT,
80 temp ) ;
81 sendPacket (CURR PKT, 2 ) ;
82 }
83 //ACK from the internal iface
84 i f ( t c p . f l a g s == 16 ,
85 pktRcvd . p o r t == 2) {
86 temp = t c p . seqNo + d i f f ;
87 s e t F i e l d ( t c p . seqNo , CURR PKT,
88 temp ) ;
89 sendPacket (CURR PKT, 1 ) ;
90 }
91 }
92 }

Figure 13. SYN Proxy Server in XFSM-Lang

may pave the road towards novel forms of high-performance
HW-native network functions’ design and management.

As we have shown in the paper, an XTRA-coded abstract
TCP specification can run on three different platforms, both
in software and in hardware, without changing a single line of
code. As an additional “side” contribution, our TB-TCP shows
that a purely timer-based variant of RACK can massively
simplify the most complex part of TCP without a significant
cost in performance. In fact, given the extreme simplicity of
our design, we wonder if a slightly extended TB-TCP might
generally outperform other TCP implementations. This is one
of various future research avenues that we plan to explore.

Our implementations of XTRA and TB-TCP are far from
production-ready, but we believe that our prototypes convinc-
ingly show the feasibility of our idea, to implement transport
functions (or even entire protocols) once, in one appropriate
representation and run them everywhere. If end-device OSs,
smart NICs and Middleboxes were offering the XTRA API,
operators would become able to manage and deploy opti-
mized/tailored transport functions/protocols for each scenario
on the fly, and applications could ship with their own transports
which get dynamically replaced as needed.

Of course, there may be dangers to such ease of programma-
bility; today, congestion control is designed based on agreed-
upon general rules, to avoid a global congestion collapse.
Could the ability for anyone to easily change the behavior
endanger the stability of the Internet? Then again, what
protects the Internet today from potentially harmful changes
in open Operating Systems such as Linux and FreeBSD is
only the complexity of the code base. Given that “security
by obscurity” has never been a winning principle, we are
convinced that offering these tools is the right thing to do.
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