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Abstract—An important aspect of managing multi access
point (AP) IEEE 802.11 networks is the support for mobility
management by controlling the handover process. Most handover
algorithms, residing on the client station (STA), are reactive
and take a long time to converge, and thus severely impact
Quality of Service (QoS) and Quality of Experience (QoE).
Centralized approaches to mobility and handover management
are mostly proprietary, reactive and require changes to the
client STA. In this paper, we first created an Software-Defined
Networking (SDN) modular handover management framework
called HuMOR, which can create, validate and evaluate handover
algorithms that preserve QoS. Relying on the capabilities of
HuMOR, we introduce ABRAHAM, a machine learning backed,
proactive, handover algorithm that uses multiple metrics to
predict the future state of the network and optimize the AP load
to ensure the preservation of QoS. We compare ABRAHAM to a
number of alternative handover algorithms in a comprehensive
QoS study, and demonstrate that it outperforms them with an
average throughput improvement of up to 139%, while statistical
analysis shows that there is significant statistical difference
between ABRAHAM and the rest of the algorithms.

Index Terms—IEEE 802.11, SDN, handover algorithm

I. INTRODUCTION

IEEE 802.11 (Wi-Fi) based networks are one of the most
widespread wireless networks in today’s world. To serve
multiple mobile client STAs with an ever-increasing demand
for resources and coverage range, today’s Wi-Fi networks
today consist of multiple APs. The mobility of STAs is a key
feature of Wi-Fi networks, which requires proper management
in order to ensure the preservation of the QoS and QoE. To do
so, Wi-Fi network use handovers, a process that occurs when
a STA moves its association from one AP to another to ensure
continuous connectivity.

However, most handover algorithms are STA based, which
means they can only create per-device optimizations and do
not have a notion of global network management, in contrast
to a centralized approach. The handover process is also mostly
reactive, meaning it waits for a performance drop to trigger
the handover and thus lacks dynamic resource management in
advance. It can also take quite some time for the handover
to complete, ranging from several hundred milliseconds [1] to
4 seconds [2]. Many existing handover solutions, therefore,
greatly impact the QoS and QoE requirements of modern
applications and services, and require changes on the STA
side. Even though some researchers have moved the handover
management to a centralized location, to have more global
network management and avoid STA side changes, most
of them are proprietary. Also, the handover AP selection
algorithms mostly use only one metric, the Received Signal

Strength Indicator (RSSI), and thus lack important information
such as the load of the APs or STA mobility information. Very
little research has been done on using more metrics, especially
metrics such as location information, mobility of the STAs,
as well as the load of the network. Even if those metrics
were used, in most cases they were used as the single metric
of decision, [3]. Finally, a significant amount of research on
handover algorithms, as well as handover management has
only been done in simulations. Other, real-life experiments
lacked a centralized approach to handover management.

Using the SDN paradigm in Wi-Fi networks, the manage-
ment of the mobility can be moved to a centralized location.
Through network monitoring, this centralized location can
have a global overview of the network and create global
optimizations even in cases of increased network and service
dynamics, without modifications to the STA. Utilizing this
global information, one can create handover algorithms that
can dynamically manage the resources and preserve the QoS
and QoE. More important metrics can be utilized in this
process, such as the RSSI, location information, mobility
information, as well as the load of the network, in order to
create a reliable handover algorithm.

In this paper, we present a threefold contribution. First,
we introduce the Handover Management framewORk (Hu-
MOR), which allows users to create handover algorithms that
are centralized, proactive, and can use multiple metrics in
their decision-making process. HuMOR is an SDN modular
framework enabling the creation, validation, and evaluation of
handover algorithms, running on a large scale, real-life testbed.
Second, by relying on HuMOR, we introduce ABRAHAM, a
mAchine learning Backed multimetRic proActive Handover
AlgorithM. Using machine learning it predicts the future
RSSI, which along with the predicted future STA location
and predicted future AP load is used to optimize the AP
load in the network and preserve the QoS and QoE. Third,
in order to validate and evaluate ABRAHAM, we present
a comprehensive study where we compare ABRAHAM to
our previous proactive handover algorithms and the IEEE
802.11 standard handover procedure by analyzing different
QoS metrics obtained through experimentation.

This paper consists of the following sections. Section
II presents the related work, while Section III introduces
the enabling framework HuMOR. Section IV describes the
ABRAHAM handover algorithm and Section V presents the
comprehensive comparison study on handover algorithms.
Finally, Section VI summarizes the conclusions of this paper.
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TABLE I: Related Work

Handover Management Handover Type Trigger location Approach Input parameters Works

Centralized

Vertical N/A N/A context information [4]

Horizontal

STA-driven Reactive none [5]
AP load balancing [6–8]

AP-driven

Reactive
none [9–13]
power control and
STA association information [14,15]

AP-STA link rate and
STA throughput demand [16]

Proactive
current RSSI (location-aware) [5,9,17–20]
current and future RSSI
(location and mobility-aware)

none [21]
throughput and load
information [22]

Decentralized Vertical STA-driven N/A [23]
Horizontal AP-driven N/A [1,24,25]

II. RELATED WORK

Extensive research has been conducted to move the intel-
ligence of the handover and AP selection to a centralized
controller. The outcome of such research proves that the
introduction of the SDN paradigm to the context of the
handover process brings significant improvements in handover
management, particularly in terms of QoS awareness and QoE
requirements of STAs. Following the introduction of SDN
in network management related to handover mechanisms, we
present a brief overview of related works in Table I. These
SDN solutions are intended to solve problems caused by
handover management control, such as AP overloading, STA
performing both the AP selection and handover, and increased
delay. As it can be seen in Table I, we categorize all the works
into two groups: centralized and decentralized, based on the
way how the network management is realized.

Although a significantly larger effort is invested in the
research of centralized solutions, there are several examples
which adopt handover management in a distributed fashion.
Berezin et al. [24] briefly present a decentralized handover
algorithm, proposing a protocol for the direct information
exchange between APs. However, this algorithm requires
building a list of neighbouring APs for each AP, decreasing
scalability and efficiency of the solution. In the scope of
LTE networks, Ali et al. [25] anticipate QoE value for a
user and take it into account while performing handover to
another eNodeB. The associated eNode gathers information
about the user’s previous QoE from neighboring eNodeBs,
and thus makes the decision about user’s re-association. An-
other decentralized approach is presented by Yi et al. [23],
adopting Media Independent Handover (MIH) to support fully
distributed handovers in heterogeneous networks based on
Open vSwitch and OpenFlow. Their algorithm enables mobile
terminals with more than two network interfaces to make
decisions upon wireless technology themselves, but being
controlled by an SDN controller during the whole process.

In centralized SDN handover management solutions, au-
thors have mainly adopted the STA-driven approach which
relies on the standard 802.11 handover mechanism, or AP-
driven approach but in a reactive manner. Qiang et al. [26,27]
propose a scheme which reduces the number of handovers
and improves QoS. Despite taking into account the mobility
of STAs [26], the prediction of movement trend is based only

on the QoS value. They extend their algorithm by letting the
SDN controller create a request matrix using channel capacity
as well as AP load. The outcome of the algorithm is a list of
corresponding APs, after which the STA waits for a certain
stability period to re-associate, [27]. The extensive discussion
about the stability period is further provided in [1].

Based on where the handover algorithm is performed, solu-
tions can be divided into two categories: STA-driven and AP-
driven. Gilani et al. [6] and Kiran et al. [7] present STA-driven
handover schemes which include AP load balancing but only
among adjacent APs. Their experimental results, conducted in
a testbed environment with only two APs and in Mininet-WiFi
emulator, show improvements in throughput in comparison
with legacy schemes. However, it is of high importance to
clarify why STA-driven handover management solutions do
not scale in the real-world environment. First, these solutions
require changes in the mobile node stack. Second, they are
reactive, which might lead to poor QoS for a long duration of
time. Finally, they can only utilize metrics available at the STA
in order to make AP selection, while there are other important
metrics to consider on the network side [22].

Aldhaibani et al. [17] present an algorithm for a horizontal
handover utilizing fuzzy logic control, and their results prove
superiority to the IEEE 802.11 standard and Load-RSSI-based
algorithms, but only in a simulation environment. Another
fuzzy-logic based algorithm is presented by Sun et al. [21],
taking into account the available bandwidth as well as the
current and future RSSI value, which is predicted using grey
predictive technology. Since this is one of the rare attempts
to take into account the STA mobility, we will now briefly
present papers which address the same problems but without
any mobility consideration. For instance, Murty et al. [5,19]
define a set of APIs that allow STAs and APs to send informa-
tion such as radio channel conditions to a central controller.
Although DenseAP [19] adds localization awareness, it only
focuses on very limited movement as the location is only
updated every 30 seconds, while in [5] the STA’s mobility
is not taken into account at all. Similarly, Bayhan et al. [16]
present an approach that uses a centralized controller and aims
to maximize the overall throughput using different metrics
such as AP-STA link rates, throughput demands of STAs, etc.
Aldhaibani et al. [17] use several metrics such as bandwidth,
jitter, delay and SINR, while Broustis et al. and Ahmed et al.



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2948883, IEEE
Transactions on Network and Service Management

3

consider power control and STA association information as
metrics for AP selection and handover procedure. However,
they all still rely on the standard IEEE 802.11 handover
mechanism and do not take into account the STA mobility. A
potential way to solve the problems caused by legacy handover
algorithms is by using the Light Virtual Access Point (LVAP)
abstraction [1], adopting the mechanism in which a physical
AP uses different LVAPs for communication with each STA in
order to avoid re-association and its negative effects on QoS
and QoE. Suresh et al. [20] propose creating abstractions for
the AP and STA which allow seamless handovers, considering
only RSSI value as a metric to trigger the handover.

As it can be seen, most of the papers consider either
location or mobility information, while some of the papers
consider none of them. Also, most of the papers take into
account one or very limited number of metrics in order to
proactively trigger handover. As stated in the elaboration of
the vertical handover techniques [4], excluding the context
information (i.e. user preference, available resources, location
and mobile capabilities) from the handover mechanism leads
to its simplification but surely causes QoS disruptions. Since
the importance of location and mobility information of the
APs and STAs is crucial for any efficient proactive handover
solution, some of the location prediction methods can be
found in [21,28–30]. Besides authors’ previous papers and
to the best of our knowledge, Sun et al. [21] presented so
far the only approach which uses dynamic handover strategy
based on mobility and RSSI at the same time. Therefore,
this presses the need to strive for even better solutions which
imply improved throughput and reduced delay, while reducing
the number of handovers within the overall network. To
accomplish this, our algorithm uses an SDN approach without
any STA modifications, and takes into account multiple metrics
in order to trigger handovers in a proactive way.

III. HANDOVER MANAGEMENT FRAMEWORK

To overcome the limitations and challenges of the handover
algorithms in IEEE 802.11 Wi-Fi networks, we created an
SDN-based modular handover management framework Hu-
MOR that enables creating, validating and evaluating han-
dover algorithms. It uses the principles of SDN to move
the control of the handover to a centralized location, from
which it also has a global overview of the whole network.
To validate and evaluate handover algorithms, we did not
use simulations, but deployed the HuMOR framework on a
large scale, real-life testbed. In this section, we introduce
HuMOR whose architecture blocks are illustrated on Figure
1 and explained throughout this section. We present the real-
life testbed HuMOR runs on and how the user can monitor
the experiments thought its Graphical User Interface (GUI)
to validate the handover algorithms as well as how the user
can evaluate the algorithms. Finally, we briefly introduce the
handover algorithms from our previous work, which will be
used in the comparison study afterwards.

A. Towards seamless SDN-based handovers

HuMOR is built on top of 5G-EmPOWER [31], a multi-
access edge computing operating system which supports

lightweight virtualization, and also supports heterogeneous
radio access technologies enabling centralized control. By
adopting the SDN principle, and by using softwarization
and virtualization it moves the control of the network to a
centralized controller. STAs on Figure 1 connect to APs which
are part of the data plane and have 5G-EmPOWER agents
running on them. These agents are used to communicate to
the control plane, which is the 5G-EmPOWER runtime on the
5G-EmPOWER SDN Controller. When a STA connects to the
network, 5G-EmPOWER creates an abstraction for it, called
the LVAP which is instantiated on the AP that the station will
associate to. This abstraction takes care of all the technical
details of the STAs’ association, like for example the 3-
way handshake, etc. It then exposes Application Programming
Interfaces (APIs) to allow the programmer to create more high-
level manipulations of the STA.

One such manipulation is moving the LVAP between APs
which is initiated through the handover mechanism block,
shown on Figure 2. By moving the LVAP block from one
AP to another, one essentially moves the association of the
STA from one AP to another. In essence, a handover occurs.
However, because the LVAP element holds all the association
information of the STA, this is a soft handover which the STA
is not aware of. It has been shown by Riggio et al. [32] that
this type of a handover, based on the LVAP, is seamless and
transparent to the STA.

Since the handover algorithm has been moved to a cen-
tralized, network side location, it has a global overview of the
whole network allowing it to make global instead of per-device
optimizations. We use this as the basis of HuMOR and build
on top of it.

B. Metric modules
5G-EmPOWER monitors the network by retrieving mon-

itoring data from the APs monitoring block on Figure 1
every 500(ms). This monitoring data is then aggregated on
the SDN controller. HuMOR utilizes this monitoring data
through a block that we call Modules, as seen on Figure
1. Certain modules just utilize the monitored data to retrieve a
metric which is then stored in the Metrics DataBase (MDB).
Other modules utilize stored metrics in the MDB to calculate
new metrics. Because new monitoring data is retrieved every
500(ms), each monitored and calculated metric also has a
timestamp, which is denoted by t. When creating a handover
algorithm, it is of much greater interest to view not only the
metrics current values, but also their history. Historical data
can not only provide valuable insight into the changes of a
given metric, but can also be used for predicting future values.
We, therefore, also store historical data of the metrics in the
MDB. Table II gives a complete list of metrics and parameters
that are used in HuMOR. Along with the description of all the
metrics, a notation is defined for all of them which will be used
in the rest of this paper and in the description of the handover
algorithms.

1) RSSI Module: The RSSI module takes the monitored
RSSI and records the current RSSI value between each AP and
each STA. This is then saved to the MDB where a historical
of this value is stored.
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Fig. 1: Handover Management Framework - HuMOR

2) Throughput Module: The uplink and downlink through-
put of all the STAs are monitored and a historical is stored in
the MDB.

3) Localization Module: The localization module is used
to localize each AP and each STA in the environment, as
well as to calculate the estimated distances between each
of the nodes. It can use any of the available metrics to
calculate the locations and distances. We have implemented
an RSSI based localization algorithm that has been proposed
by Lim et al. in [33]. The reason we use this localization
algorithm lays in its simplicity, as it only requires the RSSI
information between the APs and STAs, and the fact that its
localization error is within 3(m). The only a priori information
for this algorithm to work is the position and distances
between the APs, which considering the static placement of
today’s Wi-Fi networks should be easily obtainable. Using
a technique called Singular Value Decomposition (SVD), a
mapping T is created between (i) the RSSI between each
AP, rssiapi,apj (t) and (ii) the distances between each AP

Fig. 2: MSC diagram of LVAP based handover

dapi,apj
(t): T : rssiapi,apj

(t) → dapi,apj
(t). This mapping

also takes into account the characteristics of the environment
and its changes, as it can be recalculated over time. Once
this mapping is calculated, the RSSI between the STAs and
APs can now be used to calculate the distances between
them, dap,sta(t) = T (rssiap,sta(t)). Using Multi-Dimensional
Scaling (MDS), the distances can be translated into locations
in a 2D environment. Again, a historical of both the distances
and locations are recorded and saved in the MDB.

4) Motion Vector Module: The motion vector module uses
the location information as input in order to create mobility
information for STAs. It takes the current and previous location
of a STA, and creates a vector between these two points.
This vector then shows the mobility of the STA. The vector’s
length represents the speed at which the STA is moving, while
its angle shows the direction of the movement. Using this
information, we can construct a path of the STA’s movement,
but also we can predict the STA’s future location. By simply
translating the motion vector, so that its starting point is in the
current location of the STA, as depicted in Figure 3, we can

TABLE II: HuMOR metrics, parameters and their notation

Metric Notation
Set of (ap, sta), where STA sta is associated
to AP ap

N(t)

Actual RSSI value between STA sta and AP
ap

rssiap,sta(t)

Is the STA sta associated to AP ap, 1 if it is,
0 otherwise

aap,sta(t) = {0, 1}

List of reachable APs for STA sta rasta(t)
A list of all STAs that are associated to AP ap csap(t)
The throughput of STA sta rsta(t)
The requested throughput of STA sta Qsta

History of k STA sta throughput values Rsta

Traffic load of AP ap bap(t)
Capacity of AP ap Cap

Location of APs and STAs lap, lsta
Location of STA sta lsta(t)
History of k locations of STA sta Lsta

Distance between STA sta and AP ap dap,sta(t).
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say that the end point of the motion vector is the predicted
future location of the STA. This takes the assumption that the
STA will move in the same direction and with the same speed
as in the previous point in time. Therefore, the objective of
the motion vector is to determine the general direction the
STAs are heading for. An average of the value is calculated
and stored along with its history in the MDB.

Fig. 3: Predicting STA future location using motion vector

5) AP Throughput Load Module: This module estimates
the load of the APs by taking into account the throughput
needs of all the STA that are associated to that particular AP.

Having all these metrics available in the MDB for the whole
network, creates a better picture of the network state. Not
only that, but now a handover algorithm can have multiple
metrics as input, instead of only one, as most handover
algorithms have in the literature. Room has been left for users
to create additional modules, with other potentially interesting
metrics. Also, any of the existing modules could be updated
or changed. For example, if a more advanced localization
algorithm is needed, the current one can be swapped. The
output of the new localization module should again be the
location and distances between the nodes in the network,
which will be saved in the MDB.

C. Algorithm management

Figure 1 show the Algorithm Management (AM) block of
HuMOR, where the handover algorithm itself is built and
triggered. First, a current state of the network, N(t), is created
from the MDB. All the available metrics for the APs and
STAs, including their historical data, are gathered to create a
global overview. Next, this current state is fed to the algorithm
execution engine. The algorithm executing engine has its
own database that it communicates to, called the Handover
Algorithms DataBase (HADB). Here, all the created handover
algorithms are saved. The algorithm execution engine picks
one of the handover algorithms from the HADB, feeds it the
current network state and executes the handover algorithm.
The output of each handover algorithm should be the new state
of the network, N(t+ 1), represented as a list of tuples. The
tuples consist of a STA and the AP that the handover algorithm
assigned for the STA. How the handover algorithm is executed
can be changed, which directly influences the handover trigger.
A handover algorithm can be triggered based on an event, to
create a reactive handover, or the algorithm can constantly
update the new network state, to create a proactive handover.
Once the new network state is obtained, it talks to the handover
mechanism block to initiate the handovers of the STAs to their
assigned APs.

D. Real-life testbed

To be able to validate and evaluate handover algorithms
created in HuMOR, we have decided to run it on a real-
life testbed, instead of using simulations. The testbed we

used is called w-iLab-t [34]. The w-iLab.t is an experimental,
heterogeneous wireless testbed for development and testing of
wireless applications. The reason this testbed was chosen, is
because it hosts a number of different nodes, among which for
the purpose of HuMOR, the most interesting are: i) the fixed
wireless nodes that can serve as APs, ii) fixed server nodes
which can serve to run HuMOR and iii) mobile wireless nodes
that can move across the testbed and can serve as mobile STAs.
w-iLab-t offers a web GUI called the robot dashboard which
enables complete control of the mobile nodes. It shows a map
of the whole testbed and allows the user to create a movement
path for the mobile nodes. The nodes in the testbed are
mounted in a 66(m) by 20.5(m) industrial environment. Once
an experiment is started, the mobile nodes start moving on that
defined path. This way, a number of experimental runs can be
conducted using the same path to also gather statistical results.
By using this testbed, we are able to run HuMOR on top of its
devices and use the mobile nodes as mobile STA in order to
create mobility scenarios. This way, we can validate handover
algorithms created in the framework and evaluate them over a
number of experimental results. Also, by evaluating multiple
handover algorithms, we are able to create a comprehensive
comparison study of different handover algorithms.

E. Monitored QoS parameters

To evaluate the handover algorithms, a number of QoS
parameters are monitored and logged during experimentation
in HuMOR. These logs can be post-processed to obtain
results. To check how the handover algorithms influence QoS,
HuMOR monitors and logs: throughput, latency, jitter and
packet loss between the AP and STA.

F. Graphical User Interface

Once an experiment is started, besides logging the moni-
tored QoS parameters for post-experiment analysis, it can be
of interest to also monitor the experiment in real-time. First
of all, the w-iLab-t testbed already has a web GUI, the robot
dashboard shown on Figure 4a, which allows a user to set
up the paths of the mobile STA. However, it also allows the
user to monitor the movement of the mobile STA once the
experiment has started. There are two options. One is to view
the 2D map of the testbed and follow the movement of the
nodes there, and the other is to activate the camera system in
the testbed to have a live view.

A GUI was created to accompany HuMOR, [35]. It retrieves
metrics from the MDB and consists of two parts, a map shown
on Figure 4b and a set of graphs shown on Figure 4c. The
map is a 2D representation of the nodes in the environment.
However, this map, as opposed to the map from the w-iLab-t
robot dashboard, is created from the metrics available in the
MDB of HuMOR alone. The map shows the location of the
APs, the locations of the STAs, each STA’s motion vector and
its predicted future location, and to which AP each STA is
associated to at the moment.

From the GUI, one can select a particular STA and view
the second part of the GUI which are the graphs. There
are a number of available graphs with different metric and
parameters shown. One can check the RSSI value between a
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(a) Robot dashboard and camera feed
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Fig. 4: Mock-up of the GUI and w-iLab.t2 robot dashboard

STA and all the APs, the throughput used by the STA, the
AP that the station is currently associated to, as well as other
specific parameters of the handover algorithms, which will be
explained in the following sections. Using this GUI, a user
can observe and monitor the experiment that is taking place
in an intuitive way.

G. Existing Handover Algorithms

Based on our previous work on handover algorithms in
IEEE 802.11 Wi-Fi networks [22], a number of handover
algorithms are already part of HuMOR. Here, we will briefly
introduce them and their main characteristics.

1) IEEE 802.11 Standard Handover Algorithm: First of all,
without using much of HuMOR, the handover defined by the
IEEE 802.11 standard is present. This handover algorithm is
mainly here in order to provide a baseline against which other
handover algorithms will be evaluated. A standard 802.11 Wi-
Fi network is set up to which STAs connect. The wireless
driver in the STAs are responsible for the handover, so this is
a STA driven handover. This handover algorithm is triggered
when the STA moves out of range of its associated AP,
or when a metric such as the RSSI drops below a certain
threshold. Once this happens, the AP selection part of the
algorithm kicks in, and select a new AP to associate to based
on a single metric, most often the RSSI. This handover is also
not seamless and a complete disconnect happens during it,
which means the QoS parameters are severely impacted.

2) MAX RSSI: Using HuMOR, MAX RSSI was created as
a proactive handover algorithm that uses the LVAP handover
mechanism. It uses one metric, the RSSI, in its decision-
making process to handover STAs to whichever AP they have
the highest RSSI value at any point in time, [22].

3) ADNA: ADNA was also created using HuMOR as a
proactive, LVAP based handover algorithm. As opposed to the
MAX RSSI, ADNA uses multiple metrics to decide which AP
should each STA get handed over to. It uses RSSI, mobility
information and AP load information in its decision-making
process. A detailed description can be found in [22].

IV. HANDOVER ALGORITHM ABRAHAM

In this section we propose ABRAHAM, a mAchine learning
Backed multimetRic proActive Handover AlgorithM. It uses
the LVAP based handover mechanism in HuMOR, making it
seamless and it is triggered in a proactive way. The goal of

the algorithm is to optimize the load of the APs using pre-
dicted future metric information. ABRAHAM’s AP selection
algorithm is described in Algorithm 1.

A. AP Selection Algorithm

The input to the algorithm comes from the current state,
N(t), in HuMOR which gives it all the metrics present in
HuMOR. The algorithm then assumes a clean-sheet state,
where all APs are considered to be without any STA con-
nected to them. However, for experimentation purposes, we
will introduce an initial load, INITIAL LOAD, for all
APs, which will be further explained in the next section for
the experimental setup. ABRAHAM then goes over all the
combinations of APs and STAs, and calculates a score for
each (sta, ap) combination. This means, it calculates a score
variable sc that shows what the preference is of associating
STA sta to AP ap. The way this score is calculated is by
inputting a number of metrics into the Weighted Sum Model
Multi Decision Criteria Making (MCDM) algorithm, [4]. The
metrics used and their weights are shown in Table III.
bap(t + 1) is the predicted future AP load of AP ap. This

metric will be continuously updated with each iteration of the
algorithm, until all the STAs have been assigned to an AP.
Each time a STA is assigned to an AP, the future load of that
AP will be updated by adding to it the throughput demand
of the STA. As we want to optimize the load of the AP, this
metric has the highest weight for the MCDM. aap,sta(t) is
a metric specifically added to this list to avoid the ping-pong
effect. This metric is used, in situations when there is a similar
score for two APs for one STA and one AP was the STA’s
previously connected AP, to prefer the AP that the STA was
already connected to. This way an unnecessary handover is
avoided. Because it’s used as a tie breaker, we give this metric
the least weight for the MCDM. The predicted future location
dap,sta(t + 1) is calculated based on the motion vector in
HuMOR. Finally, rssiap,sta(t+1) is the predicted future RSSI
between AP ap and STA sta obtained using machine learning,
which will be explained in the next subsection. Because the

TABLE III: MCDM metrics and weights in ABRAHAM

Metric Criteria Weight
rssiap,sta(t+ 1) MAX 0.2
dap,sta(t+ 1) MIN 0.2
bap(t+ 1) MIN 0.5
aap,sta(t) MAX 0.1
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RSSI and the location information are related, we give these
two metrics an equal weight for the MCDM.

Once the MCDM scores are calculated, we check the
bap(t + 1) and the rssiap,sta(t) to increase the robustness.
If the bap(t + 1) is lower than the average future traffic load
on all the APs, we modify the MCDM score for that ap for
all STAs, by a factor of 1.5. Also, for each sta, we check the
rssiap,sta(t) and discard the APs that have the RSSI value
lower than 74% of the rest of the RSSI values to other APs.
These modifiers were obtained after an empirical comparison
of several possible configurations, after which these values
showed the best results.

Once the scores are calculated and updated for each com-
bination of STAs and APs, the algorithm first finds the AP
apm with the least future AP load. At the beginning of the
algorithm, this depends on the initial load of each AP, as
was described earlier. We then find the STA which has the
highest score for that AP, scapm,stan(t). We add this tuple,
(apm, stan), to the new network state, N(t + 1), and mark
STA stan as processed. To take into account that STA stan
will be associated to AP apm, we update the future AP load
of AP apm. This is done by adding the throughput demand of
STA stam to the future AP load of AP apm, like illustrated
in Equation 1.

bapm(t+ 1) = bapm(t+ 1) + rstan(t) (1)

Once this is done, the algorithm is restarted, taking into
account that STA stan is processed, so it will be ignored in
the next iteration, and that AP apm now has a higher future AP
load. Once all the STAs have been processed and assigned to

Algorithm 1 ABRAHAM

1: N(t)
2: ∀ap ∈ AP, bap(t+ 1) = 0 + INITIAL LOAD
3: while STAs to be processed do
4: for all sta ∈ STA do
5: for all ap ∈ rasta(t) do
6: scap,sta(t) = MCDM [rssiap,sta(t+ 1);
7: dap,sta(t+ 1); bap(t+ 1); aap,sta(t)]
8: if bap(t+ 1) < AV G(

⋃
bap(t+ 1)) then

9: scap,sta(t) = 1.5 ∗ scap,sta(t)
10: end if
11: if rssiap,sta(t) < 74%

⋃
rssiAP,sta(t) then

12: scap,sta(t) = 0
13: end if
14: end for
15: end for
16: Find apm with MIN bap(t+ 1)
17: Find stan with MAX scapm,stan

(t)
18: Add (apm, stan) to N(t+ 1)
19: bap(t+ 1) = bap(t+ 1) + rsta(t)
20: STAn → Processed
21: end while
22: for all (ap, sta) ∈ N(t+ 1) do
23: Handover(ap, sta)
24: end for

an AP, the LVAP handover mechanism in HuMOR is triggered
and the handovers take place.

B. The Recurrent Neural Network

The predicted future RSSI, rssiap,sta(t + 1), between AP
ap and STA sta is obtained using a Recurrent Neural Network
(RNN). Because of the sequence dependence of the RSSI
in the time domain, the RNN was chosen as they recognize
temporal patterns. We start by creating a sequential model
of three layers. To avoid the vanishing/exploding gradient
problem that classical RNNs have [36], we use a variation
of the RNN called Long Short-Term Memory (LSTM), [37].
LSTM is ,therefore, our first layer with the number of units
set to 50. The input amount for LSTM is equal to the number
of APs, because the input will be the RSSI values between a
STA and all the APs in the network. The second layer we use
is dropout, [38,39]. Dropout is used to avoid the overfitting
problem of LSTM, and is set to drop out 50% of the output
values from the LSTM layer. The output of the RNN should
be the predicted RSSI values between the STA and all of the
APs. Therefore, the third layer condenses the output to the
number of APs in the network. We use the Adam optimizer
[40], as the method for efficient stochastic optimization. As the
optimization metric, we use the Mean Squared Error (MSE).

V. COMPARATIVE STUDY

We have used HuMOR to validate and evaluate ABRA-
HAM. Using the monitored QoS evaluation parameters, we
can compare it to the IEEE 802.11 standard handover algo-
rithm, as well as handover algorithms which we previously
created, such as MAX RSSI and ADNA. We first start by
describing the experimental setup. We explain which nodes
will be used and what is their configuration. We show a
layout of the testbed, as well as movement patterns of the
mobile nodes. We then move on to explain the experiment
scenarios and their results. First, we will use one mobile STA
to validate our handover algorithm ABRAHAM. We will then
repeat the experiment to get statistical results. And finally, we
will use more than 1 mobile STA. At the end of this section,
a discussion section can be found with the analysis of the
results.

A. Experimental Setup

In order to validate and evaluate handover management
algorithms, a couple of tasks have to be done in order to
set up the experiment. First, one needs to allocate the nodes
in the testbed that will be used. For our experiments, we
will allocate 7 fixed wireless nodes that will serve as APs, 1
fixed server node that will run HuMOR, and finally, 4 mobile
wireless nodes which will serve as STAs. We have chosen
4 mobile STAs due to the limited amount of such nodes
available in the testbed for wireless experimentation. The APs
are configured to operate in the 5GHz band on channel 36.
They have a capacity of Cap = 25(Mbps). For experimental
purposes, the APs in the testbed have signal attenuators on
their antennas of 20(dB), in order to emulate longer distances
between nodes. According to the Free Space Path Loss (FSPL)
model, a decrease in signal strength of 20(dB) results in
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an approximate 10 times distance increase. Therefore, to
emulate a normal human walk, the speed of the mobile STAs
is set to the default testbed speed of 16(cm/s), which is
approximately 10 times slower than a normal human walk.
The STAs establish a Qsta = 10(Mbps) Transmission Control
Protocol (TCP) connection and their movement patterns for
experimental purposes are defined using the testbeds’ robot
dashboard.

To train the RNN model of ABRAHAM, we have obtained
RSSI data through live experiments with HuMOR in the w-
iLab-t testbed. The training data was collected for a period of 8
hours, where mobile STAs moved in a random pattern, to avoid
overfitting. The input for the RNN were the RSSI values from
the 7 APs, while the output were the predicted RSSI values to
those APs 30 seconds into the future. 75% of the gathered data
was used to train the model, while 25% was used as testing
data. The MSE for the testing data was 0.7(dBm). To evaluate
the RNN model even further, we have conducted 6 experiments
with 7 APs where one mobile STA moved in random patterns
for each experiment. The MSE values for those experiments
are shown in Table IV. These results show that the RNN model
was good enough for its purpose in ABRAHAM. This model
was saved and used to predict the future RSSI values for the
following scenarios.

TABLE IV: MSE values for RNN model

Experiment 1 2 3 4 5 6
MSE (dBm) 2.30 2.31 2.02 2.67 2.45 1.27

1) Scenario 1 - Evolution over time: For the first scenario,
we use 1 STA that moves in a Z pattern and 7 APs. Their
layout, and the movement path of the STA is shown on Figure
5. The same figure also shows the initial traffic load in (Mbps)
on the APs, which is created to simulate more traffic and more
load on particular APs.

The objective of this scenario is to validate the handover
algorithm. First, the movement path has the mobile STA move
from AP B1, pass by D2 and arrive near F1. The objective is
to see whether the algorithm can predict the future location
of the STA to be near F1 and avoid handing over the STA
to AP D2. Next, the mobile STA moves from near AP F1,
passes by D2 and E3, and arrives near APs B3 and C4. The
objective is to confirm that the predicted future location will
again skip handing over the STA to D2 and E3, but this time
it will have two AP to choose from, B3 and C4. Here is where
the predicted future load of the AP will come in hand, as AP
B3 is already overloaded. So, the objective is to see whether
the algorithm will avoid handing over the STA to B3, and
choose C4 instead. Finally, the STA moves to AP F4 to end
the experimental run.

2) Scenario 2 - Multiple scenario 1 runs: Because scenario
1 shows the results of a single experimental run, scenario
2 objective is to evaluate the results and conclusions of
scenario 1, by repeating the scenario 1 experiment 10 times
and statistically analyzing the results.

3) Scenario 3 - Multiple STAs: We use scenario 3 to involve
more STAs, keeping the same number and layout of APs, as
well as their initial traffic loads as described in scenario 1.

Distance (cm)
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m
)
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3 (Mbps)
20 (Mbps)
24 (Mbps)
2 (Mbps)
3 (Mbps)

Mobile STA

Fig. 5: Layout of APs and mobile STA movement path

In these experiments, the STAs move in random individual
patterns. However, we run the same patterns for 10 times as
well, with the objective of getting statistical results to evaluate
the handover algorithm when multiple STAs are present.

Once the setup is complete, we can start HuMOR and using
its handover management block we can validate and evaluate
different handover algorithms. On top of the existing ones,
such as the IEEE 802.11 standard, ADNA and MAX RSSI,
we have added the newly created ABRAHAM in the handover
database. From HuMOR we can run experiments with each
one of these handover algorithms and obtain the monitored
QoS evaluation parameters, which will be presented, analyzed
and compared between handover algorithms.

B. Results

1) Scenario 1 - Evolution over time results: Here we
present the results of a single mobile STA moving along the
movement path defined according to Figure 5. We analyze
the handovers that occur, the number of those handovers, as
well as the QoS parameters along the movement path for the
duration of the experiment.

Figure 6 shows the connectivity and handover graphs for
all 4 handover algorithms. The connectivity graphs show
to which AP the STA was connected at each point of the
movement path, which is also shown by the handover graphs
but in the time domain, so from 0% to 100% of the time of
the experiment. From these graphs, we can see that ADNA
had the least number of handovers, 3, ABRAHAM had 5,
the IEEE 802.11 standard had 6, and MAX RSSI had the
most, 9. The handover graphs also show that MAX RSSI,
ADNA and ABRAHAM, which utilize the LVAP seamless
handover mechanism, have a continuous connection, without
any disconnects happening when the handover occurs. This is
not the case for the IEEE 802.11 handover algorithm, which
experiences disconnects with every handover that occurs. This
is shown on Figure 6 as gaps in the time domain, which are
pointed out by arrows for clarity.

Analyzing the connectivity graphs, we can check whether
the objective of this scenario is met. When the STA was
moving from AP B1 towards F1, it passed by AP D2. The
IEEE 802.11 standard and MAX RSSI handover algorithms at
some point hand over the STA to AP D2. On the other hand,
ADNA and ABRAHAM, taking into account the predicted
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Fig. 6: Connectivity and handover graphs

future location, do not hand over the STA to AP D2, but
immediately hand over the STA to AP F1. Next, the STA
moved from AP F1, passed by APs E3 and D2, and arrived
near APs B3 and C4. Again, ADNA and ABRAHAM avoided
the handover to E3 and D2. Also, both of the algorithms were
able to detect the overloaded B3 AP, and avoided handing over
the STA to it. However, ADNA and ABRAHAM did behave
differently at this point. ADNA just handed over the STA to
C4, while ABRAHAM did a couple of handovers between C4
and B1, which was not the case for the IEEE 802.11 standard
and MAX RSSI handover algorithms.

Figure 7 shows the throughput of the mobile STA over time
for all 4 algorithms in (Mbps). Due to the disconnects that
happen with the IEEE 802.11 standard handover algorithm, we
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Fig. 7: Throughput graphs

can clearly see the throughput dropping to 0(Mbps) during a
handover. As with the handover graph, this has been pointed
out by arrows on Figure 7. What can also be seen is that the
throughput of the STA starts deteriorating when approaching
the time to trigger a handover. On the other hand, the handover
algorithms that use the LVAP seamless handover mechanism
have continuous connectivity without drop in throughput to
0(Mbps). However, MAX RSSI can hand over the STA to an
AP that is already overloaded with traffic, like APs D2, E3 or
B3, which can cause a drop in throughput. This is also seen
with the IEEE 802.11 standard handover algorithm. This does
not happen with ADNA and ABRAHAM, so there are no high
drops in throughput with these two algorithms. However, we
can see that ADNA did experience slight throughput drops
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Fig. 8: Latency graphs
when the single mobile STA was connected to AP C4.

Figure 8 shows the latency in the communication between
the mobile STA and the APs that it was connected to. As can
be seen for the IEEE 802.11 standard handover algorithm the
latency rises as the STA gets handed over to an AP which is
overloaded. The worst being around 600(ms) when connected
to AP D3 which has only 1Mbps of available bandwidth. The
same can be seen with the MAX RSSI algorithm. ADNA and
ABRAHAM experience only slight rises to the latency. The
most notable one being for ADNA around 70(ms) while the
STA was connected to AP C4. This corresponds to the time
that it experienced a slight drop in throughput as well.

Figure 9 shows jitter between the mobile STA and APs.
From the graphs we can see that MAX RSSI experiences some
high jitter effects, especially when the STA was handed over

0                                                        50                                             100

0                                                        50                                             100

0                                                        50                                             100

0                                                        50                                             100
Experiment run time (%)

a) IEEE 802.11 Standard

b) MAX RSSI

c) ADNA

d) ABRAHAM

0

5

10

15

20

25

0

2

4

6

8

10

12

0

25

50

75

100

125

150

0

20

40

60

80

100

Ji
tte
r (
m
s)

Ji
tte
r (
m
s)

Ji
tte
r (
m
s)

Ji
tte
r (
m
s)

Fig. 9: Jitter graphs

multiple times between AP of different loads at the beginning
of the experiment. The IEEE 802.11 standard handover algo-
rithm showed higher jitter values when the STA was handed
over to higher loaded APs, and we see disconnects, pointed
out by arrows on Figure 9, which interrupted the communi-
cation completely. In contrast, ADNA and ABRAHAM didn’t
experience severe jitter values. The only notable jitter rise was
with ADNA when the STA was connected to C4.

Finally, Figure 10 shows the packet loss in the communica-
tion between the mobile STA and the APs. Here, we can see
how with the IEEE 802.11 standard handover algorithm, due
to it waiting until the RSSI drops below a certain threshold
to trigger a handover, the RSSI becomes so low that the
communication experiences packet loss. Also, we see the
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Fig. 10: Packet loss graphs
100% packet loss during the handover process, pointed out
with arrows on Figure 10. MAX RSSI on the other hand does
not experience 100% packet loss, but it does get high when
the AP the STA is connected to is overloaded. ADNA and
ABRAHAM do not experience high packet loss. ADNA does
experience around 10% of traffic loss when connected to C4
due to low RSSI, while this is not the case with ABRAHAM.

2) Scenario 2 - Multiple scenario 1 runs results: In this
subsection, we present the statistical results of running sce-
nario 1 for 10 times to evaluate the results obtained in scenario
1. Because latency, jitter and packet loss are only interesting in
the time domain, we focus on the throughput and the number
of handovers. Figure 11 shows the average throughput of all 4
algorithms, as well as the 95% confidence intervals which are
shown in numbers on the bars. ABRAHAM had the highest

[9.54, 9.71]

[6.45, 7.59]

[5.40, 6.58]

[9.79, 9.81]

Fig. 11: Average throughput for single mobile STA

average throughput of 9.8(Mbps), while the IEEE 802.11
standard handover algorithm achieved only 5.99(Mbps).

Table V shows the average number of handovers for all 4
algorithms. ADNA has the least average number of handovers
3.33, while MAX RSSI has the most 7.83.

TABLE V: Single STAs Average number of handovers

Algorithm IEEE 802.11 MAX RSSI ADNA ABRAHAM
5.67 7.83 3.33 5.16

3) Scenario 3 - Multiple STAs results: Finally, we evaluate
the 4 handover algorithms by using multiple mobile STA for
the experiments. Specifically, we use 4 mobile STA which
move in random patterns. We then again repeat the experi-
ments to get statistical information on the number of handovers
and the average throughput.

Figure 12 shows the overall average throughput of the
STAs across 10 experiments, as well as the 95% confidence
intervals which are shown in numbers on the bars. As can be
seen, ABRAHAM has the highest overall average throughput
of 8.35(Mbps), while the IEEE 802.11 standard handover
algorithm had 3.5(Mbps)
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Fig. 12: Average throughput of multiple mobile STAs

Table VI shows the average number of handovers that occur
in the experiment per algorithm. As can be see, ADNA has the
lowest average number of 4.33. ABRAHAM is just slightly
above at 4.67, while MAX RSSI has the highest of 7.67.

TABLE VI: Multiple STAs Average number of handovers

Algorithm IEEE 802.11 MAX RSSI ADNA ABRAHAM
6.63 7.67 4.33 4.67
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VI. DISCUSSION

A. Results discussion

Scenario 1 gives insight into the time domain, by analyzing
the QoS parameters (throughput, latency, jitter and packet loss)
and the number of handovers that occur. From the results of
the IEEE 802.11 standard handover algorithm, we can clearly
see no data transfer and 100% packet loss during the handover
process because of the disconnects that happen. The reactive
handover trigger waits for the RSSI to drop below a certain
threshold, at which point the other QoS parameters already
start to deteriorate. Another weakness is the AP selection
algorithm which relies only on the RSSI, so it can hand over
a STA to an AP that is already overloaded. We can see this
occurring when the STA gets handed over to APs D2, E3 or
B3. This results in the drop of throughput, rise in latency and
packet loss, and a more variable jitter. The results for the IEEE
802.11 standard handover algorithm show that it does not have
any notion of preserving the QoS parameters.

On the other side, the handover algorithms created with
HuMOR are seamless with no disconnects in communication
thanks to the LVAP handover mechanism. During a handover,
there is no significant drop in throughput or increase in latency,
jitter or packet loss. MAX RSSI, ADNA and ABRAHAM are
all proactive handover algorithms, meaning they don’t wait for
the QoS parameters to deteriorate before triggering a handover.
They all continuously monitor the network and decide when
to handover a STA. MAX RSSI only monitors the RSSI which
results in a large number of handovers occurring, due to the
noisy nature of the RSSI. Even though it is seamless, it only
relies on the RSSI, which means it also hands over the STA to
AP which are overloaded. This results in the QoS parameters
deteriorating, similar the IEEE 802.11 standard handover.

ADNA and ABRAHAM, on the other hand, preserve the
QoS parameters well during experimentation. Both of them
have a global overview of the network thanks to HuMOR,
which means they can create global optimizations of the
network, instead of doing per-device optimizations. They rely
on multiple metrics when deciding to which AP a STA should
get handed over to, including the RSSI, location and mobility
information, as well as the AP load. Because of the AP load
information, both algorithms avoid handing over the STAs to
AP which are overloaded. Therefore, the throughput does not
experience high drops. However, we can see that ADNA did
experience slight throughput drops when the single mobile
STA was connected to AP C4. This also resulted in an increase
of the latency and packet loss. ABRAHAM did not experience
this as it did not keep the single STA on C4 as long as
ADNA. At the point in time that ADNA experienced a drop in
throughput on C4, ABRAHAM handed over the STA to B1.
This resulted in the throughput to be preserved, and no packet
loss to be experienced. This was due to ABRAHAM using
the LSTM predicted future RSSI, for which the MSE during
the experimentation was 2.26(dBm). The drop in throughput
with ADNA was experienced due to a low RSSI, however, the
two other metrics, AP load and future location, indicated that
C4 was the best candidate. ABRAHAM was able to predict
the drop in RSSI, and temporarily handed over the STA to B1.

The average latency of the STA with ABRAHAM was
1.71(ms), average jitter was 0.2(ms), average packet loss was
0.01(%). Even though the average values do not say much
by themselves, it is interesting to see what % of time will
these values be higher with the other algorithms, meaning
what % of time is ABRAHAM better than the rest of the
algorithms. These results can be seen in Table VII. For 43.75%
of the time of the experiment, the latency of the IEEE 802.11
standard handover algorithm was higher than ABRAHAMs
average latency. This means that on average, ABRAHAMs’
latency was lower than the latency of the IEEE 802.11 standard
handover algorithm for 43.75% of the time. Similar results
can be concluded by comparing ABRAHAM to the rest of
the algorithms, as well as the rest of the QoS parameters.

TABLE VII: Percentage of time values were higher than
ABRAHAMs’ average

IEEE 802.11 MAX RSSI ADNA ABRAHAM
Latency 43.75(%) 37.13(%) 16(%) 11.88(%)

Jitter 45.97(%) 59.12(%) 16.79(%) 8.23(%)
Packet loss 57.12(%) 28.77(%) 8.24(%) 1.84(%)

In scenario 2, we evaluate the conclusions of scenario 1 over
10 experimental runs. ABRAHAM had a 64% higher average
throughput than the IEEE 802.11 standard, even higher than
ADNA. ABRAHAMs’ 95% confidence interval does not over-
lap with the one from ADNA. Also, to compare ABRAHAM
and ADNA, and see if the results show statistical improvement
of ABRAHAM over ADNA, we conducted the one-way Anal-
ysis of variance (ANOVA). Setting the alpha value to 0.05, the
result of the ANOVA test is F (1, 18) = 15.205, p = 0.0011,
with F critical of 4.414. The ANOVA, therefore, concludes
that with 95% probability there are statistically significant
differences between the means of ABRAHAM and ADNA.

Scenario 3, with multiple STAs involved, ABRAHAM had
a 139% higher overall average throughput than the IEEE
802.11 standard handover. ABRAHAM even outperformed
ADNA in the overall average throughput by 11%, while their
95% confidence intervals don’t overlap, and the result of the
ANOVA with alpha set to 0.05 was F (1, 18) = 19.618, p =
0.0003, with F critical of 4.414. This proves that with 95%
probability there are significant statistical differences between
ABRAHAM and ADNA.

ADNA had the least amount of handover in both scenario 2
and 3, however with multiple STAs ADNA only had 8% lower
average number of handovers than ABRAHAM. Looking at
the QoS parameters, because the LVAP handover process does
not impact the QoS, having more handovers in return for a
higher throughput is justified.

B. Deployment discussion

HuMOR runs on general-purpose hardware. The APs run
on top of OpenWRT, [41], which can be deployed on a wide
range of commercially available APs. So, deploying HuMOR
in other testbeds should not present a challenge. The prereq-
uisite to use ABRAHAM is the a priori knowledge of the
location of the APs. One such environment could be enterprise
networks, where the locations of APs are known. The HuMOR
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framework concept can also be deployed in a more production-
oriented environment, such as Long Term Evolution (LTE)
mobile networks. LTE has a similar control management
interface where statistics from the User Equipments (UEs) and
network side are gathered. The handover is executed from the
network side and the locations of base stations are a priori
known. The difference is in the handover mechanism, for
which HuMOR uses the LVAP one. The localization module
of HuMOR can also be updated so that it does not require any
a priori AP location knowledge.

Handover algorithms created with HuMOR benefit from the
use of the LVAP seamless handover, meaning the QoS do not
degrade during a handover. When creating a new handover
algorithm, one can use a number of exposed metrics and focus
on the AP selection process and the trigger. This handover
algorithm can be stored in the HADB of HuMOR, and then
validated and evaluated in the testbed.

ABRAHAM can be implemented without HuMOR, how-
ever, its performance would depend on the framework it is
deployed in. Even if it had access to the same metrics as in
HuMOR, it would lack the support of the LVAP handover
mechanism. This would result in the algorithm to be able to
spread the load across the APs and take into account the QoS
parameters, but the QoS would degrade during a handover.
ABRAHAM also requires a training period for its RNN model.
In a real deployment scenario, such as the ones discussed
above, one could use ADNA as the handover algorithm.
During its use, enough RSSI data can be gathered to train the
RNN specific to the deployment environment. Once the RNN
model is trained and tested, ABRAHAM can be activated to
replace ADNA and provide the added benefits demonstrated
in this paper.

VII. CONCLUSION

Controlling the handover is crucial for having proper
mobility management in IEEE 802.11 Wi-Fi networks. To
overcome the challenges of handover algorithms, we first
proposed an enabling framework called HuMOR. HuMOR is
an SDN modular handover management framework capable of
creating, validating and evaluation handover algorithms that
are centralized and proactive. It utilizes the LVAP handover
mechanism to make them seamless and transparent to the
STAs, and is capable of gathering metrics such as RSSI,
location, mobility and AP load. Relying on these capabilities
of HuMOR, the second contribution of this paper is a proactive
handover algorithm called, ABRAHAM, a mAchine learning
Backed multimetRic Handover AlgorithM. Using the metrics
in HuMOR it predicts the future location of STAs, the future
predicted AP load and using LSTM predicts the future RSSI.
Its goal is to optimize the load on the AP by handing over
STAs to APs in a way that will preserve the QoS. In a
comparative study, we validate and evaluate ABRAHAM by
comparing it to other handover algorithms in literature. We
show that with multiple mobile STAs, ABRAHAM had a
139% higher overall throughput compared to the IEEE 802.11
standard handover algorithm. Compared to ADNA, this was
higher for 11% and the ANOVA showed significant statistical
difference between ABRAHAM and ADNA.
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