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Cuckoo Filters and Bloom Filters: Comparison and
Application to Packet Classification

Pedro Reviriego, Jorge Martinez, David Larrabeiti, and Salvatore Pontarelli

Abstract—Bloom filters are used to perform approxi-
mate membership checking in a wide range of applications
in both computing and networking, but the recently intro-
duced cuckoo filter is also gaining popularity. Therefore,
it is of interest to compare both filters and provide
insights into their features so that designers can make
an informed decision when implementing approximate
membership checking in a given application. This paper
first compares Bloom and cuckoo filters focusing on a
packet classification application. The analysis identifies a
shortcoming of cuckoo filters in terms of false positive rate
when they do not operate close to full occupancy. Based
on that observation, the paper also proposes the use of
a configurable bucket to improve the scaling of the false
positive rate of the cuckoo filter with occupancy.

Index Terms—Cuckoo filters, Bloom filters, Packet clas-
sification, SDN.

I. INTRODUCTION

Approximate membership checking is widely used to
speed up many computing and networking applications
like DNA sequencing [1], caching [2] or network se-
curity [3]. For example, instead of performing a costly
access to an external memory to search for an element,
a small filter can be used first to check if the element is
stored in that memory. Then, only when that is the case,
the external memory is accessed [4]. In this scenario, it
is important that the approximate check does not have
false negatives as those would mean that elements that
are stored in the external memory will not be found.
Instead false positives would only cause an unneeded
access to the external memory. Therefore, the structures
used to implement the checking, commonly referred to as
filters, are designed to avoid false negatives and achieve
a low false positive probability.

The Bloom filter has traditionally been used to im-
plement this checking. However, the cuckoo filter has
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been recently proposed as an alternative to Bloom filters
[5] given its advantages, such as supporting deletions
or achieving a lower false positive rate in some set-
tings. Cuckoo filters have since been considered for
several networking applications like traffic monitoring
[6], longest prefix matching for IP packet forwarding [7]
or security [8]. However, cuckoo filters have also a few
drawbacks. For example, in a cuckoo filter, the number
of elements that can be inserted is limited and, when
the occupation is very high, the insertion may fail, as
opposed to a Bloom filter where insertions cannot fail,
they just degrade the false positive rate.

In this paper, Bloom and cuckoo filters are compared
discussing their advantages and drawbacks and provid-
ing some insights that can be useful to designers. In
particular, we look into cuckoo filter performance when
it operates below the maximum occupancy as would be
the case in many packet classification applications. The
results show that, in practical configurations, differently
from what previous analysis suggest, Bloom filters may
perform better than cuckoo filters in terms of false
positive rate. Based on that observation, an optimization
of the cuckoo filter to improve the reduction of the false
positive rate as the occupancy gets lower is proposed and
evaluated. The proposed scheme extends the occupancy
range for which the cuckoo filter outperforms the Bloom
filter making it more competitive for practical configu-
rations.

The contributions of this paper are threefold. The
first is to present a detailed comparison of Bloom and
cuckoo filters. The second is to make designers aware
that cuckoo filters would in many cases have worse false
positive rates than Bloom filters when they operate below
their maximum occupancy. This is of practical interest
as in many applications the filters would not work at
full occupancy. The third contribution is to present the
Configurable Bucket Cuckoo Filter (CBCF), a scheme
that enables cuckoo filters to better scale their false
positive rates with occupancy thus extending the range
of occupancy for which the cuckoo filter outperforms the
Bloom filter.

The rest of the paper is organized as follows. In section
IT, Bloom and cuckoo filters are described and compared.



Then in section III the use of filters for packet classifica-
tion is discussed as our target application. The proposed
cuckoo filter optimization is presented and evaluated
in section IV. The paper ends with the conclusions in
section V.

II. BLOOM FILTERS AND CUCKOO FILTERS

Bloom filters and cuckoo filters have become popu-
lar data structures to perform approximate membership
checking. In the following both Bloom and cuckoo filters
are briefly described and compared with respect to dif-
ferent parameters. Then the scaling of the false positive
rate versus occupancy for both Bloom and cuckoo filters
is discussed to show that the Bloom filter can outperform
the cuckoo filter for practical settings.

A. Bloom Filters

A Bloom filter uses an array of m bits, initially set
to zero, on which elements are inserted or checked
using a set of k hash functions hi(z), ho(z), ..., hx(z)
[4]. To insert an element z, the bit positions given
by hi(z), ha(z),..., hp(z) are set to "1’. Conversely, to
check if an element has been inserted in the filter, those
positions are read and if and only if all of them are ’1” a
positive is returned. The Bloom filter will always return
a positive for an element that has been inserted. Instead,
when checking for an element that has not been inserted,
the filter will in most cases return a negative, but with
low probability, a positive can be obtained. This occurs
when the k positions have been set to "1’ due to the
insertion of other elements. The probability or rate of a
false positive on a check for an element not stored in
the filter can be approximated by (p;)¥, where p; is the
probability that a bit is set to one which is a function
of the number of elements inserted. This probability can
be estimated when n elements have been inserted on the
filter as:

1
prel—(1— —)kn (1)
m
and thus the false positive rate:
1
forpr = 1—(1——=)F"k 2)
m

A Bloom filter is shown in Figure 1 with several
elements inserted on the filter.

For a given filter size m and elements inserted n, the
number of hash functions k that minimizes the false
positive rate is given by kopr = 7 - log(2) as stated
in [9]. Therefore the optimal number of hash functions
increases with the number of memory bits per element
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Fig. 1. Illustration of a Bloom filter checking membership of
elements = and y

stored 7. However, from a practical standpoint, using a
large value of k has disadvantages as up to & memory
accesses are needed to complete a lookup and the same
applies to the number of hash functions. Therefore,
increasing k increases the filter complexity making large
values not practical in many settings. Additionally, the
benefits in terms of false positive rate reduction are
smaller as k approaches kop: and thus lower values can
be used with a small impact on the false positive rate.

A limitation of Bloom filters is that elements cannot be
removed since a given position may have been set to one
by more than one element. Therefore, setting it to zero
when removing an element could lead to false negatives.
The filter can be extended to be a Counting Bloom Filter
(CBF) with a counter per position to support deletions [9]
but that increases the memory requirements significantly.
For example, four bit counters have been shown to
achieve a low probability of counter saturation but using
them implies a 4x increase on the memory used. This
can be mitigated by storing the counters in the slower
memory and keeping a single bit in the faster memory as
counters are only needed for insertions and removals but
not for lookups. On the other hand, there is no limitation
on the number of elements that can be inserted on a
Bloom filter, but as more elements are inserted, p; will
increase leading to more false positives.

The work to improve Bloom filters has continued
over the years and many variants have been proposed to
optimize different aspects [4]. In particular, the reduction
of the false positive rate combined with the support
of deletions has been widely studied. For example, the
Deletable Bloom filter (DIBF) [10] and the Ternary
Bloom filter (TBF) [11] add some additional information
to the filter without using a counter per position and
support some deletions but not all. In more detail, the
DIBF divides the filter in regions and keeps track of the
regions on which there have been no collisions among
the inserted elements. When removing an element, the
bits that are in regions with no collisions can be safely
cleared to zero. Instead bits that are in regions with
collisions cannot be removed. The TBF uses three values



for each position on the array 0,1 and where the
indicates a collision. When removing an element, only
the positions that store a one can be cleared to zero.
From the discussion, it becomes apparent that both, the
DIBF and the TBF only partially support deletion.

A different approach is taken in the Variable Increment
Counting Bloom Filter (VI-CBF) [12] that uses a counter
per position in the filter but with variable increments
that are computed using a hash function on the inserted
elements. By carefully selecting those increments, this
enables a reduction in the false positives when only one
element is inserted on a position if the increment of the
searched element does not match the value stored in the
filter. This scheme has been recently extended in the
Tandem Counting Bloom filter that groups counters in
pairs to further reduced false positives [13].

B. Cuckoo Filters

The cuckoo filter (CF) [5] uses partial key cuckoo
hashing to implement approximate membership checking
[14]. In more detail, for each element , a fingerprint is
computed using a hash function and it is stored in
the filter instead of . The filter is formed by an array
of  buckets formed by cells each of which can store
a fingerprint. To achieve a good trade-off between false
positive rate and the maximum achievable occupancy,

is commonly used [5]. The fingerprint for can be
stored in two buckets given respectively by
and where again, and

are hash functions. The cuckoo filter is illustrated
in Figure 2.
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Fig. 2. Illustration of a cuckoo filter that is checking membership of
element

To check if element is stored in the filter, we
compute , of and check if is stored in
any of those buckets. In that case a positive is returned, if
not the result is negative. A lookup for an element not
stored in the filter can return a positive if another element

is stored in either of those buckets and .
On the other hand, if an element has been inserted

in the filter, a lookup will always return a positive.
Therefore, both cuckoo filters and Bloom filters can have
false positives but not false negatives. For a filter that
uses fingerprints of  bits, the false positive rate can
be approximated by — where is the filter
occupancy, defined as —, where is the number of
elements stored in the filter. The false positive rate of
Bloom and cuckoo filters has been compared when is
close to one showing that the cuckoo filter provides a
lower false positive rate when is larger than eight [5].
This is one of the key advantages of cuckoo filters.

To insert an element , buckets are accessed
and if there is an empty cell, the fingerprint is stored
there. If there are no empty cells, one of the elements
stored in those buckets is removed from the filter and
the fingerprint of is stored in that cell. Then, is
inserted on its alternate bucket ( if it was stored in

and the other way around). This alternate bucket can
be computed by doing the of with the
position on which the fingerprint of was stored. As in
cuckoo hashing, insertion is the most complex procedure
and may require several iterations until an empty cell is
found.

Unlike Bloom filters, cuckoo filters support deletion.
To remove an element, the corresponding buckets
and are accessed and the matching fingerprint is
removed. It should be noted that, unlike Bloom Filters, in
this structure there is a one-to-one relationship between
stored fingerprint entries and elements and the same
fingerprint might appear several times in the same slot.
On the other hand, since to insert an element in a cuckoo
filter, an empty cell has to be found, the number of
elements that can be inserted in a cuckoo filter is limited
and can be in the best case the number of cells of
the filter. In practice, insertion fails before reaching full
occupancy but the filter can operate up to approximately
95% occupancy [5]. However, if the filter operates at
close-to-full occupancy, there will be no room for further
insertions during system operation. This is an important
limitation as in many applications, the number of entries
stored in the filter is dynamic and not known in advance.
In other applications, even if the number of entries stored
in the filter is static, their number may vary from one
device to another and thus the filter has to be sized for
the worst case. In both scenarios, the filter would operate
in most cases below its maximum occupancy to support
additional insertions or because the configuration of the
device is not worst case. In both scenarios, the false
positive rate of the cuckoo filter may be larger than that
of a Bloom filter as it will be seen in the evaluation
results presented in subsection ILD.



TABLE 1
CoMPARISON OF BLooM, CoUNTING BLooM (CBF), TERNARY BLooM (TBF), VARIABLE INCREMENT BLooOM (VI-CBF) AND
CUCKOO FILTERS

Filter Deletion Deletion Positive lookup Negative lookup  Insertion FPR for FPR scaling External
support  #accesses #accesses #accesses #accesses optimal settings with occupancy  memory
Bloom No N.A. Better for small BPE Good No
CBF Yes Same as Bloom Good Counters
TBF Partial Always worse Good No
VI-CBF Yes Always worse Good No
Cuckoo Yes Variable  Better for large BPE Poor No

C. Comparison

Table I compares Bloom, counting Bloom, ternary
Bloom, variable increment counting Bloom and cuckoo
filters for the more relevant parameters. The TBF has
been included in the comparison as an example of filter
that partially supports deletions and the VI-CBF as an
example of filter that supports deletions using more
sophisticated processing. The goal is to illustrate that
those types of filters will not be competitive in the
scenario considered. In more detail, the comparison is
done considering that the filter is stored in a small
on-chip memory and that the full set is stored in a
larger off-chip memory. It is assumed that all the filters
are given the same amount of on-chip memory and
their performance is compared. Therefore minimizing
the amount of information stored on-chip by the filter
becomes critical.

The first parameter is the support of deletions which is
one of the advantages of cuckoo filters. To support dele-
tions a Bloom filter needs to have counters instead of bits
and that leads to a large increase in the memory needed
for a counting Bloom filter. However, the counters can
be stored in the off-chip memory keeping only one bit
per position of the array in on-chip memory. This means
that the counting Bloom filter uses the same amount
of on-chip memory and thus has the same performance
as the Bloom filter except from the need to store the
counters in external memory. The ternary Bloom filter
(TBF) only supports deletions partially as if a given
position stores an  value it can not be set to zero when
removing an element. Instead the variable increment
counting Bloom filter (VI-CBF) fully supports deletions.
However differently from the counting Bloom filter, it
needs to store the counter value in the on-chip memory.
The same applies to the TBFE. Therefore, both Bloom
filter variants would have a smaller array when using
the same amount of on-chip memory as a Bloom filter.
This will degrade the false positive rate as shown in the
simulation results presented in the following.

The next four columns provide an indication of the
time that would be needed for each of the operations.

This would be implementation dependent and for some
platforms it may depend heavily on the optimizations
made to implement the filters [15]. To give a general
indication of performance, the metric used is the number
of memory accesses that in many cases provides a rea-
sonable indication of the time and cost of an operation.
It can be seen that for the Bloom filter, all operations are
bounded by , which as discussed before, normally takes
a small value to minimize the impact on performance.
For the cuckoo filter, lookups and deletions are always
completed in at most two memory and three memory
accesses respectively. Instead, for insertions the number
of accesses is not bounded and can be very large when
the filter operates at high occupancy which is one of the
disadvantages of cuckoo filters.

In many applications, lookups are by far the most
common operation. Looking closer into the time required
for them, it can be seen that for positive lookups the
cuckoo filter would outperform the Bloom filter as is
at least two. Instead for negatives, Bloom filters have
an advantage as a lookup ends as soon as one position
read has a value of zero. Therefore, the average number
of accesses for a Bloom filter, would depend on its
occupancy. Instead, for the cuckoo filter, two accesses
are always needed for a negative lookup. Since the goal
of the filter is to avoid checking the external memory
on a negative, in most cases the filter is used when
the fraction of negative lookups is dominant and thus
the performance of negative lookups is the one that
contributes most to the performance of the filter.

The following parameter included in the comparison
is the false positive rate (FPR) that would determine
the effectiveness of the filter in avoiding accessing the
full table for elements that would not find a match.
Two scenarios are considered for the false positive rate.
The first one is when the number of elements and the
amount of memory is known in advance and the filter
parameters can be optimized ( for the Bloom filter
and the fingerprint size and number of buckets for the
cuckoo filter). This ideal case is not realistic in many
applications. To account for this, the scaling of the



false positive rate with occupancy is also compared. The
cuckoo filter outperforms the Bloom filter in an optimum
configuration when the number of bits per element (BPE)
is larger than approximately eight while the Bloom filter
is better for fewer bits [5]. Therefore, the cuckoo filter
provides better performance when the BPE is large as
seen in Table I. The counting Bloom filter has the same
FPR as the Bloom filter as it is assumed that counters
are stored off-chip as discussed before. Instead, both the
TBF and the CBF will have significantly worse FPR as
they need more on-chip memory per filter position and
thus when using the same amount of on-chip memory
have a smaller array. The scaling of the false positive
rate with occupancy is better for the Bloom filter in all
its variants than for the cuckoo filter making it better in
some practical configurations. This can be clearly seen
by comparing the false positive rates of both filters and
noting the dependency with the number of elements 7 is
exponential for the Bloom filter and linear for the cuckoo
filter:

forpp =~ 1—(1—5)Fm)Fk
(3)
forep ~ 3¢ = B0,

Finally, the last column shows the need to store part
of the filter information on the external memory. This is
only needed for the counting Bloom filter to store the
counters. The rest of the filters considered have all their

information in on-chip memory.

D. False positive rate versus occupancy

To illustrate the dependency of the false positive rate
on occupancy of the cuckoo filter and the Bloom filters
considered, they have been implemented and the false
positive rate has been measured for several configura-
tions. In more detail, a cuckoo filter with m = 8192
buckets of four cells was simulated with fingerprints of
f = 12,15,18 bits. The reasoning behind this choice
of parameters is as follows. The number of cells per
bucket has an impact on both the false positive prob-
ability and on the maximum occupancy that can be
achieved. In more detail, each element is compared to
2 - ¢ fingerprints and thus increasing ¢ increases linearly
the false positive probability making lower values more
attractive. On the other hand, larger values of ¢ result in
larger occupancy before an insertion fails [16]. In most
cuckoo filter implementations c is set to four to achieve
a balance between the two conflicting requirements.
As for the fingerprint bits f, the plain cuckoo filter
starts to outperform the Bloom filter in terms of false
positive probability when the number of bits per element

is larger than approximately eight [5]. Therefore, the
values selected are in that range (above eight) and cover
different false positive probabilities from 0.2% (f = 12)
to 0.003% (f = 18). Finally, the value of m should have
no impact on the results as long as it is much larger than
one. Then, a Bloom filter, a Ternary Bloom filter and a
Variable Increment Counting Bloom filter of the same
size (8192-4- f bits) were also simulated. For the Bloom
filter the optimal value of k for an occupancy of 95% was
used. In particular, the values of k used were 9,11,13
for f = 12,15, 18. For the VI-CBF, the value of L =4
was used using counters of five bits and the number
of hash functions was set to k = 4. The cuckoo filter
was constructed and elements were inserted until the
desired occupancy was reached. Elements are generated
randomly but ensuring that the are no duplicates. Note
that this should have no impact on the results when
using well behaved hash functions. Then a number of
element replacements (removal of an element from the
filter and insertion of a new one) were done to simulate
the steady state operation at that occupancy. Finally, one
million lookups for elements not stored in the filter were
done and the false positive rate was measured. For each
configuration, the process was repeated one thousand
times and the average false positive rate across all runs
is reported. The same process was done for the Bloom
filters considered except for the replacement operations.

The results are shown in Figure 3. The first observa-
tion that becomes apparent is that the TBF and VI-CBF
have a much larger false positive rate than the Bloom
filter. This is because both the TBF and the VI-CBF
require to store additional information on-chip to support
removals. This reduces the size of the filter array and
increases the probability of false positives. Instead, in
the case of the counting Bloom filter, since its counters
are stored off-chip, it stores the same information as a
Bloom filter on-chip and thus has the same false positive
rate. This illustrates, how in our target applications, for
a fixed on-chip memory size, the traditional Bloom filter
(or the counting Bloom filter with the counters stored off-
chip) achieves the lowest false positive rate. Therefore,
in the rest of the paper, the comparison concentrates on
the Bloom filter versus the cuckoo filter.

As expected, it can be seen that the false positive rate
of the cuckoo filter reduces linearly as the occupancy
decreases while for the Bloom filter, the reduction is
steeper. This means that the Bloom filter outperforms
the cuckoo filter in terms of false positive rate when
the occupancy is approximately 90%,85%,80% or lower
when f = 12,15, 18 respectively. As discussed before, in
many applications, the filter will not operate at maximum
occupancy and for those, the Bloom filter may provide



better performance.
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Fig. 3. False Positive Rate of the VI-CBF, TBF, Bloom filter and
cuckoo filter for different fingerprint sizes and occupancy

III. FILTERING FOR PACKET CLASSIFICATION

Packet classification is a key functionality in modern
networks and is needed for example to apply security
policies, to implement quality of service or to process
packets in switches, routers, firewalls, bandwidth man-
agers, intrusion detection systems, etc [17]. With the
adoption of Software Defined Networking (SDN), packet
classification will become more generic and complex
[18]. To classify packets, their headers are parsed to
extract the relevant fields that are then compared with a

set of rules to decide the actions to apply to the packet.
Implementing this checking at current wire speeds is
challenging as in some cases, for example, the set of
rules is large and has to be stored in a external memory
that provides limited bandwidth. To alleviate this issue,
in many cases, smaller filters are stored in a faster
memory to reduce the number of accesses to the full
tables stored in a slower memory [19].

In most packet classification functions, a group of
packet header fields are extracted from each incoming
packet to build a key that is checked against a set of
rules to determine the action that must be applied to the
packet. The key can be as simple as the destination IP
address for packet forwarding to 15-field rules consid-
ered in some software defined networking applications
[18]. The set of rules to check against may require a
significant amount of memory, for example when it is
large as for example in Internet scale routing tables that
have close to one million entries or because each rule
requires hundreds of bits, as in many field rules. In
many networking systems, it is common to have a small
amount of on-chip SRAM and a large amount of off-
chip DRAM [20]. For example, external DRAM can be
used to store counters [21] or large lookup tables [22].
Switching ASICs that have internal custom logic and
SRAM combined with external DRAM are commercially
available and are widely used [23].

Therefore, when the rule set is large it does not fit
into the on-chip memory and has to be placed on the
external memory. The time needed to access the DRAM
is orders of magnitude larger than that of accessing the
internal SRAM. This means that accessing the full rules
introduces a larger latency and consumes a significant
amount of memory bandwidth leading to a performance
bottleneck. On the other hand, the DRAM is very large
so it can store very large tables while the SRAM is small.
Therefore, the critical resource is the on-chip SRAM
while the off-chip memory is abundant.

In many cases, all the effort to access the external
memory to check the rule set is done to find that the
search does not match any rule. This is the case for
example in Longest Prefix Matching (LPM), where a
search is done for several prefix lengths and most of
them will not find a match [7], or in more general packet
classification with Tuple Space Search [19]. In those
cases, it is interesting to perform an initial filtering that
gives us an indication of whether it makes sense to access
the full table or not. To that end, traditionally Bloom
filters have been used as they can have false positives but
not false negatives such that if there is a matching rule
we would always find it [9]. A Bloom filter can eliminate
more than 95% of the accesses to external memory for



lookups that will not match any rule using only eight
bits per rule which in many cases makes it possible to
store the filter in a faster on-chip memory.

Another example where filtering can be useful is the
black listing of malicious IP addresses [24]. To that end,
the source IP of each packet is checked against a list and
on a match, the packet is discarded. For IPv6, the amount
of memory needed to store the table is large and so is
the bandwidth to check the full address. Therefore, as in
most cases the packet will not come from a blacklisted
address, it can be beneficial to first check a filter, so that
on a negative, we can safely accept the packet and only
on a positive we need to access the full table. This is
illustrated in Figure 4.

Packet source IP
address

negative

3 Accept

packet

positive

: 2001:569:75{2:8500:bdc2:d10d:6929:9a0d
. 2001:19f0:4400:445e:5400:f.fe50.8f3f

Off-chip : 2408:802a:9705:5c59:c477:4dB86:1cad:2a28

RAM

Black list of

IPv6 addresses 2B06:180:61.6f abaf 64cc 7357

2804:10:6059::197:125
2302:2808:5401::b02a:b3ff fed7-723f

J]malch ..

Drop
packet

na match

Accept
packet

Fig. 4. Speeding up IP address blacklisting with filtering

An important feature of packet classification applica-
tions is that insertions or deletions in the rule sets are
orders of magnitude less frequent than lookups. As an
example, the peak number of BGP updates in a router
may be at most in the order of thousands per second
with much lower values on average [25], [26]. This
compares with the hundreds of millions of packets that
can be processed per second in a high speed router.
The same reasoning applies to other network functions
such as MAC learning or OpenFlow tables that have
similar update rates. Therefore, for packet classification,
the performance is dominated by the lookup speed, being
the impact of insertions and deletions negligible in most
cases.

Finally, it is important to note that in filtering for
packet classification, since the goal is to accelerate the
checking of the rule set, it can be assumed that the full
rule set is stored in the external memory. Otherwise, on
a positive on the filter, there would be no way to check
the rule set to determine if there is some matching rule
which is the goal of the entire classification process. Fur-

thermore, the rule set can be used to optimize the filter.
An example of this is the adaptive cuckoo filter recently
proposed to remove false positives once they occur in
order to prevent subsequent packets from causing further
false positives [27].

IV. MAKING CUCKOO FILTERS BETTER THAN
BLOOM FILTERS AT PRACTICAL OCCUPANCY

Given the advantages of CFs over BFs such as element
deletion support and lower FPR at high occupancy, we
try to address the aspects of CFs where BFs are better. In
particular, in this section, a novel Configurable Bucket
Cuckoo Filter (CBCF) is introduced that reduces the
false positive rate of cuckoo filters when occupancy is
below maximum. Then we evaluate this data structure
to prove its effectiveness. The section ends with a brief
discussion of the additional logic needed to implement
the proposed scheme compared to that of the cuckoo
filter in order to show that it would be acceptable in
many implementations.

A. Description of the CBCF

To achieve a better behaviour of the false positive
rate of cuckoo filters at moderate occupancy levels, we
propose a configurable bucket that adapts the size of the
fingerprints stored to reduce the false positive rate when
the number of elements stored in a bucket is fewer than
its capacity. A selection bit is used to configure the
bucket either with four cells or with three. Then, when
a given bucket stores fewer than four cells, we can use
the second configuration with three larger cells so that
fingerprints have  — bits thus reducing the contribution

of this bucket to the false positive rate by a factor of 3.
This bucket is illustrated in Figure 3.

s=0 | cel-1 | cell-2 | cell-3  cell-4

s=1 cell-1 cell-2 cell-3

Fig. 5. Configurable bucket in the proposed CBCF

On a lookup, buckets , (note that is computed
using always the smallest fingerprint) are accessed and
for each of them, first the selection bit is read to deter-
mine the length of the fingerprints. Then the fingerprint
of the searched element is computed to the required
length and the comparisons are made. The complete
procedure is shown in Algorithm 1,

A similar procedure can be used for removals but
removing the fingerprint once it is found. However, if
when removing an element the bucket had four finger-
prints, we should reconfigure the bucket to store longer



Algorithm 1 Query for element in a CBCF Algorithm 2 Removal of element in a CBCF
1: Compute for 1: Compute for
2: Access buckets 2: Access buckets
3: for each cell in do 3: for each cell in do
4: Read bit 4 Read bit
5: if cell is used and then 5: if cell is used and then
6: Compare with fingerprint in the cell 6: Compare with fingerprint in the cell
7: If equal return positive 7 if equal then
8: end if 8 Access full table on that bucket and cell
9: if cell is used and then 9: if element stored is  then
10: Compare with fingerprint in the cell 10: Remove element and fingerprint
11: If equal return positive 11: return success
12: end if 12: end if
13: end for 13: end if
14: return negative 14: end if
15: if cell is used and then
16: Compare with fingerprint in the cell
fingerprints for the remaining three elements. To be able 17: if equal then
to do so, we need the full elements so that we can 18 Access full table on that bucket and cell
compute the longer fingerprints. Therefore, the CBCF 19 if element stored is  then
can only be used in applications where full elements are 20 Remove element and fingerprint
also stored, in a larger slower memory. This is the case 2I: Update fingerprints to
when the filter is used to reduce the cost of accessing 22 Set
the full elements and is also needed for other cuckoo 23 return success
filter enhancements such as the adaptive cuckoo filter 24 end if
[27]. A practical configuration could have a replica of the ~ 25: end if
filter in the larger memory that stores the full elements 26:  end if
27: end for

instead of the fingerprints so that there is a one-to-
one correspondence between fingerprints and elements.
This is illustrated in Figure 6 and assumed for the rest
of the paper. In this configuration, when removing an
element, if there are several matching fingerprints, the
full-element table is accessed to locate the element that
is to be removed and avoid removing another element
that has the same fingerprint as that would lead to an
inconsistent state. Once the element is located, both the
element and its fingerprint are removed to preserve the
one-to-one correspondence between fingerprints in the
CBCF and elements in the main table. The procedure to
remove an element is shown in Algorithm 2. It can be
seen that when the bucket stored short fingerprints, we
also update the fingerprints to long as now there is an
empty cell in the bucket.

To insert an element, buckets , are accessed
and priority is given to the bucket that stores fewer
fingerprints. Then, the short or long fingerprint is stored
in an empty cell depending on whether the bucket is full
or not. If there are no empty cells, an element is moved as
in the original cuckoo filter. The same operations should
be done in the table that stores the full elements. The
procedure to insert an element is shown in Algorithm 3.

The reduction that can be achieved on the false posi-

28: return failure

tive rate will depend on the fraction of buckets that is not
full and thus can benefit from using larger fingerprints.
This will obviously depend on the filter occupancy and
will in the best case be 3. To maximize the reduc-
tion, a scrubbing procedure has been implemented. This
procedure sequentially reads all the buckets in the filter
and for those that are full, removes one of the elements
randomly and tries to insert it on its other bucket moving
elements until a bucket that has fewer than cells is
found (so that after inserting the element is still not full)
or twenty movements have been made. In the second
case, after the twenty movements, the procedure inserts
the element in any bucket that has empty cells and stops.
This scrubbing reduces the number of buckets that are
full and makes the CBCF more effective. The scrubbing
procedure can be run after a given number of insertions
or periodically to ensure that the filter has as few full
buckets as possible.

The proposed scheme could be extended by using for
example two selection bits so that different fingerprint
lengths can be used when a bucket has four, three, two
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Fig. 6. Diagram of a CBCF on which the full elements are stored in a cuckoo table with one-to-one correspondence to the CBCF

Algorithm 3 Insertion of element in a CBCF
1: Compute for
2: Access buckets
3: if there are empty cells on buckets then
4: Select bucket with more empty cells
5: if one cell empty then
6: Store
7: else
8: Store
9: end if
10: Store  on main table
11: return success
12: end if
13:
14: to do
15: Remove an element from
16: Store in its place
17: Compute for
18: Access buckets
19: if there are empty cells on buckets then
20: Select bucket with more empty cells
21: if one cell empty then
22: Store
23: else
24: Store
25: end if
26: Store on main table
27: return success
28: end if
29:
30: end for

31: return failure

or one elements. However, the largest benefit of this
extension would occur when most of the buckets have
fewer than three elements which means that occupancy
would be quite low. This seems to have less interest as
even if the filter has to have some margin to its maximum
occupancy, it is not optimal to operate at low occupancy.
In any case, the study of such an extension is left for
future work.

B. Evaluation

As discussed in the comparison presented in section
IL.D, for our target applications on which the on-chip
memory is the scarce resource, the TBF and VI-CBF
have worse false positive rate than the traditional Bloom
filter. Therefore, in the following, the proposed CBCF
is compared only with the Bloom filter as it is the one
that achieves the lowest false positive rate among the
different Bloom filter variants.

To compare the cuckoo filter, the Bloom filter and
the proposed CBCF, they have been implemented and
the false positive rate has been measured for several
conﬁgurations‘. In more detail, a cuckoo filter and CBCF
with buckets of four cells were simulated
with fingerprints of bits for which the
cuckoo filter is expected to outperform the Bloom filter
in terms of false positive rate [5]. Then, a Bloom filter
of the same size was also simulated using the optimal
value of for an occupancy of 95%. In particular, the
values of used were for . The
cuckoo filter and CBCF were constructed and elements
were inserted until the desired occupancy was reached.
Then a number of element replacements (removal of
an element from the filter and insertion of a new one)
were done to simulate the steady state operation at that

!The source code used for the CBCF and CF is available in this
link https://github.com/mladron/CBCF



occupancy. For the CBCF, the scrubbing operation is
then executed to try to minimize the number of buckets
that are full. Finally, one million lookups for elements
not stored in the filter were done and the false positive
rate was measured. For each configuration, the process
was repeated one thousand times and the average false
positive rate across all runs is reported. The same process
was done for the Bloom filter except for the replacement
operations.

The results are shown in Figure 7. Comparing the
cuckoo filter and the Bloom filter, it can be seen that the
false positive rate of the cuckoo filter reduces linearly as
the occupancy decreases whereas for the Bloom filter, the
reduction is steeper. This means that the Bloom filter out-
performs the cuckoo filter in terms of false positive rate
when the occupancy is approximately 90%,85%,809% or
lower for the fingerprint sizes considered. As discussed
in the introduction, in many applications, the filter will
not operate at maximum occupancy and for those, the
Bloom filter may provide better performance.

Looking at the CBCEF, it can be seen that it is indeed
able to provide a larger reduction of the false positive
rate as occupancy reduces. In more detail, with the
CBCF the Bloom filter outperforms the cuckoo filter
in terms of false positive rate when the occupancy is
below 60%,55%,55% compared to 90%,85%,80% for the
original cuckoo filter. This clearly shows that the CBCF
is able to extend the range of occupancy for which the
cuckoo filter outperforms the Bloom filter in terms of
false positive rate. This is achieved with no impact on
the false positive rate at maximum occupancy, which in
fact is slightly reduced as some buckets will not be full
at 95% occupancy.

A closer look at the false positive rate of the CBCF
reveals that the reduction compared to a CF ends ap-
proximately at 70% occupancy. This means that at this
point there are almost no full buckets. Interestingly this
corresponds to the occupancy of a cuckoo filter that has

which is around 90% [16] which multiplied by

gives approximately the 70% observed. This would

be the maximum occupancy that could be achieved with

no full buckets. Therefore, the simulation results seem
to be consistent with the theoretical analysis.

To compare the performance of the proposed CBCF
with the CF and BF, the average number memory ac-
cesses per negative lookup has also been logged during
the simulations. As discussed before, in the scenario
considered, most of the accesses would be negative
lookups for which the filter avoids checking the external
memory. Therefore, the speed of negative lookups will
be the dominant factor for the speed of the filter. The
results are shown in Figure 8. It can be seen that in
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Fig. 7. False Positive Rate of the proposed CBCEF, the original cuckoo
filter and a Bloom filter for different fingerprint sizes and occupancy

the case of both the CF and the proposed CBCEF, the
number of memory accesses is constant and equal to
two as expected from Table 1. This is because to return
a negative, the two buckets to which an element maps
have to be checked. Instead, for the Bloom filter, the
number of accesses depends on the occupancy. This is
again expected as for lower occupancy, the probability
of finding a zero increases and the Bloom filter returns
a negative when the first zero is found. The average
number of memory accesses for the Bloom filter is also
two for the maximum occupancy. This is also expected
as the optimal  for that occupancy was used in the



simulations and this corresponds to a probability of a bit
in the filter being zero of - so that the average number
of accesses is - - - that tends to a value of
two [9]. Finally, it can be seen that the reduction in the
number of memory accesses with occupancy is similar
for the different values of . These results show that the
Bloom filter will outperform both the CF and CBCF in
terms of memory accesses when occupancy is below the
maximum value. This is in line with recent studies that
show a speed advantage of Bloom filters over cuckoo
filters for software implementation [15].
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Fig. 8. Average number of memory accesses to complete a negative
lookup

Finally, simulations have been run to evaluate the

performance for insertions and removals. Again, the
number of memory accesses is used as the metric for
comparison. In the case of the Bloom filter, the number
of memory accesses for insertion is constant and equal to

(which as discussed before is different for each value
of ). The results for the CF and CBCF are similar as
the insertion procedure is the same and are shown in
Figure 9. It can be observed that the number of memory
accesses increases very significantly as we approach the
filter capacity. This is in line with the expected behaviour
of cuckoo filters [5]. For insertions, the CF and CBCF
outperform the Bloom filter except when their occupancy
is above 90%. As for removals the results are shown
in Figure 10. In this case, the Counting Bloom Filter
(CBF) is used for comparison. It can be seen that again
the CF and CBCF have similar results. In this case they
outperform the Counting Bloom filter as they only need
approximately 2.5 memory accesses; that is smaller than
the optimum values of used in the Bloom filters. The
results for the CF and CBCF do not depend on the
number of fingerprint bits . Instead, for the Bloom
filter as the optimum values of varies with , so does
the number of memory accesses. Finally, it is worth
mentioning that in a dynamic scenario, both insertions
and removals will take place and thus the larger cost
of insertions on the CF and CBCF when occupancy is
high will be partially compensated with the lower cost
of removals.

The evaluation results show that the CBCF can effec-
tively extend the occupancy range for which the cuckoo
filter outperforms the Bloom filter in terms of false
positive rate. In terms of performance, the Bloom filter
requires fewer memory accesses per negative lookup
on average than both the CF and CBCF. This would
lead to faster lookups in some platforms as recently
shown in [15]. For insertions both the CF and CBCF
require a large number of memory accesses when the
filter operates close to full occupancy but outperform
the Bloom filter at lower occupancy. Finally, removals
require fewer memory accesses in the CF and CBCF
than in the Bloom filter.

C. Implementation overheads

A potential drawback of the proposed CBCF could
be the implementation overhead compared to a plain
CE In most networking applications, the most frequent
operation is the lookup, therefore in the following, the
discussion focuses on it. For a lookup, the number of
memory accesses for elements not in the set (which
is the worst case) is two both for the CBCF and the
CE For lookups of elements that are in the set, the
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Fig. 9. Average number of memory accesses to complete an insertion

number of memory accesses depends on whether the
fingerprint is stored in its first or second bucket but
again is the same for the CBCF an the CF. Therefore,
the CBCF does not introduce any overhead in terms of
memory accesses. However, a lookup in the CBCF may
require computing larger fingerprints of the searched
elements (when the selection bit ). The overhead
to do this should be negligible as modern processors
have dedicated instructions that compute a hash of the
word size [28] and thus provide a larger number of
fingerprint bits than needed both for the CF and the
CBCE Therefore, the additional complexity comes from
reading the selection bit and then based on it perform
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Fig. 10. Average number of memory accesses to complete a removal

comparisons against three or four elements. The CBCF
does require a small overhead in terms of memory as an
additional bit is needed per bucket to store the selection
bit. For example, when this overhead would
be approximately 2%. This suggests that the overhead
should be acceptable in many implementations.

Finally, the scrubbing procedure used to minimize the
number of buckets that are full is also an overhead.
However, as insertion and removals on most networking
applications are not frequent and the procedure only
needs to be run after a significant number of insertions,
it will be run rarely thus having no relevant impact on
the filter operation.



V. CONCLUSIONS

This paper has illustrated the importance of filters
and compared Bloom filters and cuckoo filters. The
analysis shows that one of the disadvantages of cuckoo
filters is that their false positive rate reduces linearly as
occupancy lowers whereas Bloom filters instead have a
faster reduction. This means that when the filter operates
below its maximum occupancy as it would be the case
of many practical configurations, a Bloom filter could
provide better performance.

Given the evident interest in cuckoo filters over Bloom
filters for applications that require deletion support and
low false positive rates at very high occupancy, we
focus on extending the occupancy ranges for which the
cuckoo filters are competitive. To this end, an optimized
elastic cuckoo filter has been proposed in this article.
The Configurable-Bucket Cuckoo Filter (CBCF) exploits
unused cells in buckets to use longer fingerprints for
the elements stored in the bucket thus reducing its
contribution to the false positive rate. The simulation
results show that indeed the CBCF can extend the occu-
pancy values for which the cuckoo filter outperforms the
Bloom filter. To support fingerprints of different sizes,
the CBCF needs to store the full elements (or at least the
longest fingerprints) in another table. Therefore, it is only
appropriate for applications that by their nature store the
full elements or that have a slower larger memory on
which the full elements can be stored with no relevant
impact on cost.

The proposed CBCF could be extended to support
multiple configurations on a bucket, for example, by
using two selection bits per bucket. Those configurations
are left for future work as it seems that they would pro-
vide most of their benefit at lower occupancy where the
filter should not operate in configurations with practical
interest.

ACKNOWLEDGMENT

Pedro Reviriego and David Larrabeiti would like to
acknowledge the support of the ACHILLES project
PID2019-104207RB-I00 and the Go2Edge network
RED2018-102585-T funded by the Spanish Ministry of
Science and Innovation and of the Madrid Commu-
nity research project TAPIR-CM grant no. P2018/TCS-
4496. David Larrabeiti acknowledges the support of EU
project PASSION, Grant Agreement 780326. Salvatore
Pontarelli has been partly funded by the EU commis-
sion in the context of the 5G-PICTURE project, Grant
Agreement 762057.

REFERENCES

[1] D. Pellow, D. Filippova, and C. Kingsford, “Improving Bloom
filter performance on sequence data using k-mer Bloom filters,”
Journal of Computational Biology, vol. 24, no. 6, pp. 547-557,
2017.

[2] T. J. Ashby, P. Diaz and M. Cintra, “Software-Based Cache
Coherence with Hardware-Assisted Selective Self-Invalidations
Using Bloom Filters,” in IEEE Transactions on Computers, vol.
60, no. 4, pp. 472-483, April 2011.

[3] S. Geravand and M. Ahmadi, “Bloom filter applications in
network security: A state-of-the-art survey,” Computer Networks,
vol. 57, no. 18, pp. 4047-4064, Dec. 2013.

[4] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich and X. Luo, “Op-
timizing Bloom Filter: Challenges, Solutions, and Comparisons,”
in IEEE Communications Surveys and Tutorials, vol. 21, no. 2,
pp- 1912-1949, 2019.

[5] B. Fan, D. Andersen, M. Kaminsky and M. Mitzenmacher,
“Cuckoo Filter: practically better Than Bloom,” in Proceedings
of CoNext 2014.

[6] J. Grashofer, F. Jacob and H. Hartenstein, “Towards application
of cuckoo filters in network security monitoring,” 14th Interna-
tional Conference in Network and Service Management (CNSM),
pp. 373-377, 2018.

[71 M. Kwon, P. Reviriego and S. Pontarelli, “A length-aware cuckoo
filter for faster IP lookup,” in Proceedings of the IEEE Infocom
(WKSHPS), pp. 1071-1072, 2016.

[8] J. Cui, J. Zhang, H. Zhong and Y. Xu, “SPACF: A Secure
Privacy-Preserving Authentication Scheme for VANET with
Cuckoo Filter,” in IEEE Transactions on Vehicular Technology,
vol. 66, no. 11, pp. 10283-10295, Nov. 2017.

[9] A. Z. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Mathematics, 2005.

[10] C. E. Rothenberg, C. A. B. Macapuna, FE L. Verdi, and M. E
Magalhaes, “The deletable bloom filter: a new member of the
Bloom family,” IEEE Communications Letters, vol. 14, no. 6,
pp. 557-559, June 2010.

[11] H. Lim, J. Lee, H. Byun, and C. Yim, “Ternary bloom filter
replacing counting bloom filter” IEEE Communications Letters,
vol. 21, no. 2, pp. 278-281, 2017.

[12] O. Rottenstreich, Y. Kanizo and I. Keslassy, "The Variable-
Increment Counting Bloom Filter,” in IEEE/ACM Transactions
on Networking, vol. 22, no. 4, pp. 1092-1105, Aug. 2014.

[13] P. Reviriego and O. Rottenstreich, "The Tandem Counting
Bloom Filter - It Takes Two Counters to Tango,” in IEEE/ACM
Transactions on Networking, vol. 27, no. 6, pp. 2252-2265, Dec.
2019.

[14] S. Pontarelli and P. Reviriego, “Cuckoo Cache: A Technique
to Improve Flow Monitoring Throughput,” in IEEE Internet
Computing, vol. 20, no. 4, pp. 46-53, July-Aug. 2016.

[15] H. Lang, T. Neumann, A. Kemper, and P. Boncz, “Performance-
optimal Filtering:Bloom overtakes cuckoo at high throughput,”
PVLDB, 12(5):502-515, Jan. 2019.

[16] U. Erlingsson, M. Manasse and E Mcsherry, “A cool and
practical alternative to traditional hash tables,” in Proceedings of
the 7th Workshop on Distributed Data and Structures (WDAS),
2006.

[17] P. Gupta and N. McKeown, “Algorithms for packet classifica-
tion,” IEEE Network, vol. 15 no. 2, pp. 24-32, 2001.

[18] C. Hsieh and N. Weng, "Many-field packet classification
for software-defined networking switches,” in Proceedings of
ACM/IEEE ANCS, Santa Clara, CA, 2016, pp. 13-24.

[19] H. Lim and S. Kim, “Tuple Pruning Using Bloom Filters for
Packet Classification,” IEEE Micro, vol. 30, no. 3, pp. 784-794,
May/June 2010.



[20] Y. Kanizo, D. Hay, and 1. Keslassy, “Maximizing the Through-
put of Hash Tables in Network Devices with Combined
SRAM/DRAM Memory,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 796-809, March 2015.

[21] J. Mogul, and P. Congdon. “Hey, you darned counters! get off
my ASIC!,” in Proceedings of the first workshop on Hot topics
in software defined networks. 2012.

[22] K. Daehyeok, et al. “Generic external memory for switch data
planes,” in Proceedings of the 17th ACM Workshop on Hot
Topics in Networks. 2018.

[23] BCM88690-10 Tb/s  StrataDNX  Jericho2  Ethernet
Switch Series. https://www.broadcom.com/products/ethernet-
connectivity/switching/stratadnx/bcm88690, 2018.

[24] E Soldo, K. Argyraki and A. Markopoulou, “Optimal Source-
Based Filtering of Malicious Traffic,” in IEEE/ACM Transactions
on Networking, vol. 20, no. 2, pp. 381-395, April 2012.

[25] G. Huston and A. Grenville “Projecting future IPv4 router
requirements from trends in dynamic BGP behaviour,”, in Pro-
ceedings of the Australian Telecommunication Networks and
Applications Conference (ATNAC), 2006.

[26] A. Elmokashfi, A. Kvalbein and C.Dovrolis, “On the scalability
of BGP: the roles of topology growth and update rate-limiting,”
in Proceedings of the ACM CoNEXT Conference, 2008.

[27] M. Mitzenmacher, S. Pontarelli and P. Reviriego, “Adaptive
Cuckoo Filters,” in Proceedings of ALENEX, 2018.

[28] “Intel-64 and IA-32 Architectures Software Developer’s Man-
ual”, volume 2, Intel, 2001.

Pedro Reviriego received the M.Sc. and
Ph.D. degrees in telecommunications engineer-
ing from the Technical University of Madrid,
Madrid, Spain, in 1994 and 1997, respectively.
From 1997 to 2000, he was an Engineer with
Teldat, Madrid, working on router implemen-
tation. In 2000, he joined Massana to work on
the development of 1000BASE-T transceivers.
From 2004 to 2007, he was a Distinguished
Member of Technical Staff with the LSI Corporation, working on
the development of Ethernet transceivers. From 2007 to 2018 he was
with Nebrija University. He is currently with Universidad Carlos III
de Madrid working on high speed packet processing and fault tolerant
electronics.

Jorge Martinez received the B.Sc. degree in
computer science from Tecnolégico de Mon-
terrey, México in 1989, the M.Sc. degree from
Universidad Complutense de Madrid, Madrid,
Spain, in 2013 and the Ph.D. from Universidad
Antonio de Nebrija, Madrid, Spain in 2017.
He is currently with Universidad Antonio de
Nebrija. His research interests include fault
tolerance and reliability.

David Larrabeiti is professor in Switching
and Network Architectures at the Telematics
Department of UC3M since 1998. He has par-
ticipated in a number of EU research projects
on next generation networks, like INDECT,
FEDAFIRE and the Networks of Excellence
e-Photon/One, e-Photon/One+, BONE and the
H2020 5GPPP CrossHaul project. His research
interests include fast switching technologies
and cybersecurity in networking. He is currently participating in
5GPPP H2020 project BlueSPACE and KET PASSION H2020
project. His publications include papers at IEEE Communications
magazine, [EEE Network, IEEE Multimedia, IEEE Communications
letters, Journal of Lightwave Technology, Journal of Optical Com-
munications and Networking, HPSR, ECOC, Optical Switching and
Networking and others.

Salvatore Pontarelli received a master de-
gree in electronic engineering at University
of Bologna and the PhD degree in Micro-
electronics and Telecommunications from the
University of Rome Tor Vergata. Currently,
he works as Senior Researcher at CNIT (Ital-
ian National Inter-University Consortium for
Telecommunications), in the research unit of
University of Rome Tor Vergata. In the past he
worked with the National Research Council (CNR), the Department
of Electronic Engineering of University of Rome Tor Vergata, the
Italian Space Agency (ASI), the University of Bristol. He participated
in several national and EU funded research programs (ESA, FP7
and H2020). His research interests include hash based structures
for networking applications, use of FPGA for high speed network
monitoring and hardware design of software defined network devices.





