
HAL Id: hal-03110816
https://hal.science/hal-03110816

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ViCrypt to the Rescue: Real-time,
Machine-Learning-driven Video-QoE Monitoring for

Encrypted Streaming Traffic
Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li

To cite this version:
Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li. ViCrypt to the Res-
cue: Real-time, Machine-Learning-driven Video-QoE Monitoring for Encrypted Streaming Traf-
fic. IEEE Transactions on Network and Service Management, 2020, 17 (4), pp.2007-2023.
�10.1109/TNSM.2020.3036497�. �hal-03110816�

https://hal.science/hal-03110816
https://hal.archives-ouvertes.fr

1

ViCrypt to the Rescue: Real-time, Machine-Learning-driven
Video-QoE Monitoring for Encrypted Streaming Traffic

Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li

Abstract—Video streaming is the killer application of the
Internet today. In this paper, we address the problem of real-
time, passive Quality-of-Experience (QoE) monitoring of HTTP
Adaptive Video Streaming (HAS), from the Internet-Service-
Provider (ISP) perspective – i.e., relying exclusively on in-
network traffic measurements. Given the wide adoption of end-
to-end encryption, we resort to machine-learning (ML) models
to estimate multiple key video-QoE indicators (KQIs) from the
analysis of the encrypted traffic. We present ViCrypt, an ML-
driven monitoring solution able to infer the most important
KQIs for HTTP Adaptive Streaming (HAS), namely stalling,
initial delay, video resolution, and average video bitrate. ViCrypt
performs estimations in real-time, during the playback of an
ongoing video-streaming session, with a fine-grained temporal
resolution of just one second. For this, it relies on lightweight,
stream-like features continuously extracted from the encrypted
stream of packets. Empirical evaluations on a large and hetero-
geneous corpus of YouTube measurements show that ViCrypt
can infer the targeted KQIs with high accuracy, enabling large-
scale passive video-QoE monitoring and proactive QoE-aware
traffic management. Different from the state of the art, and
besides real-time operation, ViCrypt is not bound to coarse-
grained KQI-classes, providing better and sharper insights than
other solutions. Finally, ViCrypt does not require chunk-detection
approaches for feature extraction, significantly reducing the com-
plexity of the monitoring approach, and potentially improving on
generalization to different HAS protocols used by other video-
streaming services such as Netflix and Amazon.

Index Terms—Network Monitoring, QoE, HTTP Adaptive
Video Streaming, Machine Learning, Encrypted Traffic.

I. INTRODUCTION

Video streaming is one of the key applications of the
Internet. To satisfy end users and avoid customer churn,
Internet Service Providers (ISPs) strive to deliver a high
video-streaming Quality of Experience (QoE). The intensify-
ing competition among operators is forcing ISPs to integrate
QoE into the core of their network-management systems,
from network monitoring and reporting to traffic engineering.
The goal of network operators is not only to operate their
networks efficiently, but also to avoid severe degradations of
the subjective experience.

Network-traffic monitoring has traditionally relied on the
usage of Deep-Packet-Inspection (DPI) techniques to under-
stand the performance of the services and applications used
by their customers. In particular for video-streaming services,
analyzing the payload of the packets containing video infor-
mation could be used to understand the status of the video-
player buffer [1], [2], shedding light on the video-playback

S. Wassermann and P. Casas are with the AIT Austrian Institute of
Technology, Austria, M. Seufert is with the University of Würzburg,
Germany, G. Li and L. Kuang are with Huawei Technologies, P.R.
China. Contact: sarah@wassermann.lu, michael.seufert@uni-wuerzburg.de,
pedro.casas@ait.ac.at

performance. ISPs have no longer access to such information
in the nowadays widespread scenario of TLS encryption,
turning the monitoring of video-streaming QoE into a daunting
and challenging task.

In this paper, we present ViCrypt, an ML-driven monitoring
solution able to estimate and continuously track the most
relevant Key QoE Indicators (KQIs) for HTTP Adaptive
Streaming (HAS), in real time, and using as input features
derived from raw network-traffic measurements – basically,
packet size and arrival time. The targeted KQIs include re-
buffering events or stallings, initial playback delay, video
resolution, and average video bitrate. To do so, ViCrypt
analyzes ongoing streaming sessions using fine-grained time
slots of one-second length, computing multiple lightweight,
statistical features from the video traffic in a stream-based
fashion. Besides per-time-slot features, ViCrypt additionally
computes features for different temporal aggregations of past
slots, including a short-term memory capturing the last t slots,
as well as a long-term memory, aggregating all time slots since
the start of the video session. At the end of each one-second
time slot, all these features are fed into ML models, which
estimate the video resolution, average bitrate, and stalling
of this slot. To the best of our knowledge, this is by
now the finest time granularity for real-time estimation
of Key QoE Indicators (KQIs) from encrypted traffic.
ViCrypt provides fine-grained estimations, either by building
classification models with many quality classes – e.g., for
video resolution analysis – or by building regression models –
e.g., for video-bitrate analysis. Such a combined fine-grained
temporal scope and estimation resolution allows ViCrypt to
provide better and sharper insights into video HAS QoE than
other solutions.

Indeed, while there have been already multiple proposals
presented in the past to deal with this inference problem, the
contributions brought by ViCrypt exceed the state of the art
as follows:
1 - Fine-grained, real-time operation: ViCrypt estimates
the most important KQIs, i.e., initial delay, stalling, and
visual quality, as well as the video bitrate in real time
during the streaming of a video session with a fine-grained
temporal resolution of just one second. This is the smallest
granularity proposed so far, enabling quick anomaly detection
and troubleshooting approaches, as well as proactive traffic
management.
2 - Stream-based feature computation in constant mem-
ory without requiring chunk detection: different from all
previously presented proposals, ViCrypt continuously extracts
features from the encrypted stream of packets in a stream-like
manner, using a bounded and lightweight memory footprint.

2

This enables the execution of ViCrypt on top of memory-
constrained hardware, such as set-top boxes or home routers,
which are nowadays the preferred devices for conducting
end-customer monitoring by major vendors. Indeed, ViCrypt
targets the monitoring of video-streaming QoE from devices
installed near the end-user, which do not necessarily belong to
the ISP – but to the vendor – and where traffic load enables
real-time monitoring with limited hardware. ViCrypt features
are based on packet-level statistics and their computation does
not require chunk-detection mechanisms, removing the extra
overheads and errors introduced by such a detection step.
3 - Fine-grained estimation: ViCrypt tackles substantially
more precise estimation tasks than previous work [3], [4]. In
fact, ViCrypt estimates the six most common different video-
resolution classes – 144p, 240p, 360p, 480p, 720p, and 1080p
– instead of discriminating between low and high resolution.
In addition, it provides a continuous estimation of the average
video bitrate by relying on regression techniques.
4 - Extensive machine-learning-model benchmarking: also
unlike previous work, we devote a significant part of this
study to benchmark different ML algorithms and evaluate
their performance using different sets of inputs, carefully
engineered by automatic feature-selection approaches to limit
the number of required input data for proper execution.
5 - Empirical validation over a heterogeneous YouTube
dataset: last but not least, we show that ViCrypt performs
accurately under a very heterogeneous set of scenarios. For
this, we empirically tested the system over a large dataset
of more than 15,000 streaming sessions of different YouTube
videos. The dataset covers different access technologies (WiFi
and LTE), transport protocols (QUIC and TCP), bandwidth
configurations, players, and devices (browser player in laptops
and native YouTube application in smartphones), and measure-
ments were collected at four different ISPs in four different
EU countries. This is an additional advantage over the state of
the art, where proposals are generally validated using fewer
or less representative scenarios.

This paper is based on our preliminary work on ViCrypt [5],
[6], [7]. Here, however, we provide not only a top-level view
on the ViCrypt approach, but also present in detail different
procedures for the extraction of features using constant mem-
ory. In contrast to our previous work, which focused mainly
on a single ML model and a single KQI, this paper presents
an extensive benchmark of different ML models, targeting
the estimation of all relevant KQIs for video streaming,
including stalling, initial delay, video resolution, and bitrate.
Moreover, we investigate the impact of different feature sets
on the estimation of the targeted KQIs, and present results
on the practical applicability of ViCrypt for real-time feature
extraction and video-QoE prediction.

The remainder of the paper is organized as follows. In
Section II, we describe related work on QoE of adaptive video
streaming and QoE-based network monitoring approaches.
In Section III, we present ViCrypt and introduce its basic
concepts, detail the features and the extraction process, and
describe the collected datasets used for performance evalua-
tion. We benchmark the prediction performance of ViCrypt
for all the proposed targets in Section IV. In Section V, we

analyze the importance of different input feature sets, as well
as their impact on inference results, and Section VI discusses
practical considerations for real-time operation. Section VI
additionally presents a reference performance comparison of
the results achieved by ViCrypt to the results realized by two
relevant competitors in the state of the art, as reported in
their corresponding papers. While only useful for referencing
purposes, such as comparison allows to position ViCrypt in
the space of real-time video-QoE monitoring for encrypted
network traffic. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Video-Streaming QoE Context

In the past, video streaming mostly suffered from waiting
times, namely stalling, caused by re-buffering events [8], [9],
[10], and also from initial delay, i.e., the time until the start
of the playback [11]. In the last years, these degradations
have been partially mitigated by adapting the video bitrate
to the network conditions, using HAS or Adaptive Bitrate
(ABR) streaming technology. To operate HAS video stream-
ing, the video content must be available in multiple bitrates,
i.e., quality levels, and split into small segments or chunks,
each containing a few seconds of playtime. The client-side
adaptation logic requests the next chunk of the video in an
appropriate bitrate, such that the initial delay is minimized,
stalling is avoided, and the quality level is maximized to
best utilize the available bandwidth. The decisions of the
adaptation logic are typically based on the current bandwidth
and/or buffer status [12], [13], but might take into account
other aspects, such as client characteristics or fairness among
competing clients [14]. The HAS streaming technology is
adopted by a wide range of applications and video content
providers, such as YouTube, Netflix, Amazon, and has been
standardized as MPEG Dynamic Adaptive Streaming over
HTTP (DASH) in ISO/IEC 23009-1 [15].

Changing the video bitrate also means modifying the visual
quality of the streamed video, e.g., in terms of resolution,
frame rate, or compression, which introduces an additional
impact on QoE. An interesting finding on the impact of HAS
on QoE [16], [17], [8], [18], [19] is that, rather than quality
changes, the most relevant effect to monitor is the fraction
of total played time during which the video is played-out
at a high visual quality; the higher this time, the better the
QoE. As a consequence, ISPs are highly interested in solutions
able to estimate video resolution levels, which can serve to
detect events when the played out quality level drops as
soon as they happen, to take appropriate countermeasures.
For example, thinking towards a more proactive network-
management paradigm, ISPs would like to additionally es-
timate and predict the video bitrate to adjust the network
configuration in time. This could include appropriately shaping
the allocated bandwidth or selecting suitable routes for the
streaming traffic, which would avoid further QoE degradation.

The trend towards end-to-end encryption (e.g., HTTPS) has
significantly reduced the visibility of network operators on the
traffic of their customers, making the monitoring process more
challenging and cumbersome. It is no longer possible to rely

3

TABLE I
VICRYPT VS. REQUET AND INFOCOM’18 [4]. OVERVIEW ON THE PROPERTIES OF THE PROPOSED SOLUTIONS IN TERMS OF TYPE AND DETAIL OF THE

PREDICTED KQIS, INPUT FEATURES, MONITORING CAPABILITIES, AND DATASETS USED FOR TRAINING AND TESTING PURPOSES.

ViCrypt Requet INFOCOM’18 [4]

KQI estimation targets

Initial delay (# classes) 3 (continuous) 7 3 (binary)

Stalling (# classes) 3 (binary detection/continuous estimation) 3 (binary detection) 3 (binary detection)

Resolution (# classes) 3 (6 levels, 144p–1080p) 3 (6 levels, 144p–1080p) 3 (binary, ≷ 480p)

Bitrate (# classes) 3 (continuous) 7 7

Input features
Chunk detection required? 7 3 7

features 208 127 226

Feature selection 3 (down to 20 features) 7 7

Network monitoring
Real time 3 3 3

Temporal resolution 1 second 5 seconds or every chunk 5-10 seconds

Feature computational efficiency 3 not tested not tested

Training/Evaluation data

Streaming service YouTube YouTube YouTube

video sessions 15,000+ 600 11,000

Access network WiFi & Cellular WiFi not mentioned

ISPs | geo-location 4 ISPs | 4 EU countries 2 ISPs | US/India 1 ISP

Devices laptop & smartphone (native app) laptop laptop

Time span 9 months in 2018/2019 6 months in 2018 4 months in 2017

on Deep Packet Inspection (DPI) to analyze the video data
contained in each packet and reconstruct the streaming process
and the video buffer [1], or to intercept and analyze segment
requests. The encrypted stream of packets offers only very
basic information about the streaming process, such as packet
sizes and inter-arrival times, which has brought machine-
learning (ML) based approaches to the center of the academic
and industrial attention.

B. State of the Art

Previous studies on QoE for HTTP Adaptive Streaming
(HAS) [8] confirm that stalling, initial delay, and quality adap-
tation are the most dominant QoE factors in HAS. Although
adaptation is less severe than stalling [20], its impact on QoE
should not be neglected. Indeed, each adaptation dimension
(e.g., resolution, frame rate, quantization) has a specific impact
on the perceived quality [8].

It has been shown that a quality switch implies a QoE
degradation, and that the QoE changes according to the adap-
tation direction, even though switching down the video quality
will have a stronger negative impact on video QoE [21].
The adaptation amplitude is the most dominant factor and
a high amplitude leads to a low QoE, while low amplitudes
might not be detectable [22]. Although a high frequency of
quality adaptations will be annoying for end users [22], the
actual quality changes have little impact on QoE. Only the
resulting reduction of the time on high quality causes the QoE
degradation [16], [17].

Due to the trend towards end-to-end encryption, DPI-based
approaches are no longer effective. This has motivated a
recent trend in QoE-based network monitoring using low-
level network measurements rather than relying on application-
layer metrics. While some approaches explicitly tackle the
QoE of mobile applications [23], [24], [25], there are also
general approaches for QoE analysis based on network-layer
monitoring of encrypted video-streaming traffic. Authors in [3]

evaluate ML-based architectures that estimate YouTube QoE
using features derived from packet sizes, inter-arrival times,
and throughput measurements. A similar approach is presented
in [26], where authors rely on measurements in cellular
networks to estimate typical QoE indicators for streaming
services (e.g., played resolutions, stalling events), based on
features such as round-trip times, packet loss, and chunk
sizes. In that study, authors also use ML as a promising
technique for large-scale quality monitoring and analysis. The
authors of [27] estimate video-quality metrics (initial delay,
stalling ratio, number of stallings, total stalling time) and
user engagement for YouTube videos watched on smartphones,
relying on ML and network-layer features. [28] focuses on the
reconstruction of buffered playtime at the video player side,
as previously done in [2], but for encrypted traffic. This is
leveraged to estimate video-QoE metrics in [29].

The two most similar approaches to ViCrypt are Re-
quet [30], and the system presented in [4]. ViCrypt improves
on both in multiple aspects: (i) while both approaches claim to
be real-time, there is no evaluation of the computational costs
required during the feature-extraction procedures, questioning
their claims; in addition, for some of the targets, Requet has a
temporal resolution based on chunk lengths (typically several
seconds of a video), and [4] operates at a 10-second time
scale, both significantly higher than for ViCrypt. This impacts
their usability in practice for critical real-time monitoring
applications, such as troubleshooting; (ii) while Requet also
provides the same fine-grained classes for estimation of video
resolution as ViCrypt, estimations in [4] are coarser-grained,
with just few classes. Moreover, video bitrate, which is espe-
cially relevant for ISPs, is not inferred by their systems; (iii)
while ViCrypt operates directly on the stream of packets at the
network and transport layers, Requet requires chunk-detection
mechanisms to extract chunk-based features, which is error-
prone and introduces additional delays and complexities.

Other relevant differences between our study and the previ-
ous studies presented in [30] and [4] are reported in Table I;

4

0 1 2 3 4 5 6 7 8 9 10 11 12
Session duration (minutes)

0

10

20

30

40

50

60

70

80

90

100
C

D
F

144 240 360 480 720 1080
Video resolution

0

10

20

30

40

50

60

70

80

90

100

C
D

F

0 500 1000 1500 2000 2500 3000
Average bitrate (kbps)

0

10

20

30

40

50

60

70

80

90

100

C
D

F

(a) Video session duration. (b) Video resolution. (c) Average video bitrate.

0 5 10 15 20 25 30 35 40 45
Initial delay (seconds)

0

10

20

30

40

50

60

70

80

90

100

C
D

F

0 1 2 3 4 5
Number of stallings (#)

70

80

90

100

C
D

F

0 1 2 3 4 5 6 7 8
Stalling ratio (%)

70

80

90

100

C
D

F

(d) Initial delay. (e) Number of stallings. (f) Stalling ratio.
Fig. 1. Characterization of the YouTube dataset, composed of more than 15,000 video-streaming sessions. There is a strong imbalance for some of the KQIs,
such as occurrence of stalling events, or video resolution. Stalling is a rare event in the wild, generally traded by lower video resolutions in HAS, and this is
reflected in the collected data. More than 50% of the video chunks were streamed on 480p resolution, and 1080p resolutions were rarely used.

the table offers a comprehensive overview on the properties
of the proposed solutions in terms of type and detail of the
predicted KQIs, input features, monitoring capabilities, and
datasets used for training and testing purposes.

III. VICRYPT FUNDAMENTALS

This section presents the fundamental concepts behind
ViCrypt. As it has been shown in previous work [3], [26],
[30], [4], [5], [6], [7], it is possible to extract features from the
(encrypted) stream of packets which have strong correlation
to different QoE-relevant metrics, such as re-buffering or
video resolution, and to build ML models bridging the gap
between network features and QoE metrics. This is also the
approach followed by ViCrypt. Our system subdivides a video-
streaming session into a sequence of time slots having a
constant length. Throughout this work, we use a slot length
of 1 s, which constitutes a good trade-off between estimation
delay and accuracy. Nevertheless, the slot length is a system
parameter, so the design principles of ViCrypt could also be
applied to other temporal resolutions. At the design phase
of ViCrypt, we tested similar temporal resolutions – up to
5 s – without resulting in significant changes in performance,
yet loosing monitoring resolution. Being ML-driven, ViCrypt
needs datasets containing both the collected traffic traces –
the input – and the targeted KQI metrics – the ground truth.
In the following, we explain how the datasets used in the
study were generated and present a brief statistical analysis
of the collected measurements. We then detail the lightweight
feature-extraction procedures and describe the ML models
used for benchmarking purposes.

A. YouTube Dataset Acquisition
Over a period of several months from June 2018 to February

2019, we streamed and recorded more than 15,000 YouTube
video sessions, resulting in a total of more than 4,600,000
1-second time slots. For reference, Requet [30] collected
measurements for only 580 video sessions, resulting in a
dataset almost 26 times smaller. As we describe next, our
dataset is not only large in terms of number of video sessions,
but also very diverse.

For the video-streaming and data-collection tasks, we used
a monitoring tool similar to [31]. It relies on the Selenium
browser-automation library to automatically start a Chrome
browser and randomly select a YouTube video to stream.
Chrome was configured such that all HTTP requests were
logged and QUIC traffic was enabled. A JavaScript monitoring
script [32], [33] was injected into the web page to record the
current timestamp every 250 ms, as well as the current video
playtime, buffered playtime, video resolution, and player state.

We streamed the video sessions with very diverse network
setups to reach a highly generalizable model. Video sessions
were collected at home (∼30% of the samples) and over
corporate WiFi networks (∼50%), as well as over LTE mobile
networks (∼20%). For some of the sessions, a firewall was
enabled, which blocked all QUIC traffic, such that the videos
were streamed via TCP (∼60%). The maximum bandwidth
was roughly 20 Mbps. Additionally, some streaming sessions
faced bandwidth limitations, which were applied to limit both
up- and downlink traffic. The bandwidth limitations were
either constant on a level of 300 kbps, 1 Mbps, 3 Mbps, or
5 Mbps, or they fluctuated between these levels every 1-5
minutes. The number of video sessions per bandwidth con-

5

figuration is mostly balanced among the different categories,
with a slightly higher number of sessions streamed without
bandwidth limitations. We collected video sessions from four
different geographic locations – France, Austria, Germany, and
Italy – and from four different ISPs.

Network traffic was collected for each video-streaming ses-
sion, logging basic per-packet information (timestamp, source
IP address, source port, destination IP address, destination
port, size), as well as DNS-lookup responses to obtain a
mapping between IP addresses and domain names. In each
network-traffic trace, we identified YouTube video flows based
on domain names (googlevideo.com), and extracted features
only for these video flows, ignoring all non-YouTube traffic.
Finally, we also included in our measurements the recently
published YouTube open dataset [34], which includes measure-
ments from the native, mobile Android YouTube application.
While the share of app measurements is limited as compared
to desktop devices (less than 10%), it contributes to the
heterogeneity of the learning data.

Finally, we do not consider the challenging issue of video-
traffic identification and filtering in this paper, besides the
aforementioned DNS-based identification approach. This is
indeed a complex issue, especially when considering multiple
users sharing the same IP address – e.g., NAT. The specific
video-traffic identification and disentangling of concurrent
video-streaming sessions is out of the scope of this paper.

B. Dataset Analysis
Next, we provide some insight into the collected dataset.

Figure 1 shows the characteristics of the dataset as cumulative
distribution functions (CDF), with respect to duration of the
video sessions, video resolution, average bitrate, initial delay,
and stalling. Figure 1(a) shows that the recorded video sessions
have durations between a couple of seconds and 11 minutes.
The average length of a video session is approximately 5
minutes.

In YouTube, the video resolution is typically indicated by
the number of vertical pixels, for which standard quality
classes exist. The video-resolution classes contained in the
dataset can be easily observed in Figure 1(b), namely 144p,
240p, 360p, 480p, 720p, and 1080p. In some videos, the video
resolution did not match exactly one of these classes, and
therefore, was rounded to the nearest class. The distribution
shows that the adaptation logic of YouTube decided to stream
videos mostly in 480p resolution, but also very low resolutions
occur (9% 144p, 6% 240p, 10% 360p). At the other end, HD
resolution is rare (18% 720p, 1% 1080p). We did not ob-
serve any resolutions above 1080p during the measurements;
therefore, although supported by YouTube, we kept resolution
classes to the 6 observed in the dataset – the same 6 resolution
levels were considered by Requet [30].

Figure 1(c) depicts the distribution of the average bitrate.
Here, the average bitrate was obtained via the YouTube API,
and represents the average bitrate of the full video when
streamed with a given quality level (itag). Thus, this estimation
target is not the momentary bitrate of the current slot, but
rather the average bitrate of the quality level that was down-
loaded in the current slot. The average video bitrate spreads

▪ Training multiple ML models over more then 4.6M individual, 1 sec. slots
(5-fold cross validation) – here using all 207 inputs

▪ Classification task: per second video resolution, 6-classes: 144p, 240p,
360p, 480p, 720p, 1080p

VICRYPT: Real-time, Fine-grained Prediction of
Video Quality from Encrypted Streaming Traffic
S. Wassermann (1), M. Seufert (2), P. Casas (1), L. Gang (3), K. Li (3)
(1) AIT Austrian Institute of Technology, Vienna, Austria
(2) University of Würzburg, Würzburg, Germany
(3) Huawei Technologies, Shenzhen, China

ONLINE PREDICTION OF VIDEO RESOLUTION ONLINE PREDICTION OF VIDEO BITRATE

ONLINE PREDICTION OF STALLING

▪ Real-time (1-sec resolution) prediction of
KQIs for video streaming

▪ Video chunk detection NOT NEEDED
features are packet size/time based

▪ ML models for prediction of instant, per-sec:
▪ re-buffering events
▪ video resolution
▪ video bitrate

COMPUTATIONAL TIME & IMPACT OF FEATURE SELECTION

▪ per-slot re-buffering estimation errors
are high, stalling slots under-estimated…

▪ …but estimation of re-buffering ratio is
perfect for almost 90% of the videos

▪ Data generation through semi-controlled testbeds

▪ 15.000+ YouTube video sessions streamed and
recorded in late 2018/early 2019

▪ Different ISPs, different geographic locations
(Austria, Italy, Germany, China)

▪ Home/corporate WiFi networks, LTE networks

▪ QUIC and TCP sessions

▪ Bandwidth limitations: 20Mbps, 5Mbps, 3Mbps,
1Mbps, 300kbps + fluctuations

▪ JavaScript-based monitoring script to measure
ground truth at the player

▪ Video stream-based analysis, using multiple sliding windows, capturing
different temporal phenomena (current time, short-term trend,
session-aggregated)

▪ Analysis is done in real time: for every video session and for every new
time slot of 1 second, we consider the following set of 207 features:
▪ Features extracted from current time slot (C) – 69 features
▪ Short-memory (trend) based features, extracted from last T (3) slots (CT) – 69

features
▪ Cumulative based features, extracted from all past traffic for this video session

(CS) – 69 features

▪ Feature computation is done continually, in constant-memory
boundaries, using sketches

▪ Automatic Feature Selection – CS features (FS) alone provide the best results (69 features), improving
overall performance. Top 20 features (FTOP20) provide similar improvement with much less features

HTTPS/QUIC – ISPs blackout

VICRYPT
AI to the Rescue

QoE–BASED NETMON (QoE–MON) MOTIVATION & CHALLENGE VICRYPT: ML–BASED QoE–MON

STREAM-BASED PREDICTION OF VIDEO KQIs YouTube DATASET FOR TRAINING & VALIDATION

720

360

480

144

▪ Regression task: estimation of per second average video bitrate

▪ ERT10 & BAGGING realize MAE below 100kbps,
and RMSE below 190kbps (penalizes larger errors)

▪ 80% of the slots are estimated with errors below
100kbps

▪ Predictions are highly correlated with the target
(PLCC = 0.93)

▪ Binary classification task: playback stalled/not-stalled at every new slot

re-buffering ratio
reconstruction error

P
D

F

▪ laptop (i5 CPU, 8GB RAM) vs. server
(Xeon Silver, 48 cores, 128GB RAM)

▪ server: avg. duration of full feature
set update is 13 μs, prediction time
below 1.4ms

▪ Laptop: avg. feature update takes 37
μs, prediction time below 16ms

▪ Evaluation of full feature set update time (done at every new incoming packet) and prediction time (done
for every 1s slot), using an upper bound with all 207 features

Fig. 2. ViCrypt overview. Features are continuously extracted/updated from
the monitored video traffic, using different temporal aggregations of past time
slots. At each new time slot, different ML models are applied to the input
features, each one inferring the corresponding KQI.

from approximately 20 kbps to about 4600 kbps. Nearly all of
the slots have an average bitrate less than 3000 kbps. The CDF
increases steeply, almost uniformly, until roughly 900 kbps,
which corresponds to 78% of the slots. Then, it increases
slower only showing a steep increase around 1280 kbps, which
is the average bitrate for ∼4% of the slots, and thus, seems to
be a certain target bitrate for encoding.

Figure 1(d) shows the distribution of the initial delays.
Nearly 50% of the sessions have an initial delay of at most
2 seconds, and 75% of the sessions have a delay below 5
seconds. Figures 1(e) and (f) depict the distribution of two
stalling metrics, namely the number of stallings per video
session and the stalling ratio, i.e. the fraction of time spent in
stalling mode with respect to the full session duration. Stalling
events are rare: more than 90% of the videos do not stall at
all, and when they do, the large majority stalls only once.
The stalling ratio suggests that most of the stalling events are
short with respect to the session duration: more than half of
the observed stalling ratios are at most 3%.

C. ViCrypt Feature Extraction

Figure 2 presents a general overview on the functioning of
ViCrypt. ViCrypt operates in a time-slotted, sequential manner,
producing estimations for the selected KQIs at the end of
each elapsed time slot. Features are extracted and continuously
updated for each new packet on the stream of encrypted video
traffic; at the end of each new time slot, different ML models
infer the corresponding KQI from the extracted features.

ViCrypt embeds temporal notions in the construction of
features, using information not only from the current time
slot, but also from past slots. For memory and computational
efficiency, the past streaming information must be compressed
and structured. This is why ViCrypt keeps track of two
additional macro windows, referred to as trend or short-term
memory window, and session or long-term memory window.
The trend window comprises the last t time slots in a sliding-
window fashion, i.e., it contains all traffic of the current
time slot and the t − 1 most recent slots. For this paper,
ViCrypt uses a trend size of t = 3, and thus, the features
of the trend window of each time slot are computed from the
traffic of the current slot and the previous two time slots. The
value of t is set empirically on the evaluated datasets, but
different from the time-slot length, the trend window length

googlevideo.com

6

Procedure 1 Online regression computation.
1: procedure COMPUTEREGRESSION(s, t)
2: n← n+1

3: cumsize ← cumsize + s

4: diffslot ← t − slotstart
5: dt ← diffslot − meanT
6: ds ← cumsize − meanS
7: varT ← varT +

n-1
n ·d

2
t−varT
n

8: covTS ← covTS +
n-1
n ·dt ·ds−covTS

n

9: meanT ← meanT +
dt
n

10: meanS ← meanS +
ds
n

11: slope← covTS
varT

12: intercept← meanS − slope · meanT

has a non-negligible impact on the model performance. The
proposed value provides the best results in terms of inference
performance for the analyzed data.

The second macro window is the session window, which
includes all traffic of the session so far observed, and its
features are therefore extracted from the traffic in all previous
slots including the current time slot. All features of each
current slot, trend window, and session window are computed
in an online, stream fashion, without the need to store the
previous traffic or detailed information about traffic packets
observed in the past. This significantly reduces the memory
consumption of the feature extraction process – from linear
to constant, enabling a lightweight monitoring solution. Next,
we dig deeper into the feature-extraction process, elaborating
on the different computation steps.

Table II briefly summarizes the features computed per time
slot. All features are derived from three basic, packet-level
metrics, namely packet count, packet size, and inter-arrival
time (IAT). Different aggregations are done on these metrics,
based on individual time slots and aggregation windows –
trend and session ones. Features are computed for uplink,
downlink, and total traffic. The rationale behind the computed
features is rather straightforward: adaptive video-streaming
protocols employ closed-loop algorithms to achieve synchro-
nization and adaptability between server and video player, thus
traffic patterns on both uplink and downlink direction might
reveal different behaviors at the player side.

Firstly, we compute simple count-based features from the
traffic observed in the time slot. These consist of the number
of total, uplink, and downlink packets, and the number of
transferred bytes (total, uplink, downlink). We also count the
number and byte volume of TCP and UDP packets, and
compute the upload ratio, download ratio, TCP ratio, and UDP
ratio from these counters, for both number of packets and
number of bytes. Next, we extract time-based features. These
include the time from the start of the slot until the first packet,
the time after the last packet until the slot ends, and the burst
duration, i.e., the time between the first packet and the last
packet of the time slot. All features are again computed for
the total traffic, as well as for uplink and downlink traffic. The
average throughput of the slot (traffic volume divided by slot

TABLE II
VICRYPT FEATURES. ALL FEATURES ARE DERIVED FROM THREE BASIC,

PACKET-LEVEL METRICS, NAMELY PACKET COUNT, PACKET SIZE, AND
INTER-ARRIVAL TIME (IAT), AGGREGATED AT TIME-SLOT-BASED AND

WINDOW-BASED RESOLUTIONS.

up/down/total Volume Throughput Distribution Protocol Shares
packets size 3 3 3 3

packet count 3 3

packet IAT 3 3

length) and the burst throughput (traffic volume divided by
burst duration) can be subsequently derived for total, uplink,
and downlink traffic. A covariance-based procedure is used to
obtain a linear regression for the cumulative traffic over time,
in an online fashion [35]. The Procedure 1 stores the origin
of the regression (start time of the time slot slotstart),
and keeps updates of the number of packets numP and the
cumulative packet size cumsize, to compute the regression
for the cumulative traffic. In addition, it stores and updates
the current means of the abscissa (time, meanT) and ordinate
(cumulative packet size, meanS), the number of packets n, as
well as the temporal variance varT and covariance covTS.
These are the only permanently stored variables, updated
whenever a new packet of size s arrives at time t.

The updates to these statistics only use three additional
temporal variables: diffslot, dt, and ds. At the end of
the slot, we compute the final slope (slope) and intercept
(intercept) values from the regression curve. We perform
two regressions for uplink and downlink traffic, and the slope
and intercept of these regression curves are added as features.

Finally, we extract multiple features derived from the em-
pirical distribution of the traffic. We use an algorithm based
on [36], which can compute the first four moments of any
distribution in an online fashion, i.e., the mean, the variance,
the skewness, and the kurtosis. We extend this algorithm to
additionally output the standard deviation, the coefficient of
variation, as well as the minimal and the maximal values.

Here again, only few statistics are stored in memory and
updated, namely the number of packets n, the mean value
mean, the second, third, and fourth power of the sum of
differences from the mean value (sdm2, sdm3, sdm4), as
well as the minimal (min) and the maximal (max) values.
The update of these statistics occurs whenever a new value
x is observed for the corresponding statistic. The approach is
explained in Procedure 2.

The computed updates allow to directly obtain the mean
(mean), minimal (min), and maximal (max) values. More-
over, the variance (var), standard deviation (std), coefficient
of variation (cvar), skewness (skew), and kurtosis (kurt)
of the distributions can be computed as stated in Procedure 3.
These distribution-based features are computed for the packet
size and the IAT, for both uplink and downlink traffic.

This results in a total of 69 basic features for the traffic in a
time slot, plus the same 69 basic features for each of the two
additionally considered macro windows, namely the trend and
the session windows. Together with the sequence number of
the current time slot, which is also included as a feature, this
sums up to a total of 208 features, characterizing each slot of

7

Procedure 2 Online update of distribution metrics, used for
computation of distribution features. The procedure is executed
when new values for the corresponding statistics are observed.

1: procedure UPDATEDISTRIBUTIONS(x)
2: n← n+1

3: dx ← x − mean

4: dn ←
dx
n

5: mean← mean + dn
6: sdm4 ← sdm4 +

[
dx dn (n-1)d2

n

(
n2 − 3n + 3

)]
+(

6d2
n sdm2

)
− (4dn sdm3)

7: sdm3 ← sdm3 + [dx dn (n-1)dn (n-2)] −

(3dn sdm2)

8: sdm2 ← sdm2 + [dx dn (n-1)]

9: if x < min then
10: min← x

11: if x > max then
12: max← x

1 s length. To keep track of the trend windows of size t, not
only the current trend window, but additionally t − 1 future
trend windows have to be maintained and updated. These
future trend windows are the windows which will become
trend windows in 1, . . . , t − 1 windows, but already have to
consider and aggregate the traffic of the current time slot. In
contrast, only a single session window is needed, as it only
needs to accumulate the full traffic of the complete session.
Thus, in total, t + 2 windows with 69 features each have to
be maintained and updated at all times, i.e., current time slot,
trend window, session window, and t−1 future trend windows.

D. ML Models Benchmarking

Solutions so far proposed in the state of the art such
as [3], [26], [30], [4], [5], [6], [7] rely mostly on random-
forest models as the underlying ML approach. In this paper,
we provide further insights on the performance of different
types of models, benchmarking 11 different ML models within
ViCrypt. Nine out of these 11 models are fit for both classifi-
cation and regression tasks, while the other two are designed
for anomaly detection, hence our selection.

Most of the selected models also rely on decision trees,
not only because of their proven high accuracy and low
computational cost, but also due to a series of embedded
properties, such as model visibility, robustness to input noise,
and embedded feature selection. We consider both bagging and
boosting ensembles based on trees, which brings robustness,
increased accuracy, and improved generalization of the train-
ing. To increase training speed, reduce model complexity, and
therefore reduce the chances of over-fitting, we favor small-
sized ensembles, using 10 to 50 models.

Model parameters are calibrated through standard grid-
search optimization. Finally, all evaluations throughout the
paper are done through 5-fold cross-validation. For the
classification tasks, we apply stratified cross-validation, i.e.,
we ensure that the five folds preserve the percentage of
samples for each class. The list of benchmarked models

Procedure 3 Computation of distribution features.
1: procedure COMPUTEDISTRIBUTIONFEATURES

2: var← sdm2
n-1

3: std←
√
var

4: cvar← std
mean

5: skew←
√

n
sdm3

2

· sdm3

6: kurt← n · sdm4
sdm2

2
− 3

includes Decision trees (DT), Random Forest with 10 trees
(RF10), AdaBoost using 50 trees (ADA), ensembles with
10 extremely randomized trees [37] (ERT10), bagging
with 10 trees (BAGGING), naïve Bayes (BAYES), k-nearest
neighbors with k = 5 (KNN), Neural Networks (NN) (three
hidden layers, the first one containing 200 neurons, the second
one 100 neurons, and the last one 50 neurons, using sigmoid
activation and softmax at the output), and support vector
machines (SVM) - a regression version also exists, which
is called support vector regression (SVR). As stalling can
be considered as an anomaly of the streaming process, we
additionally evaluate two anomaly-detection algorithms for
stalling detection:
Isolation forests with 10 trees [38] (ISO10): an unsupervised
model which behaves similarly to ERT10, but at each node,
both the feature and the cut point are chosen randomly. The
number of nodes a sample needs to traverse to reach a leaf is
the normality measure, such that the fewer nodes a sample
has to visit, the more abnormal it is. This is intuitive, as
outliers have unusual characteristics, and thus, are rapidly
distinguishable from the normal samples.
Local outlier factor [39] (LOF): an algorithm relying on
the concept of local density. The local density of a sample
is estimated from the distance to its k nearest neighbors (in
our case, we set k to 20). The algorithm compares the local
densities of the given sample and its k nearest neighbors. If
a sample has a much lower density than its neighbors, it is
considered as an outlier.

When considering DT, RF10, and ERT10 models, and to
counterbalance the impact of imbalanced classes, we assign
weights to each sample i of classi based on the occurrence
frequency of its class:

Wi =
samples

classes × (# samples in classi)

This implies that the estimation errors for samples of rare
or under-represented classes are significantly penalized, which
improves the estimation accuracy for these classes. We further
exploit the fact that RF10, ERT10, BAGGING, and KNN
models can be parallelized for speed improvement, and run
them in a parallelized fashion. For NN, we use TensorFlow
on GPU, while we use the scikit-learn library for the remaining
models. The benchmark of the models is executed on a high-
end desktop computer, equipped with two Intel Xeon Silver
4116 processors including 12 physical cores each (a total of
48 virtual cores thanks to Intel HyperThreading), 128 GB of
RAM, and a NVIDIA GeForce RTX 2080 Ti graphics card
(with 11 GB of VRAM).

8

TABLE III
BENCHMARKING OF ML MODELS FOR THE STALLING DETECTION – OVERALL ACCURACY, RECALL/PRECISION ONLY INDICATED FOR THE STALLING

CLASS.

Accuracy (%) Recall (%) Precision (%) 5-CV time (minutes)
DT 96 64 68 57

RF10 97 55 88 3
ADA 95 29 61 154

ERT10 97 54 88 1
BAGGING 97 65 87 63

BAYES 50 86 9 1
KNN 96 48 71 10
NN 94 0 0 600

SVM 84 62 21 36
ISO10 86 13 8 4
LOF 86 11 6 46

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

98.2 1.8

35.7 64.3

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

98.9 1.1

71.0 29.0

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

99.6 0.4

45.9 54.1

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

99.4 0.6

35.2 64.8

(a) DT confusion matrix. (b) ADA confusion matrix. (c) ERT10 confusion matrix. (d) BAGGING confusion matrix.

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

98.7 1.3

52.1 47.9

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

85.4 14.6

37.6 62.3

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

45.6 54.4

14.2 85.8

No stalling

Predicted label

Stalling

No stalling

True label

Stalling

90.2 9.8

86.9 13.1

(e) KNN confusion matrix. (f) SVM confusion matrix. (g) BAYES confusion matrix. (h) ISO10 confusion matrix.

Fig. 3. Normalized confusion matrices obtained by the benchmarked ML models for the estimation of stalling.

IV. VICRYPT IN ACTION – PERFORMANCE EVALUATION

We now present the performance evaluation results of
ViCrypt for all the described KQIs. We take the full set
of 208 features as input, i.e., we do not explicitly consider
feature-selection approaches. We devote Section V to feature
selection. For each of the tested ML algorithms, we report
both performance metrics, as well as the total running time
for training and inference, i.e., the time needed to compute
the 5-fold cross-validation on the whole dataset. This helps
to better understand the practical trade-offs when it comes to
real-time analysis.

A. Stalling Estimation

As stalling is the most severe QoE degradation, our first
goal is to estimate whether the video is stalling or not. More
precisely, for each 1-second time slot, ViCrypt infers whether
the video is being played or stalling; this is therefore a binary
classification problem. We consider only time slots which
contain network traffic, and end up with almost 1,283,000
samples.

The binary stalling-estimation results obtained for each of
the time slots can be further combined to obtain stalling
metrics at a video-session level, such as the initial playback
delay, the number of stalling events, and the stalling ratio –
ratio of total stalling time to total playback time. The initial
delay is given by the number of slots predicted as stalling
at the start of the session. After the initial delay, a stalling
event is counted only if two or more consecutive time slots are
predicted as stalling, making the aggregated stalling metrics
more robust against isolated false predictions. In this case,
the number of consecutive slots with stalling is added to the
total stalling time in seconds. Thus, by simple count of slot
predictions, this aggregation method allows to obtain the initial
delay, the number of stalling events, the total stalling time,
and the stalling ratio of the whole streaming session. The
granularity of the initial delay and stalling time estimation
is limited by the time-slot length, one second. Nevertheless,
such a fine-grained resolution is sufficient for most monitoring
use cases.

We therefore present evaluation results for stalling at two
different temporal granularities: per-slot, binary stalling clas-

9

-20 -10 0 10 20
0.0

0.1

0.2

0.3

0.4

Error (predicted - ground truth) (s)

F
ra
ct
io
n
of
se
ss
io
ns

-20 -10 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

Error (predicted - ground truth) (#)

F
ra
ct
io
n
of
se
ss
io
ns

-20 -10 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Error (predicted - ground truth) (%)

F
ra
ct
io
n
of
se
ss
io
ns

(a) Initial delay. (b) Number of stallings. (c) Stalling ratio.

Fig. 4. Prediction performance for session-based stalling metrics, using ERT10 as the underlying model. Initial delay, number of stalling events, and stalling
ratio are perfectly estimated for about 40%, 50%, and 60% of the video sessions, respectively.

0 20 40 60 80 100 120 140 160
Time slot

0

1

N
o

st
al

lin
g

(0
)

/ s
ta

lli
ng

 (
1)

True stalling behavior
Predicted stalling behavior

Fig. 5. Example of ViCrypt real-time stalling detection.

sification (stalling/no stalling), and per-session, continuous
estimation of initial delay, number of stalling events, and
stalling ratio.

Table III summarizes the overall accuracy, recall, and pre-
cision for the stalling class per model, as well as the overall
cross-validation times. Results show that stalling detection is
a challenging task, especially due to the high imbalance of
the data (cf. Figure 1(e)). Indeed, let us take the NN model as
example: the trained model was not able to identify a single
stalling slot, still achieving a high accuracy of 94.3%, due
to the imbalance. This recalls that the overall accuracy can
be misleading with highly imbalanced data, and that it is
particularly important to look in detail at recall and precision
results. Here, we observe that the tree-based models achieve
a high precision of around 90%, but only a recall of around
60%. BAGGING is an exception, with a recall of 65%.

To dig deeper into these results, Figure 3 presents the
confusion matrices for the different models. We left out the
confusion matrix of the neural network as discussed above, and
the ones for RF10 and LOF, as the matrices were nearly identi-
cal to those of ERT10 and ISO10, respectively. The confusion
matrices underline that stalling detection is a rather difficult
task. Surprisingly, BAYES is the algorithm yielding the highest
stalling-class accuracy (i.e., recall), achieving 86%. However,
its very poor precision turns the approach inapplicable. The
outlier-detection algorithms (ISO10 and LOF) also perform
poorly for this estimation task, which might indicate that the
features do not deviate much between the stalling and no-
stalling classes.

ERT10 seems to be a good model choice for stalling
detection: it runs very quickly and realizes a decent recall-
precision combination. Only BAGGING achieves an overall
better performance, especially a higher recall, but at the cost of
a much higher cross-validation processing time of roughly one
hour versus one minute for ERT10. Of course, as training is
usually done offline, this would in principle not be a limitation
for BAGGING. However, if one would consider adaptive
learning approaches, or applying the model in scenarios with
strong video traffic variations, low training times become
paramount.

We now explore the inference performance of ViCrypt
for stalling metrics at the session level. More precisely, we
estimate the initial playback delay of the videos, the number
of stalling events, and the stalling ratio. Figure 4 shows
the distribution of estimation errors for the three considered
targets. Regarding initial delay, ViCrypt perfectly infers the
real playback delay for about 40% of the video sessions, and
achieves an error of at most 2 seconds for 70% of the sessions.
The number of stallings is perfectly estimated for about 50%
of the sessions, and an error of at most 2 stallings is realized
for about 75% of the sessions. The stalling ratio is perfectly
estimated for about 60% of the sessions, and the error is
below 3% for more than 85% of the sessions. Errors related
to stalling estimation usually correspond to overestimations,
which is always preferred, for the sake of safety margins and
over-provisioning. Also, stalling ratio has been the preferred
metric in the state of the art when it comes to session-based
stalling estimation [3], [26], and achieved results are in line
with or even better than the state of the art [3], [26], even
when dealing with such a strong imbalance in the data.

Finally, for visualization purposes, Figure 5 shows the real-
time stalling estimation produced by ViCrypt for an exemplary
YouTube video-streaming session, using the ERT10 as under-
lying model. ViCrypt can track in real time the overall stalling
pattern of the video session, from the initial playback delay
to the occurrence of stalling events.

B. Video-Resolution Estimation

The video resolution is highly linked to the visual quality
of the streamed video, and is therefore a crucial QoE metric.
The estimation of the resolution is treated as a multi-class
classification problem. The considered classes correspond to
the typical YouTube video resolutions: 144p, 240p, 360p,

10

(a) DT recall. (b) RF10 recall. (c) ADA recall. (d) ERT10 recall.

(e) BAGGING recall. (f) KNN recall. (g) NN recall. (h) SVM recall.

Fig. 6. Accuracy per class (i.e., recall) obtained by the benchmarked ML models for the resolution estimation.

(a) DT precision. (b) RF10 precision. (c) ADA precision. (d) ERT10 precision.

(e) BAGGING precision. (f) KNN precision. (g) NN precision. (h) SVM precision.

Fig. 7. Precision per class obtained by the benchmarked ML models for the resolution estimation.

480p, 720p, and 1080p. Thus, the classification problem is
based on six classes, which is substantially more precise than
other approaches, e.g., [3], [26], [4]. After considering only
time slots with a valid resolution and containing traffic, we
end up with a dataset including almost 1,160,000 time slots.

We report the accuracy achieved by the different models and
the corresponding total processing times for cross-validation
in Table IV. Except for AdaBoost, all the tree-based methods
provide very high overall accuracy, above 90%. KNN also
achieves encouraging results, with an accuracy of 73%. The
accuracy of BAYES is by far the worst, which is most probably
due to its underlying hypothesis that the different features
are independent from each other, which does not seem to be
satisfied for the video resolution. NN and SVM also yield
disappointing results, especially when considering that they
needed significantly more time than the other models. Here, we
can also verify the benefit of parallelization: besides BAYES,
the fastest algorithms are the parallelizable ones, which is a
non-negligible advantage for these models. For instance, RF10
and ERT10 were done in at most two minutes, while ADA,
NN, and SVM took several hours.

As the video-resolution classes are also strongly imbalanced
(cf. Figure 1(b)), we take a closer look at the per-class
accuracy (i.e., recall) and precision. Results are depicted in

TABLE IV
BENCHMARKING OF DIFFERENT ML MODELS FOR THE RESOLUTION

ESTIMATION.

Accuracy (%) 5-CV time (minutes)
DT 92 43

RF10 92 2
ADA 68 125

ERT10 90 1
BAGGING 95 37

BAYES 42 1
KNN 73 9
NN 58 507

SVM 54 194

Figures 6 and 7. The recall indicates the percentage of time
slots of a given quality for which ViCrypt correctly inferred
the resolution. In contrast, the precision for a given quality
expresses the proportion of the class estimations which are
correct. We left BAYES out of this analysis because of its
poor performance.

Figure 6 reveals that the 480p class is accurately detected
by all of the eight models, with SVM being the worst with
an accuracy below 70%. DT, RF10, ERT10, and BAGGING
achieve a near perfect score for this video resolution. This
comes as no real surprise, as more than 50% of the time slots

11

TABLE V
BENCHMARKING OF DIFFERENT ML MODELS FOR THE ESTIMATION OF AVERAGE BITRATE.

MAE (kbps) RMSE (kbps) MRE (%) PLCC 5-CV time (minutes)
DT 94 246 18 0.88 31

RF10 89 179 18 0.93 36
ADA 492 573 130 0.59 126

ERT10 93 182 19 0.93 7
BAGGING 89 179 17 0.93 22

BAYES 2,540 6,530 545 -0.14 3
KNN 229 353 42 0.70 6
NN 333 489 70 0.20 305

SVM 1023 2 · 1023 2 · 1023 0.12 143

have a resolution of 480p. However, it is interesting to note that
most models accurately estimate the 144p class, even though
it is a significantly underrepresented class with only 9% of
the slots having that resolution. For all the models, these two
classes are the ones that are the most accurately detected. For
instance, NN obtained an accuracy of more than 60% for 144p
and more than 80% for 480p, while for the other classes its
accuracy is below 30%. For a couple of models, and especially
for ADA and NN, it was challenging to accurately classify the
240p and 360p resolutions; for NN, the accuracy for 360p is
even close to 0%. In case of ADA and NN, the two classes
were very frequently detected as either 144p or 480p.

Figure 7 shows that the precision of the benchmarked
models is similar to the recall: it is highest for DT, RF10,
ERT10, and BAGGING (always higher than 80%), while it is
relatively low for ADA, NN, and SVM. Contrary to the recall,
the precision is not systematically high for the 144p and 480p
classes. Overall, the per-class analysis gives us interesting
insights into the performance of the models and indicates that
only DT, RF10, ERT10, and BAGGING provide consistently
excellent estimation throughout all the six video-resolution
classes. For example, even though the total accuracy of KNN
is decent, it is mostly due to its performance for the 144p and
480p classes.

Results suggest that RF10 is the most appropriate model for
the video resolution estimation task: this model is extremely
lightweight, executes fast, and presents an excellent perfor-
mance, with a recall and precision close to or above 80% for
each resolution class. Similar to the stalling-inference results,
BAGGING is the best model in the benchmark, with recall
and precision close to or above 90% for all resolution classes,
but using a more complex underlying structure, as reflected
by the cross-validation execution times.

Again, for visualization purposes, Figure 8 shows the real-
time estimation and tracking of the video resolution produced
by ViCrypt for an exemplary YouTube video-streaming session
using multiple resolution levels (720p, 360p, 480p, and 144p),
using the RF10 as underlying model.

C. Average-Bitrate Estimation

The last estimation target is the average video (encoding)
bitrate, which is highly relevant for proactive network man-
agement. ViCrypt infers the average video bitrate of the video
contents monitored at each 1-second time slot. As the bitrate
is per-se continuous, the estimation of the average bitrate is

0 50 100 150 200
Time slot

100

200

300

400

500

600

700

800

R
es

ol
ut

io
n

True resolution
Predicted resolution

Fig. 8. Example of ViCrypt real-time video-resolution estimation.

tackled as a regression task. Again, we consider only those
time slots with actual traffic and a valid average bitrate label,
obtained from the YouTube API. The resulting dataset consists
of more than 933,000 samples.

We benchmark the same models as before, using 5-fold
cross-validation. The only exception is the Naïve Bayes model,
which can only handle classification tasks; we thus replace it
by the Bayesian ridge regression (BAYES). For each model,
we report the mean absolute error (MAE) = mean(| X̂−X |), the
root mean squared error (RMSE), the mean relative error MRE
= mean(| X̂ − X |/X), and the Pearson linear correlation coeffi-
cient (PLCC), where X and X̂ are the real and inferred values,
respectively. As before, we also report the total processing
times for the 5-fold cross validation. While the MAE metric
penalizes all the errors equally, the RMSE puts a relatively
high weight on larger errors. A PLCC value close to 1 indicates
that the real and estimated values are strongly positively
correlated, a negative value shows a negative correlation, and
a PLCC close to 0 indicates that there is no linear correlation.

Results are summarized in Table V. We note that the
models that worked well for the video-resolution estimation,
namely DT, RF10, BAGGING, and ERT10, perform also very
well for the inference of the average bitrate. Indeed, these
four tree-based models yield the lowest errors, achieving a
MAE of below 100 kbps, and very high PLCCs close to 1.
RMSE and MRE values are relatively low for these algorithms,
suggesting that they only rarely make large errors. However,
it is interesting to see that RF10 needs significantly more
time to process the whole dataset than for the video-resolution
estimation. As for the video-resolution inference, BAYES and

12

-500 -400 -300 -200 -100 0 100 200 300 400 500
Estimation error (kbps)

0

10

20

30

40

50

60

70

80

90

100
C

D
F

DT
RF10
ADA
ERT10
BAGGING
KNN
NN
BAYES

Fig. 9. Errors (estimated value - true value) obtained by the benchmarked
ML models for the average video-bitrate inference.

especially SVM provide disappointing results. With BAYES,
ViCrypt obtained a negative PLCC as well as very high error
metrics, which underlines the bad performance of the model.
With SVM, the system output errors of an unacceptable order
of magnitude.

Figure 9 depicts the distributions of the inference errors for
the different regression models. SVM errors are not reported,
as they are simply too large. Overall, the CDFs confirm our
observations from Table V. The most promising tree-based
methods present errors very close to 0 for a non-negligible
fraction of the dataset; this is especially true for DT, which
realizes an almost perfect estimation for 60% of the samples.
However, DT presents a large RMSE compared to its tree-
based competitors, indicating that it yields larger errors than
the other tree algorithms. ADA is the only tree-based method
where estimation errors are most often quite high, higher than
500 kbps for about 45% of the time slots. Absolute errors are
below 100 kbps for approximately 80% of the time slots when
using DT, RF10, BAGGING, or ERT10 as underlying models.

Based on these results, and again considering the out-
performance in terms of computational times, ERT10 seems to
be the best algorithm for the estimation of the average bitrate
with ViCrypt. Even though error metrics are slightly worse for
ERT10 than those for RF10 or BAGGING, differences are not
significant enough and lightweight models should be preferred.

Finally, Figure 10 shows ViCrypt’s estimation of the average
bitrate for an exemplary video with several bitrate changes.
Again, ViCrypt estimates the average bitrate with high pre-
cision throughout the whole video. Rather than estimating a
too low bitrate, ViCrypt coupled with ERT10 overestimates
the ground truth in more than half of the time slots (54%).
This overestimation of ERT10 together with the generally
low estimation error is advantageous from the point of view
of the ISP, as overestimating the video bitrate helps them
to avoid allocating insufficient bandwidth in the context of
traffic shaping. This could cause the video to stall, which is a
major QoE degradation. This behavior could be even forced
by adding a safety margin to the estimations of ViCrypt.

0 100 200 300 400
Time slot

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 b
itr

at
e

(k
bp

s)

True average bitrate
Predicted average bitrate

Fig. 10. Example of ViCrypt real-time average video-bitrate estimation.

V. FEATURE-IMPORTANCE ANALYSIS

Results presented so far correspond to ViCrypt models using
the full set of 208 features as input for the estimations. In
this section, we analyze the importance of different feature
sets and their impact on inference performance. Using an
extensive list of input features is not always the best strategy,
as it may negatively impact estimation performance. Using
more features increases the dimensionality of the feature space,
introducing sparsity issues. In addition, using irrelevant or
redundant features may lower model performance in practice.
Last but not least, working in higher-dimensional spaces
usually results in higher computational times.

We resort to standard automatic feature-selection techniques
to identify the most relevant input features for our three
estimation targets. Moreover, we consider additional feature
subsets which might have a significant impact, considering
for example the difference between snapshot features – i.e.,
those computed for the same slot where the estimation takes
place – and trend- or session-based features. Based on these
guidelines, we divide the full input-feature set into the follow-
ing six feature subsets:

(1) FC subset: the features representing the current time
slot, i.e., the time slot for which we want to infer the video
resolution (69 features).

(2) FT subset: the features collected for the trend window (69
features).

(3) FS subset: the features summarizing the characteristics of
the session since the beginning of the streaming (69 features).

(4) FDOWN subset: the features related to the download traffic
(81 features).

(5) FUP subset: the features representing the upload traffic
(81 features).

(6) FTOP20 subset: the 20 most important features, determined
using automatic feature-selection techniques (20 features).

To select the 20 most relevant features (FTOP20), we take
the best-performing ML algorithm, which is always a tree-
based method, and apply an embedded feature-selection tech-
nique, i.e., an approach ranking the features based on their
importance for the algorithm: for each run of the 5-fold
stratified cross-validation, we fit the model on the training
folds and detect the 20 most discriminative features with

13

TABLE VI
TOP-5 MOST IMPORTANT FEATURES FOR THE THREE ESTIMATION TARGETS TACKLED BY VICRYPT, WITH THEIR CORRESPONDING WINDOW (CURRENT,

TREND, OR SESSION) AND GINI IMPORTANCE SCORES.

Stalling Video resolution Average bitrate
#1 feature maximum upload packet size

(trend) [0.03]
throughput (session) [0.04] throughput (session) [0.07]

#2 feature standard deviation of upload packet
size (session) [0.02]

burst throughput (session) [0.03] burst throughput (session) [0.05]

#3 feature upload volume (session) [0.02] mean IAT of download packets
(session) [0.02]

skewness of upload packet-size dis-
tribution (session) [0.04]

#4 feature standard deviation of download
packet size (session) [0.02]

burst throughput of download traf-
fic (session) [0.02]

mean IAT of download packets
(session) [0.04]

#5 feature skewness of upload packet-size dis-
tribution (session) [0.01]

coefficient of variation of IAT of
download packets (session) [0.02]

download burst throughput (ses-
sion) [0.04]

the Gini importance measure [40]. In a tree, this measure is
defined as the weighted sum of the impurity reduction at each
node of the tree testing feature f . For a forest, the resulting
importance of f is the average over all trees. Then, we re-train
the model only on those 20 features and test its performance
on the test fold. We determine the overall top 20 features based
on their importance score averaged over the five folds, as well
as the average accuracy of the algorithm over the folds with
only the selected features.

Before going into the specific performance results achieved
with these subsets, let us take a look at the five most relevant
features according to the aforementioned feature-selection
approach. Table VI reports the five most important features
for the three investigated KQIs. For each of the selected
features, we additionally report the corresponding temporal
window (current, trend, or session) and the importance score.
For stalling detection, the most important features come from
different subsets. The most important feature for stalling infer-
ence comes from the FT subset (trend window). Nevertheless,
almost all of the most important features actually come from
the set of session-based features. FS can be generally consid-
ered as the most relevant feature set for stalling estimation,
which is in line with our previous results in [6], using a
different feature importance metric, namely, the information
gain. For video resolution, the top 5 features are all session-
related and include statistics about throughput patterns and
information related to the inter-arrival times between packets.
The results for the average bitrate confirm that session-based
features are often relevant ones, followed by the features of
the trend window and the current time slot.

As we show next in the specific comparison results, session-
related features – the FS subset – are the most important
ones, and have the most discriminative performance, followed
by trend features – FT . This is coherent with the overall
nature of adaptive-video-streaming algorithms, where stronger
variations tend to occur at the beginning of the video session,
and conditions tend to remain constant over the course of
the streaming – as long as the connection remains stable.
Features computed for the current time slot generally achieve
the lowest importance scores. This suggests that snapshot-
like approaches as the one proposed in [4] are less powerful
and more prone to over-fitting, and probably have poorer
generalization capabilities.

TABLE VII
VICRYPT PERFORMANCE FOR STALLING ESTIMATION WITH ERT10,

USING DIFFERENT FEATURE SUBSETS (OVERALL ACCURACY AND
RECALL/PRECISION ONLY INDICATED FOR THE STALLING CLASS)

Features Accuracy (%) Recall (%) Precision (%)
All 97 54 88
FC 96 10 30
FT 97 17 51
FS 99 72 91

FDOWN 98 41 87
FUP 98 47 74

FTOP20 97 56 86

A. Stalling

Table VII reports the estimation performance for stalling
in terms of recall and precision for the stalling class, using
ERT10 as the underlying model, which is the one we selected
in Section IV-A for this task. As before, results correspond
to 5-fold stratified cross-validation. Stalling-detection results
when using only FC and FT subsets are poor for both recall
and precision. However, performance dramatically improves
when considering FS features only; indeed, the recall for
ERT10 increases from 54% (using all features, cf. Table III) to
72%, and even the precision increases from 88% to 91%, tak-
ing the overall accuracy to 99%. This confirms the paramount
importance of session-progression features, which is in line
with our above findings and discussion.

When relying exclusively on the 20 most important features,
ViCrypt obtains a recall score of 56% and a precision score
of 86%, almost on a par with using all features. This tells
us the following: (i) the overall statistics describing the entire
history of the session are very insightful metrics for detecting
stalling; (ii) ViCrypt produces highly accurate estimations
even with a reduced set of features: instead of using 208
attributes, 69 or even 20 would be sufficient. This shows that
a substantial number of features can be removed with only
a minor performance degradation, which even increases the
practical applicability of ViCrypt.

B. Video Resolution

For the case of video-resolution inference, we study the
performance of RF10, the model that produces the most
promising outcome, based on the different feature groups. The
results in Table VIII also reveal that the features of FC and

14

TABLE VIII
VICRYPT PERFORMANCE FOR INFERRING THE VIDEO RESOLUTION WITH

RF10, USING DIFFERENT FEATURE SUBSETS.

Features Accuracy (%)
All 92
FC 70
FT 73
FS 96

FDOWN 90
FUP 90

FTOP20 95

FT yield the poorest results in terms of accuracy, indicating
that they are insufficient to infer the video resolution with high
precision. Indeed, their accuracy is more than 15 percentage
points below the accuracy obtained by ViCrypt based on the
entire feature set. However, ViCrypt performs very well when
used with either FS , FDOWN , or FUP , with FS performing
even better than the entire feature set. The average accuracy
of ViCrypt when using only the top 20 features is highly
encouraging: it is equal to 95%, confirming the above finding
that a substantial number of features can be removed.

C. Average Bitrate

Table IX reports the results obtained for the estimation of
the average bitrate, using ERT10 as underlying model. The
differences in terms of performance between the considered
subsets and the whole set of features are much more significant
than in the video-resolution case. As a matter of fact, with
FC and FT , the value of the MAE is nearly three times
higher than when relying on the whole feature set; the other
error metrics underline the poor performance. In case ViCrypt
bases itself on the download- or upload-traffic information, the
obtained errors are only slightly higher than when inferring
from all the features. However, as for the stalling detection
and video-resolution inference, ViCrypt yields excellent results
when coupled with FS features only, showing once again that
information about the session history is the most valuable
one. Again, using only the top 20 selected features for the
ERT10 model yields slightly more precise estimations than
when using the whole feature set. Indeed, the MAE and the
RMSE decrease to 81 kbps and 175 kbps, respectively.

VI. PRACTICAL CONSIDERATIONS FOR REAL-TIME
OPERATION & DISCUSSION

Finally, we elaborate on the presented results and discuss
the applicability of ViCrypt in practice. To ensure that ViCrypt
is scalable and can be deployed in the wild, we analyze several
key aspects in terms of computation time, and execute multiple
tests on two machines with completely different technical
specifications: on server, the high-end computer presented in
Section III, and laptop, which includes a Intel Core i5-4200U
CPU with two physical cores and a total of four virtual ones,
eight gigabytes of RAM, and an integrated GPU Intel HD
Graphics 4400. We show that ViCrypt runs extremely fast,
with minimal memory footprint. The evaluation is not done
at scale, but considering the end-to-end processing of single

0 0.5 1 1.5 2 2.5 3 3.5 4
video packets ×104

101

102

103

104

105

106

P
ro

ce
ss

in
g

tim
e

(µ
s)

Laptop
Server

Fig. 11. Time needed to update the ViCrypt features each time a new packet
arrives (log scale).

video sessions. Still, the main target of ViCrypt is video-
streaming-QoE monitoring at devices installed near the end-
user (e.g., home routers), where traffic load enables real-time
monitoring with limited hardware capabilities.

Feature extraction: to demonstrate the real-time properties
of ViCrypt for the feature-extraction process, we record at
each packet arrival the time needed to update the feature set
for a session lasting four minutes. The results are reported
in Figure 11. Feature updates are performed extremely fast
on both machines: they take only a couple of microseconds.
On server, the peak value is about 12 ms, while the average
duration is of only 13 µs. More than 90% of the updates
took less than 25 µs. Even on laptop, the average processing
duration is 37 µs, with a maximum value of 129 ms, which is
still almost an order of magnitude smaller than the time-slot
length of 1 s.

Stalling detection: we measure the time needed by the most
suitable model (ERT10) to detect the stalling of a time slot on
both laptop and server. To do so, we train the model on 80% of
the data, i.e., on four folds, and record, for one video session in
the remaining fold, the time required to detect the occurrence
of stalling per time slot. We use the same video as before, and,
to make computations harder, we disable the parallelization of
the algorithm for the estimation phase. The estimation times
for this task are depicted in Figure 12(a). The model runs very
fast, with an average of 740 µs and a maximum of 2 ms on
server, and an average of 2.5 ms on laptop, which confirms
that ViCrypt can also infer stalling in real time.

Video-resolution estimation: we measure the time needed
by the best performing RF10 model for a single estimation
of the video resolution, following the same procedure. Fig-
ure 12(b) shows the processing times for video-resolution
estimation for the consecutive time slots of the exemplary
video. On server, almost all of the durations are around 1 ms,
with an average of 700 µs and a maximum of around 1.4 ms;
on laptop, the average duration is 2.5 ms and all estimations

15

TABLE IX
VICRYPT PERFORMANCE FOR ESTIMATING THE AVERAGE BITRATE WITH ERT10 USING DIFFERENT FEATURE SUBSETS.

Features MAE [kbps] RMSE [kbps] MRE [%] PLCC
All 93 182 19 0.93
FC 275 407 55 0.58
FT 253 377 51 0.64
FS 68 157 14 0.95

FDOWN 105 195 21 0.92
FUP 106 198 21 0.92

FTOP20 81 175 16 0.93

0 50 100 150 200 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

0 25 50 75 100 125 150 175 200 225 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

0 25 50 75 100 125 150 175 200 225 250
Time slot # in video

0

0.5

1

1.5

2

P
ro

ce
ss

in
g

tim
e

(µ
s)

×104

Laptop
Server

(a) Stalling. (b) Video resolution. (c) Average bitrate.

Fig. 12. Time needed to estimate video-QoE metrics from features for an exemplary YouTube video session. ViCrypt can perform all KQI estimations in
real time, with an end-to-end delay significantly smaller than the time-slot length of 1 second.

TABLE X
REFERENCING PERFORMANCE COMPARISON BETWEEN VICRYPT, REQUET, AND INFOCOM’18 [4]. RESULTS CORRESPOND TO NUMBERS REPORTED

IN [30] AND [4], FOR DIFFERENT DATASETS, SEE TABLE I.

sessions
Stalling Video Resolution – P (%) Video Resolution – R (%)

P (%) R (%) 144p 240p 360p 480p 720p 1080p 144p 240p 360p 480p 720p 1080p

ViCrypt 15,000+ 91.0 72.0 96.5 89.5 93.4 95.1 96.2 96.0 96.2 88.3 87.5 98.1 93.5 88.2

Requet 580 70.4 51.9 80.6 68.7 49.2 64.9 60.6 75.0 79.9 64.3 64.4 63.8 54.5 76.9

INFOCOM’18 10,863 80.9 83.9 73.2 80.1 71.1 82.1

are available in less than 20 ms. Again, results confirm that
ViCrypt performs video-resolution inference very fast, and
significantly faster than the time slot length of 1 s.

Average-bitrate estimation: finally, we analyze the time
needed by the best model (here ERT10) to infer the average
bitrate of a time slot. The observed estimation times are almost
identical to the ones observed for the video resolution on both
machines, as we can see in Figure 12(c), with an average
value of 700 µs and a maximum of 3 ms on server, showing
that ViCrypt can also infer average video bitrate in real time.

A. ViCrypt vs. State of the Art

To conclude our study, we provide some indicative results
comparing the estimation performance of ViCrypt against the
two most similar systems in the literature, namely Requet [30]
and INFOCOM’18 [4]. While a re-implementation of both
systems for benchmarking purposes is out of the scope of
our study, we present in Table X the performance results re-
ported by the authors of both approaches in the corresponding
papers [30], [4]. Naturally, this is not intended as a valid or
fair comparison among approaches, as the used datasets are
not the same. Still, we decided to include the table to better
position ViCrypt within the state of the art, and to serve as
reference or baseline for the results presented in this study.

We consider the estimation of two of the KQIs, namely
stalling and video resolution, as neither Requet nor INFO-
COM’18 are designed to estimate the average video bitrate.
In addition, while both ViCrypt and Requet tackle the video-
resolution inference problem as a multi-class classification
task, using exactly the same resolution levels, INFOCOM’18
considers only a binary classification task, defining low video
resolution as all resolutions below 480p, and high video
resolution for levels above 480p.

As already mentioned in Section II, the size and hetero-
geneity of the considered datasets is significantly different
for the three systems. A particularly challenging issue for
ViCrypt is that our dataset is highly imbalanced, especially
when it comes to the occurrence of stalling, with only a small
fraction of videos and time slots experiencing stalling. On the
contrary, the dataset used in INFOCOM’18 is almost perfectly
balanced in terms of stalling, with about 106,000 time slots
corresponding to no-buffering and 94,000 slots reported as
stalling.

Nevertheless, Table X shows that ViCrypt achieves similar
or even better results than INFOCOM’18 in the binary de-
tection of stalling events, and that both systems significantly
outperform Requet, which presents quite poor results for
stalling detection. Here, ViCrypt uses the ERT10 model with

16

only FS features (cf. Table VII), which is still not the best of all
models reported in the study – BAGGING performance using
only FS features is even higher. Regarding video resolution,
ViCrypt provides highly accurate results in terms of precision
and recall, while both Requet and INFOCOM’18 report lower
performance on the classification task. INFOCOM’18 achieves
relatively poor performance for video-resolution estimation,
even if the KQI is addressed as a plain binary-classification
task.

All in all, we can conclude that ViCrypt is not only
able to estimate video quality metrics with high accuracy –
comparable or even potentially outperforming the state of the
art – but also to do it in real time, with minimal temporal
computation requirements.

VII. CONCLUDING REMARKS

In this paper, we presented ViCrypt, a machine-learning-
driven system for real-time estimation of QoE-relevant metrics
of video streaming, using a fine temporal granularity of only
one second. This is, to the best of our knowledge, the finest
granularity so far used for quality inference in the context of
encrypted traffic. ViCrypt monitors the encrypted video traffic
in a stream-like manner considering three windows (current
slot, trend window, session window), from which statistical
features are computed and updated with constant memory
consumption.

We focused on the estimation of the most important Key
QoE Indicators (KQIs), i.e., initial delay, stalling, visual qual-
ity, as well as the video bitrate, which are highly relevant for
ISPs to monitor the end-user QoE and to enable proactive
QoE-aware traffic management. We built a dataset containing
more than 15,000 randomly chosen YouTube videos streamed
under diverse network conditions, devices, ISPs, and transport
protocols. We benchmarked multiple ML models and found
that tree-based techniques are the most appropriate algorithms
for ViCrypt.

Indeed, ERT10 (binary classification of stalling, which
includes initial delay, with 99% accuracy; and continuous-
valued estimation, i.e., a regression problem, of average bitrate
with a mean absolute error of 68 kbps) and RF10 (classifica-
tion of video resolution into six classes with 96% accuracy)
provided highly promising results for all the considered QoE-
relevant metrics and can be (re-)trained very fast. BAGGING
performed even slightly better than RF10 and ERT10 for all
three KQIs when using all features, but comes at the cost
of significantly higher training times. We also analyzed the
feature importance and showed that ViCrypt performed best
with only a reduced feature set. Here, the features summarizing
the characteristics of the session since the beginning of the
streaming were the most relevant ones.

Overall, we demonstrated that ViCrypt is a very powerful
tool to infer KQIs of YouTube from encrypted traffic in real
time. As future work, we propose to further study to which
extent the performance of ViCrypt could be improved by
carefully crafting better feature subsets, or by following re-
current approaches considering also predictions from previous
time slots. Furthermore, the performance of ViCrypt has to be

revisited when applied to estimate KQIs for other streaming
services, such as Amazon or Netflix.

REFERENCES

[1] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM
SIGMETRICS PER, vol. 41, no. 2, pp. 44–46, 2013.

[2] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring
for ISPs,” in 2nd International Workshop on Future Internet and Next
Generation Networks, Palermo, Italy, 2012.

[3] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube QoE
Estimation Based on the Analysis of Encrypted Network Traffic Using
Machine Learning,” in 5th IEEE International Workshop on Quality
of Experience for Multimedia Communications (QoEMC), Washington,
DC, USA, 2016.

[4] M. H. Mazhar and M. Z. Shafiq, “Real-time Video Quality of Experience
Monitoring for HTTPS and QUIC,” in IEEE INFOCOM, Honolulu, HI,
USA, 2018.

[5] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-
based Machine Learning for Real-time QoE Analysis of Encrypted
Video Streaming Traffic,” in 3rd International Workshop on Quality of
Experience Management, 2019.

[6] ——, “Features that Matter: Feature Selection for On-line Stalling Pre-
diction in Encrypted Video Streaming,” in 2nd International Workshop
on Network Intelligence (NI), 2019.

[7] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “I See
What you See: Real Time Prediction of Video Quality from Encrypted
Streaming Traffic,” in Proceedings of the 4th Workshop on QoE-based
Analysis and Management of Data Communication Networks (Internet-
QoE), 2019.

[8] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Comm. Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[9] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-varying Subjective
Quality Model for Mobile Streaming Videos with Stalling Events,” in
SPIE Applications of Digital Image Processing XXXVIII, San Diego,
CA, USA, 2015.

[10] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of Streaming
Video: Interactions between Presentation Quality and Playback Stalling,”
in IEEE International Conference on Image Processing (ICIP), Phoenix,
AZ, USA, 2016.

[11] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting Times in
Quality of Experience for Web Based Services,” in 4th International
Workshop on Quality of Multimedia Experience (QoMEX), Yarra Valley,
Australia, 2012.

[12] C. Timmerer, M. Maiero, and B. Rainer, “Which Adaptation Logic?
An Objective and Subjective Performance Evaluation of HTTP-based
Adaptive Media Streaming Systems,” arXiv preprint arXiv:1606.00341,
2016.

[13] H. Ott, K. Miller, and A. Wolisz, “Simulation Framework for HTTP-
Based Adaptive Streaming Applications,” in Workshop on Ns-3, ser.
WNS3 ’17.

[14] M. Seufert, N. Wehner, and P. Casas, “A Fair Share for All: TCP-
Inspired Adaptation Logic for QoE Fairness Among Heterogeneous
HTTP Adaptive Video Streaming Clients,” IEEE Transactions on Net-
work and Service Management, vol. 16, no. 2, pp. 475–488, 2019.

[15] International Standards Organization/International Electrotechnical
Commission (ISO/IEC), “23009-1:2012 Information Technology –
Dynamic Adaptive Streaming over HTTP (DASH) – Part 1: Media
Presentation Description and Segment Formats,” 2012.

[16] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing Effect
Sizes of Influence Factors Towards a QoE Model for HTTP Adaptive
Streaming,” in 6th International Workshop on Quality of Multimedia
Experience (QoMEX), Singapore, 2014.

[17] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer
on Quality of Experience of HTTP Adaptive Streaming,” in 11th
International Conference on Network and Service Management (CNSM),
Barcelona, Spain, 2015.

[18] H. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang, “A Novel Quality Model
for HTTP Adaptive Streaming,” in 6th IEEE International Conference
on Communications and Electronics (ICCE), Ha Long, Vietnam, 2016.

[19] F. Wang, Z. Fei, J. Wang, Y. Liu, and Z. Wu, “HAS QoE Prediction
Based on Dynamic Video Features with Data Mining in LTE Network,”
Science China Information Sciences, vol. 60, no. 4, 2017.

17

[20] O. Oyman and S. Singh, “Quality of Experience for HTTP Adaptive
Streaming Services,” IEEE Communications Magazine, vol. 50, no. 4,
pp. 20–27, 2012.

[21] B. Lewcio, B. Belmudez, A. Mehmood, M. Wältermann, and S. Möller,
“Video Quality in Next Generation Mobile Networks – Perception of
Time-varying Transmission,” in IEEE International Workshop Technical
Committee on Communications Quality and Reliability (CQR), Naples,
FL, USA, 2011.

[22] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker
Effects in Adaptive Video Streaming to Handheld Devices,” in 19th
ACM International Conference on Multimedia (MM), Scottsdale, AZ,
USA, 2011.

[23] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements,” in 15th Workshop on Mo-
bile Computing Systems and Applications (HotMobile), Santa Barbara,
CA, USA, 2014.

[24] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz,
“Next to You: Monitoring Quality of Experience in Cellular Networks
from the End-devices,” IEEE Trans. on Network and Service Manage-
ment, vol. 13, no. 2, pp. 181–196, 2016.

[25] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz, “Predicting QoE in Cellular Networks using
Machine Learning and in-Smartphone Measurements,” in 9th Inter-
national Conference on Quality of Multimedia Experience (QoMEX),
Erfurt, Germany, 2017.

[26] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring Video QoE from Encrypted Traffic,” in ACM Internet
Measurement Conference (IMC), Santa Monica, CA, USA, 2016.

[27] S. Wassermann, N. Wehner, and P. Casas, “Machine Learning Models
for YouTube QoE and User Engagement Prediction in Smartphones,”
SIGMETRICS PER, vol. 46, no. 3, pp. 155–158, 2019.

[28] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan,
“BUFFEST: Predicting Buffer Conditions and Real-time Requirements
of HTTP(S) Adaptive Streaming Clients,” in 8th ACM on Multimedia
Systems Conference (MMSys), Taipei, Taiwan, 2017.

[29] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC: Es-
timating HTTP-based Video QoE Metrics from Encrypted Network
Traffic,” in Network Traffic Measurement and Analysis Conference
(TMA), Vienna, Austria, 2018.

[30] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and
G. Zussman, “Requet: Real-time qoe detection for encrypted youtube
traffic,” in ACM Multimedia Systems Conference (MMSys), 2019.

[31] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and Implementation of Video QoE Measurements in a Mo-
bile Broadband Testbed,” in IEEE/IFIP Workshop on Mobile Network
Measurement (MNM), Dublin, Ireland, 2017.

[32] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks,” in European Conference on Networks
and Communications (EuCNC), Paris, France, 2015.

[33] M. Seufert, “Quality of Experience and Access Network Traffic Man-
agement of HTTP Adaptive Video Streaming,” Doctoral Thesis, Uni-
versity of Würzburg, 2017. [Online]. Available: https://opus.bibliothek.
uni-wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf

[34] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser, B. Zeidler,
M. Seufert, F. Loh, and P. Tran-Gia, “A Public Dataset for YouTube’s
Mobile Streaming Client,” in 2nd Workshop on Mobile Network Mea-
surement (MNM), Vienna, Austria, 2018.

[35] A. L. Strehl and M. L. Littman, “Online linear regression and its
application to model-based reinforcement learning,” in Proceedings of
the 20th International Conference on Neural Information Processing
Systems, ser. NIPS’07, 2007.

[36] P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of
Covariances and Arbitrary-Order Statistical Moments,” Sandia National
Laboratories, Tech. Rep., 2008.

[37] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, Apr 2006.

[38] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008.

[39] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” in 2000 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’00, 2000.

[40] P. Geurts, A. Irrthum, and L. Wehenkel, “Supervised learning with
decision tree-based methods in computational and systems biology,”
Molecular BioSystems, vol. 5, pp. 1593–1605, 2009.

BIOGRAPHIES

Sarah Wassermann is currently a third-year PhD
student at TU Wien, doing research in network
measurements, in particular in the field of QoE, and
machine learning. She earned her Master’s degree
in 2017 from the university of Liège (ULiège) in
Belgium, where she also obtained her Bachelor’s
degree in 2015. Her goal is to conceive intelligent
systems which make the Internet smarter and able to
face demanding users and an ever-growing volume
of heterogeneous network traffic.

Michael Seufert received the bachelorŠs degree
in economathematics and the Diploma and Ph.D.
degrees in computer science from the University of
Würzburg, Germany. From 2012 to 2013, he was
with the FTW Telecommunication Research Center,
Vienna, Austria. From 2013 to 2017, he was a
Researcher with the Chair of Communication Net-
works, University of Würzburg. From 2018 to 2019,
he was a Post-Doctoral Fellow and a Scientist with
the AIT Austrian Institute of Technology, Vienna.
Since 2019, he has been a Post-Doctoral Fellow

and a Scientist with the Chair of Communication Networks, University of
Würzburg working towards his Habilitation, while leading the chair’s research
activities towards user-centric communication networks. His research focuses
on QoE of Internet applications, artificial intelligence and machine learning
for networks, monitoring and analytics of (encrypted) network traffic and
orchestration of edge cloud services, proactive QoE- and socially-aware traffic
management solutions, and performance modeling of communication systems.

Pedro Casas is Senior Scientist in AI/ML for Net-
working at the AIT Austrian Institute of Technology
in Vienna. He received an Electrical Engineering
degree from Universidad de la República, Uruguay
in 2005, and a Ph.D. degree in Computer Science
from Télécom Bretagne in 2010. He was Post-
doctoral Research at the LAAS-CNRS in Toulouse
from 2010 to 2011, and Senior Researcher at the
Telecommunications Research Center Vienna (FTW)
from 2011 to 2015. His work focuses on machine-
learning-based approaches for Networking, big data

analytics and platforms, Internet network measurements, network security and
anomaly detection, as well as Internet QoE monitoring. He has published
more than 180 Networking research papers in major international conferences
and journals, received 14 awards for his work - including 7 best paper
awards. He is general chair for different actions in network measurement and
analysis, including the IEEE ComSoc ITC Special Interest Group on Network
Measurements and Analytics.

Li Gang works as technical pre-research engineer
at Huawei Technologies. He joined Huawei more
than 10 years ago, and has been working in multiple
projects linked to network traffic monitoring and
analysis, including in particular video streaming
(QoE) analysis.

Kuang Li got his Ph.D degree on computer science
from the Wuhan University in China. He has worked
several years on researching intelligent operation and
management of communication networks in Huawei
Technologies.

https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf
https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf

	Introduction
	Related Work
	Video-Streaming QoE Context
	State of the Art

	ViCrypt Fundamentals
	YouTube Dataset Acquisition
	Dataset Analysis
	ViCrypt Feature Extraction
	ML Models Benchmarking

	ViCrypt in Action – Performance Evaluation
	Stalling Estimation
	Video-Resolution Estimation
	Average-Bitrate Estimation

	Feature-Importance Analysis
	Stalling
	Video Resolution
	Average Bitrate

	Practical Considerations for Real-Time Operation & Discussion
	ViCrypt vs. State of the Art

	Concluding Remarks
	References
	Biographies
	Sarah Wassermann
	Michael Seufert
	Pedro Casas
	Li Gang
	Kuang Li

