
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021 687

Software Physical/Virtual Rx Queue Mapping
Toward High-Performance Containerized

Networking
Ryota Kawashima , Member, IEEE

Abstract—Softwarization of Network Functions (NFs) accel-
erates automated deployment and management of services on
next-gen networks. Combining flexibility and high-performance is
a vital requirement for Network Functions Virtualisation (NFV);
however, many studies have demonstrated that containeriza-
tion or virtualization of NFs severely degrades the fundamental
efficiency of packet forwarding. Virtual network I/O, a mecha-
nism of packet transferring between a guest and the host, has
been seen as the performance bottleneck in the PVP (Physical-
Virtual-Physical) datapath, and one of the main causes of this
deterioration is packet copy between them. Various techniques,
such as zero-copy, pass-through, and hardware offloading, have
been examined to alleviate the performance overhead. However,
existing designs and implementations incur pragmatic issues,
such as compatibility, manageability, and insufficient quality of
performance. We propose yet another design and implementa-
tion of zero-copy/pass-through acceleration (named IOVTee) to
resolve real-world problems as well as to enhance the forwarding
efficiency. IOVTee takes advantage of pre-processing of virtual
switches with achieving zero-copy on the receive (Rx) path. The
pluggable style of IOVTee for vhost-user (the de-facto virtual
network I/O) enables our approach to be transparent to both
containers/VMs and virtual switches. In this article, we explain
the heart of IOVTee, a fully software-based Rx queue mapping
mechanism (between physical and virtual) that enables a con-
cept of Virtual DMA Write-through (to the NF). Our evaluation
results showed that applying IOVTee to vhost-user drastically
increased efficiency of packet forwarding in the PVP datapath
(by 45% and 98% for traffic of 64-byte and 1514-byte packets
respectively).

Index Terms—Network functions virtualization, container,
DPDK, Vhost-user, zero-copy, pass-through.

I. INTRODUCTION

NETWORK Functions Virtualisation (NFV) [1] is a
mission-critical technology for 5G network slicing, and

tailored virtual networks (slices) are agilely provided on the
substrate network in a multi-tenant manner [2]. Such an
extremely flexible nature comes from NFV accelerates inno-
vative services requiring diverse network characteristics [3].

Manuscript received June 1, 2020; revised October 28, 2020 and December
23, 2020; accepted December 29, 2020. Date of publication January 4, 2021;
date of current version March 11, 2021. This research and development
work was supported by the MIC/SCOPE #182106107. The associate editor
coordinating the review of this article and approving it for publication was
T. Zinner.

The author is with the Department of Computer Science and
Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
(e-mail: kawa1983@ieee.org).

Digital Object Identifier 10.1109/TNSM.2020.3049053

In this softwarization era, various cloud native technolo-
gies as represented by Kubernetes [4] have grown in real
services. Telco applications are required to be container-based
microservices [5], [6]. These technologies have a remark-
able affinity to NFV in terms of lifecycle management of
containerized (cloud native) or virtualized network functions
(CNFs/VNFs); however, many studies have demonstrated sub-
stantially lower packet forwarding efficiency of CNFs/VNFs
than both hardware-based and (baremetal-formed) software-
based implementations [7], [8], [9], [10], [11].

Now performance-critical NFs are deployed on white-box
switches equipped with a programmable ASIC. P4 lan-
guage [12], [13] and open domain specific architectures
(e.g., Open Compute Project [14]) alleviate the traditional
compatibility and vendor lock-in issues. Regarding network
slicing, pure softwarization on commodity servers is promis-
ing for agility and flexibility, while they are less suitable for
performance-critical functions. Containerized NFs running on
commodity servers have definitive fortes for both developers
and administrators in that better programmability and manage-
ability. Therefore, we believe that further work is necessary
to accelerate the fundamental performance of softwarized
CNFs/VNFs.

Virtual network I/O, a mechanism of packet transferring
between a virtual switch and CNFs/VNFs on the host, has
been considered as the performance bottleneck in the PVP
(Physical-Virtual-Physical) datapath. In practice, packet copy
degrades performance of virtual network I/O, and its over-
head cannot be reduced even with Data Plane Development
Kit (DPDK) [15], a widely-used fast packet I/O framework.
A major approach to achieve zero-copy at virtual network
I/O [16], [17], [18] is to keep packet data being stored in
a shared packet pool of the host side during the PVP dat-
apath. However, accessing the memory region of the host
requires alternations of existing virtual network I/O and also
requires CNFs/VNFs to be aware of the host environment.
Hardware-assisted pass-through like SR-IOV [19] avoids the
packet copy in a safe manner thanks to IOMMU [20], but ben-
eficial packet pre-processing of virtual switches is completely
bypassed. Furthermore, we have demonstrated that SR-IOV
obviously degrades performance stability [7], [21]. As a result,
copy-full vhost-user [22] still has been the de-facto virtual
network I/O technology.

We propose a novel zero-copy/pass-through design and
implementation, named IOVTee, for not only boosting up

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4025-6970

688 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

packet forwarding efficiency in the PVP datapath, but also
resolving pragmatic concerns such as compatibility, manage-
ability, and inexplicable performance characteristics. IOVTee
takes advantages of the packet pre-processing with achieving
zero-copy on the Rx path. We have designed and imple-
mented IOVTee as an internal add-on to DPDK/vhost-user
of the host side to hide IOVTee from both virtual switches
and CNFs/VNFs. Such a transparency is essential for 5G
network slicing in that user services can receive performance
gain from IOVTee without modifications of them. In this
article, we explain system requirements of IOVTee toward
real world softwarized networks as well as the architec-
ture and implementation. Specifically, we have developed a
fully software-based Rx Queue Mapping mechanism (between
physical and virtual) that enables a novel zero-copy concept
(Virtual DMA Write-through). We evaluate and quantitatively
analyze the performance effect of IOVTee on vhost-user in
Section V.

This article is an extended version of our conference
paper [21]. In the extended paper, we have fully re-
implemented IOVTee from scratch because our previous
implementation showed suboptimal performance. Our new
implementation has become more cache aware and supported
Packed Virtqueue of vhost-user, which results in considerable
performance enhancement. Evaluation becomes more fulfilling
in that further mechanisms are examined such as container-
formed NFs, Packed Virtqueue, OpenNetVM [17], and CPU
caching behaviors are quantitatively analyzed.

The remainder of this article is as follows. System require-
ments of IOVTee are explained in Section II in view of prac-
tical usage, and we describe architectural design and imple-
mentation in Sections III and IV respectively. In Section V,
we show the results of comprehensive evaluation of IOVTee-
enabled NFV-nodes. Related work for performance improve-
ment of the PVP datapath is referred to in Section VI. We
conclude this study and give future work in Section VII.

II. SYSTEM REQUIREMENTS

Cutting-edge performance acceleration mechanisms for vir-
tual network I/O have pragmatic issues as described in
Section VI, and many of them have not proved that the max-
imum throughput (for minimum-size packet traffic) can be
boosted to over 10 Gbps (14.88 Mpps). Thus, we have to
design and implement IOVTee to satisfy the following system
requirements.

• DPDK/Vhost-User Compatible: DPDK is commonly seen
in software-based NFV-nodes as a packet I/O base, and
vhost-user is the de-facto virtual network I/O for con-
tainerized or virtualized NFs on the DPDK-enabled host
environment. This requires IOVTee to be DPDK/vhost-
user compatible to take advantage of existing NFV
ecosystems like OPNFV [40].

• Fully Software-Based: Flexible and agile composition of
various network services is the heart of the NFV con-
cept and this nature comes from softwarization. Special
purpose hardware devices (e.g., SmartNICs) have been
developed for accelerating a specific software like Open

vSwitch by offloading its heavier packet processing to the
devices, but other applications cannot enjoy such a feature
without being tailored to them. SR-IOV, the hardware-
based pass-through mechanism, does not depend on
applications in nature, but containers/VMs have to be
physical NIC-aware to use virtual functions (VFs) of the
NIC. We have to adopt a fully software-based approach
for IOVTee to make it transparent to not only CNFs/VNFs
but also virtual switches and physical NICs. Moreover,
IOVTee should be as orthogonal to the dedicated hard-
ware features as possible.

• Minimum Modification: Generally, performance accel-
erations involve modifications of existing components,
such as NFs, packet I/O frameworks, virtual switches,
virtual network I/O, virtual machine monitors, operat-
ing systems, packet formats, and underlying hardware
devices. Modifying wide spread components spoils the
acceleration technology in network service operations,
even if ideal performance is achieved. Furthermore, crit-
ical system components like OS and hardware devices
are required to be stable and mature in the real environ-
ment. We confine the modification to DPDK internals,
and other existing components can be used without any
modification.

• Container/VM Support: Automated lifecycle manage-
ment of NFs is the key for advanced network slicing.
In particular, container-based (cloud-native) NFs have
been getting attentions for agile deployment and less
performance overhead [41]. Therefore, IOVTee has to
support not only VM-based NFs but also container-based
NFs. DPDK has provided network drivers of vhost-user
for both containers (virtio-user [42]) and VMs (virtio-
net), which indicates that IOVTee has to be vhost-user
compatible.

• Near-Baremetal Level Performance: Vhost-user now
achieves over 10 Gbps throughput for any size of packet
traffic as shown in Section V thanks to the efforts, but
there is considerable performance gap with baremetal
(NFs are directly deployed on commodity servers without
containerization/virtualization). IOVTee has to signifi-
cantly close the gap with optimized implementation.

III. IOVTEE ARCHITECTURE

We have designed our novel zero-copy/pass-through virtual
network I/O mechanism, IOVTee, with satisfying the above
requirements. IOVTee can combine DMA-to-the-CNF/VNF
and virtual switch intervention approaches by one-to-one map-
ping of Rx queues between a container/VM and the host (Rx
Queue Mapping). Apparently, the DMA-to-the-CNF/VNF fea-
ture is alike SR-IOV in that incoming packets are directly
stored in the memory space of the container or VM to avoid
packet copy between the host and the guest. However, IOVTee
enables the virtual switch intervention feature too unlike SR-
IOV, meaning that modern highly functional virtual switches,
such as Open vSwitch, BESS [43], and Lagopus [44], are given
chances to perform their jobs as pre-processing of CNF/VNF’s
work. Such a pre-processing is effective in real network service

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 689

Fig. 1. Overview of Virtual Network I/O Technologies.

operations, for instance, Lagopus has been developed to sup-
port carrier-specific features like MPLS, EVPN with VXLAN,
IPsec, and BGP. IOVTee is a fully software-based composable
approach that can coexist with various virtual switches. We
realize this mechanism in a transparent way to both virtual
switches and containers/VMs.

Here, we show conceptual differences between IOVTee and
other similar technologies in Fig. 1. In type (a), the origi-
nal vhost-user protocol is used for both the Rx and Tx paths.
Vhost-user enables in-user-space packet transferring between
the virtual switch and containers/VMs, but packet copy is
involved in each direction.1 Type (b) expresses the architec-
ture of NetVM/OpenNetVM, a representative approach of the
big shared packet pool. NetVM Core Engine (vSwitch) pro-
vides a shared packet pool in the host memory space, and
the NFs can directly access the pool with the help of a ded-
icated library (NetLib). The switch has to tell exact locations
of packet buffers need to be processed to the NFs at the right
timing using a vhost-user-like protocol. Type (c) is a case of
SR-IOV, and entire packet processing at the host is omitted
(Pass-through). Incoming packets are directly DMAed to the
guest memory space using I/O virtualization technology, and
outgoing packets are transferred to the physical NIC from
the guest memory space likewise. Architectural overview of
IOVTee is illustrated in (d). Our proposal follows system com-
position of type (a), but removes packet copy on the Rx path by
introducing the two concepts, Rx Queue Mapping and Virtual
DMA Write-through. These are based on a design pattern of
performance-oriented virtual network I/O. In case of vhost-
user, a container/VM side provisions both Rx/Tx queues and
corresponding packet buffers on its memory region, and makes
the region accessible from the host side. IOVTee acquires
valid physical memory addresses of empty packet buffers of

1DPDK provides an optional zero-copy implementation for the Tx-path
(dequeue-zero-copy), but our previous study [21] revealed that the feature
decreased throughput about 15% for 64-byte packet traffic due to a long-term
nature of packet staying in the virtual Tx queue.

Fig. 2. Rx Queue Mapping in Service Function Chaining.

the CNF/VNF via the Rx queue, and logically maps entries
of physical/virtual Rx queues (Rx Queue Mapping). In terms
of DMA, replacing packet buffers in the host region with
the acquired ones results in the elimination of packet copy,
because both the host (virtual switch) and the CNF/VNF use
the same packet buffers for their own processing (Virtual DMA
Write-through). IOVTee is a dedicated optimization for the
Rx-path, and therefore, packet copy is still necessary for the
Tx-path. This copy could be performance concern, but our
approach resulted in great throughput increase as shown in
Section V.

The notion of Rx Queue Mapping can be applied to an arbi-
trary pair of queues as long as they can be accessible from the
host. For instance, performance of service function chaining
can be improved as illustrated in Fig. 2 (a). In this scenario, the
Rx queue of the second NF is mapped to the Tx queue of the
first NF in advance. This mapping is transparent to the NFs
such that the virtual switch directly copies outgoing packet
data in the Tx queue to the Rx queue of the next NF, which
reduces the number of packet copy per chain (2→1). And
now, chaining multiple CNFs/VNFs via virtual network I/O
comes under question, because inter-CPU core packet transfer
obviously degrades performance [45]. Synthesizing network
functions into a single CNF/VNF [46] is a promising approach

690 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 3. Internals of NFV-node with vhost-user.

for pursing hardware-level performance, and IOVTee can be
integrated into synthesized NFs as shown in Fig. 2 (b).

IOVTee supports two modes for the Rx-path, Bridge and
Pass-through. The bridge mode is useful when pre-processing
of the virtual switch is necessary, such as VXLAN decapsu-
lation. Such a pre-processing can be bypassed like SR-IOV in
the pass-through mode.

IV. IMPLEMENTATION

We explain details of internal IOVTee implementation in
this section. We added an IOVTee library (librte_iovtee) into
DPDK 19.11, and modified both vhost-user (librte_vhost) and
Mellanox ConnectX-5 driver (mlx5) of the DPDK frame-
work. We have totally revised the previous implementation of
IOVTee [21] for further optimization and support of Packed
Virtqueue, though we keep its conceptual design.

A. Internals of Vhost-User

Before looking into IOVTee internals, we explain the inside
of vhost-user to clarify how IOVTee takes advantage of its
mechanism while keeping the system interface. Figure 3 shows
system internals of an NFV-node with vhost-user (a) and
with vhost-user/IOVTee (b). Vhost-user consists of two parts,
VRings (Virtqueues) and a vhost-user protocol. VRings are
one-way ring buffers for data plane communications between
the host (vSwitch) and the guest (CNF/VNF), and are pro-
vided on a shared memory region offered by the guest for
allowing the host to access them. The vhost-user protocol is
used for control plane communications to share configurations
of VRings between them at startup.2

A VRing (Split Virtqueue) is specifically composed of three
ring buffers, avail, used, and desc as shown in Fig. 4 (default
ring size is 256). Each entry of desc points to a virtual memory

2We use the term “vhost-user” to refer to data plane communication via
VRings in this article.

Fig. 4. Three internal rings of the VRing (Virtqueue). (The CNF/VNF has
provided 256 empty packet buffers and the vSwitch has sent 16 packets toward
the CNF/VNF).

address of a packet buffer in the guest region and contains
its size too. The producer (vSwitch) checks the avail ring to
know available desc entries for enqueuing packets. Likewise,
the consumer (CNF/VNF) checks the used ring to know avail-
able desc entries for dequeuing packets. The three rings are
synthesized to a packed desc ring for Packed Virtqueue, aiming
at the enhancement of cache hit ratio.

B. Implementation of IOVTee

As shown in Fig. 3 (b), IOVTee redirects the pointers toward
empty packet buffers for DMA via PRing such that memory
addresses in the guest region3 are set as DMA destinations (Rx
Queue Mapping). This redirection enables received packets to
be directly stored in the shared memory region offered by the
guest, and both the vSwitch and the CNF/VNF handle same
packet buffers on the Rx-path (Virtual DMA Write-through).

3The host can orthodoxly get these memory addresses via avail and desc
rings of the VRing (Rx).

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 691

Fig. 5. Details of Rx Queue Mapping.

Fig. 6. Packet buffer usage (Rx path). (The same packet buffer is used
for i to vii)

Figure 5 illustrates the details of Rx Queue Mapping.
IOVTee works on the host side and looks into the VRing
(Rx) to acquire memory addresses of empty packet buffers
as DMA destination addresses. Physical NIC drivers includ-
ing mlx5 have a similar ring structure to VRing (e.g., wqe and
elts correspond to avail and desc respectively), and therefore,
IOVTee can logically one-to-one map each entry of PRing to
VRing. Then, IOVTee provides adequately transformed phys-
ical addresses of packet buffers (in the guest region) to each
entry of elts that contains a DMA destination address. As a
result, inbound packet data are directly stored into the packet
buffers.

Next, we explain how packet buffers are handled without
involving the packet copy on the Rx-path. Figure 6 depicts
a transition of a buffer content. A physically consecutive
memory buffer is created and supplied to VRing at the guest
side as a normal procedure of DPDK/vhost-user (i and ii).
IOVTee acquires the memory address of the buffer via the
VRing, and then provides its physical address to the PRing
(iii). A received packet is DMAed to the buffer (iv), and the
driver sets up an MBuf header of DPDK at the beginning of

Fig. 7. A call sequence of packet reception at the host.

the buffer. Note that the CNF/VNF does not notice the exis-
tence of packet data in the buffer because the used ring has
not been updated. The MBuf-formed packet buffer is passed to
the virtual switch as the result of the DPDK’s polling function,
and the switch can arbitrarily process the packet (v). Then, the
switch forwards the packet to the CNF/VNF under the context
of vhost-user (The used ring is updated) (vi). Here, memory
copy operations for packet data can be eliminated (zero-copy)
because source and destination addresses are the same. At last,
a virtio-net driver of the guest sets up an MBuf header and
the CNF/VNF can handle the packet (vii).

Figure 7 expresses a function call sequence of packet recep-
tion at the host. Suppose that the elts array has already
pointed to packet buffers in a container/VM. (1) the vir-
tual switch calls rte_eth_rx_burst function for polling
the Rx queue. (2) The device-dependent receive function
(mlx5_rx_burst) is invoked, and an MBuf header is
arranged for each packet data DMAed into memory region of
the guest. (3)(4) The newly added get_free_bufs func-
tion is called to obtain memory addresses of empty packet
buffers from the container/VM to fill the Rx queue of the
host for subsequent packet reception. The librte_iovtee library
works as a glue interface between mlx5 and librte_vhost. (5)
The received packets have already been stored in (previously
acquired) packet buffers, and are returned back to the caller
as a set of MBufs. (6) The virtual switch receives the
stuffed MBufs, and finally, informs CNFs/VNFs of packet
arrival using vhost-user (7). Phase 3 and 4 are the addi-
tional steps for mlx5_rx_burst, but the original acquiring
process of empty packet buffers in librte_vhost (for copy-
ing transferring packets) is bypassed instead. Therefore, our
implementation does not add extra processing overhead to the
Rx-path. We applied various optimization techniques for cache
utilization [47] to enhance the performance of our previous
implementation [21]. We evaluate the performance of our new
implementation of IOVTee in the next section.

C. Supporting Multiple NFs

There are two types of scenarios of involving multiple NFs,
independent and service functions chaining. In the former case,
the Rx queue (VRing) of each NF has to be mapped to a differ-
ent Rx queue (PRing) because our Rx Queue Mapping requires

692 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 8. Evaluation environment.

exclusive one-to-one association. As a result, performance of
each PVP datapath does not affect each other. For common
service function chaining, the additional vhost-user communi-
cations can decrease throughput even though one packet copy
is to be avoided.4 The SNF-based approach is more preferable
for extremely high-performance service functions chaining
with IOVTee because additional vhost-user communications
are avoided.

Receive Side Scaling (RSS) and multi-queue features will
be used in real situation to fully use hardware resources. In
the nature of DPDK, increasing the number of queues results
in additions of datapaths in a Lock-Free Multi-Threading or
embarrassingly parallel way. IOVTee can be applied to each
datapath independently, and therefore, entire performance of
the NFV-node can scale out.

V. EVALUATION

In this section, we evaluate the effect of IOVTee on packet
forwarding performance of a standard NFV-node, with com-
paring to the original (copy-full) vhost-user implementation
in the PVP datapath. We performed two-round experiments to
analyze performance of both IOVTee’s zero-copy nature and
fundamental vhost-user’s communication mechanism. In the
first round, we investigated how Rx/Tx ring sizes affected the
forwarding efficiency. Our previous study [21] revealed that
the ring sizes have measurable impact on the performance.
Narrowing the range of the ring sizes is necessary before
precise performance analysis because four rings are involved
in the datapath (physical and virtual Rx/Tx rings. In the sec-
ond round, we precisely analyzed actual effect of zero-copy
at virtual network I/O and performance characteristics of split
and packed Virtqueues by unveiling CPU caching behaviors
during packet forwarding in the NFV-node.

Evaluation environment is shown in Fig. 8. We used
two physical servers that were back-to-back connected with
100 GbE links. The right-hand machine was a device under
test (DuT) where an IOVTee-supported containerized NF ran
on, and the other was a tester node where a traffic generator

4This mapping feature for an arbitrary pair of VRings is under development.

TABLE I
MACHINE SPECIFICATIONS

(MoonGen [48]) was executed on. Table I gives the machine
specification of the NFV-node (DuT). In the experiments,
MoonGen on the Tester node generated fixed-rate UDP traf-
fic (single flow) for 60 seconds, and average throughput of
the received traffic was derived. On the DuT node, the single
containerized NF was running, and the virtual switch in the
host forwarded incoming/outgoing packets to/from the con-
tainer. We adopted Testpmd [49], a DPDK sample application
that can be used as a lightweight packet forwarder, as both
the virtual switch and the NF to avoid becoming performance
bottleneck in the datapath.

Multiple PMD threads (exclusively assigned to different
CPU cores) were used to poll each queue each as shown
in Fig. 8. Specifically, the virtual switch created four PMD
threads (core 1-4) and the NF created two PMD threads (core
6-7), but only three PMD threads (core 1, 4, and 6) were
involved in the packet forwarding.5 IOVTee was applied to
the Rx-path corresponding to Port 0 in Bridge mode because
the switching overhead of Testpmd was negligible.

We summarize updates of the evaluation scenarios from the
previous ones [21] as follows:

• NF-forms was changed from VM to container
• Tx Ring sizes were also varied
• 1514-byte packets were also examined for ring size effect
• Effect of CPU caching was quantitatively analyzed
• Packed Virtqueue was evaluated
• OpenNetVM [17] was evaluated

A. Round-1: Determining Effective Range of Ring Sizes

In the first experiment, we evaluate a relationship between
throughput and sizes of four Rx/Tx rings to understand
effective sizes in performance for the later experiments. We

5The other three PMD threads (core 2, 3, and 7) kept empty polling during
the experiment.

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 693

Fig. 9. Rx Ring Sizes vs. Throughput (Packet size: 64 bytes).

TABLE II
EXAMINED RING SIZES

examined every combination of ring sizes in the experiment
as in Table II for both 64-byte and 1514-byte packet traffic.
The patterns of Tx ring sizes were fewer than that of Rx ring
sizes to prevent combinational explosion of the measurements.
This limitation does not affect the later experiments because
this experiment showed that proper Tx ring sizes can be easily
chosen regardless of implementations.

1) Results of 64-Byte Packet Traffic: We show the results of
the experiment for 64-byte packet traffic in Fig. 9. The three
figures of the left-hand side ((a), (c), and (e)) represent the
results of the default NFV-node using the original copy-full
vhost-user (packet copy occurred on both the Rx/Tx paths),
and the other side of figures ((b), (d), and (f)) show that of
IOVTee-enabled one (packet copy occurred on the Tx path
only). The upper figures ((a) and (b)) show the effect of vary-
ing Rx ring sizes on throughput with fixing the Tx ring sizes
(Physical: 256, Virtual: 256). The remaining figures represent
the effect in a similar way with different Tx ring sizes.

In terms of Original, its throughput is steady (about
14–15 Mpps) regardless of Rx ring sizes (Physical/Virtual)
and Tx ring size (Physical) as long as Tx ring size (Virtual)

694 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 10. Rx Ring Sizes vs. Throughput (Packet size: 1514 bytes).

is 256. More precisely, slightly higher throughput can be seen
when Rx ring size (Physical) is in a range of 64–1024 and
Virtual one is in a range of 512–8192. Surprisingly through-
put becomes totally lower (8–10 Mpps) when Tx ring size
(Virtual) is enlarged from 256 to 1024 as shown in (c).

On the other hand, IOVTee recorded higher performance
at every measurement point.6 In the figures (b) and (d), its
throughput is visibly higher (about 18–22 Mpps) than that of
Original, while IOVTee is more sensitive to Rx ring sizes.
Most effective Rx ring size (Physical) is in a range of 64–
1024 and Virtual one is in a range of 128–2048. The overall

6Throughputs were not measured (values were set to 0) when the following
condition was not satisfied due to the nature of IOVTee design:

Rx ring size (Physical) < Rx ring size (Virtual).

performance degradation can be seen like Original, when
Tx ring size (Virtual) is 1024. We will further discuss this
phenomenon to identify the cause in Section V-B3.

According to the results, we can understand the picture of
the effect of ring sizes on throughput as follows:

• Tx ring size (Physical) has little impact on performance.
• Increasing Tx ring size (Virtual) from 256 severely

degrades overall performance.
• Better performance can be gained when Rx ring size

(Physical) is in a range of 64-1024.
• Effective Rx ring size (Virtual) differs for each imple-

mentation.
Note that we omit the figures of the cases where Tx ring size
is 4096 for the space because we have gotten similar results
to the case where the ring size was 1024.

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 695

Fig. 11. Throughput of various combinations of Rx/Tx implementations.

2) Results of 1514-Byte Packet Traffic: Figure 10 show the
results of the effect of ring sizes on performance for 1514-byte
packet traffic. The results are presented in the same way as
in Fig. 9. For Original, its throughput is highly stable again
(about 1.8–2.1 Mpps) regardless of Rx ring sizes when Tx
ring size (Virtual) is 256. Enlarging the size of the virtual Tx
ring (1024) slightly enhances entire throughput (about 2.0–
2.9 Mpps) contrary to the previous experiment. In addition,
the effective range of Rx ring size (Virtual) is also enlarged
(4096–16384) from the result for 64-byte packet traffic.

IOVTee indicates much higher performance when Tx ring
size (Virtual) is 256 (about 5.0–6.1 Mpps), but unlike Original,
the performance enhancement due to the enlarged ring size
cannot be seen (about 4.6–5.9 Mpps). Effective range of Rx
ring size (Virtual) is 512–4096 which is also enlarged from
the previous result.

B. Round-2: Analyzing Performance Characteristics

In the next round, we analyze the fundamental performance
characteristics of vhost-user as well as the actual effect of
IOVTee on performance. Specifically, we analyze following
three concerns, (i) performance effect of IOVTee’s zero-
copy Rx-path and copy-full Tx-path, (ii) maximum gain of
zero-copying in vhost-user, and (iii) effect of cache-aware
implementation of Packed Virtqueue, in this evaluation. From
the following experiments, we set Tx ring sizes to 1024
(Physical) and 256 (Virtual) respectively if not specified.

1) Effect of Zero-Copy and Maximum Gain: In this exper-
iment, we evaluate the actual effect of zero-copy vhost-user
on performance with assessing the overhead of IOVTee. We
measured throughput of various patterns of Rx or Tx-path
implementations as described in Table III. Pattern (a) denotes
the original copy-full implementation of vhost-user and pattern
(e) denotes the case where IOVTee was enabled. In addition,
pattern (b), (c), (d), and (f) were examined to understand the
degree of packet copy overhead.7 We chose most effective
Rx ring sizes for each pattern in the experiment. Note that
the actual zero-copy feature of vhost-user for the Tx-path
(dequeue-zero-copy) was not examined unlike our previous

7Fake Zero Copy: Every rte_memcpy function for copying packet data
in vhost-user implementation is forcibly skipped (but actual length of each
packet was notified to the counterpart via the used ring), and therefore, packet
forwarding can be continued even though each packet data became dummy.

TABLE III
PACKET COPY PATTERNS

paper [21] because its implementation caused memory-related
errors for the examined version of mlx5 driver (v19.11).

Figure 11 shows throughput of each Rx/Tx pattern for both
64-byte and 1514-byte packet traffic. First, removing packet
copy in the Rx-path (Zero-Copy of IOVTee and Fake-Zero-
Copy) is demonstrably more effective than in the Tx-path,
which can be a proof of reasonableness of IOVTee. This char-
acteristic can be explained as follow. In the common PVP
datapath as illustrated in Fig. 8, the Rx-path of vhost-user
becomes the performance bottleneck and lots of received pack-
ets are actually dropped at the point. Hence, removing packet
copy in the Tx-path does not prevent these packets from being
dropped. The effect of zero-copy in the Tx-path appears when
the packet loss is alleviated in the Rx-path, and there can be
such situations; forwarding efficiency on the Rx-path is highly
improved (the case of IOVTee) or the number of incoming
packets is low (the case of 1514-byte packet traffic). Second,
Fake Zero Copy for the Rx-path (c) shows lower through-
put than that of IOVTee (e) for 64-byte packet traffic. This is
because not only our implementation of IOVTee does not add
extra packet processing cost, but also static mapping of the Rx
queues enables certain optimization of packet transfer in vhost-
user. Third, the effect of zero-copy on performance becomes
larger as increasing packet size. Finally, entirely removing
packet copy in both Rx/Tx paths (d) does not dramatically
boost up the throughput for 64-byte packet traffic. This implies
that manipulations of VRings involve measurable performance
overhead, and therefore, optimization of the way of virtqueue
handling is indispensable for further performance increase.

2) Effect of Cache-Aware Virtqueue Manipulations: Next,
we evaluate the effect of Packed Virtqueue on throughput with
varying packet sizes. We examined following packet sizes

696 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE IV
L1 CACHE MISS LATENCY [NS]

(64, 128, 256, 512, 1024, 1280, and 1514 bytes), and also
measured throughput of OpenNetVM [17] for comparison.
The result is presented in Fig. 12. Each of the three dotted
lines indicates maximum theoretical throughput for 10 GbE,
40 GbE, or 100 GbE respectively. The aqua-colored line with
no points (Baremetal) denotes fundamental packet forward-
ing efficiency of the virtual switch in our environment, and
the values are useful to estimate the performance overhead of
vhost-user. In terms of Default, the throughputs of both mod-
els surpassed the theoretical values of 10 GbE at any packet
size, and surprisingly using Packed Virtqueue pushed the max-
imum throughput up to 20 Mpps (for the traffic of 64-byte
packets). However, its cache-aware nature showed a negative
impact on throughput for larger packet sizes (256–). On the
other hand, Packed Virtqueue was effective for IOVTee at any
packet size, and the maximum throughput was 24.66 Mpps
when the packet size was 64 bytes. This difference (whether
the throughput is increased or decreased) implies that the
cache-aware implementation of Packed Virtqueue is negatively
sensitive to packet copy (memory copy). While IOVTee cer-
tainly reduces the performance overhead of vhost-user, there
is still much performance gap to that of Baremetal in regard to
short-packet traffic.8 Additional acceleration mechanisms like
packet aggregation [51] are needed to fill the gap, rather than
further optimize the way of virtqueue manipulations (Packed
Virtqueue has been continually optimized so far).

For OpenNetVM, the maximum throughput saturated around
9 Mpps for short packet traffic. Disabling a flow lookup
feature9 improved the performance to 13 Mpps, but opti-
mized OpenNetVM still underperformed Default (64-bytes).
However, OpenNetVM outperformed even IOVTee for larger
packet traffic due to the zero-copy effect on the Tx path.

3) Analyzing CPU Caching Behaviors: Finally, we analyze
caching behaviors of CPU (L1, L2, and L3 caches) during

8The maximum rate of Baremetal was 38.48 Mpps (64 bytes).
9Each received packet is matched against a flow table to determine the first

NF on the host side (default action), and this behavior can be disabled by
invalidating FLOW_LOOKUP macro.

Fig. 12. Effect of Packed Virtqueue on throughput.

packet forwarding on the PVP datapath to understand the
performance characteristics of IOVTee. We used Processor
Counter Monitor (PCM) [50] to measure cache-related val-
ues, such as L1-cache miss latency (penalty), the number of
L2 cache misses, and L3 cache hit ratio.

Table IV shows L1 cache miss latency. The thread SWR is
the PMD thread of the virtual switch (see Fig. 8). The thread
forwarded the received packets from port 0 to the container,
and SWT transferred the packets from the container to port 1.
NF routed the packets in the container. For the pattern (a), the
effect of L1 caching was enhanced by using Packed Virtqueue
for every thread. In addition, IOVTee obviously alleviated the
cache miss penalty compared to Default in each Virtqueue.
Increasing Rx ring size (Virtual) (b) slightly worsened the
cache usage, especially for NF. This indicates that iterating
the longer ring descriptors caused more frequent purging of
cache lines. Increasing Tx ring size (Virtual) (c) caused far
large penalty for every thread, and this was the cause of the
severe performance degradation mentioned in Section V-A.
Unlike packet reception, packet transferring involves memory
accesses to the ring descriptors twice, for enqueuing pack-
ets and for discarding packets. Since the later accesses occur
after a long time in a batched manner, smaller Tx ring is
preferable in terms of effective memory caching. For larger

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 697

TABLE V
THE NUMBER OF L2-CACHE MISSES (PER 1M PACKETS)

TABLE VI
L3-CACHE HIT RATIO

packet sizes (d)–(f), cache miss penalties were entirely heav-
ier because a lot more cache lines were purged during packet
copy. Default took the worst penalty when Packed Virtqueue
was used because of its cache-aware implementation, while
IOVTee mitigated the purging by avoiding packet copy in the
Rx-path.

Table V and VI show the number of L2 cache misses and
hit ratio of L3 cache, respectively. These results indicate again
that Packed Virtqueue was effective when the negative effect
of packet copy was minified, and therefore, IOVTee took better
advantage of the caching technology. Note that the hit ratio of
the NF thread for IOVTee was apparently lower in pattern (a),
because L1 and L2 caches worked well considering the much
higher throughput.

VI. RELATED WORK

In this section, we categorize related work that tack-
led performance enhancement of virtual network I/O into
software-based and hardware-based approaches.

A. Software-Based Approaches

1) Big Shared Packet Pool: This type of technology uses
packet buffers of the virtual switch as a big packet pool
accessed by CNFs/VNFs to achieve zero-copy at the vir-
tual network I/O for efficient service function chaining on
the same host. Multiple CNFs or VNFs can communicate
each other via the underlying virtual switch without involving
packet copy. NetVM [16] and OpenNetVM [17] are repre-
sentative DPDK-based frameworks for fast service function
chaining. They provide a custom NF manager (virtual switch)
and an NFLib library (dedicated virtual network driver for
NFs) for fine-grained trust-based packet routing among the
CNFs/VNFs. OVSPP [18] is an enhancement of Open vSwitch
(OVS-DPDK) [24] for carrier-grade service function chain-
ing in CORD [25] systems, and Soft Patch Panel (SPP) [26]
plays a key role in communications between the switch and
VNFs. SPP supports two types of modes for its virtual network
I/O, zero-copy based ring and traditional virtio-based vhost,

698 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

with a view to efficiency and compatibility. IVSHMEM [27]
is internally used for realizing the shared memory feature of
the ring mode.

A big shared packet pool eliminates packet copy at virtual
network I/O, and is especially effective for inter-NF commu-
nications on the same NFV-node. However, a custom-made
mechanism is necessary in both the host and the guests to
allow sharing the packet pool between each other. This forces
CNFs/VNFs to be host-aware and is undesirable for pub-
lic cloud environment where lots of users deploy their own
network functions on demand.

2) Others: There are other software-based approaches to
achieve zero-copy at virtual network I/O. ClickOS [28] real-
izes a Click [29] like service function chaining framework
for virtualized NFs based on the netmap packet I/O frame-
work [30] and the VALE switch [31]. Each NF is realized on
top of a thin Xen-compatible VM (ClickOS) for agile and flex-
ible chaining. Per-port ring buffers of the switch are mapped
to the VM space for optimizing Xen’s virtual network I/O, but
its performance is underrun copy-full vhost-user [32].

A fully software-based pass-through has been designed
using ptnetmap [33] or extended ptnet [34] on the netmap
framework (Netmap Passthrough). Netmap-ready applications
in guest VMs are allowed to directly access VALE ports
in the host kernel, which eliminates not only packet copy
between the host and the guests, but also extra overhead
involved in network device emulation. Such a queue mapping
approach realizes efficient packet forwarding at virtual packet
I/O (over 20 Mpps). While the notion of queue mapping is
similar with our IOVTee, our queue mapping is transparent to
both CNFs/VNFs and virtual switches thanks to the de-facto
standard virtio mechanism.

An RDMA-to-the-VM method has been adopted in
vSocket [35] to avoid packet copy in the Rx path.
Comprehensive vSocket framework has been provided to apply
the RDMA technology to virtualized applications in public
clouds, and they receive performance benefits of RDMA via
dedicated virtual packet I/O. However, adoption of wide-range
of custom system components is required in both the host and
the guests in addition to deployment of RDMA framework
in the substrate network. On the other hand, IOVTee has been
designed to fit into common NFV-nodes on Ethernet composed
of de-facto DPDK/vhost-user and variety of virtual switches
including OVS-DPDK as well as containerized or virtualized
NFs. Furthermore, IOVTee can be applied into the nodes with-
out modifying virtual switches or containers/VMs, thanks to
the unmodified vhost-user interface.

ZCopy-Vhost [36] adopts a page swapping technique to
achieve zero-copy at virtual packet I/O. Each packet is
stored and well-aligned in a dedicated 4 KB memory page,
and ZCopy-Vhost modifies Extended Page Table (EPT) to
internally swap the pages between the hypervisor and the
guests. ZCopy-Vhost requires modifications in both the host
including the virtual switch and the guests to hack page
handling, and such a swapping of huge number of pages
causes frequent TLB flushing and degrades packets-per-second
(pps) based throughput to about 4 Mpps, while the effect of
zero-copy appears for large packet sizes.

B. Hardware-Based Approaches

Modern CPUs and NICs support a hardware-level I/O vir-
tualization mechanism (e.g., Intel VT-d [37]), and SR-IOV
is the de-facto application of this technology. With SR-IOV,
VMs or containers are permitted to directly access the phys-
ical NIC in a safe way via dedicated virtual functions (VFs)
of the virtual NICs. As a result, the communications involv-
ing packet copy between the virtual switch and the NFs can
be avoided (Hardware Passthrough). However, several stud-
ies have reported that throughput of SR-IOV is lower than
that of wire-rate of 10 GbE (14.88 Mpps) for 64-byte pack-
ets [16], while the effect of packet copy avoidance appears
for large packets [21]. Moreover, evaluation results presented
in our past papers [7], [21] showed that its performance
was unstable and incomprehensible. Hardware pass-through
makes difficult of investigation of packet forwarding process
of NFV systems. Besides, VMs/containers have to be physical
NIC-aware, which causes service continuity problems when
they are lively migrated to another NFV-node. Netronome has
developed Express Virtio (XVIO) [38] that balances the pass-
through feature and VM mobility, but this implementation is
only available on their SmartNIC series now. PPAP (Packet
Processing Acceleration Platform) [39] uses FPGA to process
stateless functions (e.g., table lookup) of arbitrary VNFs, but
state-ful VNFs are not supported.

VII. CONCLUSION

Performance enhancement virtual packet I/O is a criti-
cal challenge to boost up packet forwarding efficiency of
software-based NFV-nodes consist of commodity servers and
containerized networking functions. Vhost-user is now the de-
facto virtual packet I/O mechanism, and various enhancement
has been applied to its implementation including cache-
aware Packed Virtqueue. However, vhost-user is still copy-
full and packet copy is a major performance concern for
performance of NFV-nodes. Various zero-copy/pass-through
techniques have been proposed so far; however, they have
pragmatic problems in that compatibility, manageability, and
degraded quality of performance. In this article, we have
proposed a yet another approach named IOVTee that resolves
above concerns with achieving remarkable performance. The
design/implementation of IOVTee can be characterized by
the fully software-based receive (Rx) queue mapping mech-
anism enabling virtual DMA write-through as explained in
Section III and IV. We have evaluated both the effect of both
IOVTee on performance and the fundamental performance
characteristics of vhost-user from various points of view.
The evaluation results have shown that IOVTee pushes up
throughput of the PVP datapath about 45% for 64-byte
packet traffic and 98% for 1514-byte packet traffic respec-
tively at maximum, compared to the original implementation
of vhost-user. For future work, we are planning to integrate an
NFV-oriented packet aggregation mechanism (PA-Flow [51])
to IOVTee for boosting up the performance of software-
based NFV-nodes. Further, porting the concept of IOVTee to
another virtual network I/O (e.g., io_uring [52]) is also under
consideration.

KAWASHIMA: SOFTWARE PHYSICAL/VIRTUAL Rx QUEUE MAPPING TOWARD HIGH-PERFORMANCE CONTAINERIZED NETWORKING 699

REFERENCES

[1] ETSI—NFV. Accessed: May 26, 2020. [Online]. Available: https://www.
etsi.org/technologies/nfv

[2] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[3] 5G-PPP Architecture Working Group. (Jul. 2016). View on 5G
Architecture, White Paper Version 1.0. Accessed: May 26, 2020.
[Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-
PPP-5G-Architecture-WP-July-2016.pdf

[4] Kubernetes. Accessed: May 26, 2020. [Online]. Available: https://
kubernetes.io/

[5] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
“Microservices: The journey so far and challenges ahead,” IEEE Softw.,
vol. 35, no. 3, pp. 24–35, May/Jun. 2018.

[6] 5G-PPP Software Network Working Group. (Jul. 2018). From Webscale
to Telco, the Cloud Native Journey, White Paper, Version 1.0.
Accessed: May 26, 2020. [Online]. Available: https://5g-ppp.eu/wp-
content/uploads/2018/07/5GPPP-Software-Network-WG-White-Paper-
23052018-V5.pdf

[7] R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo, “Evaluation
of forwarding efficiency in NFV-nodes toward predictable service
chain performance,” IEEE Trans. Netw. Service Manag., vol. 14, no. 4,
pp. 920–933, Dec. 2017.

[8] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and
J. Roberts, “Comparing the performance of state-of-the-art software
switches for NFV,” in Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), Orlando, FL, USA, Dec. 2019, pp. 68–81.

[9] R. Leira, G. J.-Moreno, I. González, F. J. Gómez-Arribas, and
J. E. López de Vergara, “Performance assessment of 40 Gbit/s off-the-
shelf network cards for virtual network probes in 5G networks,” Comput.
Netw., vol. 152, pp. 133–143, Apr. 2019.

[10] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proc. 12th USENIX Symp.
Oper. Syst. Design Implement. (OSDI), Savannah, GA, USA, Nov. 2016,
pp. 203–216.

[11] Intel Open Network Platform Server Release 1.5 Performance Test
Report, Intel, Santa Clara, CA, USA, Oct. 2015.

[12] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[13] P4. Accessed: May 26, 2020. [Online]. Available: https://p4.org/
[14] Open Compute Project. Accessed: May 26, 2020. [Online]. Available:

https://www.opencompute.org/
[15] DPDK. Accessed: May 26, 2020. [Online]. Available: https://www.

dpdk.org/
[16] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High

performance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manag., vol. 12, no. 1,
pp. 34–47, Mar. 2015.

[17] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. ACM SIGCOMM Workshop Hot Topics
Middleboxes Netw. Funct. Virtualization (HotMiddlebox), Florianópolis,
Brazil, Aug. 2016, pp. 26–31.

[18] T. Trinh and D. Hara, OVSPP: Hybrid Enhanced vSwitch for
CORD-Based Telco SFC, ONF Connect, Santa Clara, CA, USA,
2019. Accessed: May 26, 2020. [Online]. Available: https://www.
opennetworking.org/wp-content/uploads/2019/09/2.30pm-Tri-Trinh-and
-Daisuke-Hara-OVSPP-Hybrid-Enhanced-vSwitch-for-CORD-Based-
Telco-SFC.pdf

[19] PCI-SIG. (Jan. 2010). Single Root I/O Virtualization and Sharing
Specification Revision 1.1. Accessed: May 26, 2020. [Online].
Available: https://pcisig.com/single-root-io-virtualization-and-sharing-
specification-revision-11

[20] AMD. (Dec. 2016). AMD I/O Virtualization Technology (IOMMU)
Specification. Accessed: May 26, 2020. [Online]. Available: http://
developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf

[21] R. Kawashima and H. Matsuo, “IOVTee: A fast and pragmatic software-
based zero-copy/pass-through mechanism for NFV-nodes,” in Proc. 4th
IEEE Conf. Netw. Funct. Virtualization Softw. Defined Netw. (NFV-SDN),
Verona, Italy, Nov. 2018, pp. 1–6.

[22] Vhost-User Feature for QEMU. Accessed: May 26, 2020. [Online].
Available: http://www.virtualopensystems.com/en/solutions/guides/
snabbswitch-qemu/

[23] OASIS. (Apr. 2019). Virtual I/O Device (VIRTIO) Version 1.1,
Committee Specification. Accessed: May 26, 2020. [Online]. Available:
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.pdf

[24] Open vSwitch. Accessed: May 26, 2020. [Online]. Available:
http://www.openvswitch.org/

[25] L. Peterson , “Central office re-architected as a data center,” IEEE
Commun. Mag., vol. 54, no. 10, pp. 96–101, Oct. 2016.

[26] T. Nakamura, Y. Ogawa, N. Takada, and H. Nakamura, “MAGONIA
(Soft Patch Panel): High-speed inter-function technique,” NTT Tech.
Rev., vol. 14, no. 10, pp. 1–4, 2016.

[27] QEMU. Accessed: May 26, 2020. [Online]. Available: https://github.
com/qemu/qemu/blob/master/docs/specs/ivshmem-spec.txt

[28] J. Martins et al., “ClickOS and the art of network function virtual-
ization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), Seattle, WA, USA, Apr. 2014, pp. 459–473.

[29] E. Kohler, R. T. Morris, B. Chen, J. Jannotti, and F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[30] L. Rizzo, M. Carbone, and G. Gatalli, “Transparent acceleration of soft-
ware packet forwarding using netmap,” in Proc. IEEE INFOCOM, 2012,
pp. 2471–2479.

[31] L. Rizzo and G. Lettieri, “VALE, a switched Ethernet for vir-
tual machines,” in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), 2012, pp. 61–72.

[32] Z. Niu, X. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li, “Unveiling
performance of NFV software dataplanes,” in Proc. 2nd Workshop Cloud
Assist. Netw. (CAN), Incheon, Republic of Korea, Dec. 2017, pp. 13–18.

[33] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine
networking using netmap passthrough,” in Proc. 23rd IEEE Int. Symp.
Local Metropolitan Area Netw. (LANMAN), Osaka, Japan, Jun. 2016,
pp. 1–6.

[34] S. Garzarella, G. Lettieri, and L. Rizzo, “Virtual device passthrough for
high speed VM networking,” in Proc. ACM/IEEE Symp. Archit. Netw.
Commun. Syst. (ANCS), Oakland, CA, USA, May 2015, pp. 99–110.

[35] D. Wang, B. Fu, G. Lu, K. Tan, and B. Hua, “vSocket: Virtual
socket interface for RDMA in public clouds,” in Proc. 15th ACM
SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. (VEE),
Providence, RI, USA, Apr. 2019, pp. 179–192.

[36] D. Wang and B. Hua, “ZCopy-Vhost: Replacing data copy with page
remapping in virtual packet I/O,” IEEE Access, vol. 7, pp. 51047–51057,
2019.

[37] Intel. (Jun. 2016). Intel Virtualization Technology for Directed I/O.
[Online]. Available: http://www.intel.com/content/dam/www/public/us/
en/documents/product-specifications/vt-directed-io-spec.pdf

[38] Express Virtio (XVIO) Technology. Accessed: May 26, 2020. [Online].
Available: https://www.netronome.com/solutions/xvio/overview/

[39] T. Lan, Q. Han, H. Fan, and J. Lan, “FPGA-based packets processing
acceleration platform for VNF,” in Proc. 8th IEEE Int. Conf. Softw. Eng.
Service Sci. (ICSESS), Beijing, China, Nov. 2017, pp. 314–317.

[40] OPNFV. Accessed: May 26, 2020. [Online]. Available: https://www.
opnfv.org/

[41] S. Natarajan, R. Krishnan, A. Ghanwani, D. Krishnaswamy, P. Willis,
and A. Chaudhary, “An analysis of container-based platforms for NFV,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft IETF-94
NFVRG, Nov. 2015. Accessed: May 26, 2020. [Online]. Available:
https://www.ietf.org/proceedings/94/slides/slides-94-nfvrg-11.pdf

[42] J. Tan, C. Liang et al., “VIRTIO-USER: A new versatile channel for
kernel-bypass networks,” in Proc. ACM SIGCOMM Workshop Kernel
Bypass Netw. (KBNets), Los Angeles, CA, USA, Aug. 2017, pp. 13–18.

[43] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Dept. Electr.
Eng. Comput. Sci., Univ. California, Berkeley, CA, USA, Rep.
UCB/EECS-2015-155, 2015. Accessed: May 26, 2020. [Online].
Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-155.html

[44] Y. Nakajima, T. Hibi, H. Takahashi, H. Masutani, K. Shimano, and
M. Fukui, Scalable, High-Performance, Elastic Software OpenFlow
Switch in Userspace for Wide-Area Network, Open Networking Summit
(ONS), Santa Clara, CA, USA, Mar. 2014.

[45] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. Maguire,
Jr., “Metron: NFV service chains at the true speed of the underlying
hardware,” in Proc. 15th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), Renton, WA, USA, Apr. 2018, pp. 171–186.

700 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

[46] G. P. Katsikas, M. Enguehard, M. Kuźniar, G. Q. Maguire, and
D. Kostić, “SNF: Synthesizing high performance NFV service chains,”
PeerJ Comput. Sci., vol. 2, p. e98, Nov. 2016.

[47] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, and
D. Rossi, “High-speed software data plane via vectorized packet pro-
cessing,” IEEE Commun. Mag., vol. 56, no. 12, pp. 97–103, Dec. 2018.

[48] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. ACM
Conf. Internet Meas. Conf. (IMC), 2015, pp. 275–287.

[49] Testpmd Application User Guide. Accessed: May 26, 2020. [Online].
Available: https://doc.dpdk.org/guides/testpmd_app_ug/index.html

[50] Processor Counter Monitor. Accessed: May 26, 2020. [Online].
Available: https://github.com/opcm/pcm

[51] Y. Taguchi, R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo,
“Fast datapath processing based on hop-by-hop packet aggregation for
service function chaining,” IEICE Trans. Inf. Syst., vol. E102-D, no. 11,
pp. 2184–2194, 2019.

[52] Efficient IO with io_uring. Accessed: Oct. 28, 2020. [Online]. Available:
https://kernel.dk/io_uring.pdf

Ryota Kawashima (Member, IEEE) was born in
1983. He received the M.S. degree from Iwate
Prefectural University in 2007, and the Ph.D.
degree from the Graduate University for Advanced
Studies (SOKENDAI) in 2010. He has worked as a
Software Engineer with ACCESS Company Ltd. and
Stratosphere, Inc. He became an Assistant Professor
with the Nagoya Institute of Technology in 2013,
and an Associate Professor in 2020. His research
interest is high-performance system softwares for
SDN and NFV. He received the Best Paper Awards

for 2016 IEICE Communications Society and IEEE NFV-SDN 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

