
1

PA-Cache: Evolving Learning-Based
Popularity-Aware Content Caching

in Edge Networks
Qilin Fan, Member, IEEE, Xiuhua Li, Member, IEEE, Jian Li, Member, IEEE,

Qiang He, Senior Member, IEEE, Kai Wang, Member, IEEE, and Junhao Wen

Abstract—As ubiquitous and personalized services are growing
boomingly, an increasingly large amount of traffic is generated
over the network by massive mobile devices. As a result, content
caching is gradually extending to network edges to provide
low-latency services, improve quality of service, and reduce
redundant data traffic. Compared to the conventional content
delivery networks, caches in edge networks with smaller sizes
usually have to accommodate more bursty requests. In this
paper, we propose an evolving learning-based content caching
policy, named PA-Cache in edge networks. It adaptively learns
time-varying content popularity and determines which contents
should be replaced when the cache is full. Unlike conventional
deep neural networks (DNNs), which learn a fine-tuned but
possibly outdated or biased prediction model using the entire
training dataset with high computational complexity, PA-Cache
weighs a large set of content features and trains the multi-
layer recurrent neural network from shallow to deeper when
more requests arrive over time. We extensively evaluate the
performance of our proposed PA-Cache on real-world traces
from a large online video-on-demand service provider. The
results show that PA-Cache outperforms existing popular caching
algorithms and approximates the optimal algorithm with only a
3.8% performance gap when the cache percentage is 1.0%. PA-
Cache also significantly reduces the computational cost compared
to conventional DNN-based approaches.

Index Terms—Edge Caching, Popularity Prediction, Deep
Learning, Quality of Service.

This work is supported in part by National NSFC under Grant No. 61902044
and 61672117, National Key R & D Program of China under Grant No.
2018YFF0214700 and 2018YFB2100100, Chongqing Research Program of
Basic Research and Frontier Technology under Grant No. cstc2019jcyj-
msxmX0589 and cstc2018jcyjAX0340, Key Research Program of Chongqing
under Grant No. CSTC2017jcyjBX0025 and CSTC2019jscx-zdztzxX0031, and
the Fundamental Research Funds for the Central Universities under Grant No.
2018CDXYRJ0030 and 2020CDJQY-A022. (Corresponding author: Xiuhua
Li.)

Q. Fan, X. Li and J. Wen are with Key Laboratory of Dependable Service
Computing in Cyber Physical Society of Ministry of Education, Chongqing
University, Chongqing 401331, China, with State Key Laboratory of Power
Transmission Equipment and System Security and New Technology, Chongqing
University, Chongqing 401331, China, and with the School of Big Data &
Software Engineering, Chongqing University, Chongqing 401331, China (e-
mail: fanqilin@cqu.edu.cn; lixiuhua1988@gmail.com; jhwen@cqu.edu.cn).

J. Li is with the Department of Electrical and Computer Engineering,
Binghamton University, State University of New York, Binghamton, NY 13902,
USA (e-mail: lij@binghamton.edu).

Q. He is with School of Software and Electrical Engineering, Swinburne Uni-
versity of Technology, Melbourne, 3122, Australia (e-mail: qhe@swin.edu.au).

K. Wang is with School of Computer Science and Technology, Harbin
Institute of Technology, Weihai 264209, China, and with Research Institute of
Cyberspace Security, Harbin Institute of Technology, Weihai 264209, China
(e-mail: dr.wangkai@hit.edu.cn).

I. INTRODUCTION

Today’s Internet has seen an explosion of mobile data traffic
in data-consuming application services such as mobile video
services requested from a wide variety of mobile devices [1].
According to the Cisco VNI report [2], the overall average
mobile traffic will increase at a compound annual growth
rate of 46% between 2017 and 2022, and it is estimated
that video traffic will account for about 80% of the global
mobile data traffic. To enable ubiquitous mobile video services,
cloud computing has been widely acknowledged and deployed
as it can provide adequate computing and storage resources.
However, with the sky-rocketing network traffic load and more
stringent requirements of users, cloud-based mobile video
services are facing new challenges such as large transmission
latency and limited bandwidth resources.

To tackle the above challenges, edge computing has emerged
as a new and evolving paradigm to accommodate future mobile
video services, which provides computing and caching services
close to end-users at the network edges [3], [4]. In particular,
the deployment of edge caching can minimize the redundant
data traffic, thereby leading to a significant reduction in service
latency and elimination in bandwidth wastage.

Edge caching strategy attempts to learn the pattern of content
requests in some fashions [5], ensuring the availability of
contents as high as possible in the cache nodes (e.g., base
stations (BSs) and edge routers). Generally, the requested
content is searched for in a cache node. If it is unavailable,
a miss occurs, and the requested content is fetched from
an upstream server (typically with higher latency and more
expensive transmission cost). The content is then stored in
the cache node and finally transmitted to the user. Besides,
compared to the total size of contents, the capacity of cache
nodes is usually limited and much smaller. If the new content
is required to be cached when the cache is full, several cached
contents may have to be evicted. Therefore, caching algorithms
can also be described by the employed eviction strategy. When
caching contents at network edges, user requests for the same
content will be locally served. This can effectively reduce the
redundant data traffic and greatly improve the quality of service
[6].

Compared to the conventional content delivery networks
(CDNs), edge caching has its unique characteristics [7], [8]:
(i) Limited resources. The cloud usually has a large number
of diverse resources. However, the edge cache with limited

ar
X

iv
:2

00
2.

08
80

5v
2 

 [
cs

.N
I]

  1
0 

D
ec

 2
02

0



2

computing and storage resources enables only a small fraction
of contents to be cached and low-complexity tasks to be
executed; and (ii) Bursty requests. The requests from edge
networks usually vary a lot over time.

Nowadays, most caching system still utilize recency-based
[9], frequency-based [10], size-based [11], or combinations of
them. The limitation is that they might work well for some
access patterns but poorly for others. Recently, learning-based
caching algorithms have been proposed either to determine
which contents should be evicted when the cache is full or
decide whether or not to admit a content upon a request by
learning content popularity. However, the content requests of
edge networks are time-varying and bursty. On the one hand,
it is difficult for shallow machine learning models to capture
complex patterns. On the other hand, by using the entire training
dataset, conventional deep neural networks (DNNs) would
learn a fine-tuned but possibly outdated or biased prediction
model with high computation complexity, making is difficult to
support the application at edge caches with limited computing
capability.

In this paper, we propose a novel popularity-aware content
caching policy, namely PA-Cache, in edge networks. Different
from previous approaches, PA-Cache weighs a large set of
content features to learn the time-varying content popularity
adaptively. Furthermore, to overcome the high computational
cost of conventional DNN, PA-Cache takes advantage of a
shallow network with fast convergence at the beginning, and
then the powerful representation of DNN when more requests
arrive over time. In this way, PA-Cache achieves high scalability
and high computation efficiency. The contributions of this paper
can be summarized as follows:

• We investigate the issue of popularity-aware content
caching and design modules and operations of popularity-
aware cache nodes in edge networks. We apply a learning-
based approach to tackle this problem.

• We amend the multi-layer recurrent neural network (RNN)
architecture by attaching every hidden layer representation
to an output regression to predict the temporal content
popularity. We utilize a hedge strategy, which enables
adaptive training of DNN in an evolving setting. The
popularity-aware cache node makes appropriate cache
replacement decisions to maximize the long-term cache
hit rate based on the estimated popularity.

• We conduct extensive experiments on a real-world dataset
derived from iQiYi, which is the largest online video-
on-demand (VoD) service provider in China. Trace-
driven evaluation results demonstrate the effectiveness and
superiority of PA-Cache over several candidate algorithms.

The rest of this paper is organized as follows. The related
work is briefly introduced in Section II. Section III provides a
system overview. Section IV gives a formal description of the
cache replacement problem. Section V presents the design of
PA-Cache algorithm in detail. In Section VI, the performance
of our proposed algorithm by trace-driven experiments is
evaluated. Section VII concludes this paper.

II. RELATED WORK

Content caching algorithms have been studied for many
decades. Existing work can be divided into the following two
main branches.

A. Rule-Based Algorithms

The first branch is named rule-based algorithms. These cache
eviction algorithms rely on one of the most widely used features
(i.e., recency, frequency and size) or their combinations. LRU-K
[12] is a combination of least recently user (LRU) [9] and least
frequently used (LFU) [10], in which the cache remembers the
time of last K occurrences instead of the last occurrence for
each content. ARC [13] adaptively divided the cache space into
two segments and maintains contents that have been referenced
exactly once and at least twice, respectively. S4LRU [14]
partitioned the cache into four lists, and each list was an LRU
queue. Vietri et al. [15] proposed a LeCaR algorithm which
managed two histories (i.e., recency and frequency) of metadata
for each cache entry, and their weights were adaptively updated
by regret minimization. Bahn et al. [16] evaluated the content
based on its past accesses to estimate the likelihood of re-
access, defined a least-unified value metric and normalizes it
by the cost per unit size. Berger et al. [17] formulated the
caching as a min-cost flow problem when considering variable
content sizes.

To evaluate the performance of classic cache eviction
algorithms, Martina et al. [18] proposed a unified and flexible
approach by extending and generalizing a fairly decoupling
principle (the so-called Che’s approximation [19]). These
algorithms follow heuristic rules and are easy to implement.
However, most of the analysis was derived under an indepen-
dent reference model, assuming that content popularity follows
a fixed Zipf law [20], i.e., pi ∝ i−α, α > 0, where pi refers
to the request probability of i-th most popular content. The
performance of a cache eviction algorithm under synthetic
data traces is found to be quite different from that under real
data traces [21]. Therefore, these algorithms might hardly
accommodate the dynamic content access pattern in edge
networks.

B. Machine Learning-Based Algorithms

The second branch relies on machine learning algorithms to
optimize the content caching strategy. This branch is further
subdivided into two categories.

The first category investigates the use of “model-free”
reinforcement learning (RL) in which the system starts without
any prior assumption about the traffic pattern to converge
towards the optimal caching strategy [22]–[28]. Such system
learns to make decisions from experience through interactions
with the environment, in which good actions are enhanced via
a reward function. Kirilin et al. [23] trained a feedforward
neural network (FNN) using a Monte Carlo method, which
computed the admission probability to maximize the cache
hit rate. Sadeghi et al. [24] developed a two-timescale deep
Q-network approach in a hierarchical cache network to learn
an online caching policy. Wang et al. [25] formulated the



3

content caching procedure as a Markov decision process and
utilized double deep Q-network which stabilized the learning
in discrete huge spaces for training the caching process. Fan et
al. [26] leveraged the benefits of the RNN as well as the Deep
Q-Network to maximize the cache efficiency by jointly learning
request features, caching space dynamics, and making decisions.
Guan et al. [27] designed a content-aware cache admission
strategy. It consists of a tree-structured learning model for
mining the critical features and a UCB-tree algorithm for
making cache admission decisions dynamically. Yan et al. [28]
leveraged RL and Belady to learn content popularity for both
content admission and content eviction. However, RL-based
algorithms require a tremendous number of learning samples
and suffer from large-delayed rewards (cache hits). This can
result in slow reaction times in highly dynamic environments
[29]. Furthermore, as RL-based algorithms are quite sensitive
to hyperparameters and random seeds, it is difficult to configure
and maintain these algorithms [30].

The second category utilizes supervised learning, which
learns key attribute features in requests and predicts the
popularity or arrival times of contents to facilitate efficient
caching [31]–[34]. Fedchenko et al. [31] employed FNN
to predict content popularity and made caching decisions
accordingly. Pang et al. [32] utilized deep long short-term
memory (LSTM) to calculate the probability for each content
to arrive. Song et al. [33] explored gradient boosting machine
model to predict log (time-to-next-request). Chen et al. [34]
designed a DNN-based popularity evolving model to estimate
the near future popularity of IoT data. However, on the one
hand, shallow machine learning models would be difficult
to learn complex patterns. On the other hand, by using the
entire training dataset, conventional DNNs would learn a
fine-tuned but possibly outdated or biased prediction model
with high computation complexity. Only a few papers [35],
[36] proposed to use online learning-based algorithms as an
adaptation method to predict content popularity by clustering
the contents according to their similarities of access patterns.
However, the selection of hand-crafted features has a significant
impact on its performance gain. Moreover, the prediction model,
which is essentially based on the sample average approximation
method, is still shallow.

III. SYSTEM OVERVIEW

In this section, we firstly introduce the cache node structure
in the considered edge network. Then, we describe the main
operations of the edge node.

A. Cache Node Structure

The edge caching service is implemented and provided
collectively by multiple cache nodes. Fig. 1 illustrates the
modules of a considered popularity-aware cache node in
an edge network. It provides both storage and computation
capacity for caching service. As high-performance CPUs
and GPUs are enabled (e.g., NVIDIA Jetson TX211), deep
learning tasks can be processed in the cache node. Typically, a

1https://developer.nvidia.com/embedded-computing

Transmission

Feature
Database

Deep Neural
Network

Popularity
Database

Feature
Updater

Learning
Handler

Decision
Interface

Request
Processor

User
Interface

Content
Fetcher

Trigger

Cache
Manager

Local 
Cache

Upstream
Server

Update

Learn

Query

Fig. 1. Modules and operations of a single popularity-aware cache node in
an edge network.

cache node contains basic models: Request Processor, Cache
Manager, User Interface, Content Fetcher, Local Cache. A
popularity-aware cache node also integrates with Feature
Updater, Learning Handler, Decision Interface, two databases
(i.e., Feature Database, Popularity Database), as well as a
Deep Neural Network to enable popularity awareness.

1) The Feature Updater module updates features from raw
data of content requests, including contextual features (e.g., the
number of video requests) and semantic features (e.g., video
type) of content, and storing them in the Feature Database
with a unified format.

2) The Learning Handler module trains a Deep Neural
Network to predict content popularity in the next time step
from the data in Feature Database.

3) The Decision Interface module determines which cached
content should be evicted when a cache miss is declared.

B. Operations

The main operations of a popularity-aware cache node consist
of three procedures:

1) Update. The Request Processor receives a request and
initiates an update operation based on the metadata of the
received request. Then, the Feature Updater keeps track of the
raw data, extracts the latest features, and writes them to the
Feature Database.

2) Learn. The Request Processor periodically triggers a
Learning Handler to learn a prediction model every φ hours.
Parameter φ requires a proper selection for balancing the high
accuracy against the low computational cost for the prediction
model. The Learning Handler extracts the raw features and
ground-truth popularity from the Feature Database. Then, it
takes the normalized features together with the ground-truth
popularity as the input to train a Deep Neural Network in an
evolving manner. The predicted content popularity calculated by
Deep Neural Network is recorded in the Popularity Database.

3) Query. The Cache Manager examines if the requested
content is in the Local Cache. When it is locally available, the
Content Fetcher fetches the content from the Local Cache and



4

serves the user. Otherwise, the Cache Manager sends a query
to the Decision Interface that determines which cached content
should be evicted according to Popularity Database and get its
response. The Cache Manager evicts the least popular content
and notifies the Content Fetcher to fetch the requested content
from the Upstream Server, store it in the Local Cache and
serve the user.

IV. PROBLEM STATEMENT

In this paper, let C = {1, 2, . . . , C} denote a given set of
contents that are distributed to multiple end-users associated
with the cache node. Since many replication strategies in
the VoD system fragment the contents into equally sized
chunks [37], we assume that all contents are unit-sized. It
reduces the complexities and inefficiencies of continually
allocating and de-allocating storage space to contents with
non-uniform sizes. However, our work could also be extended
to the arbitrary sizes considering popularity per unit size at
the eviction phase like previous works [16], [38]. Let the
cache capacity be s, that is, the cache node can accommodate
up to s contents. The sequence of requests for content is
denoted as K = {1, 2, . . . ,K}. Each request k ∈ K in this
sequence is composed of three elements: the requested content
ck, the timestamp tk and the d-dimensional feature vector of
the requested content fk.

For each request k, we have to examine whether it
can be served by the cache. For this purpose, let Zk =
[Z1
k , Z

2
k , . . . , Z

C
k ] be the indication vector of cache status at

time tk, where Zck ∈ {0, 1} is an indicator of whether content c
is in the cache or not (i.e., Zck = 1 indicates that c is available
in the local cache and current request can be served, and 0
otherwise.)

When content ck is hit in the cache, the cache status vector
stays the same: Zk+1 = Zk. Otherwise, when content ck
suffers from a miss, the cache node will retrieve it from a
specific upstream server according to the traffic assignment
criteria [39]. In this situation, the cache node will remove
an old content cevict to make room for the new content ck.
Formally, the cache state transition can be modelled as follows:

Zck+1 =

 0, c = cevict,
1, c = ck,
Zck, otherwise.

(1)

Whenever a request k arrives, a caching policy π maps the
current cache status vector Zk, the requested content ck and
the feature vector of the requested content fk to the new cache
status vector Zk+1. The cache status vector can be updated
based on π as follows:

Zk+1 = π(Zk|ck,fk). (2)

We use the term Hπ(K) as a cache hit rate metric to evaluate
the efficiency of the caching system. It is defined as the ratio
of requests that are served from the local cache to K requests,
which is given by:

Hπ(K) =
1

K

∑
k

Zckk . (3)

TABLE I
DETAILED FEATURES

Category Feature

contextual feature
access times in previous time step
age = current time - publish time

semantic feature

type
length
area
language
score
number of comments
director
performer

Furthermore, Hπ is introduced to represent the long-term
average cache hit rate when the number of requests goes to
infinity over time by adopting caching policy π, which is
written as:

Hπ = lim
K→∞

Hπ(K). (4)

In the considered edge network, our objective is to maximize
Hπ based on the constraint of cache capacity, and then find a
policy π for generating a series of popularity-aware replacement
actions. Consequently, the corresponding problem can be
formulated as:

max
π

Hπ (5)

s.t.
∑
c

Zck ≤ s, ∀k, (6)

Zck ∈ {0, 1} , ∀k, ∀c. (7)

V. PA-CACHE ALGORITHM DESIGN

In this section, we present the PA-Cache, a popularity-
aware content caching approach that makes appropriate cache
replacement decisions to maximize the long-term cache hit rate
based on the estimated popularity. We begin by introducing
the basic idea of the optimal replacement policy. We then
present a deep learning-based approach for predicting the
content popularity. Finally, we describe how the PA-Cache
makes online replacement decisions.

A. Basic Idea

Van Roy et al. [40] presented a proof showing that the
replacement policy, named MIN [41] proposed by Belady is an
optimal policy of the above problem. The MIN policy replaces
the content in the cache, which has the longest time to be
visited next time. As the future information is required in
advance, it is an idealistic algorithm which is unimplementable
in a real system. However, Belady’s MIN algorithm gives a
performance upper bound for content caching algorithms.

It is a challenging task to imitate the MIN algorithm using
learning-based approaches directly. To pick out the content
whose next request time is farthest in the future, learning-based
approaches are required to predict the next request time of all
contents in the cache precisely. Besides, running a predictor



5

for all contents in the cache upon each request will consume
significant computing resources and time.

Therefore, in this paper, we aim to approximate the MIN
algorithm by predicting content popularity within a specific time
interval/step to address the aforementioned issues. We propose
a popularity-aware content caching algorithm, named PA-
Cache, which consists of two phases: offline content popularity
prediction (in Section V-B) and online replacement decision
(in Section V-C).

B. Offline Content Popularity Prediction

As motivated earlier, we consider an evolving prediction
task. The time period is partitioned into consecutive time steps
indexed by t = 1, . . . , T . Our goal of evolving deep learning is
to learn a function F : Rm×d → Rm based on a sequence of
training samples D = {(x1,y1), . . . , (xt,yt), . . . , (xT ,yT )},
that arrive sequentially, where xt ∈ Rm×d represents the input
features at time step t, m is the number of instances, and d is
the feature dimension. (xit, y

i
t) is the ith sample at time step t.

The corresponding ground-truth content popularity is denoted
as yt ∈ Rm while the predicted content popularity is denoted
as ŷt ∈ Rm. The performance of learnt model is evaluated
in terms of the cumulative prediction error of m mini-batch
instances.

1) Feature Selection: We consider two main types of
features: the contextual features that would be time-varying;
and the semantic features that are invariant with time. The
detailed features are given in Table I. As the categorical features
such as type and language are non-numeric features, which
would not have a natural rank-ordering, we transform them
into one-hot coding vectors, which is widely utilized in word
embedding area [42]. Furthermore, as the numeric features
(e.g., access times in previous time step, length) might have
a wide range of values, their values are normalized into the
range of [0, 1].

2) Evolving Deep Learning Model: Given an input xt,
the content popularity prediction task can be conducted by a
conventional multi-layer recurrent neural network (RNN) with
L hidden layers. However, using such a model for evolving
learning faces several challenges [43]: (i) Model selection. The
network depth must be fixed in advance and cannot be changed.
However, selecting an appropriate depth is a daunting task,
especially in an evolving environment. For a small number of
instances, a shallow network would be preferred as it converges
quickly, while for a large number of instances, a deep network
would be better at generalization and accurate prediction; (ii)
Convergence. Critical issues of deep architecture consist of
exploding or vanishing gradients, saddle point and diminishing
feature reuse. These issues will result in slow or unstable
convergence and be further exaggerated in the evolving setting.

To address these issues, we amend the multi-layer RNN
architecture by attaching every hidden layer representation
to an output regression for evolving learning through hedge
backpropagation (HBP) [43]. HBP automatically determines
how and when to accommodate network depth in an evolving
manner. An evolving deep learning framework using HBP is
depicted in Fig. 2.

ℎ!
(!) ℎ$

(!) ℎ%
(!)...

ℎ!
($) ℎ$

($) ℎ%
($)...

ℎ!
(&) ℎ$

(&) ℎ%
(&)...

... ... ...

𝑥! 𝑥$ 𝑥%

𝑓 (&)

𝑓 ($)

𝑓 (!) ⨂

⨂

⨂

⨁

⨁

⨁

...

	𝜎 	𝜎 	𝑡𝑎𝑛ℎ

⊙

⊙

1 −

+

⊙

GRU 𝐹%

𝑦%
𝛼(&)

𝑦%
𝛼($)

𝑦%
𝛼(!)

...

Feedforward flows

Parameters updating flows with the HBP strategy

Combination-based prediction output flows

Fig. 2. Evolving deep learning framework using HBP.

In this paper, we consider a multi-layer RNN with L hidden
layers, where L denotes the maximum depth of the network.
Feature vectors are fed into a gated recurrent unit (GRU) layer,
which is capable of capturing the long-term dependencies
in sequential data and learning the time-varying patterns of
user requests. The standard GRU architecture is based on two
multiplicative gate units. The prediction function F (xt) for
the proposed evolving DNN is given by:

F (xt) =

L∑
l=1

α(l)f (l)(xt), where (8)

f (l)(xt) = Θ(l)h
(l)
t ,

r
(l)
t = sigm(W (l)

r h
(l−1)
t +U (l)

r h
(l)
t−1 + b(l)r ),

z
(l)
t = sigm(W (l)

z h
(l−1)
t +U (l)

z h
(l)
t−1 + b(l)z ),

h
(l)
t = z

(l)
t � h

(l)
t−1 + (1− z

(l)
t )� h̃

(l)

t ,

h̃
(l)

t = tanh(W
(l)
h h

(l−1)
t +U

(l)
h (r

(l)
t � h

(l)
t−1) + b

(l)
h ),

h
(0)
t = xt,

where rt, zt, ht, h̃t are referred to as reset gate, update
gate, hidden state vector and candidate hidden state vector
respectively. The reset gate is used to specify how much
previous knowledge should be ignored. The update gate helps
the model to control the information that flows into memory.
The candidate hidden state, also named intermediate memory
unit, combines the knowledge from hidden states of the



6

previous time step and previous layer. It can facilitate the
computation of subsequent hidden state. The parameters for
training are the matrices {W r,W z,W h} (the feedforward
connection weights), {U r,Uz,Uh} (the recurrent weights)
and the vectors {br, bz, bh} (the bias). sigm(·) is the sigmoid
activation function, which limits rt and zt to take values
ranging from 0 and 1. The element-wise tensor multiplication
is denoted by �.

Different from the conventional DNN, in which only the
hidden state vector of last layer h(L) is used by the regression
to calculate the final predicted value, we utilize a weighted
combination of regressions learned based on the multiple hidden
state vectors from h(1), . . . ,h(L) in this paper. Two sets of new
parameters to be learnt are introduced, i.e., Θ(l) and α(l). Each
regression in intermediate layer f (l)(xt) is parameterized by
Θ(l). The final prediction of this model is a linear weighted sum
of regressions f (1)(xt), . . . , f (L)(xt) , where the weight of
each regression is denoted by α(l) > 0. The loss function of this
model is defined as: L(F (xt),yt) =

∑L
l=1 α

(l)L(f (l)(xt),yt).
During the evolving learning procedure, parameters α(l), Θ(l),
W (l), U (l), b(l) are required to be learnt.

We employ the HBP strategy [44] to learn α(l). In the
beginning, all weights α(l) are uniformly split, i.e., α(l) =
1
L , l = 1, . . . , L. At each iteration, the regression of layer l
makes a prediction f (l)(xt). The weight of the regression then
is updated as follows:

α
(l)
t+1 ← α

(l)
t β

min(L(f(l)(xt),yt),κ), (9)

where β ∈ (0, 1) is the discount factor, κ is the threshold
parameter for smoothing “noisy” data. Thus, a regression’s
weight decays of a factor of βmin(L(f(l)(xt),yt),κ) in each
iteration. At the end of each iteration, weights α are normalized
to the interval [0, 1], i.e.,

∑L
l=1 α

(l) = 1.
We adopt gradient descent methods to learn the parameters

Θ(l) for all regressions, where the input to the lth regression
is h(l). It is identical with the update of the weights of the
output layer in the conventional feedforward neural networks.
This update is given by:

Θ
(l)
t+1 ← Θ

(l)
t − η∇Θ(l)

t

L(F (xt),yt)

← Θ
(l)
t − ηα(l)∇Θ(l)

t

L(f (l)(xt),yt). (10)

Updating the feature representation parameters W (l),U (l),
b(l) is not trivial. Unlike the original backpropagation scheme,
in which the error derivatives are backpropagated from the
output layer to each hidden layer, the error derivatives in this
paper are backpropagated from each regression f (l)(xt). Thus,
by combining the gradient descent methods and the dynamic
objective function L(F (xt),yt) =

∑L
l=1 α

(l)L(f (l)(xt),yt),
the update rule for W (l), U (l), b(l) is given as follows:

W
(l)
t+1 ←W

(l)
t − η

L∑
j=l

α(j)∇W (l)

t

L(f (j)(xt),yt), (11)

U
(l)
t+1 ← U

(l)
t − η

L∑
j=l

α(j)∇U (l)

t

L(f (j)(xt),yt), (12)

Algorithm 1 Popularity prediction using evolving deep learn-
ing.
Input: Input features: xt; Revealed popularity: yt; Parameters

for evolving DNN: {β, η, ζ, κ, αt,Θt,W t,U t, bt}
Output: Predicted popularity: ŷt
1: ŷt = F (xt) =

∑L
l=1 α

(l)
t f

(l)(xt);
2: Calculate L(l)

t = L(f (l)(xt),yt),∀l = 1, . . . , L by Eq.
(14);

3: Update Θ
(l)
t+1,W

(l)
t+1,U

(l)
t+1, b

(l)
t+1,∀l = 1, . . . , L by Eq.

(10) - Eq. (13);
4: Update α(l)

t+1 = α
(l)
t β

min(L(l)
t ,κ),∀l = 1, . . . , L;

5: Smoothing α(l)
t+1 = max(α

(l)
t+1,

ζ
L ),∀l = 1, . . . , L;

6: Normalize α(l)
t+1 =

α
(l)
t+1

Zt+1
where Zt+1 =

∑L
l=1 α

(l)
t+1;

b
(l)
t+1 ← b

(l)
t − η

L∑
j=l

α(j)∇b(l)

t

L(f (j)(xt),yt), (13)

where ∇W (l)

t

L(f (j)(xt),yt)), ∇U (l)

t

L(f (j)(xt),yt)),
∇b(l)

t

L(f (j)(xt),yt)) are computed via backpropagation

from error derivatives of f (j)(xt). The summation part in Eq.
(11)-(13) starts at j = l as the shallower regression does not
rely on the parameters W , U , b of deeper layers to make
predictions.

Since shallower models are usually inclined to converge
faster than deeper models [45], the weights of deeper regression
might be diminished to a very small value by the HBP strategy.
This will lead to a slow convergence in deeper regressions.
Therefore, a smoothing parameter ζ ∈ (0, 1) is introduced to
set a minimum weight for each regression. After the weight of
the regressions are updated in each iteration according to Eq.(9),
we further set the weights as α(l) ← max(α(l), ζL ), where ζ
guarantees that each regression will be selected with at least
probability ζ

L . This balances the trade-off between exploration
(all regressions at every depth will affect the backpropagation
update) and exploitation.

3) Loss Function: Typically, DNN tracks the mean square
error (MSE) as a metric when fitting the model. However, this
metric is unable to make an accurate prediction when applied
to the data that follows the heavy-tailed distribution, which is
common in VoD systems [46]. It is because popular contents
with high access times only account for a small fraction, but
the arithmetic mean will be biased towards them. Hence, the
overall performance of this metric would not be so satisfactory
for the majority of contents. To eliminate this drawback, a
mean relative squared error (MRSE) [47] is employed here,
which is written as:

L(f (l)(xt),yt) =
1

m

m∑
i=1

(
f (l)(xit)

yit
− 1)2. (14)

Algorithm 1 outlines the popularity prediction using evolving
deep learning.

C. Online Replacement Decision

When a request k of content ck arrives, we first extract its
latest features of the requested content and write them into



7

Algorithm 2 PA-Cache algorithm.
Input: Request k
1: Update features vector for ck in Feature Database;
2: if Zckk+1 == 0 then
3: Remove the head element cevict from Q;
4: Fetch ck from the upstream server;
5: Insert ck and its estimated popularity into Q;
6: end if
7: Serve the client with c(k);
8: if tk mod φ == 0 then
9: Re-predict the popularity for all contents by Algorithm

1;
10: Rebuild the priority queue Q;
11: end if

the Feature Database module. Then, the requested content
is searched for in the local cache. If it is available in the
cache, the user is directly served by the content replica
from the cache node. Otherwise, PA-Cache removes the least
popular content cevict in the cache to leave space for the
new content ck. Popularity Database module provides the
estimated popularity which is updated by Deep Neural Network
periodically described in Section V-B. Afterward, ck is fetched
from the upstream server, stored in the cache, and transmitted
to the user. PA-Cache manages a priority queue Q, which stores
the cached contents along with their predicted popularities. The
head element of Q is regarded as the least popular content
which can be quickly retrieved under this data structure. Each
eviction operation will update Q accordingly. To keep the
prediction of content popularity up-to-date, PA-Cache triggers
a Learning Handler periodically after every φ hours to update
the prediction of content popularity. The PA-Cache algorithm
is presented in Algorithm 2.

VI. TRACE-DRIVEN EVALUATION RESULTS

In this section, we conduct extensive evaluations with real-
world traces to evaluate the performance of PA-Cache.

A. Dataset

The experiments are simulated on a real-world dataset
derived from iQiYi2, which is the largest online VoD service
provider in China. This dataset contains 0.3 million unique
videos watched by 2 million users over 2 weeks and has
been widely used in previous works [32], [48]. The relevant
information is recorded for each trace item as follows: (i) The
device identifier (anonymized), which is unique for each device
and will be used to label different users. (ii) Request time,
which records the timestamp when the user request arrives;
(iii) Video content, which involves the video name and some
basic information, e.g., score, number of comments. In addition,
we implement a crawler to collect more data to complement
the features of videos (e.g., the area, type, language, length,
publish date, director, performer).

2http://www.iqiyi.com

TABLE II
PARAMETER VALUES.

Parameter Value Description
C 10,000 Number of contents
K 446629 Number of requests
p 0.1%-5.0% Cache percentage
L 10 Maximum capacity of DNN
m 128 Mini-batch size
β 0.99 Discount factor
κ 100 Smoothing parameter of “noisy” data
ζ 0.1 Smoothing parameter of minimum weight
η 10 Learning rate
φ 1h Time window

B. Algorithm Implementation

We implement a discrete event simulator based on the
framework depicted in Fig. 1. To calculate and compare it with
existing algorithms under restricted computational resources,
we randomly sample C = 10, 000 videos from the dataset
9 times. The cache percentage, which is the ratio between
the cache size and the total number of unique contents, is
considered to range from 0.1% to 5.0%. By default, it is set
p = 1.0%. The Learning Handler module trains a DNN in Fig.
2 after every 1 hour. The traces are divided into two periods.
The first one is named warm-up period. It spans the first seven
days of request traces, representing the input of evolving DNN.
The second one is test period, which begins after the warm-
up period. Unless explicitly clarified, the experimental results
presented are all obtained under the above settings. PA-Cache
is run on a PC with an Intel(R) Core(TM) i5-7360U CPU @
2.30GHz, NVIDIA GTX 1080 GPU, and 8 GB RAM using
MXNet framework. In this paper, we train a 10-layer evolving
DNN with 512 units in the first layer and 16 units in the last
hidden layer. The number of units from the 2nd layer to the 9th

layer decreases gradually. Some key parameters, along with
their descriptions and values, are listed in Table II.

C. Benchmarks

We compare our algorithm PA-Cache against the following
baselines:

• Optimal [41]. The cache runs an optimal and offline
strategy for replacing the content, which has the longest
time to be visited next time.

• FNN-Caching [31]. The cache employs FNN to predict
content popularity and accordingly makes caching deci-
sions.

• NA-Caching [26]. The cache uses deep reinforcement
learning from its own experiences to make caching
decisions based on the features of dynamic requests and
caching space.

• PopCaching [35]. The cache clusters different contents
into hypercubes based on the similarity between their
access patterns and predicts their popularity when making
replacement decisions.

• LeCaR [15]. The cache maintains two history entries
based on recency policy and frequency policy. The weight
of each entry is updated by regret minimization. It is used



8

0.1% 0.2% 0.5% 1.0% 2.0% 5.0%
Cache Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e 
Hi

t R
at

e

Proposed PA-Cache
Optimal
FNN-Caching
NA-Caching
PopCaching
LeCaR
LRU
LFU

Fig. 3. Cache hit rate under different cache percentages.

1 2 3 4 5 6 7
Day

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e 
Hi

t R
at

e

Proposed PA-Cache
Optimal
FNN-Caching
NA-Caching
PopCaching
LeCaR
LRU
LFU

Fig. 4. Cache hit rate over time.

to determine which policy to be applied for the cache
eviction.

• LRU [9]. The cache manages an ordered queue which
records the recent accesses of all the cached contents.
When the cache is full, the least recently accessed content
will be replaced by the newly requested content.

• LFU [10]. The cache is implemented as a priority queue:
the one that has been requested least frequently is replaced
by the new content when the cache is full.

D. Performance Comparison
The cache hit rate is depicted by the boxplot in Fig. 3, where

the x-axis represents the cache percentage. The boxplot shows
the means through the hollow markers, the medians through
the bars, and the maximum and minimum values through the
whiskers. It illustrates that PA-Cache significantly outperforms
LRU, LFU, and their combination LeCaR in all cases. In
particular, when the cache percentage is 0.1%, PA-Cache’s
average performance advantage over LFU, LRU, and LeCaR
exceed 107.1%, 68.4%, and 54.8%, respectively. This is because
these rule-based algorithms make eviction decisions based
on simple metrics such as access time or frequency without
considering the context information of contents. Moreover,
when the content is evicted from the cache (e.g., LRU, LFU)

or history (e.g., LeCaR), all information about it is missing
and cannot be utilized for future decision making.

Because the performance of the PopCaching algorithm is
highly dependent on the hand-crafted features, we generate the
content context vector several times and select the parameter
setting, which achieves a 75th percentile. It is observed that
PA-Cache achieves a higher hit rate than FNN-Caching, NA-
Caching, and PopCaching, especially when the cache percent-
age is small (≤ 1.0%). For example, PA-Cache outperforms
PopCaching, NA-Caching, and FNN-Caching by 22.8%, 18.1%,
and 7.0% in the case where cache percentage is 0.5%. These
results demonstrate that previous caching algorithms perform
well under a certain scale of cache percentages, whereas PA-
Cache can adapt to any cache percentages. For instance, when
the cache percentage ranges from 0.2% to 1.0%, PA-Cache
increases the hit rate by 7.9%-12.7% compared to PopCaching.
Our interpretation is that PopCaching relies on the average
sampling method for prediction, which is remarkable over hot
contents but does not get an edge on lukewarm or cold contents.

Fig. 4 depicts how the cache hit rate of the algorithms
varies over time. On average, we can see that PA-Cache
outperforms FNN-Caching, NA-Caching, PopCaching, LeCaR,
LRU, LFU by 6.4%, 13.2%, 20.9%, 19.0%, 22.5%, 42.1%,
respectively. PA-Cache approximates the Optimal with only a



9

1 2 3 4 5 6 7 8 9 10
Depth

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

First 1/7 of Data
First 2/7 of Data
First 3/7 of Data
First 4/7 of Data
First 5/7 of Data
First 6/7 of Data
First 7/7 of Data

Fig. 5. Evolution of weight distribution of the DNN over time on the training set.

3.8% performance gap. This can be attributed to our model’s
prediction error. Besides, For the average hit rate, PA-Cache
maintains a more stable cache hit rate with a smaller variance of
4.2×10−5 compared to that of other methods (e.g., 5.0×10−5

for FNN-Caching, 6.6 × 10−4 for NA-Caching, 4.3 × 10−5

for PopCaching, 8.7× 10−5 for LeCaR, 8.8× 10−5 for LRU,
6.4 × 10−4 for LFU). In particular, NA-Caching and LFU
exhibit the highest variances. This is because LFU predicts
content popularity based on historical frequency without decay,
which would be outdated over time. NA-Caching suffers from
large-delayed rewards for some contents, which might lead to
convergence to poor action choices and slow policy learning.
On the contrary, PA-Cache could quickly adapt to changes in
the workload over time.

Fig. 5 illustrates the evolution of the weight distribution of
the DNN over time on the training set for the sampled dataset,
which achieves the median performance. Initially (first 1/7 data),
the maximum weight has gone to the shallower regression in
the 3rd layer. Then (first 2/7 data), the maximum weights have
moved to the regressions in the 4th and 5th layers. As more
data arrives sequentially, deeper regressions will pick up higher
weights. For instance, in the segment with the first 6/7 data,
the 7th layer has obtained the highest weight. It shows that our
evolving DNN is capable of selecting an appropriate model
automatically.

We compare the convergence behavior of our evolving DNN
with a conventional 10-layer DNN in Fig. 6. It shows the
variation of loss as the batch number increases. We can see
that the loss of the 10-layer conventional DNN converges
to a local optimum after about the 120th batches, while our
evolving DNN converges much more quickly. It means that
our evolving DNN could benefit from the fast convergence
of its shallow networks at the beginning. Moreover, Fig. 7
depicts the boxplots for 800 loss values obtained during the
training after 200 batches by the conventional 10-layer DNN
and our evolving DNN. In this plot, the boxes relate to the
interquartile range; small circles denote the outliers; the upper
and lower whiskers represent loss values outside the middle
50%. We can observe that both the 25th and 75th percentile
of evolving DNN are lower than those of conventional DNN.

0 200 400 600 800 1000
Batch Number

0

1000

2000

3000

4000

5000

6000

7000

8000

Lo
ss

Conventional DNN
Evolving DNN

Fig. 6. Convergence behavior of the conventional DNN and our evolving
DNN over batch number.

Conventional DNN Evolving DNN

100

101

102

103

Lo
ss

Fig. 7. Boxplots for 800 loss values during training after 200 batches by the
conventional DNN and our evolving DNN.

The median value of evolving DNN and conventional DNN
is 2.97 and 2.61, respectively, represented by the bar in the
box. The boxplots indicate that the evolving DNN obtains both
smoother variance and lower median loss. It illustrates that our
evolving DNN keeps the merits of a powerful representation
of the deeper network.



10

0.1% 0.2% 0.5% 1.0% 2.0% 5.0%
Cache Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Ca

ch
e 

Hi
t R

at
e

= 1
= 2
= 4
= 6
= 12

Fig. 8. Cache hit rate under different cache percentages for different φ.

E. Practical Consideration

The first consideration is the frequency of re-estimation
for content popularity. Although the system is capable of
correcting deviation between the predicted popularity and the
real one and adapt to time-varying demands more quickly
if updating the evolving DNN more frequently, each update
incurs additional overhead. Fig. 8 illustrates how different
values of parameter φ affect the caching performance under
different cache percentages. It is observed that the smaller the
φ is, the higher the cache hit rate achieves In almost all cases,
other than the case in which the cache percentage is 5.0%.
When the cache percentage ranges from 0.1% to 2.0%, the
cache hit rate with φ = 1 is 2.2%-5.4% higher than that with
φ = 2, but the performances under φ = 2 and φ = 4 are very
similar. After the cache percentage increases to φ = 5.0%,
the cache hit rate is almost constant even if a different φ is
selected. This observation indicates that the edge cache could
select an appropriate parameter φ based on its storage capacity.
That is, when the storage capacity is small, the cache node
could optimize the parameter by seeking a trade-off between
prediction accuracy and computational cost, whereas, for the
large capacity, our algorithm scales to time windows with
different sizes for updating.

The historical information is available for existing contents,
but new contents generated from content providers may be
added to the system continually. Although the historical
information of φ hours in our PA-Cache, much smaller than
PopCaching or FNN-Caching, is enough for prediction. The
cold start problem of new contents is still crucial for the
performance improvement of the caching system. We can
employ a small LRU-cache space [49] to handle the traffic
demand of new contents for which we do not estimate.

VII. CONCLUSION

In this paper, we have presented the design, implementation,
and evaluation of PA-Cache, a novel popularity-aware edge
content caching algorithm in edge networks. It makes adaptive
caching decisions with the aim to maximize the cache hit rate
in the long term. PA-Cache can effectively tackle the daunting
task of content caching upon time-varying traffic demands.

It has combined the strength of multi-layer RNN in learning
the comprehensive representations of requested contents and
the hedge backpropagation strategy that automatically deter-
mines how and when to accommodate network’s depth in an
evolving manner. The experiments on real-world traces have
been conducted, and the performance of PA-Cache has been
evaluated. Trace-driven evaluation results have demonstrated
the effectiveness and superiority of our proposed PA-Cache
in terms of the hit rate and computational cost compared to
existing popular caching algorithms.

REFERENCES

[1] M. I. A. Zahed, I. Ahmad, D. Habibi, Q. V. Phung, and L. Zhang,
“A cooperative green content caching technique for next generation
communication networks,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 375–388, Mar. 2020.

[2] M. Carrie and R. David, “Worldwide global datasphere iot device and
data forecast, 2019-2023,” Market Forcast, 2019.

[3] S. Shen, Y. Han, X. Wang, and Y. Wang, “Computation offloading with
multiple agents in edge-computing–supported iot,” ACM Transactions
on Sensor Networks, vol. 16, no. 1, pp. 1–27, Dec. 2019.

[4] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative edge
computing for software defined vehicular networks,” IEEE Network,
vol. 32, no. 5, pp. 112–117, Sep./Oct. 2018.

[5] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, Aug. 2020.

[6] F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “Optimal
energy consumption for communication, computation, caching, and
quality guarantee,” IEEE Transactions on Control of Network Systems,
vol. 7, no. 1, pp. 151–162, Mar. 2019.

[7] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach,”
in Proc. of IEEE INFOCOM, Toronto, Canada, Jul. 2020, pp. 2499–2508.

[8] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Cost-
effective app data distribution in edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 2, pp. 31–44, Jul. 2020.

[9] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the performance of LRU caches under non-stationary traffic
patterns,” arXiv preprint arXiv:1301.4909, 2013.

[10] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” ACM
SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 60–71, Jun.
2010.

[11] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox,
“Caching proxies: limitations and potentials,” Department of Computer
Science, Virginia Polytechnic Institute & State University, Tech. Rep.,
1995.

[12] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” ACM SIGMOD Record, vol. 22,
no. 2, pp. 297–306, Jun. 1993.

[13] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. of USENIX FAST, San Francisco, USA,
Mar. 2003, pp. 115–130.

[14] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of facebook photo caching,” in Proc. of ACM SOSP,
Pennsylvania, USA, Nov. 2013, p. 167–181.

[15] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ML-based LeCaR,” in Proc. of USENIX HotStorage, Boston, USA,
Jul. 2018, pp. 1–6.

[16] H. Bahn, K. Koh, S. H. Noh, and S. Lyul, “Efficient replacement of
nonuniform objects in web caches,” Computer, vol. 35, no. 6, pp. 65–73,
Jun. 2002.

[17] D. S. Berger, N. Beckmann, and M. Harchol-Balter, “Practical bounds
on optimal caching with variable object sizes,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 2, no. 2, pp.
1–38, Jun. 2018.

[18] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. of IEEE INFOCOM,
Toronto, Canada, May. 2014, pp. 2040–2048.



11

[19] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[20] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. of IEEE
INFOCOM, New York, USA, Mar. 1999, pp. 126–134.

[21] J. Li, S. Shakkottai, J. C. Lui, and V. Subramanian, “Accurate learning or
fast mixing? dynamic adaptability of caching algorithms,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 6, pp. 1314–1330,
Jun. 2018.

[22] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Proc. of CISS,
Princeton, USA, Mar. 2018, pp. 1–6.

[23] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “RL-Cache:
Learning-based cache admission for content delivery,” IEEE Journal on
Selected Areas in Communications, pp. 2372–2385, Oct. 2020.

[24] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning
for adaptive caching in hierarchical content delivery networks,” IEEE
Transactions on Cognitive Communications and Networking, vol. 5, no. 4,
pp. 1024–1033, Dec. 2019.

[25] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9441–9455, Oct. 2020.

[26] Q. Fan, X. Li, S. Wang, S. Fu, X. Zhang, and Y. Wang, “NA-Caching:
An adaptive content management approach based on deep reinforcement
learning,” IEEE Access, vol. 7, pp. 152 014–152 022, Oct. 2019.

[27] Y. Guan, X. Zhang, and Z. Guo, “CACA: Learning-based content-aware
cache admission for video content in edge caching,” in Proc. of ACM
Multimedia, Nice, France, Oct. 2019, pp. 456–464.

[28] G. Yan and J. Li, “RL-Bélády: A unified learning framework for content
caching,” in Proc. of ACM Multimedia, Seattle, USA, Oct. 2020, pp.
1009–1017.

[29] D. S. Berger, “Towards lightweight and robust machine learning for
CDN caching,” in Proc. of ACM HotNets, Washington, USA, Nov. 2018,
pp. 134–140.

[30] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Proc. of AAAI, New Orleans,
USA, Feb. 2018, pp. 3207–3214.

[31] V. Fedchenko, G. Neglia, and B. Ribeiro, “Feedforward neural networks
for caching: enough or too much?” ACM SIGMETRICS Performance
Evaluation Review, vol. 46, no. 3, pp. 139–142, Jan. 2019.

[32] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative
edge caching for 5g networks: A deep learning based approach,” in Proc.
of IEEE/ACM IWQoS, Banff, Canada, Jun. 2018, pp. 1–6.

[33] Z. Song, D. S. Berger, K. Li, and W. Lloyd, “Learning relaxed belady
for content distribution network caching,” in Proc. of USENIX NSDI,
Santa Clara, USA, Feb. 2020, pp. 529–544.

[34] B. Chen, L. Liu, M. Sun, and H. Ma, “Iotcache: Toward data-driven
network caching for internet of things,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 10 064–10 076, Dec. 2019.

[35] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. of IEEE INFOCOM, San Francisco, USA, Apr. 2016,
pp. 1–9.

[36] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1024–1036, Feb. 2016.

[37] L. Gkatzikis, V. Sourlas, C. Fischione, and I. Koutsopoulos, “Low
complexity content replication through clustering in content-delivery
networks,” Computer Networks, vol. 121, pp. 137–151, Jul. 2017.

[38] Q. Fan, H. Yin, G. Min, S. Wang, Y. Lyu, and X. Zhang, “Content and
network aware replication and scheduling mechanism for user generated
content videos,” in Proc. of IEEE UIC, Leicester, UK, Aug. 2019, pp.
739–746.

[39] Q. Fan, H. Yin, L. Jiao, Y. Lv, H. Huang, and X. Zhang, “Towards optimal
request mapping and response routing for content delivery networks,”
IEEE Transactions on Services Computing, pp. 1–1, Jan. 2018.

[40] B. Van Roy, “A short proof of optimality for the min cache replacement
algorithm,” Information Processing Letters, vol. 102, no. 2-3, pp. 72–73,
Apr. 2007.

[41] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Proc. of NIPS, Nevada, USA, Dec. 2013, pp. 3111–3119.

[43] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning: learning
deep neural networks on the fly,” in Proc. of IJCAI, Stockholm, Sweden,
Jul. 2018, pp. 2660–2666.

[44] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119–139, Aug. 1997.

[45] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep
neural networks without residuals,” arXiv preprint arXiv:1605.07648,
2016.

[46] C. Zhang, Y. Xu, Y. Zhou, and X. Fu, “On the “familiar stranger”
phenomenon in a large-scale vod system,” in Proc. of IEEE ICC
Workshops, Atlanta, USA, May. 2017, pp. 928–933.

[47] H. Pinto, J. M. Almeida, and M. A. Gonçalves, “Using early view
patterns to predict the popularity of youtube videos,” in Proc. of ACM
WSDM, Rome, Italy, Feb. 2013, pp. 365–374.

[48] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, Mar. 2017.

[49] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ramakr-
ishnan, “Optimal content placement for a large-scale vod system,”
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2114–2127,
Aug. 2016.


	I Introduction
	II Related Work
	II-A Rule-Based Algorithms
	II-B Machine Learning-Based Algorithms

	III System Overview
	III-A Cache Node Structure
	III-B Operations

	IV Problem Statement
	V PA-Cache Algorithm Design
	V-A Basic Idea
	V-B Offline Content Popularity Prediction
	V-B1 Feature Selection
	V-B2 Evolving Deep Learning Model
	V-B3 Loss Function

	V-C Online Replacement Decision

	VI Trace-driven Evaluation Results
	VI-A Dataset
	VI-B Algorithm Implementation
	VI-C Benchmarks
	VI-D Performance Comparison
	VI-E Practical Consideration

	VII Conclusion
	References

