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Abstract—Providing predictable performance to tenants is
mission critical for network hypervisors. As a hypervisor acts
as an intermediary between tenants controllers and the phys-
ical infrastructure, its resources (e.g., CPU, RAM) should be
provisioned and allocated carefully. Initially, we demonstrate
that state-of-the-art CPU prediction approaches are not suitable
for provisioning network hypervisor CPU resources, since they
predict only the mean CPU utilization. However, provisioning
the resources with a mean value can significantly degrade the
forwarding performance of a network hypervisor. In this article,
we present a novel approach which provisions network hypervisor
CPU resources efficiently, while avoiding performance degrada-
tion. We take three steps to achieve our goal: (i) conducting
a profound measurement campaign to determine what is the
minimum amount of CPU resources that needs to be allocated
to a network hypervisor in order to have no performance
degradation; (ii) revealing the key properties of virtual networks
that affect the CPU utilization; (iii) designing a precise CPU
prediction model. Using randomly generated virtual networks
and arbitrary physical topologies, we show that our prediction
model exhibits an average relative error of around 4%. Further,
our evaluations indicate that provisioning the CPU resources of a
network hypervisor based on the proposed prediction model does
not degrade the hypervisor forwarding performance. Utilizing
our approach, network operators can minimize their resources
consumption while still providing predictable and undegraded
forwarding performance to tenants.

Index Terms—network virtualization, network hypervisor, iso-
lation, measurement, modeling, control plane

I. INTRODUCTION

A. Context: Provisioning Network Hypervisor Resources

Network virtualization strives to enable the coexistence of
different network operating systems on the same physical
infrastructure [1]. This opens interesting advantages over non-
virtualized environments: faster innovation through parallel
deployment or easier testing of new network algorithms on the
real infrastructure [2]–[5]. Software-defined networking (SDN)
frames a particularly interesting case for network virtualiza-
tion: tenants can bring their own SDN controllers in order to
control their virtual SDN networks. The integral component
realizing network virtualization is the network hypervisor [6]
(NH). It is logically located between the tenants SDN con-
trollers and the physical infrastructure [6] (e.g., forwarding
devices/switches). It translates all the control plane messages
(e.g., switch forwarding rules) exchanged by the tenants SDN
controllers and the physical switches. Additionally, an NH
inspects the translated messages in order to verify that the
tenants are not violating the agreed virtualization policies
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Fig. 1: Impact of the allocation of CPU resources of an NH on the control
plane message latency and loss. Dashed black lines show the maximal and
average observed CPU utilization during an unconstrained run, where all of
the cores where allocated to network hypervisor (CPU limit is 800%). The
server running an NH has in total 4 physical cores, thus 8 hyperthreads,
making the maximal CPU utilization of 800%.

(e.g., allowed forwarding behavior of data plane devices).
Following the general trend of softwarization and the today’s
high demand for flexibility [7], most NHs are realized as
software instances (e.g., Java programs) running on commod-
ity hardware [1]. Therefore, we can consider an NH as a
(complex) virtual network function (VNF) – it uses hardware
resources such as CPU or RAM in order to process control
plane messages. Thus, the performance of an NH directly
depends on the available physical hardware resources (i.e.,
available number of CPU cores). Therefore, it is crucial to
carefully provision the resources of NH, as its processing
performance impacts the performance of virtual networks
(VNs).

B. Motivation: Predictable Virtual Network Performance

Different strategies exist to allocate hardware resources
to hypervisors. One existing strategy simply over-provisions
hypervisors [6], [8] — a clearly too expensive strategy in
terms of resource consumption. Another strategy is to derive
hypervisor performance models [9], [10] and to provision
resources accordingly. However, as we will show, state-of-
art performance models fall short in terms of accuracy and
precision.

In order to illustrate this, we evaluate the control plane pro-
cessing latency of an NH for varying amount of allocated CPU
resources (Fig. 1). In this scenario, allocating around 90%
capacity of a single CPU core represents an ideal resource
allocation decision. In Fig. 1, this is shown as the highlighted
area around the left dashed line (i.e., green area). Allocating
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fewer resources, i.e., under-provisioning the CPU resources,
increases the control plane message latency by up to three
orders of magnitude and the loss of control plane messages
by 20%1 — a clearly unacceptable performance degradation.
On the other hand, over-provisioning the CPU resources does
not yield performance benefits: the latency stays below 1ms
for 100%− 800%2 of CPU capacity. However, as the figure
illustrates, over-provisioning leads to a waste of resources and
is actually not needed when having a precise performance
model. Furthermore, Fig. 1 also shows why state-of-the-art
CPU prediction approaches [9], [10] are not suitable for
provisioning. They simply predict the mean CPU utilization
(in this scenario 60%), which results in under-provisioned NH.
An ideal NH provisioning system allocates the least amount
of CPU resources so that no performance degradation occurs;
in this case, the ideal allocation lies around 90% of one
CPU core. Furthermore, state-of-the-art prediction models are
also too simplistic: they base their CPU prediction solely on
the control plane message rate [9], [10]. Thus, these models
ignore the potential impact of (virtual) network parameters
and dynamic configuration changes (e.g., the number of VNs
or a changing VN topology in case of varying demands or,
e.g., failures). In this article we tackle the challenge to derive
generalizable performance models that allow for precisely
determining such CPU provisioning in various scenarios.

C. Contributions: Network Hypervisor Performance Model

In this article, we present a network hypervisor performance
model that reduces over-provisioning while avoiding perfor-
mance degradation. Our solution is scenario-agnostic and is,
hence, capable of supporting physical topologies following
a wide variety of graph models and a wide variety of VN
requests (e.g., in terms of the number of (virtual) nodes,
links and hosts). We take three steps to achieve our goal: we
conduct a profound measurement campaign to (i) determine
what is the minimum amount of CPU resources that has
to be allocated to an NH in order to have no performance
degradation; (ii) reveal the key properties of VNs that affect the
CPU utilization; (iii) design a CPU prediction model. Indeed,
deriving a precise performance model based on measurements
is a challenging task: for instance, the physical topologies and
VN configurations can vary greatly [11]. Hence, measuring
the resource consumption of an NH for all possible cases
is not feasible. Therefore, determining what parameters to
evaluate and what values to select is crucial for designing
precise and accurate prediction model. Finally, we validate
and evaluate our model and compare its accuracy with state-
of-the-art approaches on 3 randomly generated and 3 realistic
topologies for a wide variety of generated VNs requests. In
contrast to state-of-the-art, we demonstrate that provisioning
the CPU resources with the presented model does not incur a
significant control plane performance degradation.

1In case the resources are limited to 20%, an NH throttles the TCP
connections in order to reduce the total amount of received messages. Hence,
in this case processing time and latency are better compared to a scenario
when the limit is 40%.

2Note that 800% means a dedicated reservation, i.e., pinning of 8 threads.
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Fig. 2: Overview of network virtualization. A network hypervisor acts as
a proxy between the tenants controllers and the physical infrastructure. A
hypervisor can provide different virtualization policies to different tenants,
i.e., in this case different levels of topology abstraction.

D. Organization

The rest of this article is organized as follows. Sec. II
introduces background concepts and network virtualization
terminologies. Sec. III outlines our benchmarking procedure,
the measurement setup and its results. The NH CPU prediction
model is developed in Sec. IV and thoroughly evaluated in
Sec. V. Finally, Sec. VI presents the related work and Sec. VII
concludes the paper and discusses remaining open issues.

II. BACKGROUND: NETWORK VIRTUALIZATION

In this section, we firstly present a short background regard-
ing network virtualization in SDN, where we analyze various
virtualization functionalities. Furthermore, we also provide
insights on the basic implementation concepts commonly used
when designing an NH in order to understand which VN
parameters affect NH CPU workload.

A. Virtualization in SDN

Virtualization of SDN networks enables the network as a
service (NaaS) model. Tenants can request network resources
(e.g., a custom virtual topology with bandwidth requirements)
to a provider. Through network virtualization, the provider
allows different tenants to share a common physical infrastruc-
ture. The concept is illustrated in Fig. 2. Each tenant is given
a virtual network (VN), i.e., a set of virtual (interconnected)
switches and hosts, to which it can connect its own custom
SDN controller, or controller. Through their controller, tenants
can fully control the data plane forwarding behavior in their
VN and steer the traffic as they desire. In order to provide
such a service, the provider uses a network hypervisor (NH)
which acts as a proxy between the controllers of the tenants
and the physical infrastructure. When a tenant requests a
new VN, a VN embedding algorithm is responsible for map-
ping this VN to the physical infrastructure and for reserving
data plane resources (e.g., bandwidth) accordingly [11]–[13].
Furthermore, in the data plane, tenants are differentiated by
their flowspace, where a flowspace is a subset of all possible
OpenFlow (OF) [14] matching fields. If the tenants flowspaces
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are not overlapping, all the data plane traffic can be easily
mapped to the corresponding tenant. For instance, we can
define a flowspace of a tenant A (see Fig. 2) as the 10.0.0.1/24
subnet with full port access on physical switches highlighted
in red color (they are interconnected with dashed lines).

An NH is also responsible for ensuring that all tenants are
indeed using their VNs according to the agreed virtualization
policies (security feature). This is achieved by inspecting the
control plane messages and potentially rewriting them during
the translation operation. Furthermore, some NHs provide
additional features targeting simplification of the data plane
management to tenants. For instance, certain NHs provide
topology abstraction [15], [16], control plane isolation [6], or
full flowspace usage [15]. Naturally, there are many different
ways to implement these functions, making the resource
prediction modeling implementation-dependent [17]. In this
article, we use FlowVisor (FV) and we focus on evaluating
the most basic and crucial security feature that all NHs have
to implement. Furthermore, we also focus on provisioning
the CPU resources for a flow embedding task3 as it is a
cornerstone of remote network control, and many applications
are realized using only this feature [13].

B. Message Inspection/Processing in FlowVisor

FlowVisor (FV) [6] implements partial topology abstraction
and full port abstraction. Partial topology abstraction can
be defined in the following way: besides the requested end-
point physical switches, the intermediate switches on the paths
between the end-point switches are also shown to the tenants
controllers, while all other physical switches are hidden. This
corresponds directly to the red dashed VN in Fig. 2 (i.e., tenant
A), where the physical switches are mapped with one-to-one
configuration to the virtual switches. Full port abstraction
means that only the physical ports containing the tenants
hosts and interconnecting the VN are shown, while all other
existing physical ports are hidden or abstracted away. In order
to achieve such functionalities, each control plane message
has to be processed by the NH. In OF [14], the forwarding
behavior of a switch is modified with FlowMod Add message4,
hence, the corresponding message is one of the most complex
to inspect. For instance, match and action fields contained
in every FlowMod Add message have to be checked with
respect to the agreed virtualization policies. As we focus on
provisioning the resources for flow embedding task, in the
following we explain the FV’s processing pipeline of FlowMod
Add in more detail.

Upon a reception of FlowMod Add message, FV firstly
checks the contained action set. For instance, the correspond-
ing message might be trying to add a rule which forwards the
traffic to a port which is not part of the tenant’s flowspace.
Thus, we suspect that the number of virtual ports could have
an impact on the processing workload of FV. If the contained
action set is not violating the agreed policies, FV then inspects
the match. This is done by intersecting the match with the
flowspace and evaluating if the tenant has a permission to

3In OF, flow embedding is achieved with FlowMod Add message.
4In OF 1.0 specification [18] FlowMod Add is called OFPT_FLOW_MOD.

(a) (b)

Fig. 3: (a) Measurement setup consisting of 2 interconnected PCs, and (b)
illustrations of the physical data plane grid topology of dimension k = 3
(black solid lines), with example grid VN of dimension kv = 2 (red dashed
lines), and a possible flow request spanning over two virtual and physical
switches (blue dotted line).

match on those fields. If a tenant is using additional field (not
included in its flowspace), FV rewrites them. Similarly, we
suspect that type of matching can have an impact. Thus, if we
use port based matching (common to L2 and L3 forwarding
applications), the required resources might scale again with the
number of virtual ports. Finally, the message is forwarded to
the targeted physical switch. Moreover, the size of topology
could have an impact on the total processing workload, as
it can affect the lookup time for determining the correct
physical switch destination. Furthermore, the topology size
and edge density directly impact the total number of ports in
the network, thus, potentially affecting the required workload
for inspecting the match and action fields of FlowMod Add.
Although FV implements most of the look ups with hashmap
(scales with O(1)), some look ups use linked lists (scales with
O(n)), thus the lookup and workload could be affected by the
aforementioned parameters.

III. HYPERVISOR BENCHMARKING

In this section we firstly introduce our measurement setup
(Sec. III-A) and present the considered VN parameters
(Sec. III-B). The parameters are based on the insights pre-
sented in the background section. Further, in Sec. III-C we
present our benchmarking procedure, while the results of our
measurement campaign are presented in Sec. III-D.

A. Measurement Setup

In order to better understand how different VN configu-
rations (e.g., VNs with different amount of virtual switches)
influence network hypervisor resource utilization, initially we
conducted our measurements on a smaller setup. Having such
a setup allows us to have a more controlled environment, thus,
the impact of various parameters was easier to investigate. The
measurement setup is depicted in Fig. 3a. It consists of two
PCs equipped with Intel quad-core i7-7700 CPUs, 16GB of
RAM, and running Ubuntu 14.04 LTS.

The first PC (PC1) (i) runs mininet [19] to emulate a
physical infrastructure, and (ii) runs the tenants controllers as
multiple Ryu [20] instances. The controllers generate control
plane messages with the goal of embedding a certain number
of flows per second (described in Sec. III-C).
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TABLE I: Evaluation parameters.

Parameter Notation Values
number of tenants t 2, 3, 4, 5

physical topology size k 4, 9, 16, 25
per-tenant flow request rate ri 90, 180, 280, 400

per-tenant flow length li 2, 3, 4, 5, 6, 7
per-tenant virtual topology size vi 4, 9, 16, 25

Per-tenant number of virtual ports pi 1, 2, 3, 4, 5

The second PC (PC2) runs FV as the network hypervisor.
The logging and FlowMod Add state keeping features, which
are not necessary for the normal operation of the NH, are
disabled. The CPU utilization of PC2 is sampled every 0.1
second (lower values are not recommended) by a CPU monitor
implemented with the Python psutil [21] library. CPU utiliza-
tion is measured in percents of a single-threaded core: since
the PC has four cores with hyper-threading, CPU utilization
ranges from 0% to 800%. The messages sent by the controllers
are received, translated, and forwarded by FV towards the
corresponding data plane switches emulated by mininet.

The amount of available resources allocated to an NH is
controlled with cpulimit tool. The cpulimit tool is process-
based, meaning that if a specified process exceeds the allowed
CPU resource consumption, it uses SIGSTOP and SIGCONT
POSIX signals in order to throttle the process accordingly.

The physical data plane and tenants controllers run on the
same PC. To ensure that this does not affect the measurements,
we ensure that the PC is always underutilized during the
measurements.

B. Evaluated Parameters and Scenario

We focus on evaluating the impact of flow embedding tasks
on the required NH CPU resources; our control plane traffic
between tenant controllers and their virtual networks consists
of FlowMod Add messages only. This is a standard choice as
flow embedding is (i) a paramount functionality of the remote
control of networks, and (ii) many applications, e.g., industrial
applications with strict QoS requirements messages [13], can
be implemented solely with FlowMod Add messages. In order
to establish one flow between two hosts, tenant’s controller
generates one FlowMod Add message towards each switch on
the chosen shortest virtual path. We consider that tenants add
rules matching on physical input port, and unique destination
IP addresses, while the action is to forward (output) to a certain
port. Input and output ports are determined by the shortest path
calculation. The NH receives the corresponding messages and
processes them as described in Sec. II.

Based on the insights gathered in the background section
(see Sec. II), we consider the following evaluation parameters
and reason about their usage (see Tab. I):

• Number of tenants t: For each tenant, the NH has to
maintain additional TCP/OF connections from the virtual
switches, i.e., from the hypervisor, to the tenant con-
trollers, store the isolation and abstraction policies, and
potential state variables.

• Physical topology size k: The NH appears as the con-
troller to all physical switches. Hence, an NH must keep
one TCP/OF connection towards each physical switch.
Thus, the number of switches k in the physical topology
can potentially affect the required CPU resources.

• Per-tenant flow request rate ri: Each tenant adds flows
to its VN with a pre-defined rate ri (with uniform arrival
distribution). Increasing the rate linearly increases the
number of FlowMod Add messages on both interfaces of
the hypervisor; the message has to be received from the
tenant controllers (interface one) and forwarded towards
the physical switches (interface two). As a consequence,
the rates might conceivably increase CPU utilization [9],
[10], [17].

• Per-tenant path-flow length li: The longer the path of
a flow is, the more messages have to be processed and
translated by the NH (one per physical switch). We define
the path-flow length as the number of switches between
the end hosts of the flow. FV does not provide any
topological abstraction: even if the tenants only request
to manage two physical switches, they might have to also
control all switches connecting the two physical switches.

• Per-tenant virtual topology size vi (vi ≤ k): FV guaran-
tees no control policy violation. Hence, every FlowMod
Add message received by FV has to be inspected in order
to ensure that the tenants are only modifying the switches
in their VNs. Thus, with more virtual switches, the larger
the virtual switch list is, which could affect the workload.

• Per-tenant number of virtual ports pi: Before forwarding
FlowMod Add messages to the physical switches, the
hypervisor translates virtual port numbers to physical
port numbers and makes sure that a tenant is using only
physical ports attached to its VN. Having a larger number
of virtual ports can hence increase the lookup time, in turn
affecting the workload of the NH.

In our scenario, we assume that each tenant has one host
attached to each switch which is mapped to one virtual port.
Furthermore, each tenant also requests the additional virtual
ports in order to interconnect its virtual grid network. Note:
In order to vary the number of virtual ports pi, we use a
different method, we allow tenants to also attach the virtual
ports (hosts) dedicated to other tenants, thus increasing the
amount of virtual ports.

Chosen Parameter Values (Tab. I). Current state-of-the-art
SDN-enabled carrier grade switches are being shipped with
small flow table size and they cannot handle high control
plane traffic rates [22], [23]. For instance, the 10G forwarding
device PICA P-3290 can only handle up to around 1000
rule/flow updates per second [23]. Therefore, in this paper we
consider similar parameter values as we want to demonstrate
that our solution is capable of supporting carrier grade SDN-
enabled hardware. For example, if we consider 5 tenants,
where each tenant has a flow request rate of 400 per second,
in the worst case, one physical switch could experience up
to 2000 update messages per second. This value is around
2x higher compared to the supported rate of PICA P-3290.
Furthermore, the maximal considered sizes the physical (grid)
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Fig. 4: Benchmarking procedure. PC1 emulates the data plane and the tenants
SDN controllers, while PC2 is running the virtualization layer and CPU
monitoring script.

topology and VNs is consistent with common topologies such
as Internet2 [24] and Nobel EU [25].

C. Measurement Procedure

Fig. 4 depicts the general measurement procedure. A mea-
surement scenario is defined by the set of evaluation parame-
ters values defined in the previous subsection (see Sec. III-B).
For one measurement configuration, the measurement runtime
is 60 seconds and it is repeated 10 times for statistical
significance (unless stated otherwise). Furthermore, we discard
the observed samples during the first 10 seconds of the run, in
order to avoid any potential transient phase due to initial switch
connections or transport connection stabilization. Exploring
all possible combinations of our six evaluation dimensions is
time-wise infeasible. For instance, if we vary every parameter
five times, the total measurement time would amount to a few
months. Therefore, we perform the measurements only for cer-
tain scenarios with manually chosen parameter values, selected
with the goal of inferring parameter scaling dependencies.

During our measurement campaign we observed that run-
ning the measurements one after each other could lead to
software aging effects [26], [27], i.e., the CPU utilization of
FV could increase over successive runs of the same scenario.
Hence, before each run, FV is completely reinstalled. That is,
all configuration files, logs, and the database are deleted, and
FV is rebuilt. Finally, all remaining processes from previous
runs are killed and the memory cache is cleared.

Firstly, the data plane topology is started based on the
measurement scenario. FV is then booted and the tenants VNs
are embedded with the corresponding requirements based on
the chosen configuration of the measurement scenario. The
flowspace of tenants corresponds to different /16 subnets
and all the requested virtual switches with their virtual ports.
We consider grid topologies for both the physical and VNs
because they are easy to scale up or down with non-random
parameters. Occasionally, embedding large VN can overload
the NH, resulting in a software crash. Such runs are repeated.

After all VNs are embedded, the CPU monitor is initialized
and the tenants controllers are started. Before starting the mea-
surement, we ensure that all controllers finished the initial OF
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Fig. 5: Observed time series of CPU utilization (red line with left y-axis)
during one measurement run with the following parameters: t = 5, ri ∼ 184,
k = 4× 4, vi = 4× 4, li = 4 and pi = 1. Furthermore, the green scattered
line with the right axis represents time series of the total observed flow request
rate per second during the aforementioned run.

handshake procedures with all of the requested virtual switches
(i.e., with FV). Furthermore, we also ensure that all tenants
SDN controllers finished generating their corresponding path
request list. That is, each tenant initially generates randomly
100 paths, where each path is generated with Dijkstra’s short-
est path algorithm [28] between two randomly selected end
hosts. The path is defined as a set of switches on the path,
with the corresponding ports. In certain measurement cases,
all paths are supposed to have the same length. Thus, before
adding a path to the corresponding path request list, we simply
repeat the path generation procedure until we obtain a path
with a desired length. During the runtime, a flow request is
then defined by generating (i) a unique destination IP address
within the tenant’s flowspace and by (ii) randomly selecting a
path from the path request list. This is done in order to avoid
heavy path computations during the measurement runtime, as
it could affect the measurement precision.

After the initialization procedure, the controllers (each ten-
ant has one) start adding flows with rate ri5. The generation of
flows is uniformly spaced, and the flows are generated based
on the aforementioned path request list and unique IP address.
In this section, we assume that all tenants have the same rate,
virtual topology size and number of virtual ports.

If the controller sends multiple OF messages as one TCP
segment, this reduces the total workload of the NH, in contrast
to sending one OF message per TCP segment [8]. However, as
the flow generation is uniformly spaced in the time, merging of
multiple TCP segments almost never occurs on the controllers
side.

D. Measurement Results

This section reports the results of our measurement cam-
paign. Firstly, we evaluate the stability and repeatability of our
measurements, i.e., we evaluate if FlowMod Add generation
rates are stable and if repeating one measurement scenario
produces the same results (as the already observed run).
Afterwards, we evaluate the impact of the considered VN
parameters on the observed CPU utilization.

1) Measurements Stability: Fig. 5 shows the measured CPU
utilization time series for the complete duration of one run,

5The rate of flow addition is configured in Ryu through simple sleep
commands. This is quite imprecise but, as shown in Fig. 5, is stable enough.
Hence, we define the ri as the mean rate actually generated by Ryu and
obtained through post-processing of the traces.
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Fig. 6: Distributions of measured CPU utilization for five measurement runs
with identical evaluation parameters, i.e., ri ∼ 300, k = 5× 5, vi = 4× 4,
li = 4 and one host per virtual switch. The boxplots whiskers correspond to
the 5% and 95% percentiles. The green line shows the mean total FlowMod
Add rate and its standard deviation.

alongside with the total flow request rate
∑n
i=1 ri generated

by the controllers. All flows have the same length, thus the
amount of FlowMod Add messages per second received by
FV is constant and directly correlated with the flow request
rate. However, even though the flow generation is uniformly
spaced and stable (the maximum variance is in range of
a few percents), we observe that CPU utilization exhibits
high variability, with multiple extreme peaks. For instance,
the minimum observed CPU utilization is close to 0%, the
maximal is around 198%, while the mean is 45%. During
runtime, in order to avoid blocking the TCP socket/connection,
FV places the received messages in a queue, which is then
periodically cleared. Hence, the workload oscillates with time,
suggesting that predicting the exact CPU utilization in one
specific time instance of one run is hardly possible.

Although the observed CPU utilization within one run
varies, repeating the same measurement run multiple times
with the same parameters produces almost identical CPU
utilization distributions. For instance, in Fig. 6, the mean
observed CPU utilization of all five measurement runs falls
within the range of 39%–45%. This indicates that modeling
and predicting the statistical properties (e.g., median) of an
NH CPU utilization profile is indeed feasible.

2) Allocating a Sufficient Amount of Resources: Precisely
allocating hypervisor resources is only needed in case a
CPU limitation truly affects the network performance, e.g.,
NH forwarding latency. Accordingly, for precise performance
modeling, it is important to find a point, i.e., statistical value,
which is used for allocating hypervisor resources. Ideally,
such point would minimize the amount of allocated CPU
resources while avoiding performance degradation. In order to
determine it, we evaluate two randomly generated scenarios,
first scenario has higher CPU requirements while the second
one has lower. Fig. 7 shows the impact of limiting the available
CPU resources of the NH on the control plane processing time
for the aforementioned two scenarios. Furthermore, statistical
properties (mean, 85th percentile and 90th percentile) of the
measured CPU utilization profile of an unconstrained run (i.e.,
run when all of the resources are allocated to the NH, CPU
limit is 800%) are shown as dashed vertical lines. Firstly,
provisioning the CPU resources based on the observed mean
(state-of-the-art approach) or 85th percentile incurs a signifi-
cant increase of both mean and max latency. On the other hand,
provisioning with 90th percentile does not produce the same
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Fig. 7: Impact of limiting the CPU resources allocated to NH on the observed
control plane processing time latency (median, mean and maximal) for two
different measurement cases. Every run with different CPU allocation limit is
repeated 5 times, and the mean values of these 5 runs are shown with their
corresponding confidence intervals.

impact, i.e., the latencies stay the same as in unconstrained
or baseline scenario (i.e., CPU limit is 800%). Therefore, we
advocate to use the 90th percentile as a profound match: the
90th percentile offers a good trade off between performance
predictability and resource allocation overhead. Note: Differ-
ent use cases might have different performance requirements,
thus using any other percentile value could also pose as a valid
solution – the chosen value only defines a trade off between
performance and resource consumption.

From now on, we evaluate how the aforementioned eval-
uation parameters (see Sec. III-B) affect the 90th percentile
CPU utilization (with CPU utilization we refer to 90th per-
centile CPU utilization), and we strive to learn the scaling
dependencies in order to generate a prediction model capable
of supporting arbitrary topologies and randomly generated VN
requests. Fig. 8 shows the observed CPU utilization values of
an NH for all considered parameters. Each value is a mean
of 10 runs (for each run we observe 90th percentile CPU
utilization) and the corresponding confidence intervals.

3) Flow Length: Fig. 8a shows the impact of the flow
length on the NH 90th percentile CPU utilization. Since we
disabled the state keeping feature, the messages are processed
independently. Thus, the total number of FlowMod Add mes-
sages increases linearly with the flow length; in turn the CPU
utilization increases linearly with the FlowMod Add message
rate. For example, for 5 tenants adding 184 flows per second,
the measured CPU utilization increases with the path length
from around 50% to around 100% linearly.

4) Flow Rate: Similarly, the FlowMod Add message rate
and the CPU utilization increases linearly with the flow request
rate (see Fig. 8b). For instance, on average, for 5 tenants with
path lengths of 6, embedding 5×90 flows per second requires
only around 56 % CPU resources, while embedding 5 × 434
flows per second requires around 146%. As both of these
parameters impact the FlowMod Add message rate per tenant
in the same manner, the impact of the flow rate and flow
length is almost the same. Since all other parameters are the
same (e.g., VN size), the slopes of both curves are indeed
approximately equal: 0.0109%/(FlowMod/s) for flow length
and 0.0113%/(FlowMod/s) for the flow rate. Moreover, the
flow request rate and the corresponding flow lengths can be
used to determine the total number of translated FlowMod Add
messages by the hypervisor.



7

2 4 6
li [switches]

20

40

60

80

100
C

PU
 [%

]

(a) Flow length.

100 200 300 400
ri [1/s]

50

100

150

C
PU

 [%
]

(b) Flow request rate.

4 9 16 25
vi [switches]

50

75

100

125

C
PU

 [%
]

(c) Virtual grid size.

3x3 4x4 5x5
k [switches]

40

60

80

100

C
PU

 [%
]

(d) Physical grid size.

1 2 3 4 5
pi [ports]

40

60

80

C
PU

 [%
]

(e) No. of virtual ports per switch.

0 1 2 3 4 5
t

0

50

100

150

C
PU

 [%
]

(f) No. of tenants.

Fig. 8: (a)–(f) Impact of different evaluation parameters on the NH 90th percentile CPU utilization on a physical grid topology for 2 to 5 tenants. Plots
show mean observed CPU utilization values of 10 runs along with the 95% confidence intervals assuming uniform distributions. The following parameters
are presented: (a) path length with ri = 184, k = 4× 4, vi = 4× 4 and pi = 1, (b) flow request rate with k = 5× 5, vi = 4× 4, li = 5 and pi = 1, (c)
virtual topology size with r = 430, k = 5× 5, li = 3 and pi = 1, (d) physical topology size with r = 430, vi = 3× 3, li = 3 and pi = 1, (e) number of
virtual ports dedicated for connecting the hosts per switch with r = 184, k = 4 × 4, vi = 4 × 4, l = 4. (f) shows the data of (a)–(f) as box plots for the
different number of tenants (5% and 95% percentile whiskers are used).

5) Physical and VN Size: As suspected, increasing the VN
size does indeed affect the CPU utilization (see Fig. 8c). For
instance, embedding 5×434 flows per second (5 tenants) with
a length of 3 in a 2 × 2 virtual grid network generated CPU
utilization of around 78%, while repeating the same measure-
ment in 5×5 grid lead to 136% CPU utilization. Interestingly,
the CPU utilization does not scale linearly with the total
number of virtual switches but with its square root. Although
this might sound counter-intuitive (as typically lookup scalings
are O(n) for a list or O(log(n)),O(n log(n)) for tree-like
data structures), increasing the virtual grid dimension also
increases the average node degree (i.e., number of virtual
ports), which also has an impact of CPU utilization. Contrary
to our expectations from Sec. III-B, the size of the underlying
physical topology does not produce a significant impact on
the CPU utilization (see Fig. 8d). For instance, with 3 tenants,
the observed CPU utilization increased only from ∼ 54% (for
3×3 physical grid) to around ∼ 56% (for 5×5 physical grid).

6) Number of Virtual Ports: The previous measurements
are based on the assumption that each tenant has one host
connected to each virtual switch (requires one virtual port).
Thus, coupled with topology knowledge, the total number of
virtual ports per each tenant’s switch is fully defined. However,
other physical topologies and VN configurations can have a
different number of virtual ports per switch. To incorporate
the topology impact in our measurements, we investigate the
impact of the number of virtual hosts/ports per switch. To
this end, we increase the total number of hosts per tenant
on each switch from 1 to 5, in turn increasing the number
of virtual ports. We observe a non-negligible linear impact

(see Fig. 8e). For instance, the observed mean CPU utilization
for 5 tenants is increased from around 74% (for 1 host per
virtual switch) to around 93% (for 5 hosts per virtual switch).
This occurs since the NH inspects every FlowMod Add in
order to investigate if the tenants are indeed using only their
corresponding flowspaces.

7) Number of Tenants: Fig. 8f presents all of the data from
Figs. 8a–8e merged and sorted based on the total number of
tenants. Furthermore, the plot shows the linear regression of
the 90th percentile values for each number of tenants. We
observe that the intercept of the regression line is around
0%. Although the number of tenants in some cases could
have a non-linear impact (see pi = 2 on Fig. 8e), we also
highlight that the deviation is not drastic. Overall (see Fig. 8f),
for small number of tenants, the impact can be simplified
and assumed additive. That means that the increase in CPU
utilization observed for each additional tenant is always the
same. In particular, that means that, for predicting the CPU
utilization for a multi-tenant scenario, we can simply compute
the impact of each tenant independently and add the resulting
CPU values.

8) Summary: While CPU utilization is by nature a highly
variable metric, we have seen that our measurement procedure
always obtains stable results. We have shown that the impact
of the considered evaluation parameters on the 90th percentile
CPU utilization can be approximated by simple functions
(models). This suggests that a precise modeling of the 90th
percentile of CPU utilization is indeed possible. Further, the
size of the physical topology seems to have no major effect
on the resource consumption, hence, suggesting that the model



8

can be physical-topology-agnostic for smaller sized networks.
In the following section (see Sec. IV-B), we will use these
measurements and observed scaling dependency in order to
generate a CPU performance model capable of supporting
arbitrary physical networks and a wide variety of VN requests.

IV. HYPERVISOR CPU PREDICTION MODEL

In this section, based on the results of our measurement
campaign, we present our NH CPU utilization prediction
model. We use 90th percentile CPU utilization as it provides a
good trade off between performance and resource consumption
(see Sec. III-D2). Firstly, we fit our comprehensive grid
measurements with a linear model. Then, we extend it with
a port scaling factor in order to generalize its applicability to
arbitrary physical topologies and randomly generated VNs.

A. Model for Grid Topologies

The results of Sec. III-D show that the CPU utilization
of a FV scales with (i) the FlowMod Add message rate (as
witnessed by the impact of flow length and flow request rate),
(ii) the total number of virtual switches, and (iii) the number
of virtual ports per switch. Furthermore, for a small number of
tenants, (iv) the impact of this parameter can be assumed to be
additive (see Sec. III-D7): the contribution of each additional
tenant to the CPU utilization is equal to its contribution as
a single tenant. As the number of virtual ports is used to
represent the topology impact (e.g., edge density), we will only
consider it when extending our model for arbitrary topologies
(Sec. IV-B). We define our initial CPU prediction model as:

f1(r, v, n) =

n∑
i=1

(
c0 + c1 r

FM
i

√
vi
)
, (1)

where n is the number of tenants, rFMi is the total control
plane FlowMod Add rate, which is fully defined with the flow
request rate and the corresponding path lengths, (i.e., if we
assume that the total number of different paths of a tenant i is
Xi, then rFMi =

∑Xi

j=1 r
i
j · lj). The variable vi gives the total

number of virtual switches of a tenant i, and c0 and c1 are
fitting coefficients. We multiply the parameters (rFMi and

√
vi)

since the required resources for processing each FlowMod Add
message depend on the configuration of a VN (see Sec. II and
Sec. III-D). To illustrate, if no messages are sent (ri = 0 or
li = 0), the size of a VN (i.e., parameter

√
vi) should not have

a significant impact on the CPU utilization.
Using a regression model minimizing the mean square error

and the measurement data presented in Figs. 8a–8c, we obtain
the coefficients c0 = 6.46 and c1 = 2.84 × 10−3. The
cumulative distribution of the absolute fitting error and the
corresponding median are shown in Fig. 9. The median of
the absolute error is around 3.41% and the maximum error is
12.4% (for scenario: num. tenants = 5, r = 430, k = 5 × 5,
vi = 3×3, li = 3 and pi = 1), witnessing the fitting accuracy.

B. Model Extension for Arbitrary Topologies

The initial model f1 (Eqn. 1) assumes a physical grid
topology as well as virtual grid networks. However, in practice,

0.0 2.5 5.0 7.5 10.0
absolute error [%]

0.00

0.25
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0.75
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F

Fig. 9: Cumulative distribution function (CDF) of the absolute fitting error of
the grid measurement data with a linear based model (Eg. 1).

other topologies are possible. For instance, tree-like topologies
used in data center networks, ring-like topologies used in
industrial networks and wide-area network topologies such as
those from the Topology Zoo [29] have less dense structures.
The average node degree of a ring topology is always 2, while
the average node degree of a grid with 9 nodes is 2.67 6.

We have seen that the number of virtual ports affects the
NH CPU utilization (see Fig. 8e). As the average number
of virtual ports of a VN directly corresponds to the average
node degree of its topology, we use this notion to extend
our model to arbitrary topologies. We linearly scale the grid-
based CPU prediction with a per-tenant port scaling factor
φi. We use a linear scaling factor φi because of the linear
dependency observed in Fig. 8e. The extended model can then
be formulated as:

f2(r, v, n) =

n∑
i=1

φi
(
c0 + c1 ri

√
vi
)
. (2)

The intuition for defining the per-tenant port scaling factor
φi is similar to the cross-multiplication rule in elementary
arithmetic. We first divide the per-tenant grid-based prediction
(based on Eqn. 1) with a parameter representing the average
node degree in a grid topology (i.e., with pei ). This division “re-
moves” the grid aspect in the prediction (details in Sec. IV-B1).
Afterwards, again on a per-tenant basis, we multiply the newly
obtained predictions with the average node degree of each
tenant’s virtual topology (i.e., with pi). Mathematically, using
a tuning parameter α, the per-tenant port scaling factor φi can
be represented as:

φi =
( pi
pei

)α
, (3)

where pi is the average node degree of tenant’s i VN:

pi =

∑vi
j=1 a

i
j

vi
, (4)

where aij is the number of virtual ports of virtual switch j.
1) Calculating pei : The parameter pei removes the grid

aspect from the prediction. It tries to compute the average
node degree of a grid topology with similar properties as the
requested VN topology by a tenant. If a tenant requested a
VN where the total number of nodes is a square number, i.e.,
the root of the total number of virtual switches is an integer,
i.e., yi =

√
vi, yi ∈ Z+ (e.g.,

√
4 = 2), an equivalent grid

6Excluding additional ports for connecting hosts to the virtual switches.
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Fig. 10: Computation of pei based on vi. Values are interpolated (green dashed
line) from the average number of virtual ports per switch for grid topologies
(red crosses) and converge to 5 (thick dashed gray asymptote) as internal
nodes in a grid topology connect to 4 other nodes and one host.

VN is simply yi × yi grid. Thus, it is easy to calculate the
average node degree of the corresponding grid VN equivalent.
For instance, if a tenant requested a VN with vi = 4 nodes,
the grid-like equivalent is a 2 × 2 grid, which has 12 virtual
ports, thus pei = 12/4 = 3.

If the total number of nodes of a requested VN is not a
square number, we determine pei based on the linear fitting of
the average node degree of various VN sizes which were used
in the measurements (i.e., 2×2, 3×3, 4×4, 5×5). The fitting
is shown in Fig. 10. The red crosses correspond to the grid
topologies used in the measurements. In this case, pei simply
corresponds to the average number of virtual ports per virtual
switch for a grid topology of dimension

√
vi. For intermediate

values, since there is no direct grid-like VN equivalent, we
simply fit the total number of virtual ports in the network
piece-wise linearly and divide it by the number of nodes. This
is shown by the green dashed line. Note that the values used for
linear fitting are based on our measurement scenarios, which
means that each virtual node also has an additional virtual port
for connecting one virtual host to it. That is why the pei values
converge to 5, as shown by the thick gray dashed line.

2) Calculating α: As observed in Sec. III-D6, increasing
the number of virtual ports also increases the observed CPU
utilization linearly. However, the increase is not directly pro-
portional, i.e., doubling the average number of virtual ports
does not double the observed CPU utilization. Therefore,
we introduce an exponential tuning parameter α, and we
use it to improve the fitting of our scaling parameter φi to
our measurements. To calculate α, we use the measurement
data from Fig. 8e and we calculate α while minimizing the
mean square error. We obtain α = 0.281. Hence, replacing
parameters in Eqn. 2 with their real values, we obtain our
final model.

V. MODEL EVALUATION

Having established our model, we now evaluate its accuracy
using topologies and VNs that were not used during the
measurements. This should allows us to quantify how the
model can adapt to arbitrary physical topologies and randomly
generated VNs. First, we introduce our evaluation scenario
and explain how we generate a wide variety, i.e., random VN
requests (Sec. V-A). Second, we describe the models used
as comparison baseline (Sec. V-B). Finally, in Sec. V-C, we

TABLE II: Physical topologies considered and their number of nodes and
edges and their density. As a comparison, 5×5 and 6×6 grids have densities
of 1.6 and 1.67 respectively.

Topology # Nodes # Edges Density

Ring30 30 30 1

Internet2 34 42 1.23

NobelEU 28 41 1.46

Watts-Strogatz 30 60 2

Erdos-Reny15 30 63 2.1

Erdos-Reny30 30 136 4.53

TABLE III: Distribution of parameters for the final evaluation. U(x, y)
denotes a uniform distribution between x and y.

Scenarios VN size [#nodes] Flow rate [1/s]

1 – 20 U(2, 25) – Full U(200, 600) – Full

21 – 40 U(13, 25) – Big U(400, 600) – High

41 – 60 U(2, 13) – Small U(400, 600) – High

61 – 80 U(2, 13) – Small U(200, 400) – Low

81 – 100 U(13, 25) – Big U(200, 400) – Low

evaluate the precision of our CPU prediction model, and we
also evaluate the effect of provisioning the resources with our
model on the NH processing latency.

A. Scenario

1) Topologies: We consider six physical topologies
(Tab. II): two existing wide-area network topologies (Inter-
net2 [24] and Nobel EU [25]), a typical industrial network
topology (a 30 node ring) and three randomly generated
network topologies: two Erdos-Reny [30] models with 30
nodes and an edge probability of 15% and 30%, and a Watts-
Strogatz [31] model with 30 nodes with an average degree
of 4. The selected topologies have a wide range of different
edge densities (defined as the number of edges divided by the
number of nodes), supporting the choice of these topologies
as a representative set.

2) VN Requests: We consider that the total number of
tenants during one run is static, and it ranges from 2 to 5. For
each topology, and for each number of tenants, we define 100
different measurement scenarios. One measurement scenario
is generated based on the (i) per-tenant VN size distribution
and, (ii) a per-tenant flow request rate distribution. Depending
on the scenario number, we use different parameter values as
listed in Tab. III (as in Sec. III). This is done since using the
full ranges as in the measurement section will lead to VN
requests with different requirements. However, in multi-tenant
cases, the average of all requirements of all tenants converges
to expected mean values. Therefore, in order to evaluate more
extreme cases, we consider cases for which all tenants may
request only big or small networks, and only high or low flow
request rates (as in Tab. III). As a consequence, we build four
combinations, making a total of 5 different cases, with 20
scenarios each.

3) VN Connectivity: Based on a given VN size, edges in the
VN are generated as follows. One node is randomly selected.
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(b) Internet2

0 50 100
measurement run [#number]

0

50

100

150

200

C
PU

 [%
]

absolute error
measured
estimated

0

20

40

60

ab
so

lu
te

 e
rr

or
 [%

]

(c) NobelEU
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(d) Watts-Strogatz
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(e) Erdos-Reny15
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(f) Erdos-Reny30

Fig. 11: (a)–(f) Estimated and measured 90th percentile CPU utilization for 100 randomly generated scenarios with 2-5 tenants using the considered topologies
(i.e., Internet2, NobelEU, Ring, Erdos-Reny and Watts-Strogatz). The scenarios are sorted based on the measured CPU utilization in the ascending order. The
absolute error is shown as red starred line, while the mean observed error is shown as horizontal red dashed line.

Out of all its neighbors, a new node is randomly selected
and connected. Out of all the neighbors of existing nodes,
a node is randomly selected and connected. The procedure
stops as soon as enough nodes are connected. Finally, the per-
tenant flow request rate is generated based on the values in
Tab. III. We reuse the same flow generation procedure as in
the measurement section.

B. Model Variations & Baseline

State-of-the-art VNF CPU resource prediction models gen-
erate their estimate while considering different input param-
eters [32], [33]. However, apart from the message rate, these
parameters (e.g., IP source address, TCP destination port)
often do not have an impact on the CPU utilization of an NH.
Thus, if we directly apply these approaches for provisioning
the CPU resources of an NH, they would generate their
estimate solely based on the control plane message rate.
Similarly, state-of-the-art NH CPU performance models [9],
[10], [17] only consider the total control plane message rate as
their input parameter for estimating the CPU utilization of an
NH. Therefore, as our baseline, we use a linear model based
on the total control plane message rate [9], which does not take
into account the properties of the VNs. The model is defined
as follows:

f3(r, n) = cBo + cB1

n∑
i=1

ri. (5)

The coefficients cB0 and cB0 are obtained by a least mean square
error fitting using the same measurement data set presented in
Fig. 8; the coefficients are cB0 = 11.96 and cB0 = 13.86×10−3.

Furthermore, in order to evaluate separately the effect of
the number of virtual switches and ports, we also consider
our original f1 model, which does not include the effect of
virtual ports.

C. Evaluation Results

First, we evaluate the accuracy of our proposed model.
We show that, even for arbitrary topologies and randomly
generated VNs, the prediction error remains low (8–9% on
average). Finally, we compare the provisioning performance
of our proposed prediction model, and the impact on the
processing latency. Furthermore, we also compare the achieved
accuracy and provisioning performance to the two baseline
models.

1) Prediction Accuracy: Fig. 11 shows, for each physical
topology, the measured and predicted CPU utilization for 100
randomly generated scenarios. It can be observed that the
proposed model accurately predicts CPU utilization, even for
randomly generated virtual topologies and unknown physical
topologies. For instance, the mean absolute prediction errors
per topology fall between 2.4–9.6%, while the highest ob-
served error was over 30%. The maximal absolute error is
observed for the ring topology, as it exhibits the most different
characteristics compared to the grid (e.g., significantly lower
edge density). Due to this difference, the maximal measured
CPU values for the ring topology exceeded the maximal grid-
based values, which were used for model fitting (more detailed
explanation is in the next paragraph). For example, for the ring
topology, we observed CPU values reaching up to 200%, while
in the case of a grid topology the maximal values were around
150%. Thus, the predicted values were outside of the modeled
range, thus the performance suffered the most in this case.

2) Topology Analysis: We observe that different topologies
require different amount of CPU resources. For instance,
Ring30 requires the highest amount of CPU resources (up
to ∼ 180%) while Erdos-Reny30 requires the least (up to
∼ 110%). We can explain this in the following way: randomly
generated VNs on physical topologies with a lower edge
density (e.g., ring) typically have longer paths compared to
the ones generated on more dense topologies. For instance, a
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Fig. 12: Box plots of the prediction accuracy of the three models f2 (Eqn. 2,
proposed model), f1 (Eqn. 1, proposed model without port scaling factor) and
f3 (Eqn. 5, only rate based model - SotA). The dashed gray line indicates the
average fitting error of the grid measurements, thus, applying the model on
different topologies with randomly generated requests on average introduces
a slight penalty, i.e., the average error increases by a few percents.

VN with 4 virtual switches on a ring topology is always a line
with a maximal path length of 4. On the other hand, a grid VN
with the same amount of nodes (i.e., 2×2) on a physical grid
topology has a maximum path length of 3. Therefore, for less
dense topologies, a larger number of FlowMod Add messages
are needed, in turn leading to higher CPU utilization. Thus,
the observed and predicted mean CPU utilization values in
Figs. 11b–11d are highly correlated with the density of the
corresponding topologies (see Tab. II).

3) Mean Error and Baseline Comparison: Fig. 12 shows
the prediction error of our proposed model f2 (Eqn. 2) and of
the two baseline models f1 (Eqn. 1, proposed model without
port scaling factor) and f3 (Eqn. 5, only rate based), all
models predict 90th percentile CPU utilization. The highest
absolute errors are observed for the ring topologies as it
differs the most from the measurement grid topology. For
instance, the mean prediction error achieved for the ring
topology is slightly higher compared to other topologies, i.e.,
around 9.5% compared to 2.4%−4.1% for other topologies.
Furthermore, the baseline prediction models (i.e., Eqn. 1, and
Eqn. 5) produce considerably higher prediction errors, as the
mean prediction per topology varies between 3% and 25%.
This confirms our original motivation: certain NH functions
depend on configurations of the tenant VNs — processing the
same message in different network settings requires a different
amount of resources.

4) Sources of Error: Fig. 13 shows heatmaps of the mea-
sured absolute error for the proposed model and the baseline
models for all topologies and for different VN sizes. The
proposed model performs quite constantly, having an overall
mean absolute prediction error of around 4%. As the baseline
models do not include all affecting parameters (i.e., total
number of virtual switch and ports), they fail to perform in
extreme cases. For instance, the rate baseline model (Eqn. 5,
only rate based) reaches a mean absolute error of 40% for
small networks, which can lead to significant unpredictability
of the performance perceived by tenants.

As the baseline (Eqn. 5, only rate based) was fitted based
on the grid measurement data where VN sizes vary from 4
to 25 virtual switches, we would expect that it performs the
best for middle sized VNs (e.g., with around 12-13 nodes).

However, as it can be seen in Fig. 13c, this is not the case,
as the baseline performed the best for virtual topologies with
a higher number of nodes. This stems from the fact that (on
average) our tree-like VN generation procedure produces VN
requests with a lower amount of virtual ports compared to the
grid VNs used in the measurement section. This makes CPU
prediction of the baseline higher for all VN sizes, hence, the
precision becomes worse for middle-sized VNs, and the best
for larger VNs (see Fig. 13c). Our proposed model includes a
per-tenant port scaling factor, hence, it can in general mitigate
this effect among all VN sizes.

Overall, the rate-based solutions can perform decently in
static and fixed environments, i.e., with fixed number of static
tenants (and fixed VN configurations) generating constant
control plane load. However, novel communication networks
are envisioned to be dynamic and flexible, i.e., a tenant should
be able to request arbitrary VNs (with a desired configuration)
at any time for a certain duration. In contrast to our proposed
solution, state-of-the-art approaches do not include all the cru-
cial parameters (e.g., the error can reach over 60% depending
on VN sizes), therefore, these solutions do not seem suitable
for flexible and dynamic networks.

5) Effect of Evaluation Parameters: The proposed CPU
prediction model depends on several input parameters: number
of tenants, total number of virtual switches, the flow request
rate, and the number of ports per virtual switch for each tenant.
In order to evaluate whether the performance deviates with
some of the considered parameters, we uniformly bin the data,
and we show the mean absolute prediction error along with
standard deviation and maximum value in Fig. 14. Overall,
we can observe that the mean and maximal absolute error is
higher when the measured CPU utilization is higher. There
are two reasons behind this. Firstly, we show absolute errors,
thus an absolute error of 10% at 100% is more highlighted
on the figure compared to an absolute error of 5% at 50%
(while relative errors are the same). Secondly, in case of a
higher CPU utilization, the ring topology exhibits significantly
higher absolute error compared to the other topologies (e.g.,
see Fig. 11a and Figs. 11b-11f). Thus, this significant error
increase caused by extrapolating skews a bit data on Fig. 14.
Further, since all these parameters are correlated (e.g., higher
rates produces higher CPU utilization), we can observer the
same trend for all parameters except the number of tenants.

D. Impact on Latency
To evaluate the impact of CPU provisioning on the process-

ing latency of the NH, we generate 100 scenarios per total
number of tenants for Internet2 and Erdos-Reny15 topologies
in the same manner as explained in Sec. V-A. Each measure-
ment scenario is then run 4 times with 4 different provisioning
strategies while tracking the processing latency profiles. We
consider the following 4 provisioning strategies.

1) Over-provisioning. All physical resources are dedicated
to the NH. This strategy is very resource inefficient
but is expected to provide the best overall processing
performance.

2) Mean CPU Estimate. The resources are provisioned
based on the observed mean CPU utilization during the
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(a) Proposed model f2.
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(b) Prop. model w/o port scaling factor f1.
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(c) Only rate based model f3 (SotA).

Fig. 13: Impact of the number of virtual switches per tenant and topology type on the mean observed relative error for (a) proposed model and (b) the baseline.
The date is separated in 6 uniformly created bins, and the mean values of each bin are shown.
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(b) NBI OF message rate [k]
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Fig. 14: Absolute error dependency on (a) the average number of virtual
switches per VN, (b) the total FlowMod Add rate, (c) the measured CPU
utilization, and (d) the total number of tenants. The observed data on figures
(a)–(c) is pre-processed by binning it into 10 equally sized bins. For each
bin, mean and standard deviation are shown as error bars, while green stars
indicate the corresponding maximum.

over-provisioned run. This corresponds to the state-of-
the-art CPU performance models [9], [10].

3) Proposed Model. The resources are provisioned with the
proposed improved model, i.e., with f2 (Eqn. 2).

4) Proposed Model with Additional Margin. As our pro-
posed model is not perfect (average fitting error is
around 4%), it occasionally underestimates the CPU
utilization, in turn, potentially increasing the processing
time of an NH. In order to compensate for underestima-
tion and non-perfect cpulimit precision, we also consider
provisioning strategy based on the proposed model with
an additional margin. For an additional margin we use
the maximal fitting error, which is 12.4% (see Fig. 9).
Thus, the resources are provisioned with f2 + 12.4%.
This approach ensures that we always provision the
resources with a slightly higher value, thus, the impact
on latency should always be negligible.

For each measurement run, we record the mean, median,
maximal, and 90th percentile latencies. Fig. 15 shows the
latency profiles achieved by the strategies for the two topolo-
gies and the four aforementioned statistical properties. As
already shown in the introduction, provisioning with the mean
CPU estimate (2nd set of box plots) is not sufficient as it

incurs a big overall latency increase. Provisioning with the
proposed model (3rd set of box plots) does not increase the
median latency, however, the mean is increased as the maximal
latencies are increased significantly. For instance, the maximal
latency increases around 3 times, reaching values of around
100 ms. This is happening when the model underestimates
the required CPU resources for a given measurement scenario.
Thus, in certain time instances, the NH exceeds the allocated
CPU resources, in turn triggering cpulimit to throttle the
corresponding process.

Provisioning the CPU resources with an additional margin
(4th set of box plots) achieved almost the same processing
performance as the over-provisioned case. For instance, the
mean maximal latencies increased only from 24-29ms to 38-
44ms. The mean and median latencies stayed the same. We can
conclude that provisioning with an additional margin provides
huge resource savings (in the most naive case 710% less
CPU capacity) while having an acceptable and still predictable
impact on the processing performance for virtual network
tenants.

VI. RELATED WORK

Our approach for provisioning the resources of an NH
is based on a carefully designed measurement based CPU
prediction model. Since an NH can be considered as a
VNF, we firstly describe state-of-the-art Virtual Networking
Function (VNF) and NH resource prediction models, while
highlighting their shortcomings. Furthermore, as our model is
based on comprehensive NH measurements, subsequently, we
cover existing works dealing with the benchmarking of NHs.

A. Resource Prediction Models

In order to reduce excessive power consumption in cloud
computing systems through dynamic resource scaling, many
authors focused on designing accurate VNF resource predic-
tion models [32]–[37]. Although an NH can be considered
as a VNF, these approaches cannot be directly applied. For
instance, they often consider different input parameters (e.g.,
IP source address, TCP destination port etc.) [32], [33] which
do not affect NH CPU utilization. Or they are based on
already observed CPU samples [35]–[37]. However, as the VN
configurations can change over time (e.g., number of virtual
switches), the prediction performance of these models would
also suffer.
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Fig. 15: (a)–(f) Impact of 4 different NH CPU provisioning strategies on the observed message processing time of an NH. For each run, four different statistical
properties are considered: median, mean, 90th percentile, and maximal latency. As we have 400 different scenarios, each box plot represents 400 observed
values of a certain statistical property.

On the other hand, there are also a few NH specific CPU
prediction models [9], [10], [17]. However, there are two prob-
lems with these approaches. Firstly, they predict the average
NH CPU utilization only. Using the average CPU utilization
only does not count for potential variability in the overall
CPU utilization. This can result in a significant performance
degradation of the perceived tenant performance (as shown
in Sec. I). Secondly, the prediction is only based on the
control plane message rate. Thus, the algorithm cannot react to
changes in the VN configuration parameters, e.g., the number
of virtual switches or hosts. Furthermore, as these parameters
have a significant impact on the utilization of NHs [8], the
prediction performance would suffer in dynamic scenarios. On
the contrary, our model predicts the 90th percentile of the CPU
utilization, which does not incur a forwarding performance
degradation on average. Moreover, our model accounts for
performance-critical parameters such as the number of virtual
switches or ports.

B. Hypervisors Benchmarks

Network hypervisor benchmarks have so far either focused
on exploring the processing time of various control plane
messages [6], [8], [15], [38]–[43] or on measuring the CPU
utilization of NHs in various different settings [6], [8]–[10],
[17]. In contrast to our benchmarks, evaluating how to predict
NH CPU requirements based on different parameters, e.g.,
number of VNs, has been ignored so far.

Furthermore, some of the aforementioned studies suggest
that the CPU utilization of NH and the processing time is only
correlated with a subset of VN parameters, e.g., the number
of tenants [9], [10] or the number of virtual and physical
switches [8]. However, these studies consider only very basic
combinations of virtual and physical network parameters and
settings, e.g., a single-switch topology [9], [10], only a line
topology [17], [40] or two-port switches [8]. Therefore, the
impact of arbitrary topologies (in terms of the number of
switches and the interconnecting links) is not considered.
We perform comprehensive NH performance benchmarks (in-
cluding latency and CPU) on various different and realistic

physical and virtual network topologies. In particular, we
investigate a multitude of impact factors. Furthermore, we
tailor the benchmarks with the goal of detecting and learning
the impact of various physical and VN parameters in a fast
and efficient manner.

VII. CONCLUSION

Correctly provisioning the resources available to a network
hypervisor (NH) is crucial for ensuring stable and predictable
network performance for tenants. Yet, the state-of-the-art
does not offer adequate solutions as they neglect bursty NH
workloads or the impact of dynamic virtual network (VN)
changes. Thus, in this article, with the goal of provisioning NH
resources for flow embedding scenario, we design an accurate
CPU prediction model based on comprehensive measurements
that generalizes for different substrate topologies and virtual
network requests. The proposed model exhibits high prediction
accuracy as the mean average prediction error is overall
around 4%. Provisioning the resources with the corresponding
model produces only a slight increase of tail latencies. For
instance, on average, the maximal processing time increased
from around 25ms to around 44ms. With our new model, it
becomes possible to minimize the resource consumption or
improve the overall utilization through accurate prediction of
the required CPU resources of an NH.

From a more general point of view, we believe that our
work sheds light on potential other applications where simi-
lar predictions are necessary. For example, softwarization of
networking functions (e.g., firewall, NAT) and new networking
architectures (e.g., SDN) increase the total number of deployed
VNFs running in software on commodity hardware. Applying
the same procedure to learn the performance profiles of
various VNFs could potentially produce enormous savings
while provisioning the resources in a centralized cloud where
these functions run.

Future Work. The amount of required resources for nor-
mal operation of a VNF may be affected by many differ-
ent parameters: e.g., number of clients within a firewall-
protected network, number of flows a NAT has to process
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etc. Manually learning what parameters have an effect, and
which are the most affecting ones for various VNFs (with
different implementation architectures) can be time-consuming
and cost-inefficient. Therefore, new solutions are needed that
are capable of learning the most affecting parameters in an
automated and online manner.

Furthermore, in this article we focus on providing a solution
capable of provisioning network hypervisor CPU resources in
smaller environments. However, it is still not clear how our
solution scales, and if it is generalizable. Thus, one of our
future steps is to deploy our solution on larger setups in an
automated manner.
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