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Abstract—Software-defined networking (SDN) is the key tech-
nology to enable network softwarization by offering a pro-
gramable and flexible network control capabilities. In order to
dynamically manage and reconfigure the underlying network
through SDN, network-based monitoring functionality needs to
be in place. However, existing network monitoring schemes are
normally heavyweight which can cause substantial monitoring
overhead when dealing with entire network infrastructure and
complex policies. Such a limitation can be critical in a software-
based network system that enables the construction of multiple
networks with various network policies designed by a network
operator. In this paper, we propose a new lightweight monitoring
mechanism referred to as Active-port Aware Monitoring (APAM)
in order to support the monitoring of complex networks with
substantially reduced overhead. APAM typically monitors active
ports which are the switch ports utilized by current flow rules.
These active ports are dynamically monitored with reconfigurable
monitoring intervals according to their port utilization. The
measurement results show that APAM adapts varying traffic
route due to a change of flow rules and also adjusts its monitoring
performance according to network traffic dynamicity, which
reduces the monitoring overhead and also improves monitoring
accuracy.

Index Terms—Software-Defined Networking, Network moni-
toring, Low overhead.

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) [1], [2] has be-
come one of the key enabling technologies for future

networks in the sense that it enables dynamic network man-
agement and control through its programmable and centralized
features. The programmable feature is based on the decoupling
of the control plane from the data plane, which brings the
ability to dynamically change traffic forwarding rules by
an SDN controller. Due to such a feature, SDN requires a
signaling mechanism to communicate between the control
plane and the data forwarding plane, with OpenFlow [3] being
a standard communication protocol for such a purpose.

In addition, due to the necessary communication between
SDN switches and SDN controller in charge, a SDN-based
network inherently has a centralized feature: an SDN con-
troller has knowledge about the status of the entire network
by collecting real-time state information captured in individual
SDN switches, thanks to these two features in SDN, dynamic
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network control can be enabled at the SDN controller side
based on the real-time knowledge of the network condition in
dynamic environments.

One key prerequisite to efficient network control in SDN-
based networks is to obtain network conditions promptly and
accurately through the network monitoring system. Such a
capability allows SDN controllers to quickly adapt to traffic
behavior changes by appropriately reconfiguring data-plane
devices. It is worth noting that, the transmission and pro-
cessing of network monitoring messages on traffic conditions
consumes both network and computing resources. Such an
overhead may potentially introduce a negative impact on
forwarding performances in the data plane [5]. On the other
hand, inadequate monitoring capabilities cannot fulfill the
task of accurately and promptly reporting network and traffic
dynamicity to the control plane, thus losing the agility and
accuracy in responding to various events. Therefore, there
is an obvious trade-off between monitoring performance and
monitoring overhead in SDN-based networks.

Although various monitoring methods [6-21] have been pro-
posed to improve monitoring performance, existing monitoring
mechanisms in SDN still have potential risks concerning moni-
toring overheads. Most of the previous monitoring methods are
based on flow monitoring which introduces a heavy monitoring
overhead in accordance with the increasing of the number
of flow rules in SDN. Thus, applying existing monitoring
approaches may cause a substantial overhead when complex
network policies based on a large number of flow rules are
applied in SDN-based networks. This is particularly the case
when concerning macroscopic monitoring which focuses on
the entire network infrastructure potentially being large-scale.
The basic monitoring strategy in SDN is to periodically collect
flow and port statistics from SDN switches which is also
known as polling. The main drawback of polling monitoring is
it generally uses a static polling period for the entire network
regardless of utilization of network infrastructure, which only
can be effective at certain network conditions.

In this paper, an active-port aware monitoring (APAM)
scheme is presented to mitigate the trade-off of traffic monitor-
ing as a lightweight and macroscopic monitoring function. By
using both flow rule information and port statistics, APAM
not only dynamically manages the monitoring operation on
individual ports but also minimizes unnecessary monitoring
overhead. Using flow rule information, APAM scheme re-
trieves active ports that are SDN ports utilized by current flow
rules and monitors a whole network topology by using some
(or all if necessary) of active ports. APAM also adapts active
ports and a monitoring topology according to a change of flow
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rules. The active ports are then monitored by dynamically col-
lecting port statistics depending on the bandwidth utilization
of the active ports for monitoring efficiency. Thus, with APAM
scheme, an SDN controller is able to not only concentrate on
the active ports but also choose between reducing monitoring
overhead and improving monitoring accuracy of the active
ports according to their port utilization.

The rest of this paper is organized as follows. Section
II briefly describes the monitoring mechanism in SDN and
the motivation of this research. This is followed by the
description of the APAM framework and its operation in
Section III. Section IV presents the measurement results with
consideration of the performance evaluation, adaptability and
monitoring overhead, and robustness of APAM. Finally, we
offer our conclusions in Section V.

II. BACKGROUND AND MOTIVATION

As a monitoring functionality, an SDN controller can obtain
network traffic information such as data forwarding rules and
the amount of traffic (bytes or packets) from SDN switches.
The information for data forwarding rules is obtained from
flow tables in each SDN switch and the traffic information is
observed by traffic statistics (port statistics and flow statistics).
When an SDN switch receives network traffic from an SDN
port, the SDN switch measures the amount of the network
traffic received. In case of the port statistics, it records the
cumulative amount of the traffic at the SDN port as its port
statistics. In case of the flow statistics, the SDN switch firstly
analyzes packet headers of the received traffic. If there is a
flow rule matched by the received traffic, then it records the
cumulative amount of the traffic matched by the flow rule as
its flow statistics. Note that port statistics and flow statistics
are independent of each other.

Although traffic statistics can be properly recorded in SDN
switches, the statistics collected should be retrieved from SDN
switches to an SDN controller in order to be utilized practi-
cally. In other words, for accurate traffic monitoring, traffic
statistics should be frequently collected at an SDN controller.
However, the operation for collecting traffic statistics generates
not only a processing overhead at an SDN controller and
SDN switches but also network overhead (management band-
width): an SDN controller requests traffic statistics using SDN
control messages, and then SDN switches send the statistics
information to the SDN controller when they receive the
request messages. Consequently, there is a trade-off between
monitoring performance and monitoring overhead in SDN-
based networks.

Various monitoring techniques have been proposed to
cope with the monitoring challenge: overhead and accuracy.
OpenTM [6] revealed the overhead of flow-based monitor-
ing which is caused by collecting flow statistics from SDN
switches to an SDN controller. In order to reduce this over-
head, PayLess [7] and OpenNetMon [8] proposed adaptive
monitoring methods which manage the rate of flow statistics
requests. FlowCover [9] can reduce monitoring overhead using
a flow aggregation method with a global view of network
topology. In [10], both adaptive pulling rate and aggregation

Fig. 1. Monitoring overhead according to monitoring methods.

of flows were considered for anomaly detection. Moreover,
FlowSense [11] introduced a passive (pull-based) monitoring
method which eliminates control messages for monitoring
by using flow expiration messages. In order to mitigate the
overhead related with the number of monitored flows, [12]
proposed a cost-optimized monitoring scheme using wildcard-
based requests and, in [13], a cost-effective monitoring method
using distributed controller deployment was proposed. In [14],
a self-tunning monitoring method was considered in decen-
trilized monitoring architecture to reduce both monitoring
latency and overhead. For high accuracy (almost real-time)
monitoring, sampling-based methods were considered in [15]–
[17]. Planck [15] can provide a sampling monitoring with
millisecond timescales using a port mirroring. OpenSample
[16] proposed a TCP traffic monitoring method which has
a 100-millisecond control loop by analyzing sampled TCP
packets. In [17], the sampling monitoring which uses dupli-
cated packets generated by SDN was utilized for an intru-
sion detection. Beyond the control plane operation, several
methods were proposed to optimize monitoring information
by using P4 [4] which is a language for controlling data
plane of P4 switch. FlowStalker [18] subdivides a network into
clusters and uses a special packet which collects monitoring
information of the clusters. In [19], P4 switches preprocess
monitoring information in order to forward requested statistics
to an SDN controller. In FlowSpy [20], P4 switches proactively
send monitoring information to a controller only when the
counter of flow rules exceeds a threshold. The general SDN
monitoring work is introduced and organized in [21].

However, although the previous monitoring methods have
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considered various aspects of monitoring overhead, they fun-
damentally have potential risks concerning the overhead to
monitor a whole network. In the case of flow-based monitor-
ing, a substantial overhead can be caused when there are lots
of flow rules in an SDN-based network (as shown in Fig. 1a)
due to complex network policies: network virtualization and
network slicing techniques can accelerate the increase of flow
rules in a physical network infrastructure. Furthermore, in case
of a hierarchical SDN structure such as the extended SDN
architecture specified by the Open Networking Foundation
(ONF) [22], the monitoring burden due to detailed monitoring
information can be amplified for a high-level SDN controller.
In case of sampling-based monitoring, additional network
bandwidth due to traffic sampling and special monitoring
functions such as a traffic collector and a traffic analyzer are
required. For the simplicity of implementation, most of SDN
controllers apply the conventional polling-based monitoring
which collects all port (flow) statistics with a static monitoring
period as a default monitoring method. Although conventional
monitoring is simple and requires minimum deployment cost,
it can only be effective in certain situations as shown in Fig. 1b.
The conventional monitoring with a short monitoring period
is appropriate when high monitoring accuracy is needed.
However, it keeps the high monitoring overhead even when
the high monitoring accuracy is no more required. In case of
the conventional monitoring with a long monitoring period,
the opposite results occur.

In order to address the drawbacks, the motivation of this
research is, therefore, to design a new monitoring mechanism
with the following considerations:

• Monitoring mechanism specialized for macroscopic traf-
fic information for a whole network monitoring: The
fundamental information for traffic monitoring is the
traffic status of the whole network. If there is a spe-
cialized function to monitor the whole network status
with minimum overhead, a large amount of monitoring
overhead can be reduced by using that function. SDN
already supports the port statistics which are aggregated
traffic information at a network interface (a link) and are
obtained with a static monitoring overhead regardless of
the number of flow rules.

• Optimization of polling-based port monitoring: the SDN
controller can maintain the knowledge of the whole
network topology, which prevents the request (or collec-
tion) of duplicated monitoring information. By collecting
traffic statistics of the ports which are currently utilized
by flow rules, the trade-off of traffic monitoring can be
mitigated.

• Dynamic monitoring control for each individual port
according to its traffic status: For efficient monitoring,
each port should be controlled according to its status
and monitoring control can adjust the dynamicity of port
traffic conditions.

Based on these considerations, a new traffic monitoring
method is proposed in this paper. The proposed monitoring
scheme is a macroscopic and polling-based monitoring with
traffic flow information. The proposed scheme firstly retrieves

the switch ports utilized by current flow rules and these ports
are called the active port in this paper. Some (all) of the active
ports are then selected and the proposed scheme monitors the
whole network traffic with the selected active ports, which
enables to minimize monitoring overhead. For the selected
active ports, the monitoring period of these ports is adjusted
according to their port traffic level. This operation not only
supports high monitoring accuracy in high traffic load situation
but also minimizes monitoring overhead when network links
(ports) are stable. In the case of the non-selected ports, the
proposed scheme just keeps these ports as non-active ports or
monitors these ports with minimum overhead.

III. ACTIVE-PORT AWARE MONITORING (APAM)
The core idea of the proposed scheme, APAM, is to retrieve

active ports of SDN switches and then to adjust the monitoring
interval of these ports according to their utilization levels. The
general operation of APAM is as follows. First, active ports are
determined and port utilization of each active port is estimated
by collecting its port statistics1. For ports with higher utiliza-
tion levels, the monitoring interval is kept smaller, in order to
improve monitoring accuracy. If the port utilization is low, the
monitoring interval increases in order to reduce monitoring
overhead, i.e. the frequency of the control messages sent to
the SDN controller to retrieve port statistics.

A. SDN Architecture and Framework with APAM

The SDN architecture and framework with APAM are
described in Fig. 2. The architecture consists of SDN switches,
which can communicate with an SDN controller using south-
bound API. The OpenFlow protocol is used for the southbound
API. Although APAM may have more flexibility with P4, this
extension is out of scope in this paper, and need further study.
The architecture includes some SDN applications which may
perform some high-level SDN based control functions and can
access the SDN controller via its northbound API, which could
be based on Representational State Transfer (REST) or Remote
Procedure Call (RPC).

The platform can support several functionalities or network
information to applications using several functions in the SDN
controller. Among these, a network abstraction function can
provide global information on network conditions. In this
study, APAM is designed as a basic network abstraction
function of the SDN controller. This follows a micro-services
approach, in which APAM can be independently deployed and
modified when necessary. Applications and/or other functions
of the SDN controller can fetch monitoring information from
APAM.

B. APAM operation

1) Retrieval of Active Ports: APAM determines which ports
of the SDN switches are active by processing current flow rules
deployed on the switches2. After APAM retrieves the flow

1Note that APAM uses port traffic statistics as link traffic statistics because
physical link traffic and physical port traffic are identical.

2The information on flow rules can be obtained by fetching flow tables in
the SDN switches or from other functions of the SDN controller.
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Fig. 2. SDN architecture and framework.

rules, it determines active ports based on some pre-defined
conditions that can be derived from the flow rules. These pre-
defined conditions can be comprised of elements of flow rules,
such as output port and in port. The pre-defined condition
used in this paper is to contain output-port elements; i.e. the
ports listed as an output port are regarded as active ports. The
port number of the active port and the ID of the SDN switch
ID where the port is located together uniquely identify an
active port. The algorithm of the retrieval operation is given
in Alg. 1.

Algorithm 1 Retrieval of active ports
1: for switch in switches do
2: flow rules = Fetch flow rules in switch
3: for flow rule in flow rules do
4: condition = there is an ‘output port’ action in flow rule
5: if condition and output port 6= controller port then
6: active ports[switch].append (output port)
7: end if
8: end for
9: end for

2) Selection of Active Ports to be Monitored: Since an
active switch port may be linked to an active port of an-
other switch (rather than a terminal device), to avoid double-
counting the link statistics information, only one of these
active ports is monitored. In other words, APAM needs to
select which of the two switches that a monitored link is
connected to should be used to monitor the link. To achieve
this, APAM assigns a monitored link to a switch by means of
selecting one of these two active ports for monitoring.

For this selection, APAM firstly classifies active ports into
two types: the active network port and the active termi-

nal port. The active network ports indicate the active ports
connected to another switch and the active terminal ports
represent the active ports connected to the terminal. APAM
then performs the selection process with the active network
ports. The selection process attempts to equalise the number
of monitored ports across the network switches as much as
possible, so that monitoring traffic load to SDN switches is
kept as homogeneous as possible across the network. APAM
first sorts the switches in ascending order of active ports.
Note that the link information can be obtained by a topology
function in the SDN controller. Then, starting from the switch
with the least number of active ports, each switch selects one
active network port which its neighbor switch has the most
number of active ports. While considering a port for selection,
APAM checks whether the other end of the active network port
(i.e. the active port at the other switch which the link connects
to) has already been selected. If so, APAM picks another active
network port. This port selection operation continues until all
active network ports have been processed; either selected or
skipped. After the selection process, APAM assigns the active
terminal ports to switches. Each terminal port is assigned to
its switch because it can only be monitored by its switch. In
the rest of the paper, both active network ports and active
terminal ports are denoted by the monitoring active ports. The
port selection procedure is provided in Alg. 2.

Algorithm 2 Allocating active ports to SDN switches
Term
* portan = an active network port
* portat = an active terminal port

1: active network ports = find active network ports from active ports
in Alg. 1

2: N = CountActivePorts(active ports)
3: sorted switches = Sort (switches, ascending, N )
4: while N 6= 0 do
5: for switch in sorted switches do
6: Nswitch = CountActivePorts(active network ports[switch])
7: if Nswitch 6= 0 then
8: portan = find a active network port which its neighbor switch has

the most number of active ports
9: if portan is not monitored by other switches then

10: monitoring active ports.append (portan)
11: end if
12: active network ports[switch].pop (portan)
13: end if
14: end for
15: end while

16: active terminal ports = find active terminal ports from active ports
in Alg. 1

17: for portat in active terminal ports do
18: monitoring active ports.append (portat)
19: end for

3) Adaptive and section-based port monitoring: In APAM,
there are monitoring sections which have different monitoring
intervals and they are used for grouping monitoring active
ports according to their port utilization. The number of moni-
toring sections, NSi, is a predefined value; the more monitoring
sections the finer granularity in monitoring intervals. On
the other hand, having too many sections may cause high
computational overhead in APAM. NSi is to be set by the
network operator.

Each monitoring section, denoted by (Si), has its own mon-
itoring threshold (tholdSi) and monitoring interval (intvlSi)
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Fig. 3. Example of adaptive and section-based port monitoring.

which are defined as:

tholdSi = i/NSi, i = 1, 2, · · · , NSi
(1)

intvlSi =intvlmax − tholdSi ∗ (intvlmax − intvlmin),

i = 1, 2, · · · , NSi
(2)

where i indicates a monitoring section number, and intvlmax

and intvlmin indicate the maximum and minimum monitoring
intervals, respectively. Both intvlmax and intvlmin are pre-
defined values. All monitoring active ports are dynamically
assigned to one of the monitoring sections depending on their
port utilization. Fig. 3 depicts an example of section based
port monitoring. In the rest of the paper, a tuple (p, s) which
is a combination of port number (p) and switch ID (s) is used
for the identification of a monitoring active port (denoted by
Pma(p, s)).

The initial monitoring procedure starts at the lowest moni-
toring section: monitoring active ports are initially monitored
at section S1. For each monitoring active port, port throughput
and port utilization are estimated using its byte statistics. In the
first port monitoring, the byte statistics of a monitoring active
port is just recorded as current byte statistics (bytecur(p,s)(link)):
the tuple (1, 1) in Fig. 3 is an example of this case. The current
byte statistics has information on both received (bytecur(p,s)(Rx))
and transmitted (bytecur(p,s)(Tx)) bytes. From the second port
monitoring, the port throughput (thp(p,s)(link)) is calcu-
lated by using the current (bytecur(p,s)(link)) and the previous
(bytepre(p,s)(link)) byte statistics from Eq. 3. The link in Eq. 3
can be the forwarding link (Tx) or the backward link (Rx).
Between the received port throughput (thp(p,s)(Rx)) and the
transmitted port throughput (thp(p,s)(Tx)), the larger through-
put is regarded as the dominant throughput (thpdmnt

(p,s) ) of the
monitoring active port (Eq. 4). The dominant port utilization
(U(p,s)) of the monitoring active port is then estimated from

Eq. 5.

thp(p,s)(link) =8 ∗
(bytecur(p,s)(link)− bytepre(p,s)(link))

intvlSi
,

link = Tx or Rx

(3)

thpdmnt
(p,s) = MAX(thp(p,s)(Tx), thp(p,s)(Rx)) (4)

U(p,s) = thpdmnt
(p,s) / speed(p,s) (5)

Note that (p, s), i, and speed(p,s) represent the tuple for port
identification, the monitoring section number of the monitoring
active port, and the port speed of the monitoring active port,
respectively. bytecur(p,s)(link) is the byte statistics of the link

collected in the current monitoring and bytepre(p,s)(link) is the
byte statistics of the link collected in the previous monitoring
iteration.

After the calculation of the dominant port utilization
(U(p,s)), the monitoring active port (Pma(p, s)) may remain
current monitoring section (S1) or be assigned to another
monitoring section according to its dominant port utilization.
The monitoring section assigned the monitoring active port is
determined from Eq. 6.

Pma(p, s) ⊂ S1, if Up,s < tholdS1

Pma(p, s) ⊂ Si, if tholdS(i−1) ≤ Up,s < tholdSi,

i = 2, 3, · · · , NSi

(6)

If the monitoring active port remains the current monitoring
section, it is continuously monitored in the current monitoring
section (S1) with its monitoring interval (intvlS1). The tuple
(2,2) in Fig. 3 represents this case. If the monitoring active port
is moved to another monitoring section, there are two methods
to estimate the port throughput. The first method is a seamless
estimation method that can estimate the port throughput using
Eq. 7 only when the port is moved to another monitoring
section.

thp(p,s)(link) =8 ∗
(bytecur(p,s)(link)− bytepre(p,s)(link))

tnew − tpre
,

link = Tx or Rx

(7)

tnew and tpre indicate the time to collect byte statistics at the
previous monitoring section and the new monitoring section,
respectively. After the byte statistics are measured in the new
monitoring section, the port throughput is estimated using
Eq. 3. Another method to estimate the port throughput is a re-
set method that initializes throughput estimation. This method
is designed for off-the-shelf SDN switches which cannot
estimate byte statistics with a short period. In the reset method,
byte information (bytecur(p,s)(link), and bytepre(p,s)(link)) are
simply reset: the tuple (1,3) in Fig. 3 is the case. In conse-
quence, the initial byte collection should be performed as with
the first monitoring whenever a monitoring active port moves
into a new monitoring section. After the first monitoring, port
throughput and dominant port utilization are estimated by
the new monitoring section (Si) with its monitoring interval
(intvlSi) like as the tuple (3,4) in Fig. 3. The overall procedure
of the adaptive section-based port monitoring is presented in
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Algs. 3 and 4.

Algorithm 3 Assigning monitoring active ports to monitoring
sections
1: for port in monitoring active ports in Alg. 2 do
2: if port is NOT in monitoring sections then
3: S1.append (port)
4: end if
5: end for

Algorithm 4 Adaptive section-based port monitoring
Operation in each monitoring section i

1: ports = monitoring active ports in Alg. 2
2: while True do
3: for port in ports do
4: request port statistics (port)
5: wait (intvlSi)
6: end for
7: end while

Below operation is triggered when the port statistics message of a monitoring
active port (Pma(p, s)) arrives at SDN controller

8: port statistics (p, s) = Fetch port statistics of Pma(p, s) from the response
message.

9: if there are no port statistics information of Pma(p, s) in SDN controller then
10: bytecur

(p,s)(Tx, Rx) = Tx byte and Rx byte in port statistics (p, s)

11: else
12: bytepre

(p,s)
(Tx, Rx) = bytecur

(p,s)(Tx, Rx)

13: bytecur
(p,s)(Tx, Rx) = Tx byte and Rx byte in port statistics (p, s)

14: Si = monitoring section number of Pma(p, s)

15: if seamless estimation method AND the first monitoring at Si then
16: tnew = current time

17: thp(p,s)(Tx, Rx) = 8 ∗
(bytecur

(p,s)(Tx, Rx)− bytepre
(p,s)

(Tx, Rx))

tnew − tpre
18: else

19: thp(p,s)(Tx, Rx) = 8 ∗
(bytecur

(p,s)(Tx, Rx)− bytepre
(p,s)

(Tx, Rx))

intvlSi
20: end if

21: if thp(p,s)(Tx) > thp(p,s)(Rx) then

22: thpdmnt
(p,s) = thp(p,s)(Tx)

23: else
24: thpdmnt

(p,s) = thp(p,s)(Rx)

25: end if
26: U(p,s) = thpdmnt

(p,s) / speed(p,s)

27: Sk = find a new monitoring section using Eq. 6.
28: if Si 6= Sk then
29: remove Pma(p, s) from Si
30: if seamless estimation method then
31: tpre = current time
32: else: reset method
33: reset bytecur

(p,s)(Tx, Rx) and bytepre
(p,s)

(Tx, Rx)

34: end if
35: Sk.append(Pma(p, s))
36: end if
37: end if

4) Management of monitoring active ports: Because active
ports are determined by flow rules, a change of flow rules
directly affects active ports: a new active port can be generated
or existing active ports become invalid. Thus, active ports
should be properly updated according to a change of flow
rules. In order to update active ports, APAM performs some
operations which are denoted by the management operations
in the rest of paper. Figure 4 shows the logical structure of
APAM. When APAM is executed, APAM creates monitoring
sections and initially performs management operations. The
monitoring sections are continuously running as a background
function until APAM terminates. The management operations
can be performed as an event triggered by APAM or other
functions in a SDN controller in order to update active ports.

Monitoring sections are running 
until APAM terminates.

All monitoring sections 
are instantiated when 

APAM is executed.

Monitoring Sections 
(Alg. 4)

- send port statistics requests 
- estimate port throughput and port 

utilization

Management operations to update 
active ports

- update flow rule information
- retrieve active ports (Alg. 1)

- allocate active ports to SDN switches (Alg. 2)

- update monitoring active ports (Alg. 3 and 5)

Management operations 
can be triggered by other 

SDN functions. OR
Management operations 

can be triggered by 
APAM.

Management operations are performed 
only when they are triggered.

APAM

Fig. 4. Logical structure of APAM.

The details of the management operation are described as
follows.

Renewing flow rule information in SDN controller is the
first step to update active ports. To be independently operated
from other SDN functions, APAM can regard the flow rules
information collected and updated by other functions in the
SDN controller as up-to-date information, which is called the
built-in update method in this paper. On the other hand, for
quick adaptation to changing flow rules, APAM can collect
flow rule information by itself whenever the SDN controller
detects the events which add or modify flow rules (such as
“flow mod”), which is called the dedicated update method.
This way enables it to instantly update flow rules only when
the flow rule is necessary to be updated although an additional
internal process is required: an SDN controller reports flow
change events to APAM. In Section IV.E, the impact of update
methods for flow rules on updating active ports is explicitly
discussed. After the update of flow rules, both active ports
and the selection of active network ports are also updated. If
there is a change in active network ports, all active network
ports (including existing active network ports) are re-assigned
to SDN switches using the same selection procedure explained
in Section III.B.2. Lastly, APAM updates active ports in
monitoring sections according to the update of monitoring
active ports. If there is a new monitoring active port, APAM
adds the monitoring active port to the monitoring section 1
(Alg. 3). On the contrary, if a monitoring active port monitored
in one of monitoring sections changes into non-active port, the
monitoring active port is removed from the monitoring section
and all information related to the monitoring active port is also
deleted. The discarding procedure for invalid active ports is
described in Alg. 5.

Algorithm 5 Discarding invalid monitoring active ports from
monitoring sections
1: ports in monitoring sections = Fetch monitoring active ports from moni-

toring sections
2: for port in ports in monitoring sections do
3: if port is NOT monitoring active ports in Alg. 2 then
4: remove port from monitoring sections
5: remove the port’s information
6: end if
7: end for
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Fig. 5. Measurement environment: network topology.

Another consideration for APAM is monitoring overhead
according to the number of active ports. APAM manages
active ports individually; i.e. it generates a request message
to gather traffic statistics from each active port separately.
Therefore, APAM may have higher monitoring overhead than
the conventional monitoring method. In order to restrict the
increase of monitoring overhead, APAM operation can switch
its operation to the conventional monitoring method when the
monitoring overhead of APAM operation exceeds a certain
threshold. In this paper, the number of monitoring messages
per second is used as an indicator of monitoring overhead.
The monitoring overhead of the conventional monitoring
method which is the number of network ports (Nports) plus
1 (monitoring request message). In the case of APAM, the
monitoring overhead depends on the number of active terminal
ports (Nat) and the number of active network ports (Nan).
Active terminal ports require not only Nat monitoring request
messages but also Nat messages for monitoring information
(reply messages). In the case of active network ports, half of
Nan messages are required for each monitoring information
messages and monitoring request messages. Thus, the moni-
toring overhead of APAM is 2*Nat + Nan. As a result, the
switching operation is performed in the case of Eq. 8.

Nports + 1

intvlconv
<

2 ∗Nat +Nan

intvlavg
(8)

Note that intvlconv indicates the monitoring interval of the
conventional monitoring method and intvlavg represents the
average monitoring interval of APAM because the monitoring
interval of each monitoring port is different in APAM.

IV. MEASUREMENT RESULTS

A. Measurement Environment

In this section, we evaluate the performance of APAM using
measurement taken using our SDN testbed. We implement
APAM in Ryu which is a component-based SDN framework
[23] and APAM is executed as a basic function of the SDN

Fig. 6. Average port monitoring period versus link utilization.

controller. In this measurement, the number of monitoring
sections (NSi) is 5 and intvlmax and intvlmin are 5.5 sec and
0.5 sec, respectively. APAM utilizes flow rule information and
the whole network topology information of the SDN testbed
which are collected by other basic functions in SDN controller.
We constructed a network topology using hardware SDN
switches, an SDN controller, and end hosts. Two Mellanox
switches (SN2100) and one Corsa switch (DP2100) which
support OpenFlow 1.3 are applied as SDN switches. The SDN
controller and the end hosts are operated on PC (i5-2500U @
3.3GHz with 8GB of RAM) running 64-bit Ubuntu 14.04. Due
to the off-the-shelf SDN switches, the reset method is selected
to estimate a port throughput. The network topology is shown
in Fig. 5. Each host is connected to one of SDN switches
and all SDN switches are connected with the SDN controller
through the management network which is used for control
messages. All network interfaces in this topology have same
bandwidth (1- Gbps port) and UDP traffic is used as a network
traffic. Measurements are repeated 10 times. The parameters
for the measurements are summarized in Table I.

TABLE I
MEASUREMENT PARAMETERS

APAM parameter value
NSi 5
intvlmax 5.5 sec
intvlmin 0.5 sec
port estimation method reset method
topology parameter value
SDN switch model Mellanox SN2100

& Corsa DP2100
SDN controller Ryu
OpenFlow version 1.3
link bandwidth 1 Gbps
maximum segment size 1500 bytes
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B. Performance Evaluation in Active-port Aware Monitoring

Figure 6 shows the average port monitoring period of
APAM for a switch port according to its port (link) utilization.
In this measurement, UDP traffic is generated by a client
(host 1) and the traffic is forwarded to a server (host 2) via
switch 1 and switch 2 as shown in Fig. 5. The monitoring
period of the port 2 on switch 1 (Pma(2, 1)) is recorded as
a monitoring active port during the traffic transmission. For
each measurement, the client generates UDP traffic for 100
sec and measurements are repeated 10 times for a specific
link utilization. The results show that the average monitoring
period decreases with increasing the link utilization. This is
because the observed port (Pma(2, 1)) is assigned to a higher
monitoring section (Si) whenever the link utilization of the
port exceeds the monitoring threshold of its own monitoring
section, which makes the port have a shorter monitoring
period. Thus, this result indicates that APAM can adapt an
active port’s monitoring period according to a port’s link
utilization.

Figure 7 shows the adaptive capacity of APAM according to
a port throughput variation. In this measurement, UDP traffic
is generated from 0 sec to 20 sec and the traffic is forwarded
from the client to the server via switch 1 and switch 2 as shown
in Fig. 5. The port 2 (Pma(2, 1)) is selected to record both its
port throughput and its monitoring period. The upper subgraph
shows the port throughput results of the port 2. The solid
lines indicate the actual traffic results monitored at the server;
the solid lines with diamonds represent the results when the
port throughput is 200 Mbps and the solid lines with crosses
indicate the results when the port throughput is 800 Mbps.
Dotted lines indicate the traffic results monitored by APAM;
the dotted lines with squares represents the monitored traffic
when the port throughput is 200 Mbps and the dotted lines with
plus signs correspond to the case that the port throughput is

800 Mbps. The lower subgraph shows the monitoring period of
APAM for the port 2. The solid lines with diamonds indicate
the monitoring period when the port throughput is 200 Mbps
and the solid lines with crosses represent the results when the
port throughput is 800 Mbps.

The case when the port throughput is 800 Mbps is firstly
described. In the upper subgraph, the results show that APAM
recognizes the port traffic at 3.8 seconds although the traffic
is generated from 0 seconds. This is because that there is no
traffic before the generation of UDP traffic, which places the
previous monitoring section in S1. The initial monitored port
throughput by APAM is 699 Mbps. This inaccurate measure-
ment is because the traffic is generated between monitoring
periods. After the traffic detection, the monitoring active port
is moved to S4 according to Eq. 6. After the monitoring active
port is assigned to S4, there is a monitoring loss time which is
the interval between the time (3.8 sec) that the port is moved
to S4 and the time (4.5 sec) that the port monitoring starts
at S4. This loss time is generated whenever the monitoring
of active port is moved to a new monitoring section because
monitoring sections are not synchronized with each other.
This generates a latency time to start the monitoring process
at a new monitoring section. All these monitoring loss time
events are marked by solid circles in the lower subgraph and,
during these monitoring loss times, the monitoring period
is represented by the previous monitoring period. Because
the calculated throughput is 822 Mbps at S4 (at 6 sec), the
monitoring active port is moved to S5 and the following
monitoring loss time is 0.2 seconds. After the port traffic
disappeared, APAM detects that port throughput is changed
to 328 Mbps at 20.2 seconds, which makes the monitoring
port moved to S2. After the monitoring loss time (1.2 sec),
the monitored throughput becomes 0 Mbps from 24.9 seconds,
which makes the monitoring active port moved to S1.

The case that the port throughput is 200 Mbps is now
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Fig. 8. Virtual network topology.

described. In this case, APAM recognizes the port traffic at
3.9 seconds and the monitored port throughput and the port
utilization are 179 Mbps and 0.179, respectively. Because the
port utilization does not exceed tholdS1 (0.2), the port is still
monitored at S1. At the next monitoring operation (8.4 sec),
the measured port throughput is 206 Mbps, which makes the
monitoring active port moved to S2. After the change of the
monitoring section, the monitoring loss time is 1.2 seconds.
For the case that the port throughput is 200 Mbps, monitoring
loss time events are marked by dotted circles. After the client
stops to generate traffic after 20 seconds, APAM detects this
traffic change at 23.2 seconds and the measured traffic is 12
Mbps, which makes the monitoring active port moved to S1.

C. Adaptability and Monitoring Overhead of APAM

This section evaluates the adaptability and monitoring over-
heads of APAM working on top of a more complex net-
work topology. An emulated network is constructed by using
Mininet [24] that is a framework for executing the real kernel
and application code. The network topology consists of one
SDN controller, 36 SDN switches with a total of 100 ports,
and 12 terminals (TRMs) as shown in Fig. 8, which is based
on the Internet2 Network Infrastructure Topology [25]. All
network interfaces in the emulated network have 100 Mbps
bandwidth and UDP traffic is used as network traffic. To utilize
the network links, 6 traffic flows (TFs) are generated by using
12 terminals, which is indicated in Fig. 8 by lines with arrows,
and the details of the traffic flows are shown in Table II.

Figure 9 shows the number of switches participating in
monitoring according to traffic flows in the emulated network.
Each bar graph depicts the number of switches corresponding
to the number of monitored ports. In the initial state (no
TF), none of the switches have any monitored port. From 10
seconds to 35 seconds, the traffic flows are added every 5
seconds. Following the traffic flows, the proportion of switches
corresponding to the number of monitored ports is changed
while the total number of switches is the same. After that,
the traffic flows are deleted again. In order to quickly adapt
changing flow rules, the dedicated update method is applied

Fig. 9. The number of switches participating in monitoring according to
traffic flows.

in APAM. The traffic flows (TFs) are presented in Table II.
The results show that the number of monitored ports increases
(decreases) whenever a traffic flow is added (deleted), which
means active ports are detected and dynamically monitored
depending on the traffic flows. Moreover, the monitoring
overhead (monitored ports) is well dispersed to the switches:
all switches except for one have one or two monitored ports in
the measurement scenario. Although there are 13 switches in
the network that have more than 3 ports, the results show that
only one switch has three monitored ports in the cases that
the 5 (TF1-5) and 6 (TF1-6) traffic flows are added. There are
two reasons for the results. The first is that APAM reduces
the number of monitored ports by monitoring a network link
using one active port. The other is APAM tries to allocate
a monitoring link to the switches that have less active ports
than other switches as described in Section III.B.2. The switch
status related to the number of monitored ports is shown in
Table III.

Figure 10 shows the monitoring overhead according to the
ratio of active ports in the emulated network. The ratio of
active ports is changed by adding the traffic flows (TFs) in
Table II. The monitoring overhead indicates the total required
messages to collect monitoring information for the whole
network. In the measurement, it is assumed that APAM and

TABLE II
TRAFFIC FLOWS

Traffic Flow (TF) Route

TF1 TRM1-(s13-s15)-(s23-s28)
-(s32-s36)-s32-s18-s9-s8-s1-TRM2

TF2 TRM3-(s1-s4)-s12-s13-TRM4

TF3 TRM5-s3-s7-s6-s11-s10-s18-s20
-s21-s25-TRM6

TF4 TRM7-s9-s10-s17-s16-s15-s22-s21
-TRM8

TF5 TRM9-s1-s6-s5-s4-TRM10
TF6 TRM11-s31-s30-s29-s28-TRM12
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TABLE III
SWITCHES CORRESPONDING TO THE NUMBER OF MONITORED PORTS

switches corresponding to the number of monitored ports
TF the number of monitored port = 0 the number of monitored port = 1 the number of monitored port = 2 the number of monitored port = 3
TF0 s1-s36 - - -
TF1 s2-s7, s10-s12, s16,-s17, s19,s20, s22, s23, s29-s31, s37 s1, s8, s13, s15, s18, s24-28, s32, s33, s35, s36 s9, s14, s34 -
TF1,2 s5-s7, s10, s11, s16, s17, s19, s20, s22, s23, s29-s31, s37 s3, s4, s8, s12, s15, s18, s24-s28, s32, s33, s35, s36 s1, s2, s9, s13, s14, s34 -
TF1-3 s5, s16, s17, s23, s29-s31, s37 s3, s6-s9, s11, s12, s15, s19, s20, s22, s24-s26, s28, s33, s35, s36 s1, s2, s4, s10, s13, s14, s18, s27, s32, s34 -
TF1-4 s5, s29-s31, s37 s3, s6, s7, s9, s12, s16, s17, s19, s20, s23, s25, s26, s28, s33, s35, s36 s1, s2, s4, s8, s10, s11, s13-s15, s18, s22, s24, s27, s32, s34 -
TF1-5 s29-s31, s37 s4, s7, s9, s16, s17, s19, s20, s23, s25, s26, s28, s33, s35, s36 s2, s3, s5, s6, s8, s10-s15, s18, s24, s27, s32, s34 s1
TF1-6 - s4, s7, s9, s16, s17, s20, s23, s25, s26, s28, s31-s33, s35, s36, s37 s2, s3, s5, s6, s8, s10-s15, s18, s19, s22, s24, s27, s30, s34 s1
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Fig. 10. Monitoring overhead according to the ratio of active ports.

the conventional port monitoring have the same monitoring
interval. The solid lines with circles indicate the monitoring
overhead of APAM. For comparison with APAM, the solid
lines show the monitoring overhead of the conventional port
monitoring which monitors all switches ports. The bar graph
depicts the number of monitored ports in the emulated net-
work. In the case that the ratio of the active ports in the
network is low, APAM can have less monitoring overhead
than the conventional port monitoring, thanks to the reduction
of the number of monitored ports: unlike the conventional
port monitoring which monitors whole network ports, the
reduction is achieved in APAM by monitoring only active
ports as well as monitoring a network link using one active
port. On the contrary, the monitoring overhead of APAM
exceeds that of the conventional monitoring in the TF1-5 and
the TF1-6 cases (marked by dotted square). It is due to the
additional overhead of APAM in order to individually monitor
active ports described in Section III.B.4. In these cases, APAM
switches its operation to the conventional monitoring method,
which makes the monitoring overhead of APAM the same as
that of the conventional monitoring method.

Figure 11 shows the monitoring overhead according to
the port utilization of active ports in the emulated network.
For simplicity, all active ports are assigned the same port
utilization. In these results, the monitoring overhead represents
the required messages to collect monitoring information for the
whole network per second (message/s). The APAM’s results
are represented by solid lines with marks and each mark
represents the ratio of active ports in the whole network. The
ratio of active ports is changed by the traffic flows (TFs) in
Table II. For comparison with APAM, the solid lines show

port utilization (%)
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Fig. 11. Monitoring overhead according to the port utilization of active ports.

the monitoring overhead of the conventional port monitoring,
and its monitoring period is 0.5 sec which is the shortest
monitoring period in APAM’s configuration. The results show
that the monitoring overhead of APAM increases with the
growth of port utilization. It is because APAM shortens the
monitoring period of active ports to improve their monitoring
accuracy according to the increase of traffic at active ports.
When APAM requires more monitoring overhead than the
conventional monitoring (marked by dotted square), APAM
switches its operation to the conventional monitoring method.
However, in the case that either the ratio of active ports or their
port utilization is not a high proportion, APAM can have less
monitoring overhead than the conventional monitoring owing
to the reduction of the number of monitored ports or increasing
monitoring period of active ports.

In Fig. 12, we investigated the effect of traffic dynamics on
the monitoring overhead as well as the detection of congested
links. In the measurement, the emulated network is used
and all network ports are active ports by traffic flow rules
(TF1-6). All network ports are underutilized at the initial
state and then UDP traffic (90Mbps) is applied to the TF2
from 15 seconds to 45 seconds, which makes the 7 links
related to the TF2 congested. The upper subgraph indicates the
monitoring overhead according to the change of traffic flows
and the lower subgraph represents the number of monitored
ports in the monitoring sections. The solid lines with marks
indicate the results corresponding to the monitoring sections
and the solid lines show the total results of the monitoring
sections. Before the UDP traffic is generated, all active ports
stay in S1, which produces minimum monitoring overhead.
After the UDP traffic is generated, APAM detects the traffic
and assigns the related monitored ports to S5, allowing a
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Fig. 12. Monitoring overhead and detection of congested links according to
the traffic dynamics.

network operator to recognize the congested link. Furthermore,
the upper subgraph shows that the proportion of monitoring
overhead is different according to the traffic in the network
links (ports). More than half of the total monitoring overhead
(56%) is generated by the congested links (ports) during
the traffic transmission although the ratio of congested links
(port) in the network is only 12.5%. This means network and
computing resources can be primarily used to monitor the
congested ports. Lastly, the congested ports are moved to S1
after the traffic disappears, and the monitoring overhead is
reduced to the minimum monitoring overhead.

D. Initialization Time after Moving to a New Monitoring
Section in APAM

In this chapter, we investigate the initialization time of
APAM when an active monitoring port is moved to a new
monitoring section. The effect of amount of port traffic is
firstly considered and the effect of background traffic is then
examined.

In Fig. 13, we investigated the effect of port throughput
on the time required to be stable after moving to a new
monitoring section from the lowest monitoring section (S1).
The measurement environment is the same as in Fig. 6. UDP
traffic is generated by a client (host 1) and forwarded to a
server (host 2) via switch 1 and switch 2. The monitoring
period of the port 2 (Pma(2, 1)) on switch 1 is recorded as
a monitoring active port during the traffic transmission. The
generated traffic varies between 200 Mbps to 800 Mbps and
measurements are repeated 10 times for a specific throughput.
The gray bar graph depicts the average traffic detection time
which is the time interval between the traffic generation time
and the time when APAM accurately monitors a port through-
put (utilization). In other words, this detection time represents
the required time to move a monitoring active port to a proper
monitoring section in the case that the port utilization is
greater than tholdS1. The white bar graph indicates the average
transition time which is the required time to re-estimate the
port throughput (utilization) after the monitoring active port
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Fig. 14. Average traffic detection time and the initial monitored port
throughput according to port throughput.

is moved to a proper monitoring section. This transition time
equals to the sum of the monitoring loss time and the required
time to calculate a port throughput and a port utilization at
the monitoring section. The sum of both the traffic detection
time and the transition time is the required time to be stable
after moving to a new monitoring section. The results show
that the average traffic detection time tends to decrease with
increasing the port throughput. This is because, after the
initial throughput detection, the port is generally moved to
higher monitoring section as the port throughput increases.
The detailed results of the traffic detection time are covered
in Fig. 14. The average transition time also decreases with
increasing the port throughput. This is a natural consequence
of shortening the monitoring period; the monitoring loss time
decreases in proportion to the monitoring period, and also
the required time to calculate a port throughput and a port
utilization is equal to the monitoring period.

Figure 14 shows the average detection time and the initial
monitored port throughput according to port throughput. The
measurement scenario is the same as in Fig. 13. The lower
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subgraph shows the initial monitored port throughput at S1 by
using box-and-whisker plots. In the upper subgraph, the gray
bar graph depicts the average traffic detection time which is
the same results in Fig. 13. The black bar graph indicates
the average transition time during the traffic detection time.
This transition time is the required time that a monitoring
active port is assigned to a proper monitoring section during
the traffic detection time. It is generated in the case that a
monitoring active port is moved and monitored at a wrong
monitoring section before APAM accurately monitors a port
throughput (utilization): the transition time occurs due to an
inaccurate port throughput estimation which usually happens
at the initial throughput estimation. The results show that
there is no transition time during traffic detection period when
the port traffic is 200 Mbps because the monitoring active
port still stays in S1 based on the initial monitored port
throughput as shown in the lower subgraph. In the cases that
the port throughput is greater than 400 Mbps, the transition
time is generated due to the inaccurate initial port throughput
as shown in the lower subgraph. The inaccurate throughput
estimation leads the monitoring active port to be placed in
a wrong monitoring section, which causes resetting its byte
information and performing an initial byte collection again
when it moves to the right monitoring section. For this reason,
the average traffic detection time when the port traffic is 400
Mbps is longer than the 200 Mbps case.

In Fig. 15, we investigated the effect of background traffic
on the required time to be stable after moving to a new
monitoring section. The measurement environment and the
representation of the results are the same as in Fig. 13. The
measurement scenario is as follows. There is background
traffic which varies between 0 Mbps and 600 Mbps through the
monitored and recorded port (Pma(2, 1)) and this background
traffic is firstly generated. After that, the client traffic is gener-
ated and is fixed to 200 Mbps. The results show that both the
average traffic detection time and the average transition time
for the client traffic decrease with increasing the background
traffic. This is because the client traffic is monitored with
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shorter monitoring period as the background traffic grows:
larger background traffic makes a monitoring active port move
to a higher monitoring section.

E. Robustness in Active-port Aware Monitoring

In this section, we consider the robustness of APAM for
spike traffic according to background traffic. In this measure-
ment, background traffic at the monitored and recorded port
(Pma(2, 1)) varies between 0 Mbps and 600 Mbps. With the
background traffic, spike traffic is generated for three seconds
and its throughput is fixed to 200 Mbps. Measurements are
repeated 10 times.

Figure 16 shows the monitored peak throughput by APAM
and the required time to detect the measured peak throughput
according to background traffic. The results are represented
by box-and-whisker plots. The upper subgraph indicates the
monitored peak throughput by APAM and these results show
that the accuracy of the monitored peak throughput increases
as increasing the background traffic. In the cases that the
background traffic is equal to or less than 400 Mbps, APAM
cannot detect the spike traffic accurately. This is because
APAM can only monitor the partial spike traffic. When the
background traffic is 400 Mbps, although APAM can accu-
rately detect spike traffic in some cases, it is not guaranteed
to monitor the spike traffic. When the background traffic
is 600 Mbps, APAM detects the peaked throughput (800
Mbps) because the monitoring interval is sufficiently short (1.5
seconds) compared to the spike traffic generation time. The
lower subgraph in Fig. 16 shows the time interval between
the time to generate spike traffic and the time to detect the
monitored peak throughput as shown in the upper subgraph,
which is the required time to detect the monitored peak
throughput. The results show that the required time decreases
with increasing of the background traffic. Except for the case
that the background traffic is 600 Mbps, the other cases have
some results that the required time is less than the monitoring
interval. These results occur when the throughput monitoring
results which partially monitor the spike traffic become the
peak throughput. In the case that the background traffic is
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600 Mbps, the required time is greater than the monitoring
period and the peaked throughput is detected as shown in the
upper subgraph. According to both these results, it is shown
that APAM can monitor the spike traffic when the monitoring
interval is enough small due to the increase of the background
traffic.

In Fig. 17, the transition time which is the required time to
re-estimate the port throughput (utilization) due to the spike
traffic and the monitoring performance to measure the spike
traffic are considered according to the background traffic. The
results are also represented by box-and-whisker plots. The
upper subgraph shows the transition time caused by the spike
traffic. When the background traffic is less or equal to 200
Mbps, there is no transition time for the spike traffic because
the monitored traffic is less than the monitoring threshold due
to the inaccurate throughput measurement as shown in the
upper subgraph in Fig. 16. In the case that the background
traffic is 400 Mbps, the transition time occurs or not according
to the monitored peak throughput results. This is because,
APAM partially monitors the spike traffic according to the
start time of its monitoring operation. When the background
traffic is 600 Mbps, the transition time has quite a stable value
(0.7) because APAM can detect the spike traffic as shown
in the monitored peak throughput results shown in Fig. 16.
The lower subgraph in Fig. 17 shows the monitored time for
the spike traffic according to the background traffic. When
the background traffic is less than 600 Mbps, there is no
monitoring time. In the case that the background traffic is
400 Mbps, although APAM can detect the spike traffic in
some results, it cannot monitor the spike traffic due to the
transition time shown in the upper subgraph: after the spike
traffic is detected and the transition process is performed
at the new monitoring section, the spike traffic has already
disappeared. When the background traffic is 600 Mbps, APAM
monitors the spike traffic for 0.5 second on average. This
is because APAM not only quickly detects the spike traffic
but also has a relatively short transition process at the new
monitoring section. Consequently, the spike traffic still remains
after the transition time and this remained traffic is monitored
by APAM.
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Fig. 18. Required time to update active ports.

In summary, the traffic sensitivity in APAM varies according
to background traffic. APAM improves its monitoring perfor-
mance according to the increase of background traffic, which
is the intended operation to meticulously monitor a link status
as the link become congested.

Figure 18 shows the required time to update active ports
according to the flow rule update method. In this measurement,
new flow rules are added by an SDN application during APAM
operation, which generates a new active port. The results
are represented by box-and-whisker plots. The built-in update
method uses the flow rule information which is collected and
updated by a built-in function in SDN controller. This function
collects and updates the flow rules every 5.5 sec. The dedicated
update method can instantly update the active ports when the
flow rules are updated. In this method, the flow rule update
is notified to APAM by an internal signal generated by the
SDN controller. The results show that APAM with the built-
in update method requires relatively large time (3.7 sec on
average) to update active ports due to the update interval of the
built-in function. Also, this required time fluctuates because
it varies according to both the start time to change the flow
rules and the time updated by the built-in function. However,
the dedicated update method can update active ports quickly,
which makes APAM instantly adjust the change of flow rules.
This is because the change of flow rules is detected by the
SDN controller and this change is instantly notified to APAM,
which significantly improve the flow rule update speed.

V. CONCLUSION

In this paper, we present a novel monitoring mechanism
for SDN to mitigate the trade-off of traffic monitoring as
a macroscopic monitoring function. The key novelty is that
APAM retrieves active ports that are the switch ports utilized
by current flow rules and dynamically monitors active ports
according to their port utilization, which is able to focus
network and processing resources on primarily utilized ports.
Through the measurement in our testbed, we determined that
APAM can not only reduce the number of switch ports to
monitor a whole network but also adjust monitoring overhead
and performance according to port congestion level although
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it may require transition time for some off-the-shelf SDN
switches when active monitoring ports are moved to new
monitoring sections. In addition, the measurement showed that
APAM is sufficiently robust for spike traffic and reconfigures
a monitoring topology according to a change of flow rules in
a network. Finally, the simplicity and lightweight of APAM
allows APAM can be applied as a practical network monitoring
solution.
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