
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021 3677

Optimizing All-to-All Data Transmission in WANs
Hao Tan and Wojciech Golab, Member, IEEE

Abstract—All-to-all data transmission is a typical data trans-
mission pattern in both consensus protocols and blockchain
systems. Developing an optimization scheme that provides high
throughput and low latency data transmission can significantly
benefit the performance of those systems. This paper investigates
the problem of optimizing all-to-all data transmission in a wide
area network (WAN) using overlay multicast. We prove that in a
hose network model, using shallow tree overlays with height up
to two is sufficient for all-to-all data transmission to achieve the
optimal throughput allowed by the available network resources.
Upon this foundation, we build ShallowForest, a data plane
optimization for consensus protocols and blockchain systems.
The goal of ShallowForest is to improve consensus protocols’
resilience to skewed client load distribution. Experiments with
skewed client load across replicas in the Amazon cloud demon-
strate that ShallowForest can improve the commit throughput of
the EPaxos consensus protocol by up to 100% with up to 60%
reduction in commit latency.

Index Terms—Network overlays, multicast, consensus, state
machine replication.

I. INTRODUCTION

BEING highly available in the presence of machine
failures and network partitions is crucial to today’s

network services. State machine replication (SMR) [1] is a
well-established technique to build fault-tolerant distributed
systems. By having a group of replicated state machines col-
lectively play the role of a server, the service can continue to
operate when some of the machines fail. In SMR, each state
machine executes an unbounded sequence of commands that
update the current state. To make server state consistent across
replicas, all replicated state machines must execute the same
sequence of commands. To solve this challenging problem,
replicated state machines communicate according to a specific
consensus protocol to agree upon on a single sequence of com-
mands to execute. Due to the asynchrony of the system, where
messages can be delayed arbitrarily and processes can become
arbitrarily slow, the replicas of a replicated state machine
cannot always be in exactly the same state.

Traditionally, consensus protocols have been crucial build-
ing blocks in modern distributed systems for replicating

Manuscript received July 20, 2020; revised December 4, 2020 and March
16, 2021; accepted March 23, 2021. Date of publication April 5, 2021; date
of current version September 9, 2021. Authors supported in part by a Ripple
Graduate Fellowship, Ripple Faculty Fellowship, and by the Natural Sciences
and Engineering Research Council (NSERC) of Canada. The associate editor
coordinating the review of this article and approving it for publication was
S. Kanhere. (Corresponding author: Hao Tan.)

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
hao.tan@uwaterloo.ca; wgolab@uwaterloo.ca).

Digital Object Identifier 10.1109/TNSM.2021.3071025

important data and providing a strict ordering of updates
to a small number of machines [2], [3]. Recently,
blockchain [4], [5], [6], [7], [8] has become an emerging cat-
egory of systems that require large scale consensus involv-
ing hundreds of nodes across different geographical regions
connected by a wide-area network (WAN). Both consensus
protocols and blockchain systems require multicasting data
to a group of receivers. The following communication pat-
tern dominates the normal operation of consensus protocols:
upon receiving client requests, a replica broadcasts a mes-
sage with commands to all other replicas and commits the
request after receiving a certain number of responses. Such
a communication pattern can be abstracted as an all-to-all
data transmission, where each node in the cluster broad-
casts an infinite stream of data to all other participating
nodes.

Leader-centric consensus protocols like Paxos [9] and
Raft [10] have a stable leader to handle all client requests.
Since Internet protocol (IP) multicast is not generally avail-
able in a WAN environment, the stable leader in those
protocols sends the data directly to all other replicas using
multiple unicast transmissions. Assuming each site in the
network is associated with an uplink capacity that limits the
aggregated throughput of outgoing flows to other sites, this
approach would render the leader as the bottleneck. As the
number of replicas grows, each transmission will have less
share of the available uplink capacity at the leader. Some
protocols [11], [12], [13], [14] addressed this issue by han-
dling data transmission using one or more ring overlays to
maximize bandwidth utilization. However, a ring overlay is
not an ideal option in a WAN environment due to the high
latency of WAN links. Other protocols [15], [16], [17] alle-
viate the single leader bottleneck by distributing the load
of data dissemination across all nodes. This strategy works
best when the load is spread uniformly across all replicas.
However, workloads in the real world can be highly skewed
across different geo-areas and continuously changing over
time. Prior measurements [18], [19], [20] point out that real-
world workloads often exhibit diurnal variation, where the
client load peaks around daytime and reaches the bottom
at night time. For geo-distributed services deployed across
multiple time zones, this type of user activity pattern will result
in a skewed client load distribution across different regions.
When each replica sends data directly to other replicas, it may
yield sub-optimal throughput and lead to a load imbalance
across replicas. Therefore, we argue that data dissemination
should be handled in a more flexible way for consensus pro-
tocols to achieve high commit throughput and low commit
latency.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-5205-0729

3678 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

TABLE I
TABLE OF NOTATIONS

In light of these challenges, we propose ShallowForest, an
algorithm that optimizes data transmission for consensus pro-
tocols using overlay broadcast. ShallowForest computes data
transmission overlays according to client load and available
network capacity at each replica to make consensus proto-
cols achieve high throughput and low latency. The central idea
behind ShallowForest is inspired by overlay multicast proto-
cols such as SplitStream and Bullet [21], [22], which partition
the data stream at the sender and broadcast each stream par-
tition with a potentially different tree overlay. However, the
primary difference between ShallowForest and prior overlay
multicast protocols is that ShallowForest only uses shallow
tree overlays to reduce the network latency subject to the data
transmission. This preference over shallow tree overlays is
backed by the sufficiency of shallow tree overlays in achiev-
ing the optimal throughput of all-to-all data transmission in a
hose network model.

This paper is an extended version of our prior work [23].
Besides the contributions mentioned earlier, this paper includes
detailed proofs for the theorems in [23]. This paper also
presents the result of benchmarking the throughput of data
transmission between geo-areas on EC2, which further val-
idates our choice of the hose network model. Last but not
least, this paper introduces new theories along with visualizing
examples, which extends the sufficiency of using shallow tree
overlays from all-to-all data transmission to many-to-many
data transmission.

II. PRELIMINARIES

A. Network Model

In this paper, we use the hose network model [24] to rep-
resent the WAN. The hose model abstracts the network as
a set of sites connected by a core network with unlimited
capacity. All sites can send and receive data from each other,
bottlenecked only by the edge link capacity between each site
and the core network. The network topology is represented
as a directed complete graph G(V, E) with n vertices. Each
vertex in V represents a geo-distributed site, and each edge
in E represents the logical link between two sites. Due to a
WAN’s heterogeneous bandwidth availability, there are two
functions Cu : V → R

+ and Cd : V → R
+, which respec-

tively define the uplink and downlink capacity of the edge
link between a site and the core network. The network latency
between each pair of sites is denoted by L : E → R

+. The
uplink and downlink capacity of a site are shared by all uni-
cast data transmissions associated with that site. For instance,

TABLE II
THROUGHPUT OF ONE-TO-ONE DATA TRANSMISSION

Fig. 1. Aggregated throughput of one-to-many data transmission.

a sender directly multicasting to n receivers at the rate of R
will consume nR of the sender’s uplink capacity and R of each
receiver’s downlink capacity.

The hose network model is not only simple but also comply
with the measurement we conducted on EC2. We bench-
mark the throughput of one-to-one as well as one-to-many
data transmission on an Amazon EC2 cluster with four geo-
distributed VMs. We initiate 30 TCP flows from the sender
VM to each receiver VM and keeping all flows running for
60 seconds. We repeat the test 5 times at different time of
the day and record the average aggregated data transmission
throughput. Table II demonstrates the throughput of one-to-one
data transfer between each pair of regions. The throughput of
one-to-many data transmission is presented in Figure 1, where
the x-axis represents the location of the sender VM and each
bar represents the aggregated throughput of the one-to-many
data transmission at a specific location. Each segment with a
particular colour scheme represents the throughput of the data
transmission between the sender and a particular receiver. The
graph demonstrates that, when there are multiple receivers, the
aggregated throughput of data transmission to all receivers is
capped around 750 Mbps. This rate is roughly equivalent to
the per VM rate limit enforced by the public cloud provider.
Due to the congestion control mechanism of TCP, the size
of the sending window of a closer receiver grows faster than
that of a distant receiver. Similar trends are also observed in
many-to-one data transfers where a single receiver receives
from multiple senders at the same time.

B. Terminology

Overlay: In a network G(V, E), an overlay O(V ,E ′) is a
spanning tree of G rooted at some site v ∈ V . It defines a
broadcast transmission with site v as the sender. Each edge
(vi , vj) ∈ E ′ represents the transmission of v’s data from
vi to vj .

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3679

Client Data Stream: In a network G(V, E), a client data
stream s is an infinite sequence of data bits from clients to
be broadcast to all other sites in the network. The rate Ri of
a client data stream si represents the incoming rate of client
data at site vi ∈ V . For instance, letting r be the number of
incoming client requests per second at site v and letting b be
the size of each request, the client data rate at site v is rb. We
assume that a site’s client data stream does not consume its
downlink capacity as client requests arrive through the local
area network. For all-to-all data transmission, each site vi ∈ V
is associated with a client data stream si that must be received
by all other sites.

Partitioning Scheme: Assume for simplicity of analysis that
a client data stream can be split at arbitrary fine granular-
ity. A partitioning scheme P(si , k) of a client data stream si
with rate Ri splits si into k streams si ,1, . . . , si ,k with rates
ri ,1, . . . , ri ,k such that

∑k
j=1 ri ,j ≤ Ri . Each split of the

stream is referred to as a sub-stream of si .
Aggregated Throughput: In an all-to-all data transmission in

a network G(V, E) with n sites, each site vi broadcasts its data
to all other sites at the rate Ri without violating the uplink and
downlink capacity at any site. Then the aggregated throughput
Rtotal of this all-to-all data transmission equals to

∑n
i=1Ri .

C. Motivating Examples

In a network consisting of n geo-distributed sites v1, . . . , vn ,
consider the case where each site has equal uplink and down-
link capacities equal to B Mbps and the network latency
between each pair of sites is L ms. Assume the incoming rate
of client data is B Mbps at v1 and zero elsewhere. v1 needs
to broadcast the data to all other sites.

Example 1: Have v1 send the data directly to each site,
each site can only receive the data at the rate of B

n−1 and the
latency incurred by each receiver to receive each bit of data
equals to L ms.

Example 2: Transfer data on a path joining all sites starting
at v1 such that data transmission only happens between adja-
cent sites. Using a path overlay, v1 broadcasts data at the rate
of B Mbps. However, the communication latency incurred by
the last site on the path equals to (n − 1)L ms.

The above examples demonstrate the suboptimality of using
a single overlay for data dissemination in terms of either
throughput or latency. The example below shows how to
achieve the optimal throughput without significantly compro-
mising latency using multiple overlays.

Example 3: Equally partition the incoming data stream into
n − 1 streams which are first sent to v2, . . . , vn respectively.
Upon receiving the data, each site then broadcasts the data to
the remaining n − 2 sites. By using this approach, the network
latency incurred by the data transmission becomes 2L ms while
the transmission throughput remains B Mbps.

Although the above case considers a simplified network
which involves only one sender, it raises a fundamental
problem: given a network comprising of a set of nodes,
with each node having a stream of data to broadcast to all
other nodes, how can we maximize the aggregated broadcast

Fig. 2. Two types of base overlays in a cluster of four nodes.

throughput while minimizing the latency for each node’s data
to reach all other nodes?

III. SHALLOW TREE OVERLAYS SUFFICE FOR

ALL-TO-ALL DATA TRANSMISSION

For all-to-all data transmission in a network G = (V, E)
with n sites, each site is associated with a client data stream si
with the incoming rate Ri that must be received by all other
sites. Ideally, the system should broadcast each client data
stream at its incoming rate. However, such is not always the
case due to the heterogeneity of available bandwidth and non-
uniformly distributed client load across all sites. This section
characterizes the minimum requirement for a set of client data
streams to be broadcast at their incoming rates and proves that
using shallow tree overlays with height up to two is sufficient
for achieving the optimal broadcast throughput.

Definition 1: Client data streams s1, . . . , sn with rates
R1, . . . ,Rn are said to be sustainable if the following four
conditions are all met:

1) ∀vi ∈ V , Ri ≤ Cu(vi)
2) ∀vi ∈ V ,

∑
j �=i Rj ≤ Cd (vi)

3) (n − 1)
∑n

i=1Ri ≤
∑n

i=1 Cu(vi)
4) (n − 1)

∑n
i=1Ri ≤

∑n
i=1 Cd (vi)

Intuitively, being sustainable is the minimum requirement
for a set of client data streams to be broadcast at their incoming
rates. Condition (1) ensures that each site has enough uplink
capacity to send out its data at least once to other nodes.
As each site has to receive from all other peers, condition
(2) ensures that the aggregated rate of incoming streams does
not exceed a site’s downlink capacity. Condition (3) derives
from the fact that the client data at each site must be sent at
least n − 1 times. Similarly, the fact that client data at each
site has to be received n − 1 times lead to condition (4). Note
that, condition (4) is the direct result of condition (2) by sum-
ming over all possible i. If any of the above conditions are
violated, the Rtotal will be less than

∑n
i=1Ri .

Definition 2 (Base Overlay): refers to the following types
of overlays: 1-level tree, or 2-level tree with exactly one non-
leaf node (excluding the root). Figure 2 demonstrates these
two base overlays in a network with four sites.

Definition 3: Let S be a set of sub-streams and O be the set
of all overlays in a network G(V, E). A one-to-one mapping
f : S → O is said to be sustainable if each sub-stream s ∈
S can be transmitted at its rate using f (s) without violating
downlink and uplink capacity constraints at any site.

3680 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Algorithm 1: Computing Sub-Stream Rates
Input : G(V, E)

Cu : V → R+
Ri . . .Rn

Output: ri ,j , 1 ≤ i , j ≤ n
1 ri ,j := 0, 1 ≤ i , j ≤ n; // initialize

sub-stream rates
2 Ui := Cu (vi)− Ri , 1 ≤ i ≤ n; // initialize

each residual uplink capacity
3 for i := 1 to n do // go through all source

sites
4 R′

i := Ri ;
5 for j := 1 to n do // loop through all

sub-streams
6 if (n − 2)R′

i > Uj then

7 ri ,j :=
Uj

n−2 ;
8 else
9 ri ,j := R′

i ;
10 Uj := Uj − (n − 2)ri ,j ;
11 R′

i := R′
i − ri ,j ;

12 if R′
i = 0 then

13 break;
14 return r1,1 . . . rn,n ;

Theorem 1: For client data streams s1, . . . , sn with sus-
tainable rates R1, . . . ,Rn , there exists a partitioning scheme
for each client data stream and a sustainable mapping from
sub-streams to overlays such that:

1) Each sub-stream’s overlay is a base overlay.
2) The resulting aggregated throughput equals to

∑n
i=1Ri .

A. Proof of Theorem 1

The general idea for proving Theorem 1 is to construct a
partitioning scheme for each client data stream and associate
each sub-stream with a base overlay such that the result-
ing data transmission will not violate downlink and uplink
capacity constraints at any site.

1) Constructing Sub-Stream Overlays: Each client stream
si will be split into n sub-streams si ,1, . . . , si ,n with rates
ri ,1, . . . , ri ,n . The data of the special sub-stream si ,i is sent
directly from vi to all the remaining sites. The data of sub-
stream si ,j for i �= j is sent from vi to vj first, and then vj
will broadcast the data to the rest of the sites. All overlays
defined previously are base overlays.

2) Computing Sub-Stream Rates: Algorithm 1 computes
the rate of each sub-stream defined in the previous section.
It does not aim to compute the latency-optimal partitioning
scheme, which favors 1-level tree overlays. The purpose of
Algorithm 1 is to construct a partitioning scheme and an over-
lay mapping for proving Theorem 1. Table I summarizes the
notations used in Algorithm 1.

For each node vi , its uplink capacity is divided into two
parts: U ′

i = Ri and Ui = Cu (vi) − Ri . U ′
i represents the

reserved uplink capacity for vi to send out all its data at least
once and Ui is the residual uplink capacity such that Ui +

U ′
i = Cu (vi). The algorithm iterates over all site pairs in
{(i , j)|1 ≤ i ≤ n, 1 ≤ j ≤ n} in lexicographical order to
compute sub-stream rates. Using such an order is just for the
clarity of the proof and has no impact on the correctness of
the output of Algorithm 1.

For the iteration when ri ,j is computed, the algorithm greed-
ily allocates as much of Uj as possible to ri ,j until either Uj

is exhausted or the aggregated sub-stream rate reaches Ri .
According to the overlay trees defined in the previous sec-
tion, sending si ,j consumes ri ,j of U ′

i and (n − 2)ri ,j of
Uj . This rule also applies to the case i = j, where send-
ing si ,i consumes ri ,i of U ′

i (sending si ,i from vi to vj ,
vj ∈ G(V) \ {vi}) and (n − 2)ri ,i of Ui (multicasting si ,i
to each site in G(V) \ {vi , vj }). As a result, sending si ,i
consumes in total (n − 1)ri ,i of Cu(vi).

3) Correctness Criteria: The output of Algorithm 1 is a set
of sub-stream rates r1,1, . . . , rn,n . A correct output satisfies
the following three criteria for all 1 ≤ i ≤ n:

• Valid Partition Constraint: The aggregated rate of all
sub-streams of a client data stream is equal to that client
data stream’s rate, which is equivalent to

∑n
j=1 ri ,j =

Ri .
• Uplink Capacity Constraint: The aggregated rate of all

sub-streams sent by vi is less than or equal to Cu(vi).
• Downlink Capacity Constraint: The aggregated rate of

all sub-streams received by vi is less than or equal to
Cd (vi).

4) Correctness of Algorithm 1: Let Ui [α] represent the
value of Ui at the start of iteration α of the outer loop.

Proposition 1: For all α such that 1 ≤ α ≤ n , if∑n
i=1Ui [α] ≥ (n − 2)Rα, then

∑n
i=1 rα,i = Rα at the end

of iteration α of outer loop.
Proposition 2: For all α such that 1 ≤ α ≤ n ,∑n
i=1Ui [α] ≥ (n − 2)

∑n
i=αRi .

Proposition 3: The output of Algorithm 1 satisfies the Valid
Partition Constraint.

Proof: This proposition holds as the direct outcome of
Proposition 1 and Proposition 2. According to Proposition 2:

n∑

i=1

Ui [α] ≥ (n − 2)
n∑

i=α

Ri ≥ (n − 2)Rα, ∀α : 1 ≤ α ≤ n

(1)

and Proposition 1:

n∑

i=1

Ui [α] ≥ (n − 2)Rα =⇒
n∑

i=1

rα,i = Rα (2)

We have:
n∑

i=1

rα,i = Rα, ∀α : 1 ≤ α ≤ n (3)

Equation (3) implies the Valid Partition Constraint.
Lemma 1: Ui [α] ≥ 0 for all i , α such that 1 ≤ i , α ≤ n .
Proof: This lemma is proved by induction on α.
Base case α = 1: By line 2, we have: Ui [1] = Cu(vi)−Ri

for all i such that 1 ≤ i ≤ n. According to condition (1) of
sustainable rates, Ui [1] ≥ 0 holds for all i such that 1 ≤ i ≤ n.

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3681

Induction step: For an arbitrary number α such that 1 <
α ≤ n , assume Ui [α − 1] ≥ 0. Line 6 and line 7 guarantee
rα,i ≤ Ui [α−1]

n−2 and Ui [α] = Ui [α−1]−(n−2)rα,i according
to line 10. As a result, Ui [α] ≥ 0.

Proposition 4: The output of Algorithm 1 satisfies the
Uplink Capacity Constraint.

Proof: From Lemma 1, we have Ui ≥ 0 throughout the exe-
cution of Algorithm 1 for all i such that 1 ≤ i ≤ n. According
to the overlay defined in the previous Section III-A1, sending
si ,j consumes ri ,j of U ′

i and U ′
i is consumed only by sending

vi ’s sub-streams. By Proposition 3,
∑n

j=1 ri ,j = Ri for all i
such that 1 ≤ i ≤ n. Since we reserve Ri for U ′

i , sending
all of vi ’s sub-streams will consume exactly the amount of
its reserved uplink capacity. Because Cu (vi) = Ui + U ′

i , no
uplink capacity constraint is violated.

Proposition 5: The output of Algorithm 1 satisfies the
Downlink Capacity Constraint.

Proof: Since every sub-stream is broadcast using a tree over-
lay, each site receives all other site’s data exactly once and
receives the data at the same rate as the source is sending.
According to the condition (2) of sustainable rates, there is
also no violation of downlink capacity constraint.

B. Throughput Improvement

Section II-C briefly discussed the benefit of using shal-
low tree overlays when there is a single sender broadcasting
data. In this section, we extend the analysis to general cases
that involve multiple senders. According to Theorem 1, any
sustainable rates in all-to-all data transmission are achievable
using shallow tree overlays. Comparing to directly broadcast-
ing to other sites, the equation (4) captures the throughput
improvement achieved by the shallow tree overlay approach
for sustainable client data rates R1, . . . ,Rn :

∑n
i=1Ri

∑n
i=1min

(
Ri ,

Cu (vi)
n−1

) (4)

The numerator is the aggregated throughput achieved by
the shallow tree overlay approach while the denominator is
the aggregated throughput achieved by direct broadcasting.
If some site vi does not have sufficient uplink capacity to
broadcast its data directly at the rate Ri , using the shallow
tree overlay approach results in higher aggregated through-
put. Such a situation arises when there is a mismatch between
the distribution of client load and the distribution of available
uplink capacity. For instance, the client load at some site is
much higher than the client load at other sites, or some site
has limited uplink capacity compared to other sites.

C. Extending the Applicability of Shallow Tree Overlays

Theorem 1 implies that using shallow tree overlays with
height up to two is sufficient for all-to-all data transmission
to achieve the optimal throughput. However, in an arbitrary
many-to-many data transmission, a site can multicast its data
to a subset of sites in the network. Are shallow tree overlays
still sufficient to achieve the optimal throughput for many-to-
many data transmission? This section provides an affirmative
answer to this question.

In the context of many-to-many data transmission, we made
the following adjustment to some terms used in previous
sections:

Definition 4: In a network G(V, E), a client data stream s
is an infinite sequence of data bits from clients to be multicast
to a set of sites V ′, where V ′ ⊆ V .

Definition 5: In a network G(V, E), an overlay O(V ′,E ′)
is a tree rooted at some site v ∈ V ′ such that V ′ ⊆ V and
E ′ ⊆ E .

Lemma 2: Let s be a client data stream transmitted using
an arbitrary tree overlay T at rate R, there exists a partitioning
scheme for s and a sustainable mapping from sub-streams to
overlays such that:

1) Each sub-stream’s overlay is a base overlay consisting
of all nodes of T.

2) The sum of all sub-stream rates equals to R.
Proof: Let T consist of k nodes {v1, v2, . . . , vk} with v1

being the root and V ′ be the set of all non-leaf nodes in T.
Note that, there can be more than k nodes in the entire network.
We prove the theorem by constructing a partitioning scheme
and a valid sustainable mapping:

1) For each non-leaf node vi ∈ V ′, map a sub-stream with
rate biR

k−2 to Oi , where Oi is a 2-level tree base overlay
rooted at v1 with vi being the other internal node, and
bi is the number of subtrees of vi in T.

2) Map a sub-stream with rate R −∑
vi∈V ′ biR

k−2 to O1,
where O1 is a 1-level tree base overlay rooted at v1.

By summing up the sub-stream rates defined above, each non-
root node in T receives data at the rate:

∑

vi∈V ′

biR

k − 2
+

⎛

⎝R −
∑

vi∈V ′

biR

k − 2

⎞

⎠ = R (5)

It remains to prove that the mapping is sustainable. As each
node receives data at the same rate R, there is no violation
of downlink capacity constraint. There is also no violation of
uplink capacity constraint at each node in V ′. The resulting
data transmission consumes the same amount of uplink capac-
ity at each node in V ′ as the data transmission over T does,
which equals to biR. For v1, it sends data to k − 1 nodes at
rate R −∑

vi∈V ′ biR
k−2 plus sending data to each node in V ′

at rate biR
k−2 . Therefore, the uplink capacity of v1 consumed

by data transmission is calculated as follows:

(k − 1)

⎛

⎝R −
∑

vi∈V ′

biR

k − 2

⎞

⎠+
∑

vi∈V ′

biR

k − 2
(6)

Since T is a tree,
∑k

i=1 bi equals to k − 1 and
∑

vi∈V ′ bi =
k − 1− b1. Therefore, equation (6) can be rewritten as:

(k − 1)R − (k − 2)
∑

vi∈V ′

biR

k − 2
(7)

= (k − 1)R − R
∑

vi∈V ′
bi (8)

= (k − 1)R − (k − 1− b1)R (9)

= b1R (10)

3682 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 3. The visualization of Lemma 2.

The resulting data transmission also consumes the same
amount of v1’s uplink capacity as the original data transmis-
sion over T does. As a result, the mapping we construct is
sustainable.

Figure 3 demonstrates two examples of transforming the
data transmission using an arbitrary tree overlay into data
transmission using multiple base overlays. The first exam-
ple partitions the data stream s transmitted using T into three
sub-streams s1, s2, and s3 transmitted using O1, O2 and O3

respectively. Edge weights represent the rate of data stream
transmitted using each overlay. s has rate 5, s1 has rate 1 and
both s2 and s3 has rate 2. The resulting data transmission using
O1, O2 and O3 sends data to each non-root node of T at rate
5, which is equivalent to the rate of s. Also, the resulting data
transmission consumes the same amount of v1’s, v2’s and v3’s
uplink capacity (equals to 10) as the original data transmission
over T does. Likewise, the data transmission using T ′ can be
converted to the data transmission using O ′

1, O ′
2 and O ′

3.
Theorem 2: Using shallow tree overlays with height up to

two is sufficient for achieving the optimal throughput for
many-to-many data transmission.

Proof: This theorem can be proved by contradiction.
Assume a data stream s with the rate R must be transmitted
by a tree overlay T to achieve the optimal throughput and the
height of T is greater than two. According to Lemma 2, s can
be partitioned into a set of sub-streams transmitted using base
overlays. The resulting data transmission sends data to every
node in T (except for the root) at the rate R and consumes the
same amount of uplink capacity at each node that sends data
in T. Therefore, the original data transmission using T can be
replaced by the data transmission using base overlays.

Theorem 2 extends the applicability of shallow tree over-
lays to many-to-many data transmission. Note that, all-to-all

data transmission is a special form of many-to-many data
transmission. Therefore, Theorem 2 further validates the cor-
rectness of Theorem 1. However, Theorem 2 is not stronger
than Theorem 1 since it does not answer what is the optimal
achievable throughput given a hose network topology.

IV. SHALLOWFOREST ALGORITHM

ShallowForest is a two-phase algorithm that optimizes all-
to-all data transmission in a WAN environment for consensus
protocols and blockchain systems. We assume that network
capacity is the critical performance-limiting resource for such
systems in a WAN environment. The primary optimization
goal of ShallowForest is to maximize the aggregated data
transmission throughput while the secondary goal is to mini-
mize the network latency subject to the data transmission rate.
As a result, the first phase computes the maximum achiev-
able data transmission throughput constrained by the network
capacity and client load across all sites. In the second phase,
ShallowForest computes the optimal way to partition each
client data stream and associates each sub-stream with an over-
lay such that the resulting collection of overlays achieves the
optimal throughput obtained from the first phase. As network
delay is not negligible in a WAN environment, the second
phase also minimizes the aggregated latency weight of the
resulting overlays. In the sections below, we describe the
ShallowForest algorithm in detail.

A. Throughput-Optimal Broadcast Rate

During the first phase, ShallowForest computes the max-
imum achievable aggregated broadcast throughput Rtotal .
We first demonstrate under what conditions Rtotal becomes
achievable in a network with limited resources.

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3683

According to Theorem 1, if client data streams already have
sustainable rates, Rtotal =

∑n
i=1Ri . Otherwise, it is impossi-

ble to broadcast all client data streams at their incoming rates.
In such a case, Rtotal is computed using the following LP
formulation:

free variables: R′
i 1 ≤ i ≤ n (11)

maximize: Rtotal =
n∑

i=1

R′
i (12)

subject to: R′
i ≤ min(Cu (vi),Ri) ∀i : 1 ≤ i ≤ n

(13)
∑

j �=i

R′
j ≤ Cd (vi) ∀i : 1 ≤ i ≤ n (14)

(n − 1)

n∑

i=1

R′
i ≤

n∑

i=1

Cu (vi) (15)

In the above LP formulation, variables R′
1, . . . ,R

′
n repre-

sent some set of sustainable client data rates. Equation (12)
defines the optimization objective. Constraints 13–15 ensure
that R′

1, . . . ,R
′
n meet the first three conditions of being sus-

tainable. After computing Rtotal , ShallowForest proceeds to
the next phase.

B. Latency-Optimal Overlays

The goal of the second phase is to compute a partitioning
scheme for each client data stream that achieves the aggregated
broadcast throughput Rtotal , and construct overlays for all sub-
streams such that the network latency incurred by the data
transmission is minimized.

Definition 6: The latency weight: l(O) of an overlay
O(V, E) rooted at v ∈ V is the aggregated network latency
incurred by all receivers to receive v’s data. Let Pi ⊆ E be
the path in O from v to some vi ∈ V , we have l(O) =∑

vi∈V
∑

e∈Pi
L(e).

Problem Statement: Given a network G(V, E) with
Cu : V → R

+, Cd : V → R
+, L : E → R

+, client
data streams s1 . . . sn with rates R1 . . .Rn , and a target aggre-
gated broadcast throughput Rtotal , find a partitioning scheme
P(si ,ni) = {si ,1, . . . , si ,ni } and the corresponding overlay of
each sub-stream Oi ,1, . . . ,Oi ,ni such that:

1) Each sub-stream si ,j can be broadcast at its rate ri ,j
without violating downlink and uplink capacity con-
straints at any site.

2)
∑n

i=1

∑ni
j=1 ri ,j = Rtotal .

3)
∑n

i=1

∑ni
j=1 l(Oi ,j)ri ,j is minimized.

The term l(Oi ,j)ri ,j is the product of sub-stream rate and
its overlay’s latency weight, which represents the network
latency subject to the data transmission over Oi ,j at rate ri ,j .
Minimizing the sum of this term over all overlays will promote
transmitting more data on overlays with low network latency
to reduce the average network latency incurred by the entire
all-to-all data transmission.

1) Choosing Overlay Candidates: It is impractical to con-
sider all possible types of overlays due to their sheer number.
However, overlay candidates used by the second phase have
a critical impact on the resulting aggregated latency weight.

Selected overlay candidates must not impair achieving the
Rtotal computed by the first phase, and are expected to be
as shallow as possible to minimize the overhead of network
latency. Based on Theorem 1, it is sufficient to only con-
sider base overlays to achieve the optimal aggregated broadcast
throughput.

2) LP Formulation: We first set up a partitioning scheme
for each client stream, and pair each sub-stream with an
overlay. Since there are n overlay candidates for each site,
each client data stream si will be split into n sub-streams
si ,1, . . . , si ,n with rates ri ,1, . . . , ri ,n . Those sub-stream rates
are the variables to be optimized. We assign an overlay
Oi ,j = (V ,Ei ,j) to a sub-stream si ,j such that the data trans-
mission is handled in the following way: (1) the data of si ,i is
sent directly from vi to all the remaining sites; (2) the data of
si ,j for i �= j is sent from vi to vj first, and then vj broadcasts
the data to the rest of the sites. The resulting LP formulation
is as follows:

free variables: ri ,j ∀i , j : 1 ≤ i , j ≤ n (16)

minimize:

n∑

i=1

n∑

j=1

l
(
Oi ,j

)
ri ,j (17)

subject to: Ui ≤ Cu(vi) ∀i : 1 ≤ i ≤ n (18)
∑

j �=i

rj ,i ≤ Cd (vi) ∀i : 1 ≤ i ≤ n (19)

n∑

j=1

ri ,j ≤ Ri ∀i : 1 ≤ i ≤ n (20)

ri ,j ≥ 0 ∀i , j : 1 ≤ i , j ≤ n (21)
n∑

i=1

n∑

j=1

ri ,j = Rtotal (22)

For all i, j such that 1 ≤ i, j ≤ n:

Ui = (n − 1)ri ,i + (n − 2)
∑

j �=i

rj ,i +
∑

j �=i

ri ,j (23)

Constraint (23) represents the amount of vi ’s uplink capacity
consumed by the data transmission with respect to the overlay
setup. Constraint (18) characterizes the uplink capacity con-
straint at a specific site: the aggregated rates of data sent out
of a site should be less than or equal to that site’s uplink
capacity. Constraint (19) characterizes the downlink capac-
ity constraint at a specific site: the aggregated rates of data
received by a site should be less than or equal to that site’s
downlink capacity. Constraint (20) enforces the sum of sub-
stream rates being less than or equal to the rate of the original
stream. Constraint (21) enforces all sub-stream rates to be non-
negative. Constraint (22) enforces the sum of all sub-stream
rates equals to be Rtotal , which is computed in the first phase
(see Section IV-A).

C. The Complexity of ShallowForest

In a network with n sites. The LP formulations above
involve O(n2) variables and constraints. Using Vaidya algo-
rithm [25], the optimization problem can be solved with time
complexity O(n5). Note that the actual throughput achieved

3684 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 4. The software architecture of APaxos. Red lines represent protocol
messages and blue lines represent client operations.

by the overlays computed in this phase is approximate to the
optimal throughput for two reasons: (1) The LP formulations
relax the integrality constraint on the rate of each sub-stream;
in reality, you cannot split a data stream at a granularity finer
than one bit. (2) A software LP solver may introduce rounding
error.

V. AMOEBA PAXOS: WORKLOAD-AWARE CONSENSUS

EPaxos [16] is a state-of-the-art decentralized consensus
protocol that performs favorably in a WAN environment.
However, its workload-agnostic approach to handle data trans-
mission will lead to sub-optimal performance when dealing
with skewed load across replicas. To make EPaxos workload-
aware, we build Amoeba Paxos (APaxos) on top of the
publicly available EPaxos implementation [26] by applying
ShallowForest to the data transmission.

A. Overview

Figure 4 depicts the software architecture. There are three
major components in APaxos: the ordering plane, the data
plane and a centralized controller. The ordering plane receives
incoming client requests and orders them using the origi-
nal EPaxos protocol. Instead of broadcasting messages with
client operations directly to other replicas, the ordering plane
replaces actual client operations in protocol messages with
client operation IDs and offloads the job of broadcasting client
operations to a co-located data plane thread.

The data plane broadcasts client operations with specific
overlays according to its overlay configuration updated by the
controller. The overlay configuration determines how much
data to transmit using a specific overlay. The data plane also
transmits the client operations received from other replicas
based on the overlay information encapsulated in the received
data. Besides handling data transmission, the data plane also
buffers the received client operations and reassembles them
into protocol messages required by the ordering plane.

The controller applies ShallowForest to compute the optimal
partitioning scheme and overlays for each site and updates

each site’s overlay configuration through RPC calls. In the
prototype implementation, we hard-code the client data rates
and available network resources in the controller.

B. The Ordering Plane

There are three types of messages in EPaxos that
enclose client operations: PreAccept, TryPreAccept and
PrepareReply. The ordering plane replaces client oper-
ations in PreAccept messages with client operation IDs.
The resulting message is referred to as PreAcceptLight
to distinguish it from the original PreAccept message.
The ordering plane only separates client operations from
PreAccept messages because broadcasting PreAccept
messages consumes the greatest amount of bandwidth in nor-
mal operation while the latter two messages are only involved
in the EPaxos’s recovery process. The ordering plane broad-
casts PreAcceptLight messages and handles the protocol
messages from other replicas in the same way as an EPaxos
replica does.

C. The Data Plane

This section presents salient details of the data plane.
1) Overcoming the Per-Flow Rate Limit: To overcome the

per-flow rate limit enforced by public cloud providers, APaxos
sets up multiple TCP connections between each pair of replicas
located in different areas. For a specific recipient, the data
plane picks the TCP connection from the pool in a round-robin
fashion and transmits one client operation using a selected
TCP connection in a separate thread. The purpose of letting
each TCP connection have equal chances to transmit client
operations is to make each TCP connection have a similar
congestion control window size. With a high incoming rate
of client operations, there could be multiple TCP connections
concurrently sending client operations to the same recipient.

2) Overlay Configuration: The data plane thread running
on site v sends client operations based on a local over-
lay configuration overlay_config, an array with the
same size as the number of overlay candidates. Each entry
overlay_config[i] is the amount of data out of a con-
figurable window size w KB that should be broadcast using
the ith overlay. That is, among w KB of data broadcast by
v, overlay_config[i] KB of data should be broadcast
using the ith overlay. The ith entry of the overlay configu-
ration is also referred to as the quota of the ith overlay. In
our implementation, w is set to 200KB to achieve the best
performance.

3) Overlay Information: Another advantage of using only
base overlay candidates is minimizing the overhead of overlay
information in the data transmitted by the data plane process.
To broadcast a client operation γ, the data plane process sim-
ply piggybacks relay bit to the original message based on its
transmission overlay. The bit is set to 0 for a 1-level tree over-
lay and 1 otherwise. When a data plane process receives data
from other replicas, it checks the piggybacked relay bit. If the
bit equals 1, the data plane process will broadcast the message
to the remaining replicas with the relay bit set to 0. For overlay
management, the data plane process also append the message

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3685

Algorithm 2: Overlay Management

1 Var view = 0: view number
2 Var i = 0: configuration number
3 Var R: set of client data rates
4 Var C: set of overlay configurations
5 Procedure UpdateOverlays()
6 for v ∈ G(V) do
7 R[v]← RequestClientDataRate(v)
8 if any call fails then
9 return Abort

10 C ← ShallowForest(R)
11 ver ← (view , i++)
12 for v ∈ G(V) do
13 ApplyConfig(v , C[v], ver)
14 return OK
15 Procedure HandleViewChange(view ′,A,D)
16 if view ′ > view then
17 view ← view ′, i ← 0
18 UpdateState(A,D)
19 UpdateOverlays()
20 return OK

with a field ver—the version of current overlay configuration,
which will be described in Section V-D2

4) Assemble Ordering Plane Messages: Upon receiving
a PreAcceptLight message, the data plane assembles a
PreAccept message by retrieving all client operations ref-
erenced by the PreAcceptLight message and feeds it
to the ordering plane. As client operations are transmitted
with different overlays, it is possible that some referenced
client operations are not present in the cache at the time the
PreAcceptLight message arrives. In such a case, the data
plane waits for a configurable period of time for the missing
client operations to appear in the cache.

D. Controller

In this section, we present the design of the controller.
Overlay management is the main responsibility of the con-
troller. It applies ShallowForest to compute the optimal
partitioning scheme and overlays for each site in response
to changes in workload distribution and participant churn.
The controller relies on the following procedures for overlay
management:

• RequestClientDataRate (v): The controller invokes this
procedure to request v’s estimated average client data
rate Rv .

• ApplyConfig (v, c, ver): The controller invokes this pro-
cedure to push an overlay configuration c with version
ver to a site v.

• HandleViewChange (view,A,D): Upon participant
churn, the controller call this procedure to update network
information. The numerical value view is the view num-
ber associates with the current set of active participants.
A,D are respectively the set of newly joined nodes and
the set of departed nodes.

1) View Change: Consensus protocols and blockchain
systems [6], [10], [27], [28] implement view change mech-
anisms (also referred to as reconfiguration) to handle updates
to system configurations such as the set of active partici-
pants and current leader. Rather than re-inventing the wheel,
the controller leverages the ordering plane to update its local
state, which includes the participant set, available bandwidth
and latency between participants. When the view changes,
the ordering plane notifies the controller by sending a mes-
sage 〈view ,A,D〉, which includes the view number view, a
set of newly joined nodes A, and a set of leaving nodes D.
Upon receiving the message, the controller invokes procedure
HandleViewChange presented in Algorithm 2. The controller
maintains a copy of the last view number received from the
ordering plane and ignores any message with a view number
smaller than its local copy. The controller updates the local
state through procedure UpdateState by adding information
of nodes in A and removing those of nodes in D. Each newly
joined node in A is associated with its available bandwidth
and network latency to existing participants. The controller
then triggers an immediate overlay update via calling the
UpdateOverlays procedure. To benefit from the optimized
overlay, the ordering plane must wait for the completion of
HandleViewChange before processing new client requests.

In APaxos, the ordering plane is EPaxos. EPaxos is not a
consensus protocol designed for a dynamic network, where
participants may join and leave at a high rate. Similarly to
other classic consensus protocols, it operates on a static set of
participants. For such protocols, view change is only triggered
when the ordering plane detects node failures and replaces
failed nodes with live ones.

2) Update Overlays: UpdateOverlays procedure presented
in Algorithm 2 updates the overlay configuration of each site in
the network. It is invoked either by a configured timeout period
δ or upon view change. It collects client data rates through call-
ing RequestClientDataRate(v) for each site v ∈ G(V). After
receiving the request, each site v reports its estimated aver-
age client data rate Rv computed by the exponential weighted
moving average (EWMA) as follows:

Rv = (1− α)Rv + αR′
v

Parameter α is a configurable weight and R′
v is the average

client data rate at site v within the most recent time win-
dow of δ time units. By using EWMA, the estimated client
data rate can rapidly converge to recent measurements as the
old estimation decay exponentially. A successful invocation
of RequestClientDataRate(v) returns v’s current client data
rate. Once the controller collects client data rates from all
sites, it applies ShallowForest to calculate the latest parti-
tioning scheme C, and updates each site v’s current overlay
configuration through calling the ApplyConfig procedure. We
assume RequestClientDataRate(v) eventually terminates if
both the controller and the remote site v are alive. If any call to
RequestClientDataRate fails, the controller will not update
overlays until the ordering plane triggers view change.

When ApplyConfig(v, C[v], ver) is triggered, the controller
pushes overlay configuration C[v] with version ver to v. The

3686 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

version ver is a tuple 〈view , i〉 representing the i-th config-
uration update within the view numbered by view. The data
plane process updates its local overlay configuration to C[v]
only when the version ver is greater than the version of its cur-
rent local overlay configuration. Due to potential failures and
unexpected network conditions, a site’s latest overlay configu-
ration can be lost or delayed. In such a scenario, the data plane
process can detect outdated overlay configuration by inspect-
ing the version field included in the message broadcast by
other sites (described in Section V-C3). If a data plane pro-
cess detects that its overlay version is outdated, it queries the
controller for the latest configuration.

3) Overhead of Overlay Management: As mentioned ear-
lier, the controller invokes procedure UpdateOverlays over
a configured time interval δ and let δ be the average view
change interval. Assume each function invocation incurs a
constant network capacity overhead β (such as RPC head-
ers and network packet headers). The invocation of procedure
RequestClientDataRate consumes β of v’s downlink capac-
ity and β+μ of a site v’s uplink capacity, where μ is the size
of reported client data rate in bytes. Let ω be the total size
of ApplyConfig’s parameters, ApplyConfig consumes β + ω
of a site v’s downlink capacity and β of v’s uplink capacities.
After summing up aforementioned terms, overlay management
consumes a total Um of each site’s uplink capacity and Dm

of each site’s downlink capacity. Um and Dm are computed
as follows:

Um =
(2β + μ)

(
δ + δ

)

δδ
Dm =

(2β + ω)
(
δ + δ

)

δδ

ShallowForest targets workloads that fluctuate on timescales of
hours or minutes. It is sufficient to set δ to 60 seconds. Assume
in a deployment with 10 sites, δ is around 30 seconds. Based
on our measurement using gRPC [29], β is around 1 KB,
μ is 8 bytes and ω is approximately 100 bytes. After sub-
stituting those values, both Um and Dm are approximately
100 Bps, which are light-weight compared to the network
capacity consumed by disseminating client data.

E. Handling Failures

EPaxos does not rely on a controller to determine data trans-
mission overlays. To avoid the single point of failure, APaxos
can deploy multiple controllers. When the current controller
fails, a backup controller will continue to update each site’s
overlay configurations.

The other difference between EPaxos and APaxos lies in
the way PreAccept messages are sent out. EPaxos assumes
message passing is asynchronous between replicas, and intro-
ducing a data plane does not break this assumption. As a
result, APaxos inherits the safety property from EPaxos. For
the liveness property, EPaxos guarantees the client operation
will eventually be committed if there are f + 1 non-faulty
replicas and the client retries (possibly with another replica)
if it does not receive a response within a timeout period. As a
result, the data plane should guarantee all non-faulty repli-
cas finally receive both PreAcceptLight and all client
operations it references.

Since direct broadcast will guarantee that all non-faulty
replicas receive the data, client operations transmitted using a
1-level tree overlay and PreAcceptLight require no addi-
tional mechanism to ensure data delivery to all non-faulty
replicas. However, if a message is transmitted using a 2-level
tree overlay, all leaf nodes will not receive the message when
the node in the middle crashes. To preserve the property that
the protocol can make progress with f + 1 non-faulty repli-
cas, the middle node sends ACK to the root replica after it
completes sending the message to the remaining replicas. If
the ACK from the middle node is not received after a timeout
period, the root node broadcasts the message directly to other
replicas and marks the middle node as a potentially crashed
node, which needs to be avoided in future data transmissions.

VI. DISCUSSION

ShallowForest does not aim to directly optimize data trans-
mission for each participant in large-scale systems (e.g.,
more than tens of nodes). State machine replication and con-
sensus protocols generally do not exhibit improvements in
performance through the addition of nodes. As a result, the
scale of systems under consideration is naturally limited.
Adding hundreds (or even tens) of nodes might render the
upper layer consensus protocol the performance bottleneck
before the performance becomes restricted by the data trans-
mission. If the number of participants is large, blockchain
systems usually limit the scale of consensus participants. For
instance, in Algorand [8], a subset of participants called a
committee is selected through verifiable random functions to
participate in consensus. Except for limiting the scale of partic-
ipants, organizing participants using a hierarchical topology is
another approach adopted by large-scale consensus. Canopus
[30] organizes participants into a multi-level leaf-only tree
hierarchy, where a node at each level represents a group of
nodes at the immediate lower level while the bottom level
nodes are actual participants. ShallowForest has the potential
to provide overlay optimization for dozens of nodes at the
top level. Note that, in such a setting, the churn of logical
nodes will not be frequent. It only happens when the network
partition cuts off the entire region, which is rare.

ShallowForest relies on the ordering plane to handle partic-
ipant churn and requires minor modifications to the ordering
plane’s view change process. As safety properties are defined
for a specific view, consensus protocols cannot process new
requests until the completion of the view change process.
Therefore, participant churn will not happen within a view
and it is redundant having a separate mechanism to handle it
at the data plane.

VII. EVALUATION

This section presents the evaluation of ShallowForest, par-
ticularly the benefit of the ShallowForest optimization in terms
of commit throughput and commit latency.

A. Experiment Setup

For the experiment, APaxos is deployed across nine Amazon
EC2 regions: Tokyo (TK), Singapore (SG), Sydney (SY),

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3687

TABLE III
NETWORK LATENCY (MS) BETWEEN EACH PAIR OF SITES

USED IN THE EXPERIMENT

Frankfurt (FF), Ireland (IR), Oregon (OR), Virginia (VA),
London (LD), and California (CA). Table III summarizes the
network latency measured using ping between each pair of
regions. In each region, the experiment uses an m4.xlarge VM
instance with four 2.4 GHz Intel Xeon E5-2676v3 processors
and 16 GB main memory. The OS version on each VM is
Ubuntu 16.04 and the golang version used to compile APaxos
is 1.9.4. A client process and an APaxos replica are executed
on each VM, as well as a controller process on a single VM
chosen at random. The client process sends requests only to
its co-located APaxos replica.

The purpose of the experiment is to evaluate the effective-
ness of the ShallowForest optimization when the network is
the bottleneck. Therefore, the workload consists of only write
requests as they involve broadcasting a significant amount of
payload data. All requests are committed on the fast-path as
each request is associated with a distinct key. For saturating
the network resource provisioned to each VM, the request
size is set to 4 KB and 20 TCP connections are established
between each pair of VMs. Those parameter values are picked
by increasing both request size and the number TCP con-
nections until the throughput of APaxos cannot be improved
further. In our experiments, we use the CUBIC congestion
control algorithm [31], which is the default option on our
VM instances. We consider CUBIC the preferred congestion
control algorithm for our experiment environment, where the
RTT between two replicas is significant. With CUBIC, win-
dow growth during congestion avoidance only depends on the
real time between two consecutive congestion events. As a
result, CUBIC can provide better fairness for flows competing
for the same bottleneck, independently from their RTTs.

The client process can be configured to issue requests to
an APaxos replica at a specific rate in an open loop. In the
experiments, client request rates are enforced to be sustain-
able. The experiment uses the Zipfian distribution to model the
skewed client load across replicas. For the network topology,
the experiment uses the average network capacity measured in
1-minute intervals for a total of 30 minutes, and the average
latency measured by 3 pings between each pair of replicas.
APaxos+SF denotes APaxos optimized using ShallowForest
in all results.

B. The Effect of Using Multiple TCP Flows

Besides the ShallowForest optimization, APaxos differs
from original EPaxos by using multiple flows between each
replica for data transmission. This experiment evaluates the

Fig. 5. Latency vs. throughput for 5 replicas with different flow numbers.

effectiveness of using multiple TCP flows by comparing the
performance of original EPaxos and APaxos using a differ-
ent number of flows between each pair replicas. We compare
the performance of three candidates: EPaxos, APaxos using 5
TCP connections and APaxos using 20 TCP connections. For
each candidate, the experiment uses five replicas located in
IR, CA, VA, TK, and OR. The client loads on all replicas are
equivalent.

Figure 5 presents the experimental results where each data
point is the average of 4 runs and the error bar represents the
standard deviation of 4 runs. Each run lasts for 20 seconds
and the VM is warmed up through executing the workload
for 20 seconds before each run. The result demonstrates
that using a larger number of flows leads to a higher com-
mit throughput. APaxos using 20 TCP connections achieves
approximately 4.2X throughput compared to EPaxos, which
uses only one TCP connection between each pair of replicas.
We also note that the candidate using a smaller number of
TCP connections can achieve lower commit latency for low
client load in Figure 5. The reason behind it is that the can-
didate using a smaller number of TCP connections has higher
load per connection. According to the CUBIC algorithm, if
the congestion window size cwnd is less than the slow-start
threshold ssthresh, cwnd is incremented additively per
ACK. Therefore, higher load per connection results in faster
convergence to optimal cwnd and lower transmission delay.

C. Different Skewness Levels

Workloads in the real world can be highly skewed across
different geo-areas, and continuously changing over time. For
this experiment, we use five geo-distributed replicas to evalu-
ate the effectiveness of ShallowForest in dealing with skewed
client load across replicas. We vary the exponent parameter s
of the Zipfian distribution to tune the skewness level of client
load distribution. Client load is uniformly distributed when
s equals to zero, and increasing s leads to a more skewed
client load distribution. Table IV demonstrates the load on each
replica at different skewness levels. For each skewness level,
we increase the aggregated client request rate and measure the
commit throughput as well as the corresponding average com-
mit latency. Figure 6 presents the experimental results where
each data point is the average of 4 runs and the error bar
represents the standard deviation of 4 runs. Each run lasts for

3688 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 6. Latency vs. throughput for 5 replicas with Zipfian workloads.

TABLE IV
LOAD ON REPLICAS UNDER DIFFERENT SKEWNESS LEVELS

20 seconds and each VM is warmed by executing the workload
for 40 seconds before each run.

As shown in Figure 6, the commit latency of APaxos
without the ShallowForest optimization grows more rapidly
with the increasing commit throughput due to contention for
uplink capacity at replicas with high client load. When opti-
mized using ShallowForest, APaxos achieves higher commit
throughput with lower commit latency. For instance, when
s = 1.5, ShallowForest improves the commit throughput of
APaxos by 100% with 60% reduction in commit latency.
Figure 6 also shows that ShallowForest only improves APaxos
slightly when the client load is moderately skewed. When
s = 0.5, ShallowForest improves the commit throughput of
APaxos by 10% with 30% reduction in commit latency. As
each VM instance is provisioned with similar uplink and
downlink capacity, the optimal overlays become increasingly
1-level tree dominated with a more uniformly distributed load.
This also explains why ShallowForest brings no performance
improvement when s = 0 in this experiment.

D. Effect of Replication Factor on Performance

We also compare the effectiveness of ShallowForest for
various replication factors. For this experiment, we mea-
sure the commit throughput of APaxos with five, seven and

Fig. 7. Throughput of different numbers of replicas.

nine geo-distributed replicas. For all replication factors, we
set s to 1 and the aggregated data rate of incoming client
requests to 750 Mbps. Figure 7 demonstrates the experimen-
tal results, where each bar is the average of 4 runs and
the error bar represents the standard deviation. ShallowForest
improves the commit throughput of APaxos by 43%, 32%
and 32% for replication factors 5, 7, and 9. When optimized
using ShallowForest, the commit throughput drops faster with
the increasing number of replicas. This is due to the higher
network latency yielded by 2-level tree overlays in a larger
scale deployment, which contains replicas deployed in more
distant regions (Sydney and Singapore). However, APaxos
optimized using ShallowForest still achieves higher commit
throughput for all replication factors resulting from more effec-
tive use of the network capacity at replicas with low client
load.

TAN AND GOLAB: OPTIMIZING ALL-TO-ALL DATA TRANSMISSION IN WANs 3689

VIII. RELATED WORK

Consensus Over WAN Mencius [15] is a variant of Paxos
that rotates the leader for each command to distribute the load
evenly across replicas. Mencius also addresses the issue of
unevenly distributed client load across replicas. It allows a
replica with low client load to voluntarily skip its leader term
to favour replicas with higher client load. Mencius is not com-
pletely leaderless and skipping a leader term cannot help a
replica with high client load to utilize network resources at
a replica with low client load. E-Paxos [16] further improves
scalability and reduces commit latency by removing the role
of the leader. Each client is able to send the request to the
nearest replica, which is referred to as the command leader.
However, unlike APaxos, EPaxos does not consider the avail-
ability of network capacity and unbalanced client loads across
replicas. Canopus [30] is a network-aware consensus protocol
that parallelizes the dissemination of messages according to a
leaf only tree (LOT). LOT organizes nodes into several con-
sensus groups based on locality. The main goal of using LOT
for data transmission is to minimize the usage of highly con-
tented links. In terms of data transmission, LOT might incur
higher network latency in a WAN environment. For n nodes,
LOT requires O(log n) transfers for data to reach all nodes,
while ShallowForest requires at most two transfers.

Decoupling Data Transmission From Ordering Decoupling
data transmission from ordering is a common technique used
by many consensus protocols [11], [12], [17] and blockchain
systems. To separate the ordering plane from data transmis-
sion, S-Paxos [17] associates each batch of client requests with
a unique ID and uses Paxos as its ordering plane protocol to
order batch IDs. Disseminating client requests is handled by
a separate process. The data plane of S-Paxos is leaderless,
meaning that a client may contact any replica to broadcast
the request to other replicas. Ring Paxos [11], [12] handles
data dissemination using one or more logical ring overlays.
To multicast messages to a group of receivers, all servers are
placed on a logical ring. The sender just sends data once to
its immediate successor and all subsequent receivers store-and-
forward the message until the last receiver receives it. Logical
ring overlay minimizes the data replication at the sender to
achieve high throughput data transmission and the optimal
network utilization. However, when using a ring overlay, the
network latency of the data transmission grows proportion-
ally with the number of participants. Both Ring Paxos and
S-Paxos handle the data dissemination with a static overlay
that does not change adaptively to various client loads across
replicas. Some permissionless blockchain systems [4], [5], [32]
use gossip protocols [33] for high-throughput data dissemi-
nation. ShallowForest does not apply to those systems as it
requires the location and identity of each participant to be
known a priori.

Application-Level Multicast Application level
multicast [21], [22], [34] has been studied extensively
for content distribution in P2P networks. Among those
systems, ShallowForest is most similar to SplitStream and
Bullet network [21], [22]. SplitStream [21] partitions the data
to be broadcast into several disjoint sections called stripes and

constructs a separate broadcast tree for each stripe. To receive
the complete stream, a node must be presented in every
broadcast tree. SplitStream enforces that any two broadcast
trees must be interior-node-disjoint, which means every node
is an interior node in precisely one tree and a leaf node in
all other trees. This property improves the robustness of the
system because the failure of a node only affects the delivery
of a single stripe. Bullet [22] divides the data into multiple
disjoint blocks which are further divided into packet-size
objects. For data dissemination, Bullet uses an epoch-based
algorithm called RanSub for membership management and
overlay construction. Both protocols focus on optimizing data
transmission throughput and do not impose any constraints on
the height of overlays. ShallowForest only uses shallow tree
overlays and optimizes both the throughput and the network
latency subject to the data transmission.

Compared to prior works, our contribution is twofold. First
of all, we mathematically prove that consensus protocols can
achieve the optimal throughput by using overlays with height
up to two. This result provides a constant bound on latency
for the throughput-latency trade-off in consensus protocols and
state machine replication. Second, our work is the first to
address the problem of skewed client load distribution from the
angle of optimizing data transmission for consensus protocols.
Prior works [15], [16] focus on protocol level optimizations
such as rotating leadership and leaderless architecture.

IX. CONCLUSION

In this paper, we presented a method of optimizing data
transmission in a WAN environment, called ShallowForest,
and applied to the widely-cited EPaxos consensus protocol.
The key idea of ShallowForest is to partition the data stream
and use shallow tree overlays for data transmission. The exper-
imental results demonstrate that ShallowForest can make a
consensus protocol more resilient to skewed load by han-
dling the data transmission in a more workload-aware and
network-aware manner. In future work, we plan to build a
fully autonomous controller that can automatically estimate
client load and available network capacity.

REFERENCES

[1] L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems.” ACM Trans. Program. Lang. Syst., vol. 6, no. 2, pp. 254–280,
Apr. 1984.

[2] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in Proc. 7th USENIX Symp. Oper. Syst. Design Implement.,
2006, pp. 335–350.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for Internet-scale systems,” in Proc. USENIX Annu. Tech.
Conf., 2010, pp. 145–158.

[4] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[5] V. Buterin, Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform. 2014. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[6] E. Androulaki et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proc. 13th ACM EuroSys
Conf., 2018, pp. 1–15.

[7] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2018, pp. 931–948.

3690 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Oper. Syst. Principles, 2017, pp. 51–68.

[9] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 51–58, Dec. 2001.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.

[11] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A high-
throughput atomic broadcast protocol,” in Proc. IEEE/IFIP Int. Conf.
Depend. Syst. Netw., 2010, pp. 527–536.

[12] P. J. Marandi, M. Primi, and F. Pedone, “Multi-ring Paxos,” in Proc.
IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2012, pp. 1–12.

[13] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proc. 6th USENIX Conf. Oper. Syst.
Design Implement., 2004, pp. 91–104.

[14] J. Terrace and M. J. Freedman, “Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads,” in Proc. Conf.
USENIX Annu. Tech. Conf., 2009, p. 11.

[15] Y. Mao, F. P. Junqueira, and K. A. Marzullo, “Mencius: Building effi-
cient replicated state machines for wans,” in Proc. 8th USENIX Conf.
Oper. Syst. Design Implement., 2008, pp. 369–384.

[16] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consen-
sus in egalitarian parliaments,” in Proc. 24th ACM Symp. Oper. Syst.
Principles, 2013, pp. 358–372.

[17] M. Biely, Z. Milosevic, N. Santos, and A. Schiper, “S-Paxos: Offloading
the leader for high throughput state machine replication,” in Proc. 31st
IEEE Symp. Reliable Distrib. Syst., 2012, pp. 111–120.

[18] K. Yamada, H. Takayasu, T. Ito, and M. Takayasu, “Solvable stochastic
dealer models for financial markets,” Phys. Rev. E, vol. 79, May 2009.
Art. no. 051120.

[19] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman,
and N. DeBardeleben, “On the diversity of cluster workloads and its
impact on research results,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2018, pp. 533–546.

[20] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in Proc.
18th USENIX Conf. File Storage Technol., Santa Clara, CA, USA, 2020,
pp. 209–223.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in cooperative
environments,” in Proc. 19th ACM Symp. Oper. Syst. Principles, 2003,
pp. 298–313.

[22] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High band-
width data dissemination using an overlay mesh,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 282–297, Oct. 2003.

[23] H. Tan and W. M. Golab, “Optimizing all-to-all data transmission in
WANs,” in Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC),
2020, pp. 1–9.

[24] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management in
virtual private networks,” SIGCOMM Comput. Commun. Rev., vol. 29,
no. 4, pp. 95–108, Aug. 1999.

[25] P. M. Vaidya, “An algorithm for linear programming which requires
O((m + n)n2 + (m + n)1.5n)L) arithmetic operations,” Math.
Program., vol. 47, no. 2, pp. 175–201, 1990.

[26] I. Moraru, D. G. Andersen, and M. Kaminsky. Epaxos Source Code.
2014. [Online]. Available: https://github.com/efficient/epaxos

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proc.
3rd USENIX Symp. Oper. Syst. Design Implement., 1999, pp. 173–186.

[28] B. Liskov and J. Cowling, “Viewstamped replication revisited,” MIT
Comput. Sci. Artif. Intell. Lab., Cambridge, MA, USA, Tech. Rep. MIT-
CSAIL-TR-2012-021, Jul. 2012.

[29] gRPC Homepage. Accessed: Oct. 5, 2020. [Online]. Available:
https://grpc.io/

[30] S. Rizvi, B. Wong, and S. Keshav, “Canopus: A scalable and massively
parallel consensus protocol,” in Proc. 13th Int. Conf. Emerg. Netw. Exp.
Technol., 2017, pp. 426–438.

[31] S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[32] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in Proc. 16th USENIX Symp. Netw. Syst.
Design Implement., 2019, pp. 95–112.

[33] A. Demers et al., “Epidemic algorithms for replicated database main-
tenance,” in Proc. 6th Annu. ACM Symp. Principles Distrib. Comput.,
1987, pp. 1–12.

[34] O. Papaemmanouil, Y. Ahmad, U. Çetintemel, J. Jannotti, and
Y. Yildirim, “Extensible optimization in overlay dissemination trees,”
in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2006, pp. 611–622.

Hao Tan received the B.Sc. degree in computer
science from the University of Toronto, and the
M.Math. degree in computer science from the
University of Waterloo, where he is currently pur-
suing the Ph.D. degree in electrical and computer
engineering. His research focuses on building reli-
able, fast, and smart distributed systems.

Wojciech Golab (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Toronto in 2010. After a Postdoctoral Fellowship
from the University of Calgary, he spent two
years as a Research Scientist with Hewlett-Packard
Labs, Palo Alto. He then joined the University of
Waterloo in 2012, where he is currently an Associate
Professor in Electrical and Computer Engineering.
His research agenda focuses on algorithmic prob-
lems in distributed computing with applications to
the design, optimization, and verification of soft-

ware systems for data storage, and analytics. He is a recipient of an Ontario
Early Researcher Award, and two Google Faculty Research Awards. His
research publications have won two Best Papers Awards, and his doctoral
work on shared memory algorithms was distinguished by the ACM Computing
Reviews as one of 91 “notable computing items published in 2012.”

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

