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Abstract—The Internet of Things (IoT) is a reality that changes
several aspects of our daily life, from smart home monitoring
to the management of critical infrastructure. The “Routing
Protocol for low power and Lossy networks” (RPL) is the only
de-facto standardized routing protocol in IoT networks and is
thus deployed in environmental monitoring, healthcare, smart
building, and many other IoT applications. In literature, we
can find several attacks aiming to affect and disrupt RPL-
based networks. Therefore, it is fundamental to develop security
mechanisms that detect and mitigate any potential attack in RPL-
based networks. Current state-of-the-art security solutions deal
with very few attacks while introducing heavy mechanisms at the
expense of IoT devices and the overall network performance.

In this work, we aim to develop an Intrusion Detection System
(IDS) capable of dealing with multiple attacks while avoiding
any RPL overhead. The proposed system is called DETONAR -
DETector of rOutiNg Attacks in Rpl - and it relies on a packet
sniffing approach. DETONAR uses a combination of signature
and anomaly-based rules to identify any malicious behavior in
the traffic (e.g., application and DIO packets). To the best of
our knowledge, there are no exhaustive datasets containing RPL
traffic for a vast range of attacks. To overcome this issue and
evaluate our IDS, we propose RADAR - Routing Attacks DAtaset
for Rpl: the dataset contains five simulations for each of the
14 considered attacks in 16 static-nodes networks. DETONAR’s
attack detection exceeds 80% for 10 attacks out of 14, while
maintaining false positives close to zero.

Index Terms—Internet of Things, Low Power and Lossy Net-
works, Routing Protocol, Networking attacks, Intrusion Detection
System.

I. INTRODUCTION

THE revolution of the internet world is happening in recent
years, bringing the name of the Internet of Things (IoT).

Initially studied as the evolution of Wireless Sensors Networks
(WSNs) [1], recently IoT has gained much popularity and
scientific community attention. The new paradigm introduced
by IoT has shown the broadest range of applications, from
industrial scenarios [2], [3], to smart homes [4], [5], intelligent
healthcare [6], and smart cities [7].

The importance of Internet of Things (IoT) applications
introduces the need to secure IoT networks [8], [9]. Indeed,
many examples of attacks and vulnerabilities can be found
for these networks. For instance, in October 2016, the largest
Distributed-Denial-of-Service (DDoS) attack was launched
using an IoT botnet. This specific attack leveraged the Mirai
malware [10]. In 2017, a study developed by the US Food
and Drug Administration confirmed that some cardiac devices

present serious vulnerabilities that, if exploited, could allow
unauthorized access to the devices [11].

There exists a broad variety of communication protocols
commonly used in IoT networks, e.g., WiFi [12], IEEE
802.15.4 [13], RFID [14], Bluetooth [15]. Depending on the
considered devices, the surrounding environment, and the re-
quired communication range, different protocols are leveraged.
In this paper, we consider the standardized Routing Protocol
for Low Power Lossy Networks (RPL). RPL is considered the
de facto routing protocol for IoT and can be efficiently used in
different applications, including but not limited to healthcare,
smart environments, transport, industry, and military appli-
cations [16]–[18]. RPL is a proactive protocol developed to
allow communication in wireless networks with low power
consumption and generally susceptible to packet loss. In
particular, we inspect the identified vulnerabilities of RPL. In
recent years, research efforts shed light upon routing attacks
against RPL (e.g. rank attack, version attack, etc.) [19]–[22].

Given the wide variety of attacks available against this
protocol, its secure deployment is difficult. Moreover, RPL’s
popularity in IoT applications renders the security problem
of this protocol of paramount importance. In the recent past,
some works have been proposed aiming at securing RPL
with alternate success [23]–[29]. Although showing acceptable
detection performances, state-of-the-art security systems focus
only on few attacks while introducing communication over-
head and computation performance issues. Therefore, there is
a lack of a reliable and comprehensive IDS that can identify
more attacks with low overhead. To this end, we propose
DETONAR1, an Intrusion Detection System used to DETect
rOutiNg Attacks in RPL. DETONAR leverages traffic analysis
technique. Only a few works explore this concept in RPL
security, such as [30], [31]. However, these works focus only
on the identification of a few attacks. The proposed IDS aims
to identify the maximum number of attacks while introducing
zero RPL overhead and zero computations at IoT devices.
DETONAR leverages traffic sniffer devices and traffic analysis
techniques in order to build a centralized IDS. The DETONAR
detection scheme’s centrality allows it to overcome state-of-
the-art drawbacks like RPL overhead and computational power
requirements of IoT devices. Moreover, DETONAR introduces
a hybrid approach relying on the combination of anomaly-

1DETONAR is a Venetian dialectal word that stands for detonating a bomb,
as the proposed IDS aims at detonating any possible attacks against RPL.
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based detection and signature-based classification techniques.
Combining these techniques allows DETONAR to reach reli-
able attack detection while maintaining low false positives.

Given the unique nature of DETONAR and its use of
network traffic analysis techniques, we need to introduce
a novel dataset of attacks against RPL, called RADAR, to
evaluate its performances. We consider 14 well-known routing
attacks against RPL and use the NetSim tool [32] to implement
these attacks and extract the corresponding dataset (see Sec-
tion III). The dataset consists of the packet trace files for each
simulation. These files contain the packets that each device
has sent during the communication period. The simulation
implementation considers only static scenarios, given their
popularity among RPL’s applications and medium-sized net-
works (i.e. 16 nodes). To the best of our knowledge RADAR
represents the biggest and most comprehensive dataset of
routing attacks in RPL. Its introduction represents a step
forward in security research as it allows to study a wide variety
of attacks simultaneously.

a) Contribution: To summarize, the contributions that
our work brings to IoT security are the following:
• We present RADAR, a novel Routing Attacks Dataset for

RPL. To the best of our knowledge, RADAR represents
the first dataset containing RPL traffic for a vast range
of attacks. The dataset (see Section III for more details)
contains network traffic of simulations for 14 well known
attacks. Thanks to NetSim, we make the dataset publicly
available2. RADAR contains 80 different simulations,
each of length 1500 seconds, obtaining on average more
than a million packets for each simulation.

• We present DETONAR, a novel IDS developed to detect
routing attacks in RPL and identify intruders. Due to its
novel sniffing approach and the centralized computation
paradigm, DETONAR (see Section IV for more details)
maintains zero communication overhead at RPL level and
requires no device computations or firmware update.

• We show the effectiveness of DETONAR on the proposed
RADAR dataset and shows its applicability to small-scale
networks. DETONAR’s true positive detection exceeds
80% for 10 attacks out of 14 (see Section V-B for more
details), while requiring relatively small computation
time, due to its hybrid approach.
b) Organization: The next sections of this paper are

organized as follows. Section II discusses the basic concepts
of RPL, also presenting the known attacks against it in IoT
networks. Section III presents RADAR in details, explaining
its most relevant features. Section IV describes the proposed
IDS, its workflow, and the main advantages that it brings.
Section V presents the attack detection parameters optimiza-
tion process and the performance analysis of our proposed
IDS over different IoT scenarios. Finally, Section VI provides
conclusions and insight of possible extensions of our work.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the routing protocol for
Low Power Lossy Networks (LLNs), called Routing Protocol

2https://spritz.math.unipd.it/projects/detonar/

for Low Power Lossy Networks (RPL) (in Section II-A). Sec-
tion II-B summarizes well-known networking attacks against
RPL and their workflow. Finally, in Section II-C we present
the available IDSs and their limitations, motivating our work.

A. Routing Protocol for LLNs (RPL)

RPL is the routing protocol standard for LLNs, developed
by the IETF ROLL task force and defined in the Request
For Comment (RFC) 6550 [33]. IEEE commissioned the
development of RPL to bridge the existing gap in routing for
IoT scenarios, designed to meet the requirements of resource,
power, and bandwidth constrained devices.

The fundamental concept standing at the base of RPL is the
topological notion of Destination Oriented Directed Acyclic
Graphs (DODAGs). The DODAG is a directed graph-oriented
towards a root node without loops. The nodes providing access
to the internet (gateways) are considered root nodes. All other
nodes link to them directly or through a series of parent nodes.
Each node selects a preferred parent who forwards application
packets. It is selected depending on the rank value that a device
can obtain. This value represents the position of a node in the
DODAG. Rank depends on both the distance of the node from
the root and the Objective Function (OF). It describes how
distance and signal-to-noise ratio are used to compute rank.

RPL introduces new control packets and leverages them to
build and maintain the DODAG and the communication routes.
RPL control packets are defined as a type of Internet Control
Messages Protocol version 6 (ICMPv6) control packets. In
particular, (i) DODAG Information Solicitation (DIS) packet
is used by a node to ask for neighborhood information, (ii)
DODAG Information Object (DIO) packet is used to discover
RPL instances, learn DODAG configurations, select preferred
parent, and maintain DODAG structure, (iiii) Destination
Advertisement Object (DAO) packet is used to advertise re-
verse routes information, creating upward and downward paths
between the nodes, and (iv) Destination Advertisement Object
Acknowledgement (DAO-ACK) used to reply to a DAO packet.

RPL supports different communication paradigms that in-
clude Point-to-multipoint (P2MP), point-to-point (P2P), and
multipoint-to-point (MP2P). It also provides two modes of
operation. In storing mode, the preferred parent will store
routing information in a routing table. In this mode, application
packets reach the closest common parent before being redi-
rected to the destination. In non-storing mode, the root node
is the only device that maintains a routing table. In this mode,
application packets reach the root node before being redirected
to the destination. A full explanation of RPL implementation
details is out of the scope of this paper. Interested readers may
find more comprehensive literature on RPL in [33], [34].

B. Attacks on RPL

There exist many networking attacks against RPL. Even
if traditional security protocols are implemented (e.g.,
IPSec [35], SSL [36], etc.), RPL does not guarantee com-
munication and routing security. A malicious user can take
possession of a device, modify the DODAG structure, or block
application packets. Mayzaud et al. [37] gave a taxonomy in
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order to classify attack against RPL protocol. We suggest [19]–
[21] for an in-depth overview of RPL networking attacks. To
the best of our knowledge, there exist 16 well-known attacks,
each of them presenting specific behaviors.
• Blackhole and Selective Forward attacks. The attacker may

drop all (blackhole) or some (selective forward) application
packets received from its children. Goal: Denial-of-Service.

• Sinkhole, Rank, and Continuous Sinkhole attacks. A mali-
cious user can fake its rank value, modifying or disrupting
network structure. Goal: DODAG modification.

• HELLO flooding, and DIS attacks. A malicious device
forges and sends a high amount of control packets (DIO
or DIS). Forged messages keep the neighbors busy trying
to process them. Goal: Network flooding.

• Clone ID and Sybil attacks. An attacker can advise himself
as one or multiple different devices, stealing the identity of
a legitimate node. Goal: Eavesdropping.

• Wormhole attack. Multiple attackers can collaborate to cre-
ate a tunnel. The created tunnel allows the two malicious
nodes to intercept and divert many applications packets.
Goal: Routes modification, network disruption.

• Version, Local repair, DODAG inconsistency and Storing
mode attacks. An attacker can forge modified control pack-
ets containing anomalous parameters. These packets provide
to disrupt communication. Goal: DODAG disruption.

• Replay attack. A malicious user can replay previously re-
ceived control packets. Settings inconsistencies make neigh-
bours unable to communicate. Goal: DODAG disruption.

• Worst Parent attack. An attacker can select a new parent
without changing its rank. The new parent is chosen to
be the worst possible, creating sub-optimal paths. Goal:
DODAG modification.

• DODAG Inconsistency attack. An attacker can misuse RPL’s
DODAG repair mechanism to attack the network. Manipu-
lation of few packets’ flags can trigger a DODAG repair
mechanism, making it impossible for devices to communi-
cate properly. Goal: DODAG disruption.

• Storing Mode attack. This attack requires RPL to run in
storing mode. An attacker can advise many non existing
routes to a legitimate device. The advised routes saturate
the routing table of the compromised device, preventing it
from building correct routes. Goal: Routes disruption.
Table I shows the characteristics of each well-known routing

attack against RPL. In particular, we consider if a strategy
is influencing or disrupting the DODAG structure. We also
study if an attack behavior increases the end-to-end delay due
to long queues created at each device or by producing sub-
optimal routes. Packet reception may also be influenced due
to high packet drop rate or communication overhead. Finally,
we also consider if collaboration between attackers or packet
forgery are required for a specific attack.

C. State-of-the-art Intrusion Detection Systems

Knowing the importance of security issues in RPL, many
systems have been proposed to patch this protocol. Intrusion
Detection Systems (IDSs) are the most popular mechanisms to
detect security threats (e.g., intruders) in a network [38]–[40].

In particular, anomaly-based IDS aims at identifying non-
legitimate behavior, knowing how the network works when
no attacker is present. These systems can work adequately
knowing legitimate network traffic only. On the other hand,
any fluctuation from legitimate behavior is considered an
anomaly. Therefore, anomaly-based systems can be charac-
terized by high false positives. Signature-based IDS instead
utilizes signatures of attack behavior to identify intruders.
These systems are capable of obtaining low false positives
but are not flexible. Signatures are found for specific attack
patterns, requiring their full knowledge.

Raza et al. [41] propose a system based on report packets
containing network information sent by IoT devices to the
root node upon request, to secure RPL. The root node reports
are then used to reconstruct the DODAG and find anomalies
in its structure. DODAG and network information are used
to detect sinkhole, blackhole, and selective forward attacks.
In [23], the authors present a system based on device location
knowledge to identify wormhole attacks. Cervantes et al. [42]
propose a modification of the RPL protocol to detect sinkhole
attacks by using an IDS mechanism that is based on network
clusterization. An extension of [42] is introduced by Surendar
et al. [24]. The authors aim to decrease overhead and increase
the packet delivery ratio. Gara et al. [25] focus on mobile
Wireless Sensor Networks (WSNs), in which they try to
identify possible selective forward attacks. The authors in [26]
propose an IDS that is based on game-theory strategies, aiming
to decrease false positives, energy consumption, and overhead.
A trust-based security mechanism is presented by Airehrour et
al. [27] and tested against rank and sybil attacks. The authors
in [30] propose a deep learning framework based on traffic
analysis to detect rank, hello flooding, and version attacks.
Finally, Mayzaud et al. [43] present a distributed security
mechanism based on monitoring devices capable of sniffing
network traffic to detect version attacks.

The state-of-the-art systems show different possibilities to
secure RPL based networks. Although showing some advan-
tages, these mechanisms present the following drawbacks:

1) Scarn variety of attacks. Existing IDSs can detect a few
classes of attacks compared to the well-known ones (see
Table II).

2) High RPL overhead. Most of the existing systems intro-
duce high communication overhead at RPL level, result-
ing inapplicable on real RPL-based IoT scenarios.

3) Computations required at IoT devices. Security protocols
are executed inside IoT devices to secure RPL. Which is
not desirable when dealing with constrained devices.

With our work, we aim to propose a comprehensive sys-
tem (i.e., DETONAR) capable of protecting RPL against
14 different attacks. It represents a significant increment
over state-of-the-art mechanisms. Moreover, previous works
increase RPL communication overhead, which limits their
real-world deployment since it leads to the disruption of
communication between devices. Finally, most existing so-
lutions require installing new protocols inside IoT devices,
which adds computational requirements unbearable for most
networks, as IoT devices are usually power constrained. The
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TABLE I
MAIN FEATURES OF ATTACKS AGAINST RPL. THESE FEATURES HELP TO UNDERSTAND ATTACKS BEHAVIOUR AND TO CLASSIFY THEM.

Attack DODAG Queueing Delay Routing Delay Packet Loss Directly Packet Loss via Overhead Collaboration Forgery

Blackhole 3

Selective forward 3

Sinkhole 3 3

Continuous Sinkhole 3 3

HELLO flooding 3 3 3

Clone ID 3 3

Sybil 3 3

Wormhole 3 3

Version 3 3 3 3

Replay 3 3 3 3 3

Rank 3 3

Worst parent 3 3

DIS 3 3 3

Local repair 3 3 3 3

DODAG inconsistency 3 3 3

Storing mode 3 3 3 3

TABLE II
STATE-OF-THE-ART IDSS AND CORRESPONDING DETECTED ATTACKS. WE

CAN SEE THAT SEVERAL ATTACKS ARE NOT COVERED.

Attack [41] [23] [42] [24] [25] [26] [27] [30] [43]

Blackhole 3 3

Selective forward 3 3

Sinkhole 3 3 3 3

Continuous Sinkhole

HELLO flooding 3 3

Clone ID

Sybil 3 3

Wormhole 3 3

Version 3 3

Replay

Rank 3 3

Worst parent

DIS

Local repair

DODAG inconsistency

Storing mode

introduction of security systems at the device level also re-
quires the installation of software and updates. Companies that
produce IoT devices would be required to introduce security
firmware on their products, while final users would need to
update their devices to maintain network safeness periodically.
Device users usually lack security awareness, reducing the
utility of state-of-the-art security systems [44]. DETONAR,
on the other hand, thanks to its sniffing approach, introduces
zero RPL overhead while requiring no computations or new
protocols at IoT devices level. The obtained system applies
to small-scale IoT networks, avoiding further consideration
regarding communication reliability, power availability, and
device maintenance.

III. RADAR: ROUTING ATTACKS DATASET FOR RPL

In this section, we present RADAR, a novel Routing Attacks
DAtaset for RPL. To the best of our knowledge, there exist
no exhaustive datasets containing RPL traffic for a vast range
of routing attacks. We aim at filling this lack by proposing
RADAR. This dataset represents a novelty both in terms
of the variety of considered routing attacks and extracted
traffic. We use Netsim [32] to implement 14 of the attacks

(five simulations for each attack) presented in Section II-B.
Only DODAG inconsistency and storing mode attacks are not
implemented due to NetSim’s software limitations. NetSim
does not implement specific RPL flags that are required for
these two attacks to be simulated. These flags have been
introduced in later developments of RPL and are not required
for its proper functioning. To the best of our knowledge, given
the broad variety of attacks, RADAR represents the most
significant dataset for routing attacks in RPL.

RADAR contains five simulations for each attack consid-
ered. Implemented networks deploy 16 IoT devices and a
single border router belonging to a single DODAG structure.
RADAR also contains ten legitimate simulations. For each
simulation, NetSim stores a packet trace file containing the list
of packets exchanged during the simulation. Table III shows
the average amount of packets recorded during simulations
of different attacks. It is possible to notice that the amount of
packets recorded on average depends on the attack considered.
Attacks aiming to disrupt DODAG structure or influence
control flow introduce high amount of packets. On the other
hand, attacks aiming at diverting traffic or steal information
do not introduce heavy traffic, resulting in smaller traces.

Netsim stores the following features for each recorded
packet: packet type, application name, source, destination,
transmitter and receiver identities, arrival and start time for
application, network, data link, and physical layers and pay-
load size for the same layers. Source, destination, gateway, and
next-hop IP addresses are also recorded along with the rank
and version values for RPL control packets. All the features
considered by NetSim can be extracted from un-encrypted
network traffic. The un-encrypted mode is usually deployed
in RPL-based networks due to its lightweight requirements
and the heavy constraints of IoT devices. Instead, if encrypted
version is considered, RADAR’s features can be extracted by
knowing security keys. It is reasonable to assume that a trusted
system has the full knowledge of these keys, as it serves
for the network’s security, and its role can be compared to
certificate authorities’ role. The packet trace file’s knowledge
corresponds exactly to the deployment of sniffing devices
which redirect network traffic to the centralized IDS server.
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TABLE III
RADAR’S SIMULATED SCENARIOS AND THE CORRESPONDING AVERAGE

AMOUNT OF PACKETS COLLECTED.

Scenario
Average

number of
packets

Average
number of

control packets

Average number
of application

packets
Legitimate 657K 624K 33K
Blackhole 1.8M 1.8M 27K

Selective forward 1.8M 1.8M 29K
Sinkhole 1.6M 1.6M 33K

Continuous Sinkhole 2.3M 2.3M 29K
HELLO flooding 1.0M 1.0M 33K

Clone ID 185K 151K 33K
Sybil 185K 151K 33K

Wormhole 257K 218K 38K
Version 2.3M 2.2M 34K
Replay 3.3M 3.2M 32K
Rank 2.3M 2.3M 34K

Worst parent 185K 152K 33K
DIS 220K 187K 32K

Local repair 2.3M 2.2M 35K

RADAR contains simulations that last 1500 seconds each.
Attacks are set to start at a random time between 500 and 700
seconds, since most security systems require some attack-free
calibration time. Indeed, RADAR is primarily meant and de-
signed for IDS performance testing. We considered an interval
of 500 seconds over a simulation of 1500 seconds to be long
enough to satisfy most IDS’s calibration time requirements.
Except for the wormhole attack, one attacker was selected
for each simulation. The attacker node is explicitly selected
to show the effects of the attack on the network, avoiding
negligible impacts. For example, a blackhole attack on a leaf
node would not drop any application packet. Therefore, its
significance level would be null.

To represent as precisely as possible real scenarios, IoT
devices, in RADAR’s simulations, send application packets
periodically with a period of 1 second [2], [45]. Moreover,
the path loss in RADAR’s simulations follows a Friis free
space path loss model with an exponent equal to 2. The free-
space path model represents realistically little to moderately
urbanized environments. Aforementioned realistic settings and
the use of a realistic simulator like Netsim allow RADAR
to represent real-world networks faithfully. The extraction of
RADAR was completed using a Windows 10 machine with
64 GB of RAM and an Intel(R) Xeon(R) CPU E5-2620 v3
@2.40GHz processor. RADAR required around 400 hours of
run-time to complete all simulations.

To summarize, RADAR’s characteristics are the following:

• It contains packet trace files of 80 different simulations,
with more than a million packets stored on average for
each simulation.

• 14 well-known attacks and legitimate scenarios are simu-
lated. Five simulations for each attack (see Section II-B)
and 10 simulations for legitimate scenarios.

• Each simulation contains 16 IoT devices and a single
border router that builds a single DODAG structure. The
considered devices are static to recall the most common
RPL real-world applications.

• Each IoT device forwards application packets with a

period of one second. This setup recalls RPL real-world
applications in which IoT devices periodically report
information to final users.

• Each simulation lasts for 1500 seconds. In attack simu-
lations, the malicious behavior starts randomly between
the second 500 and 700.

IV. PROPOSED RPL ATTACKS DETECTOR: DETONAR

In this section, we propose DETONAR, a novel security
mechanism to DETect rOutiNg Attacks in RPL. We first
present an overview of the proposed mechanism in Sec-
tion IV-A, followed by a detailed explanation of DETONAR’s
pipeline: traffic collection in Section IV-B, features extraction
in Section IV-C, anomalies detection in Section IV-D, attack
classification in Section IV-E and attacker identification in
Section IV-F.

A. Overview

State-of-the-art detection mechanism introduces several
challenges in RPL detector systems (see Section II-C). We
now summarize a list of properties that an RPL detector system
should guarantee:
P1 No RPL-communication overhead. RPL networks suffer

from communications’ overhead (see Section II-B). The
desired detection system should be an RPL-network inde-
pendent entity, and it should not use RPL-communication
channels.

P2 No RPL-nodes overhead. The addition of operation in
RPL-nodes increases their energy consumption. The de-
sired detection system should not impact nodes’ compu-
tational processes.

P3 Attacks Resistant The desired detection system should
face several RPL network attacks.

P4 Network Independent. The desired detection system
should work with different RPL network’ topologies (i.e.,
nodes’ connection, nodes’ numerosity).

P5 Implementation flexibility. Already existing RPL net-
works should integrate the detection system easily.

DETONAR’s design aims to face properties P1-P5. How-
ever, in this work we do not focus on P4, while we test
DETONAR only on small-size networks. We now briefly
introduce DETONAR’s pipeline, consisting of 5 steps, as
shown in Figure 1.

1) Traffic Sniffer (Section IV-B). An ensemble of packet
sniffers sense networks’ traffic and forward it to a server.
The sniffers are RPL-networks independent.

2) Feature extraction (Section IV-C). Extraction of a set of
features describing the collected network traffic.

3) Anomaly detection (Section IV-D). A mechanism that an-
alyzes nodes’ traffic patterns to find potential anomalies.

4) Attack classification (Section IV-E). A signature-based
mechanism that analyzes anomalies to identify potential
attacks.

5) Attacker Identification (Section IV-F). A signature-based
mechanism that identifies compromised nodes.
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Internet LEGEND
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Fig. 1. DETONAR deploys sniffing devices to sense the network traffic and
forward it to the centralized IDS server. IDS server is in charge of detecting
possible anomalies, attacks, and compromised devices.

B. Traffic Collection

DETONAR employs sniffing devices to capture RPL net-
works’ traffic. The optimal placement of these devices can
follow [46], [47]. The collected traffic is then forwarded
through secure channels (e.g., SSL) to an external server on-
site or in the cloud. The transmission is conducted periodically,
with time windows of a predefined size ω[s]. ω is a DET-
ONAR’s hyperparameter. Information retrieved by sniffing
devices contains general knowledge of packets exchanged by
RPL devices. This information contains the type of packet sent
(e.g., DIO, DIS, DAO, DAO-ACK, application), the address of
the sender, receiver, source, and destination devices. If control
packets are sniffed, additional information is considered as
rank and version values.

Sniffing devices do not rely on the underlying RPL network
to communicate the retrieved information with the server.
Otherwise, the quality of the RPL communication would be
affected by DETONAR’s workflow. Passive sniffing devices
can communicate securely with the external server, lever-
aging various communication protocols (e.g., 4G, satellite).
These protocols allow the safe deployment of DETONAR,
introducing reasonable costs. The design and cost of specific
communications between sniffing devices and external servers
are not in the scope of this paper.

The introduction of RPL-agnostic sniffing devices allows
us to achieve P1 and P2. Moreover, DETONAR achieves P5
since RPL-nodes do not require any additional computational
effort (e.g., software update).

C. Features Extraction

DETONAR monitors each RPL node’s activities through the
received traffic collected in the last time window. Formally,
be N an RPL network with |N | nodes and W t

i the traffic
collected at time window t for the i−th node ni. Starting from
W t
i , DETONAR defines a set F of 11 features as described

in Table IV. F describes quantitatively and qualitatively the
sensed traffic. Features f1−f8 are quantitative, as they express

the amount of received or forwarded packets by each RPL
device (e.g., number of forwarded/received DIO). Quantitative
features give a measure of the traffic density that each node
sustains. Features f9− f11 are qualitative, as they express the
considered node’s information (e.g., rank).

TABLE IV
SELECTED FEATURES OF OUR IDS. IT IS POSSIBLE TO NOTICE THAT EACH

FEATURE HELPS DETECT ONE OR MORE ATTACKS.

# Feature Attacks Detected

f1 Number of DIO received
HELLO flood, Local repair,

Sinkhole, Continuous Sinkhole,
Rank, Replay, DIS

f2 Number of DIO transmitted
HELLO flood, Local repair,

Sinkhole, Continuous Sinkhole,
Rank, Replay, DIS

f3 Number of DAO received
Worst parent, Sinkhole,
Rank, Replay, Version

f4 Number of DAO transmitted
Worst parent, Sinkhole,
Rank, Replay, Version

f5 Number of DIS transmitted DIS

f6
Number of application

packets received
Blackhole, Selective forward,
Wormhole, Clone ID, Sybil

f7
Number of application

packets transmitted
Blackhole, Selective forward,
Wormhole, Clone ID, Sybil

f8
Transmitted vs Received

applications rate HELLO flood, DIS

f9 Rank
Sinkhole, Continuous Sinkhole,

Rank, Replay, Local Repair
f10 Version Version
f11 Next hop IP Wormhole, Worst parent

DETONAR represents W t
i as a feature vector F ti

F ti = [f1(W
t
i ), ..., f11(W

t
i )]. (1)

The extracted feature vector F ti is finally appended in the
node ni behavioral history Bi:

Bi = [F 0
i , ..., F

t
i ]. (2)

Figure 2 shows the network representation schema. Each node
n has its own history, with a different pattern across the various
features.

Network
Traffic

...

...

...

=

  

...

... ...

=

Fig. 2. DETONAR feature extraction overview. Feature vectors F t
i are

extracted for each node i at each time window W t
i as the composition of

the 11 representative features selected. Node behaviour Bi is built as the
composition of feature vectors F t

i .
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Figure 3 shows an example of different patterns between
features f6 and f2 (i.e., the number of received applications
and the number of forwarded DIO) among three nodes (i.e.,
the root node, sensor 5, and sensor 12) at different depths of
the RPL’s structure in a RADAR simulation.
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Fig. 3. DETONAR extracts features from traffic received at a node to
describe device’s behavior. Feature series may differ significantly depending
on considered feature and device.

D. Anomalies Detection

As previously introduced, DETONAR relies on a hybrid
approach: i) detection of anomalous traffic behaviors and ii)
identification of the corresponding attack and compromised
device(s). This section describes the anomaly detection stage,
aiming to inspect each node’s activities to find inconsistencies
between its past and current status. This stage allows DET-
ONAR to be resilient to different unknown attacks, as shown
in [48]. With this component, DETONAR achieves P3.

Based on the extracted features in the previous step at time
t (Section IV-C), DETONAR’s anomaly detector inspects the
minimum set of features FA ⊂ F that allows identifying
the presence of the 14 attacks presented in RADAR. The set
FA corresponds to: number of DIO received, number of DAO
transmitted, and number of applications received. The usage
of a minimum set of features allows DETONAR to reduce the
number of false alarms and the computational cost.

One of the challenges in RPL anomaly detection is the
different traffic nature that each node has. To overcome this
issue, DETONAR employs an anomaly detection algorithm
Ai,j for each pair ni, fj in N , FA. Formally, given the node
ni and its node behavioral history Bi, Ai,j analyses node’s fj
history hi,j :

hi,j = [fj(W
t−λ
i ), ..., fj(W

t−1
i )], (3)

where λ indicates the history size that we consider. λ is a
DETONAR’s hyperparameters.

In DETONAR implementation, Ai,j is an AutoRegressive
Integrated Moving Average (ARIMA) model [49]. Being an
autoregressive technique, ARIMA fits on previous values of
the feature series to predict its future behavior. In ARIMA,
an autoregressive mechanism is applied to the series rendered
stationary via differentiation procedure. Autoregression (AR)
and error moving average (MA) are leveraged to predict
future values. Once the forecast is computed on the stationary
process, the integration (I) operation is applied to compute
the final prediction value. For an in-depth overview, we
suggest [49]. ARIMA is a parametric function over: p, the

number of autoregressive terms, d, the number of differenti-
ation steps needed to make the series stationary, and q, the
number of lagged forecast errors in the prediction equation.
The selection of p, q, and d hyperparameters is fundamental for
a correct fit. There exist automatic search algorithms that have
been proposed to optimize such parameters. In our work, we
applied a variation of the Hyndman-Khandakar algorithm [50],
following ARIMA’s implementation proposed in Pmdarima3.

ARIMA estimates f tj (W
t
i )
′ using past node history hi,j :

f tj (W
t
i )
′ ± µ = Ai,j([fj(W t−λ

i ), ..., fj(W
t−1
i )], α), (4)

where f tj (W
t
i )
′ is the forecast value, and α is the confidence

value (a DETONAR’s hyperparameter); µ represent the pre-
diction’s boundary. DETONAR raises an anomaly for node ni
on feature fj at time t if the following condition does not
hold:

f tj (W
t
i )
′ − µ ≤ f tj (W t

i ) ≤ f tj (W t
i )
′ + µ. (5)

Figure 4 shows the anomaly detection mechanism applied to
the same device and the same feature f1 in a legitimate and an
attack scenario. It is possible to notice that in legitimate traffic,
the ARIMA raises no alarm. While, in the attack scenario,
sinkhole produces an anomalous increment in the number of
DIO packets received.
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Fig. 4. ARIMA applied to the number of received DIO packets of a device
in a legitimate and a sinkhole attack scenario.

We remark that the use of ARIMA introduces the need for a
setup period free of attacks. This setup phase’s size depends on
history size λ, a DETONARS’s hyperparameter, and the time
window size ω chosen for feature extraction. Another aspect
to consider is the choice of one ARIMA per node and traffic
behavior, which makes DETONAR limited in the scalability,
and thus it does not achieve P4.

E. Attack Classification
The anomaly detection stage allows DETONAR to detect

any potential attack leveraging the minimum amount of fea-
tures. However, it presents a couple of drawbacks:

3https://alkaline-ml.com/pmdarima/index.html
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• High false positives. Any anomalous behavior causes
ARIMA to raise an alarm. There exists no guarantee that
an attack causes the alarm. Therefore, we need to filter out
those anomalies caused by slight variations of legitimate
behaviors.

• No attack/attacker identification. Alarms raised by the
first stage of DETONAR simply signal that there exist
some inconsistencies of behavior. These alarms do not
allow compromised devices to be identified. Therefore,
we need to introduce a classification technique that allows
DETONAR to locate the attacker correctly.

To identify attack class, attacker identity and reduce the false
positives, solving anomaly detection’s drawbacks, we use
several tests to profile the anomaly. In detail, once the anomaly
detection mechanism raises the alarm, a list of suspected
devices is produced. This list contains the devices which
caused the alarm and their neighbors. Some attacks influence
only features representing the neighborhood behavior while
leaving attacker behavior features untouched. The list is passed
to the attack classification mechanism, which is in-charge of
classifying anomalies into different classes of attacks. This
mechanism is implemented to make it possible to return false
alarms whenever no attack is detected, allowing to identify and
discard potential false positive alarms. To classify the attack
correctly, DETONAR considers the 8 unused features of Sec-
tion IV-C. These features consider the device’s behavior and
network structure. In particular, the DODAG is reconstructed
at the centralized server due to the ability to record DAO
packets exchanged between devices.

To classify anomalies into attacks and identify attackers,
DETONAR implements a classification flowchart shown in
Figure 5. For each node of the tree, a different rule (anomaly
or signature-based) is applied to choose the path to follow.
We now describe the different rules used by the classification
mechanism:

• Clone Identity - signature. This rule compares active
identities at W t

i with the legitimate identities collected
during the setup phase. In particular, we recall that
DETONAR considers RPL devices sending application
packets periodically (e.g. one packet per second), where
each device can have different period. We define m as the
maximum devices’ period. Given the lossyness of RPL
networks, DETONAR compares the identities between
the setup phase and each possible sub-window of W t

i of
size m ·c, where the overlap is set to one second. Finally,
DETONAR identifies a clone identity or a sybil attack if
there is at least one mismatch among the comparisons.
m represents an RPL network-related parameter, while c
is a DETONAR’s hyperparameter.

• Changing DODAG - signature. This rule checks if the
attack impacts the DODAG. Since we are considering
static scenarios, a modification of the DODAG can only
be due to an attack. Change in DODAG structure are
detected comparing DODAG at time window W t

i with
its predecessor at time window W t−1

i This rule helps to
identify two macro-categories of attacks: attacks on the
DODAG, and attacks on the traffic.

• Changing Rank - signature. This rule allows to detect
attacks that leverage the modification of the rank value.
DETONAR filters the DIO packets sent by each device
to check this rule, extracting the corresponding advised
rank. A device advising a different rank in a static
scenario is considered an attacker.

• Changing Version - singature. If no rank value has
changed while the DODAG has been modified, advised
versions are checked in this rule. Version values can be
extracted from control packets in the same way as ranks.
If a node has changed the version, then a version attack
is detected. The corresponding attacker is identified as
the first device which advised a new DODAG version. If
no version and no rank values have been changed, but
the DODAG was modified, then a worst parent attack
is detected. The attacker is then detected as the device
which changed the preferred parent.

• Changing Transmitted Applications Rate - anomaly. DET-
ONAR checks if the considered node saw any change
in the application packets that it transmitted. This rule
is considered since attacks aiming at traffic can either
manipulate application traffic or control traffic. Like the
changing DODAG rule, this one helps to subdivide attacks
against the traffic into attacks against application traffic
and attacks against control traffic. This rule consists of
an anomaly-based detection scheme. Indeed, DETONAR
applies ARIMA on the series of transmitted application
packets. This approach is identical to anomaly detection,
but it changes only the considered feature.

• Children Changing Destination - signature. If an attack
against application traffic is detected, the proposed rule
checks if any node is changing its next-hop. If this
happens, then the node changing next-hop is considered
to be part of a wormhole attack. With respect to the state-
of-the-art the proposed approach is the simplest enabling
the detection of wormhole attacks. No considerations
regarding devices’ positions or power of transmission is
done, and the resulting performances are surprising.

• Incoming vs Outgoing Traffic - anomaly. When no change
in next-hop is detected, our IDS checks the ratio between
received and transmitted application packets. In legitimate
scenarios, this ratio’s trend should remain almost con-
stant. Instead, in blackhole and selective forward attacks,
it decreases significantly. DETONAR applies anomaly-
based detection scheme (i.e., ARIMA) to identify possible
anomalies in this ratio sequence. If an anomaly is found,
then the attacker is the device analyzed by the ARIMA.
Otherwise, a false alarm is sent.

• Produce New Control Packets - signature. When no attack
against application traffic is detected, the proposed rule
checks if any node produces unnecessary control packets.
The forged control packets may be either DIO or DIS.
The same check is done for DIO and DIS control packets.
DETONAR considers the number of control packets sent
by a suspected device in the last time window W t

i . If
this value is bigger than the previous maximum value of
control packets transmitted in a time window W j

i with
j ∈ [1, t− 1], then an attack is detected. Otherwise, a
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Fig. 5. DETONAR’s decision flowchart. Each rule is based on considerations regarding RPL networks that help classify the final attack. Attacker identity
depends on the attack classified.

false alarm message is raised, as there exists no significant
proof of an attack on control traffic. Mathematically,
an HELLO flooding attack is detected, if DIO(W t

i ) >
max{DIO(W t−1

i ), DIO(W t−2
i ), ...}. Where the DIO

function counts the number of DIO packets transmitted
by a device i in the time window W t

i .

The combination of the proposed rules allows DETONAR to
detect the most known attacks against RPL. Moreover, the
proposed mechanism is flexible against new attacks. New rules
may be added to classify novel attacks upon their discovery.

F. Attacker Identification

A security system should automatically identify attacker’s
identity to remove the malicious device from the network.
DETONAR introduces specific rules to identify the attacker lo-
cation from the attack class identified following Section IV-E.
The knowledge of attack class is sufficient to identify the
attacker correctly since the attacker behavior of different
attacks is specific. We now present the attacker identification
mechanism that is used for each class of attacks:

• Clone ID and Sybil attacks. As already mentioned, DET-
ONAR’s check on active devices immediately identifies
the attacker’s identity. The device missing from commu-
nication corresponds to the attacker’s original identity.

• Attacks on rank. This class of attacks comprehends sink-
hole, local repair, rank, continuous sinkhole, and replay.
To find the attacker’s identity DETONAR checks which
is the first device that advised a changed rank. One
effect of these attacks is to change multiple nodes’ ranks.
Therefore, to find the attacker, it is necessary to find the
oldest change in rank values. This approach is possible

since the proposed IDS knows each device’s rank from
the sniffed DIO packets.

• Version attack. In this case, the approach to identify
the attacker is very similar to the attacks on rank. The
proposed IDS identifies the attacker as the first node that
advised a different version in a DIO packet.

• Worst parent attack. To identify the attacker in the worst
parent attack, DETONAR checks what device changed
next-hop IP in the time window W t

i . This straightforward
principle effectively detects the attacker in a complex
scenario like the worst parent attack. DETONAR can use
such a simple principle due to the attack classification
mechanism that relies on more complex decisions.

• Wormhole attack. DETONAR’s attack classification
mechanism detects those devices that changed next-hop
IP and transmitted an anomalous amount of application
packets in wormhole scenarios. This approach by itself
allows the proposed IDS to find attackers’ identities.
Attacker devices are the only nodes that satisfy the two
conditions presented above.

• Blackhole and Selective forward attacks. For these two at-
tacks, DETONAR detects an attack only for those devices
that drop an anomalous amount of application packets.
Therefore, DETONAR’s attack classification mechanism
is already identifying attacker identities.

• HELLO flooding and DIS attacks. In HELLO flooding
and DIS scenarios, the malicious device sends an anoma-
lous amount of control packets. DETONAR’s attack
classification mechanism already identifies the attackers
as those devices transmitting an anomalous amount of
control packets.

Figure 5 shows the rules for attackers’ identification.
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V. IMPLEMENTATION AND PERFORMANCE EVALUATION

This section first presents the implementation details of
the DETONAR mechanism (see Section V-A). Finally, in
Section V-B we present the results obtained using DETONAR
on RADAR dataset. In particular, we present DETONAR’s
true detection percentage, false positives, and the computation
time needed by the anomalies detection step.

A. Implementation & Hyperparameters tuning

We make our implementation of DETONAR publicly avail-
able4. DETONAR’s scripts take as input a packet trace cor-
responding to a simulation and return as output DETONAR’s
runtime information. This information contains the anomaly
detection mechanism’s decision at each time window W t

i . If
the anomaly detection algorithm raises the alarm, then the
attack classification results are also present in the runtime
information. Running DETONAR’s scripts from the packet
trace files belonging to RADAR corresponds to the real-world
application of packet sniffers that communicates with the
centralized server.

We now describe the DETONAR’s hyperparameter tuning
among the time window size ω, the test significance α, and
the history size λ (see Section IV). Tuning is conducted
on a training set containing five legitimate simulations. The
goal of the tuning is to minimize the false positives (FP) of
DETONAR. Figure 6 shows the false positives for different ω,
α, and λ values. To select ω, we fix λ = 30 and α = 10−4.
ω affects with different trends different features, not giving
statistical relevant results. We set ω = 10 due to computational
performance reasons only. To select λ, we fix α = 10−4 and
ω = 10. We can notice that when increasing ARIMA history
size, we reduce the false positives. To reduce the setup time as
much as possible while allowing DETONAR to detect eventual
attacks accurately, we set λ = 30. We fix λ = 30 and ω = 10
to select α’s value. A small α lead to small FP. We thus set
α = 10−4. Finally, concerning c, we recall that in RADAR
devices are deployed sending one application packet every
second, i.e., m = 1. Therefore, we set c = 3.

B. Results

We now present DETONAR’s performance computed on
our proposed dataset, RADAR. We remark that we do not
compare DETONAR with state-of-the-art IDS since they are
not implemented using NetSim and their re-implementation is
not trivial. We evaluate three aspects: false positives, attack and
attacker(s) detection accuracy, and finally, time performance.
We need to make some considerations for the attack detection
accuracy. We know the attack’s starting time τAtt and the
compromised device(s) for each simulation. We consider an
attack to be detected correctly if DETONAR raises the alarm
and classifies the attack correctly after τAtt. Instead, the
attack is considered misclassified if DETONAR does not raise
any alarm or raises an anomaly correctly, but it does not
classify the correct class of attack. We are bound to consider

4https://github.com/AndAgio/DETONAR

these metrics for classification’s performance for the following
reasons:
• Some attacks start at time τAtt + ε since they need

the reception of a specific packet to be triggered. For
example, in sinkhole attack, the attacker waits for the
reception of DIO packets to trigger the publication of
forged rank value. No assumption can be made on the
duration of ε. Depending on the attack considered, the
size of the network and the simulation time ε may vary
significantly. Therefore, it is impossible to identify the
actual attack starting time.

• No assumption can be made on the label of packets in
the network traffic, since the attacks can indirectly affect
the performance of non-victim devices. For example,
sinkhole attack induces the attacker’s neighbors to change
their rank, and the attacker’s neighbors advise new rank
values in forged DIO packets. The aftermath is in a
complex labeling process, which we avoid.

1) False Positives Performances: To analyze FP, we test
DETONAR over five legitimate simulations (separate from the
five used for tuning) and measure the number of identified
attacks (∼2000 predictions). In detail, we measure the FP in
both anomaly detection and attacker identification stages (see
Section IV). Table V shows the FP rate results. In particular,
the anomaly detection stage based entirely on ARIMA has
high FP, while the second stage with both anomaly and rule-
based signature pushes the score close to zero.

TABLE V
FALSE POSITIVES FOR ANOMALY DETECTION (AD) AND AD + ATTACK

CLASSIFICATION (AC) OF DETONAR IN FIVE LEGITIMATE SIMULATIONS.

Simulation ID AD AD + AC

6 2.13% 0%
7 1.83% 0.10%
8 3.06% 0%
9 2.08% 0.05%

10 5.19% 0.05%

Overall 2.86% ± 1.24 0.04% ± 0.04

2) Detection and Identification Performances: We test the
ability of DETONAR to identify the attack and attacker(s)
over five simulations for each of the 14 attacks presented
in RADAR. Table VI summarizes the detection performance.
DETONAR successfully detects with 100% of accuracy 8
out of 14 attacks; in these attacks, the attacker is always
successfully identified. DETONAR seems to suffer only black-
hole, continuous sinkhole, and local repair attacks. Concerning
blackhole attack, we notice that in some simulations, the
attack affected nodes with few application packets, resulting
in challenging detection. In continuous sinkhole and local
repair, instead, DETONAR misses the detection only for those
simulations in which the attack does not produce any change
in the DODAG structure; in these scenarios, DETONAR
identifies reasonably a hello flooding attack.

3) Time Performances: Finally, we analyze DETONAR’s
time performance. We find the computational bottleneck in
ARIMA models (see Section IV, anomaly detection stage),
which are applied for each window W t

i . We measure ARIMA
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Fig. 6. ARIMA’s false positives are influenced by DETONAR’s time window size (i.e., ω), history size (i.e., λ) and test significance (i.e., α).

TABLE VI
DETONAR CAN DETECT MOST ATTACKS WITH SATISFACTORY ACCURACY BOTH IN TERMS OF ATTACK DETECTION (DET) AND ATTACKER

IDENTIFICATION (ID). IN WORMHOLE, ID CONTAINS THE NUMBER OF ATTACKERS IDENTIFIED CORRECTLY OUT OF THE TWO EXISTING.

Attack 1 2 3 4 5 Overall

DET ID DET ID DET ID DET ID DET ID DET ID

Blackhole 3 3 3 3 3 3 60% 60%
Selective Forward 3 3 3 3 3 3 3 3 3 3 100% 100%

Sinkhole 3 3 3 3 3 3 3 3 3 3 100% 100%
Continuous Sinkhole 3 3 3 3 3 3 60% 60%

HELLO Flooding 3 3 3 3 3 3 3 3 3 3 100% 100%
Clone ID 3 3 3 3 3 3 3 3 3 3 100% 100%

Sybil 3 3 3 3 3 3 3 3 3 3 100% 100%
Wormhole 3 2/2 0/2 3 2/2 3 2/2 3 1/2 80% 70%

Version 3 3 3 3 3 3 3 3 80% 80%
Rank 3 3 3 3 3 3 3 3 3 3 100% 100%

Replay 3 3 3 3 3 3 3 3 3 3 100% 100%
Worst Parent 3 3 3 3 3 3 3 80% 60%

DIS 3 3 3 3 3 3 3 3 3 3 100% 100%
Local Repair 3 3 3 3 3 3 3 40% 100%

performance on 170 thousand predictions using a standard
laptop (i.e., Intel Core i5-3230M CPU, 8 GBs DDR3 RAM).
The average prediction time is 1.1 seconds. Given this perfor-
mance, and the possibility to distribute the computation among
several cores, we can state that DETONAR can be deployed
in real-world small-scale networks.

VI. CONCLUSION AND FUTURE WORK

In this work, we implement and detect 14 well-known
routing attacks against RPL in IoT networks. Using the various
network logs obtained while simulating these attacks, we build
our RADAR dataset. RADAR represents the largest and most
significant dataset of routing attacks against RPL. We believe
that the availability of such a comprehensive dataset is a step
forward in the research field of IoT security. Based on the
RADAR dataset, we propose a novel and complete security
mechanism called DETONAR, capable of detecting 14 well-
known attacks. The simulation results show that DETONAR
provides excellent attacker identification results (i.e., low false
positives) with no RPL communication overhead, thanks to
its sniffing approach. DETONAR does not require any heavy
computation or firmware modification at IoT devices, which
makes it a practical solution. It also introduces future flexibility
as, upon discovering novel attacks, one can modify the attack
classification mechanism by adding new rules to previously
unknown attack rules. Finally, DETONAR’s flexibility allows
its quick deployment on the underlying network, as it does

not require any IoT devices update. In the future, we plan to
do a more in-depth analysis of DETONAR concerning the
following aspects: (i) test its performance on a real-world
testbed, (ii) investigate its performance in dynamic networks,
(iii) extend its attack detection algorithm to generalize features
behaviours among different devices, (iv) test its performance
on large-scale networks, and (v) compare its performance with
state-of-the-art IDS implementation using NetSim.
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