
642 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

An Efficient Key Management and Multi-Layered
Security Framework for SCADA Systems

Darshana Upadhyay , Marzia Zaman , Rohit Joshi , and Srinivas Sampalli , Member, IEEE

Abstract—Supervisory Control and Data Acquisition (SCADA)
networks play a vital role in industrial control systems. Industrial
organizations perform operations remotely through SCADA
systems to accelerate their processes. However, this enhance-
ment in network capabilities comes at the cost of exposing
the systems to cyber-attacks. Consequently, effective solutions
are required to secure industrial infrastructure as cyber-attacks
on SCADA systems can have severe financial and/or safety
implications. Moreover, SCADA field devices are equipped with
microcontrollers for processing information and have limited
computational power and resources. This makes the deployment
of sophisticated security features challenging. As a result, effective
lightweight cryptography solutions are needed to strengthen the
security of industrial plants against cyber threats. In this paper,
we have proposed a multi-layered framework by combining
both symmetric and asymmetric key cryptographic techniques
to ensure high availability, integrity, confidentiality, authentica-
tion and scalability. Further, an efficient session key management
mechanism is proposed by merging random number generation
with a hashed message authentication code. Moreover, for each
session, we have introduced three symmetric key cryptography
techniques based on the concept of Vernam cipher and a pre-
shared session key, namely, random prime number generator,
prime counter, and hash chaining. The proposed scheme satisfies
the SCADA requirements of real-time request response mech-
anism by supporting broadcast, multicast, and point to point
communication.

Index Terms—SCADA Systems, random number generator,
symmetric key cryptography, public key algorithm, cyber secu-
rity, network attacks, key management.

I. INTRODUCTION

THERE has been a surge in the deployment of Supervisory
Control and Data Acquisition (SCADA) systems to con-

trol and monitor industrial infrastructure over the Internet [1].
Organizations such as oil and natural gas, power stations, water
& sewage systems, chemical plants, manufacturing units, rail-
way, and other transportation use SCADA systems to monitor

Manuscript received October 29, 2020; revised March 9, 2021 and June 22,
2021; accepted August 4, 2021. Date of publication August 17, 2021; date
of current version March 11, 2022. The authors gratefully acknowledge the
support in part by the Natural Sciences and Engineering Research Council
(NSERC), Canada, through a Collaborative Research Grant. The associate
editor coordinating the review of this article and approving it for publication
was J. Zhang. (Corresponding author: Srinivas Sampalli.)

Darshana Upadhyay and Srinivas Sampalli are with the Faculty of Computer
Science, Dalhousie University, Halifax, NS B3H 1W5, Canada (e-mail:
srini@cs.dal.ca).

Marzia Zaman and Rohit Joshi are with the Research and Development
Department, Cistel Technology Inc., Ottawa, ON K2E 7V7, Canada.

Digital Object Identifier 10.1109/TNSM.2021.3104531

Fig. 1. Block diagram of a SCADA system, Legend: MTU: Master Terminal
Unit, PLCs: Programmable Logic Controllers, RTUs: Remote Terminal Units,
IEDs: Intelligent Electronic Devices.

and control their infrastructure such as oil pipelines, solar pan-
els, water pipelines, boilers, railway tracks, and plant floor
components across open access networks [2], [3].

A SCADA system typically includes a control server
(also known as Master Terminal Unit (MTU)), SUB-MTUs,
communication links (e.g., satellite, radio or microwave
links,cellular network, switched or lease lines and power-
lines), and geographically dispersed field control devices,
namely, Programmable Logic Controllers (PLCs), Remote
Terminal Units (RTUs), and Intelligent Electronic Devices
(IEDs) [2], [4]. The block diagram of a typical SCADA system
is depicted in Figure 1.

For continuous monitoring and control of plant floor
devices, sensors and actuators are used to measure differ-
ent attributes of machinery and transmit that information to
field devices [5]. Further, the field control devices, namely,
PLCs, RTUs, and IEDs supply digital status information to the
MTU (typically placed at the remote location) to determine the
acceptable ranges according to parameters set in the server.
This information will then be transmitted back to the field
control device(s) where actions may be taken to optimize the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5822-0020
https://orcid.org/0000-0002-0610-0470
https://orcid.org/0000-0002-2177-3796
https://orcid.org/0000-0002-8742-5786

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 643

performance of the system. Moreover, the status information
is stored in a database and is displayed on a Human Machine
Interface (HMI) at the control center, where operators can
interact with the plant floor machinery for centralized mon-
itoring and system control [6]. Large SCADA networks such
as those on a power plant require hundreds of field devices
and dedicated subsystems to reduce the load on the centralized
server [2].

SCADA communication messages have sensitive
information as they are used to monitor and control the
plant floor devices. For example, in water and sewage
systems, the communication messages are used to raise and
lower water tank levels or open and close the safety valves.
Since these control devices are operated and monitored
remotely, they can make them high-value targets for attackers
to launch various cyber-attacks that can compromise the
control systems, communication, and emergency services.
Consequently, one of the critical aspects of the SCADA
systems is secure transmission of messages so that they
cannot be tampered during the communication. Moreover,
the SCADA devices must be authenticated and maintain
confidentiality of the information during the transmission so
that no interceptor can misuse the system.

In the last few years, many key management techniques
have been published to secure SCADA communication,
namely, SCADA key establishment (SKE), SCADA
Key Management Architecture (SKMA), Advanced
SCADA Key Management Architecture (ASKMA),
Hybrid Key Management Architecture (HKMA) and
Advanced Hybrid SCADA Key Management Architecture
(AHSKMA), Limited Self-Healing key distribution
(LiSH) [7], [8], [9], [10], [11], [12]. These techniques
fall under two main categories, namely, centralized key
management and decentralized key management schemes.
Moreover, each of these categories uses three approaches
to generate and extract the session key, namely, symmetric,
asymmetric, and hybrid. The drawback of the centralized
scheme is that if the key distribution center (KDC) is down,
the communication is cut off, which is not acceptable in
SCADA systems. In a decentralized approach, the keys are
created using keying material and may only affect the single
communication link in case of a breakdown.

The symmetric key based approach is efficient in terms of
message integrity and high availability, but does not provide
authentication and confidentiality. On the other end, asymmet-
ric key provides message integrity, authentication, and privacy,
but may compromise availability. Hence, hybrid techniques
are more suitable for SCADA systems. A few key manage-
ment techniques have been proposed using hybrid methods.
For example, Rezai et al. [10] propose an advanced Hybrid
key management architecture (HSKMA), which improves the
key management architecture proposed by Choi et al. [11].
However, it uses a centralized KDC to distribute the keys.
Moreover, the communication between the MTU and the sub-
MTU is established using Elliptic-Curve Cryptography (ECC)
based asymmetric key cryptography while the sub-MTU and
the RTU communicate using Rivest–Shamir–Adleman (RSA)
asymmetric key cryptography. The same approach has been

used to enhance the scheme proposed by Rezai et al. [13]
using a decentralized system in [9]. In this scheme, the master
keys are refreshed using ECC and symmetric cryptography
is used for encryption, decryption, and session key updates.
However, this scheme does not validate the message integrity
and authentication. Moreover, none of the previous methods
has practical implementation proof that it provides immunity
against quantum attacks [14]. Furthermore, it has been known
that RSA does not guarantee perfect forward secrecy [11].
In summary, none of the techniques covers all the security
aspects.

The forgoing discussion brings in the need for an effec-
tive cryptography solution that will prevent these systems
from potential breaches. The objective of this paper is to pro-
pose a robust & low-cost security framework for automated
industries to mitigate various security flaws and cyber-attacks.
The proposed work aims to offer a multi-layered security
framework for industrial infrastructures by combining both
symmetric and asymmetric key cryptography techniques. This
novel approach follows a layered architecture, where the MTU
and sub-MTU can communicate using a hybrid technique for
an entire session while the sub-MTU and RTU can communi-
cate using symmetric key cryptography once the session key is
securely exchanged. Also, we have proposed a novel approach
to generate symmetric keys using vernam cipher rather than
using existing methods such as 3DES, AES, etc. Furthermore,
the proposed scheme satisfies SCADA requirements of real-
time request-response mechanism by supporting broadcast,
multicast, and point-to-point communication.

A. Contributions of the Paper

1) We propose a secure session-key agreement scheme
according to SCADA protocol standards to ensure the
security amongst MTU, sub-MTUs and RTUs. For that,
a true random number generator based on current date
and time (CDT) and a fraction of the square root of a
prime number (FSRP) are used to generate the session
key. Moreover, these elements are shared by XORing
them to enhance the privacy of the shared secrets.
Furthermore, the dynamic HMAC is derived using the
value of FSRP. Moreover, using these same elements,
the HMAC is derived to validate the integrity of the
message. This reusability of the elements increases the
computational speed of session key, symmetric key
and HMAC derivation. The randomness of key and
HMAC offers immunity against various attacks such as
correlation attacks, length extension attacks, etc.

2) We propose a novel approach to generate symmet-
ric keys in the Vernam cipher by combining prime
counter and hash chaining techniques. The mathematical
property of the fraction square root of prime num-
ber (FSRP) is used, which returns a non-terminating,
non-repeating irrational number. In a recent publica-
tion by Manjunatha et al. [15], the authors propose
Vulgar fractions to generate a complex key with secured
seed exchange for the Vernam cipher. This fraction
is generated by dividing a small number by a large

644 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

prime number, resulting in a fraction number [15]. For
example, frac(1/7) = 0.1428571428571 generates long
strings with a repetitive sequence of digits. However, our
proposed approach advances that method by generating
completely random and non-repeating decimal num-
bers using the concept of FSRP. For example frac(sqrt
(7)) = 0.6457513110645905905016157536393 returns
long strings without repetitive sequence of digits.

3) We propose a multi-layered framework by integrating
the concept of symmetric and asymmetric key cryptog-
raphy that ensures various security mechanisms, namely,
authentication, confidentiality, message integrity, avail-
ability, and scalability for SCADA systems. The
proposed method for symmetric key cryptography is
based on the Vernam cipher, which provides protec-
tion against all the cryptographic attacks while the
NTRU based post-quantum public-key algorithm resists
quantum and data harvest attacks.

4) We identify an efficient cipher suite by comparing and
analyzing various private and public key algorithms for
the proposed framework by considering multiple fac-
tors, namely, prevention mechanism against classical
and quantum attacks, key storage cost, the random-
ness of key and computational speed. The proposed
cipher suite overcomes the weaknesses of the cipher
suite offered by the American Gas Association (AGA)
security standards [14], [16].

B. Outline of the Paper

The rest of this paper is organized as follows. Section II
describes related research in the areas of key management
and encryption schemes foe SCADA systems. Section III,
presents the reasoning of choice of the algorithms. The proposed
multi-layered framework for secure SCADA communication
is introduced in Section IV, which covers secure key and
information exchange. Section V presents the complete exper-
imental setup which includes algorithm selection for cipher
suites, computational speed of proposed framework, random-
ness evaluation of symmetric key, and calculation of the cost of
the keys. Section VI presents the comparative studies with the
state-of-the-art techniques in terms of security analysis, storage
cost, and execution speed. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Literature Survey

SCADA networks are typically configured using proprietary
protocols such as Modbus, IEC 61850, IEC 60870, DNP3, and
Profinet, which do not support secure data communication.
Moreover, the remote procedure call (RPC) follows open link
communication and one of the real-time examples of the con-
sequent vulnerability was the Blaster worm [2]. Furthermore,
many network sniffing tools are freely available to view and
gather the network traffic [17]. Therefore, secure data trans-
mission is one of the important requirements for SCADA
systems. Key management and encryption play a vital role
in securing SCADA communication. Typically, in a SCADA
communication, the MTU sends control signals to the RTUs

to control the plant floor devices, which require three types
of communication, namely, broadcast, multicast, and point to
point. However, controller RTUs may need to operate other
field RTUs. In case of an emergency shutdown, to acquire the
clock information or synchronization, MTUs broadcast the sig-
nal to all the control devices such as RTUs, IEDs, and PLCs.
To operate a specific substation device, the MTU requires
multicast communication, whereas monitoring and controlling
the plant for machinery typically requires point-to-point com-
munication. Therefore, while designing a secure framework
for SCADA networks, it is crucial to cover all three types of
communication.

During the last two decades, many key management
schemes have been proposed, which typically fall into
two categories, namely, centralized key distribution such
as [4], [7], [18], [19], and decentralized key distribution
scheme such as [9], [20], [21], [22]. In the centralized scheme,
the Key Distribution Center (KDC) plays a vital role in gen-
erating and distributing the secret keys to establish secure
communication between the communication parties. In con-
trast, the decentralized scheme requires pre-shared keying
material that is used to create the session key. Once the session
key is derived using keying essence, further communication
takes place using that key. Furthermore, some key manage-
ment schemes use the public key-based technique to establish
secure transmission. Although this method is time-consuming
and power-consuming, various research studies suggest that
ECC is a suitable public-key cryptosystem [4], [9], [11].

Sandia Labs proposed a SCADA key establishment (SKE)
method for managing cryptographic keys in the network [7].
This scheme is proposed for point-to-point communication
amongst MTU, sub-MTU, and RTU and uses the symmet-
ric key technique to establish secure communications between
sub-MTUs and RTUs, while sub-MTUs and MTUs commu-
nicate using public key cryptography. For the symmetric key,
the session key is generated using three types of keys, namely,
long term key (LTK), general seed key (GSK), and general
key (GK) [7]. KDC assigns public and private key pair to
each sub-MTU and MTU. However, this method does not
support broadcast, multicast, and RTU to RTU communica-
tion. Moreover, it increases the overall key storage overhead
and complexity as the long-term keys are managed manu-
ally. In [19], the authors propose a SCADA Key Management
Architecture (SKMA) for secure session key management,
which enhances the capability of SKE. While the SKE uses
both a public key algorithm and a symmetric key algorithm,
the SKMA uses only symmetric encryption algorithm. SKMA
generates a session key using a pseudorandom function, keyed
by the node-node key, and a timestamp that is based on the
duration of the session. SKMA uses key establishment pro-
tocol based on ISO 11770-2 mechanism [8]. However, the
scheme does not provide secure message broadcasting but sup-
ports RTU-RTU communication. Moreover, it does not provide
any confidentiality and integrity.

Advanced SCADA Key Management Architecture
(ASKMA) supports both message broadcasting and secure
communications. Furthermore, evenly spreading the total
amount of computation across the high power nodes (MTU or

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 645

SUB-MTU) significantly avoids the performance bottleneck
and keeps minimal burden on the low power nodes (RTU). It
uses the LKH (Logical Key Hierarchy protocol) to construct
a logical tree of symmetric keys. Each member knows all
the symmetric keys from its leaf to the root, and if any
new node joins the group, LKH updates the entire set of
symmetric keys from its leaf to the root. Although the overall
performance of ASKMA has many advantages, it can be
less efficient during the multicast communication process.
To solve this issue, ASKMA+ was proposed [7]. ASKMA+
divides the key structure into two classes, by applying the
IoLus framework to construct each class as a logical key
hierarchy (LKH) structure. Through this key structure, the
authors proposed a more efficient key-management scheme
supporting efficient multicast communication by considering
the number of keys stored in a remote terminal unit (RTU).
However, ASKMA+ does not address the availability issue
in SCADA.

To satisfy the availability requirement, Hybrid Key
Management Architecture (HKMA) and Advanced Hybrid
Scada Key Management Architecture (AHSKMA) were
proposed [10], but there is a chance that field devices
will stop working during the replacement of field control
devices. To solve this issue, Choi et al. propose a hybrid
key management scheme [11]. A centralized key distribu-
tion (CKD) protocol is applied between the sub-MTU and
MTU, and LKH protocol is applied between sub-MTU and
RTU. However, if the centralized key distribution server
breaks down, the entire approach fails to execute the pro-
tocol. Rezai et al. [9] also use a hybrid key management
method using ECC. Jiang et al. [12] propose Limited Self-
Healing key distribution (LiSH), which offers revocation
capabilities along with collusion-resistance for group commu-
nication in SCADA systems. The LiSH+ is used to address
the dynamic revocation mechanism, which enhances the base
method of LiSH. Kang et al. [21] propose a scheme for radial
SCADA systems based on a pre-shared session key that relies
on symmetric key cryptography. This solution enhances the
performance of the radial SCADA system by using the master
key concept.

AGA-12, Part 2, provides security features offering a new
security protocol standard [23]. It uses cipher suites to secure
communication amongst SCADA field devices, which cov-
ers authentication, confidentiality, and integrity. However, it
fails to provide faster execution. Furthermore, it does not
offer prevention against quantum and Denial of Service (DoS)
attacks. In addition, AGA-12 uses the RSA algorithm for
encryption, which was recently cracked and also does not
provide key management [14]. The other security standards,
such as IEC 62210, IEC 62351, fail to offer security against
man-in-the-middle (MiM) attacks and also lack strong key
management. A novel key distribution method was proposed
for smart grids in [24] which uses identity-based cryptography.
This method adopts a hybrid approach to counteract man-
in-the-middle and replay attacks. However, this method does
not cover the authentication of the SCADA components. The
authors in [25] introduce the authentication and authorization
roles for SCADA devices using attribute-based access control.

The hybrid Diffie-Key exchange, along with the authentica-
tion scheme, was proposed in [26]. This scheme uses RSA
and AES for session key generation and encryption. However,
it does not provide high availability.

B. Research Gaps

Originally, the objective of SCADA systems was to focus
on accurate and efficient process execution at the plant floor
rather than aiming to secure communication. While access-
ing the plant machinery remotely through SCADA systems
accelerates the industrial processes, it compromises the secu-
rity by exposing the systems to the outside world [24].
Consequently, unauthorized parties such as hackers, intelligent
foreign agents, and corporate saboteurs, can exploit the weak-
nesses to compromise industrial systems. Typically, general
safeguards include restricted perimeters, patch management,
strong cryptography and most importantly, separation of the
control network and corporate network through the defense-
in-depth mechanism [1], [22]. However, these security guards
are difficult to deploy owing to legacy-inherited security weak-
nesses, and that significantly increases the chances of possible
exploitation during real-time communication [2], [27].

Moreover, SCADA field devices such as PLCs, RTUs,
and IEDs have resource and computational power limitations
that make the deployment of sophisticated security features
challenging [9]. Furthermore, availability, integrity, and confi-
dentiality are the three fundamental security requirements of
SCADA communication [19]. To circumvent threats against
these security requirements, a robust security framework for
key management schemes and lightweight encryption tech-
niques are needed [9], [20]. Although many key management
and encryption techniques have been proposed, few methods
exist for secure key exchange for point-to-point communica-
tion while some are specifically intended for broadcast and
multicast communication. Furthermore, none of the schemes
satisfy all the requirements of secure SCADA communica-
tion and real-time request-response mechanism. Some private
key based methods offer integrity and availability, while some
public key based methods provide authentication and confiden-
tiality. Hence, neither private nor public key based approach
alone is sufficient [4], [28]. The development of a secured
SCADA framework with hybrid efficient key management
scheme and lightweight cipher is the primary research gap
that is addressed in this paper.

C. Proposed Solution

The proposed system aims to provide a multi-layered secu-
rity framework for industrial infrastructures by combining both
symmetric and asymmetric key cryptography techniques. This
novel approach covers major security aspects of the systems,
namely availability, integrity, confidentiality, authentication
and scalability. For that, an efficient session key management
mechanism has been proposed besides lightweight ciphers
by merging the concept of random number generator and
Hashed Message Authentication Code (HMAC). Moreover, for
each session, three symmetric key cryptography techniques
are introduced, namely, random prime number generator,

646 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

prime counter, and hash chaining based on the concept of
Vernam cipher and pre-shared session key. Furthermore, the
proposed scheme satisfies SCADA requirements such as real-
time request response mechanism by supporting broadcast,
multicast, and point to point communication.

III. REASONING OF CHOICE OF ALGORITHMS

Many SCADA-based industrial systems, such as water &
sewage control, energy and power plants, and gas pipelines,
rely on real-time communication with limited computational
resources. We have used the Vernam cipher for symmetric
key cryptography because it is proven to offer an abso-
lute secure solution theoretically, is easy to implement, and
accelerates encryption & decryption by using low power and
memory [29]. Therefore, it is an appropriate solution for
embedded system devices. Moreover, the modulo-2 operator
(XOR) used in the Vernam cipher provides faster execution
and the flexibility in design of the onboard hardware [15].
By employing these features of the Vernam cipher, we can
protect the data with low computational power and memory
utilization.

The Vernam cipher provides complete secrecy as the key is
unique and completely random for each message. An amount
of time that is necessary to break any cipher and tamper with
the data is based on the size and nature of the symmetric
key. However, in the Vernam cipher, as the keys are random
and unique for every message, an eavesdropper will be unable
to guess the key even with unlimited computing power. Even
asymmetric ciphers such as RSA can be broken with unlimited
time and processing power [14]. Furthermore, the frequency
analysis of the Vernam cipher is evenly distributed, and hence
cryptanalysis will not produce any meaningful information.

The focus of the proposed framework is to provide high
security along with high availability since SCADA commu-
nication depends on real-time request-response mechanisms.
We can replace digital signature and asymmetric key cryp-
tography by applying HMAC in symmetric key cryptography.
This approach provides message authentication and integrity
without compromising the execution speed during the com-
munication between MTU and RTU.

Typically, HMAC depends on a shared secret key, which
is exchanged using a trusted channel (in our case, we have
used NTRU-based asymmetric key cryptography) between the
sender and receiver to agree on the same key before starting
the information exchange. The same secret key is combined
with the MAC to generate HMAC at both the communication
devices. However, the cryptographic strength of the HMAC
depends on the size of the secret key, since brute force attacks
are the most common attacks against HMAC.

In a typical key distribution scenario, the secret key is dis-
tributed over the trusted channel. Instead, in our proposed
approach, we exchange the parameters of FSRP & CDT such
as the index of FSRP and keysalt which are used to gener-
ate the secret key. Moreover, these parameters are reusable,
and are not only used to generate the session key but also
are applied to produce the key for HMAC. Furthermore, the
key used in HMAC depends on the value of FSRP, which is

Fig. 2. Multi-layered framework for secure SCADA communication.

generated by a random prime generator or a prime counter to
produce a new key for each message. This makes brute force
attacks computationally infeasible as the secret key used in
HMAC is dynamically generated.

IV. MULTI-LAYERED FRAMEWORK FOR SECURE SCADA
COMMUNICATION

This section presents the proposed multi-layered framework
for secure SCADA communication. The framework uses three
levels for robustness, namely, symmetric key cryptography,
cryptographically secure HMAC function, and a public key
algorithm. The security features of each phase are illustrated
in Figure 2.

In our framework, a unique session key is generated for
each connection between SCADA communication devices.
The elements of this session key are securely shared using
asymmetric key cryptography. This is called the key agreement
stage. Furthermore, during this phase, the sender’s authenti-
cation and recipient confidentiality are also validated using
the private-public key pair. Moreover, HMAC is used for
message authentication and integrity. Once both the commu-
nication parties agree on the reliable key exchange, further
communications take place using symmetric key cryptogra-
phy. The encryption of the original message is hashed, and
subsequently, the symmetric keys are generated to encrypt
the message using the lightweight Vernam cipher. After that,
the cipher text and hash digest of this encrypted message are
sent together over the communication channel. At the other
end, the receiver device validates the message integrity using
HMAC and then the cipher text is decrypted to receive sender’s
original message.

Since ICSs control field-site components at the plant floor,
the activities related to controlling and monitoring of the
elements should be done securely and efficiently [30]. For
that, we have introduced two modules, namely, secure key
exchange and secure information exchange. Moreover, secure
information exchange consists of four methods, namely, Multi-
Layered (ML) architecture, Random Prime Generator (RPG),
Prime Counter (PC), and Hash Chaining (HC). While ML and
HC offer very high security in SCADA networks, PC and HC

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 647

Fig. 3. Secure Key exchange mechanism for SCADA systems.

are proposed for time-critical applications. The RPG offers
medium level security and availability.

A. Secure Key Exchange

The key agreement refers to three stages, namely, key
generation at the sender side, key distribution over the com-
munication channel, and key extraction at the receiver side.

1) Key Generation: During the key generation phase, a
sender (MTU or RTU) uses three main elements, namely, a
Random Number (RN), Current Date & Time (CDT), and
Fraction of Square Root of Prime number (FSRP). Here, CDT
and FSRP are used as secret elements to generate the session
key. The choice of these two key elements is based on the
property of generating true random numbers. CDT generates
a random number every microsecond and to make it more
random, we choose FSRP, which returns a non-terminating,
non-repeating decimal number [31]. The session key (SK) is
derived by applying a hash function on both these elements
by combining them, as in eq. (1).

SK = HASH(CDT ||FSRP) (1)

These session key elements are securely distributed using
MACSALT. The index of FSRP is combined with KEYSALT to
generate MACSALT, where KEYSALT is derived by XORing
CDT and FSRP. The formulas are given in eq. (2) & (3).

KEYSALT = CDT ⊕ FSRP (2)

MACSALT = KEYSALT ||PRIMEindex (3)

Once SK and MACSALT are generated, RN is encrypted
using SK which generates cipher of random number C(RN),
as in eq. (4).

C (RN) = RN ⊕ SK (4)

In this process, the algorithm produces a hash not only from
the encrypted RN but also from the CDT & FSRP key ele-
ments. This derivation follows the procedure of HMAC, as

given in the eq. (5) and is used to check message integrity.

HMACsender = HASH(C (RN),CDT ||FSRP). (5)

2) Key Distribution: The bundle of the C(RN), HMAC of
C(RN), and MACSALT is securely sent over the commu-
nication channel using the private key of sender’s (Kspri)
and public key of receiver (Krpub) that validate the sender’s
authentication and receiver’s confidentiality as in eq. (6).

Krpub

(
Kspri (C (RN),HMACsender ,MACSALT)

)
. (6)

3) Key Extraction: At the receiver side, the private key
of receiver and public key of sender is applied to validate
authentication and confidentiality as in eq. (7).

Krpr(Kspu(C (RN),HMACsender ,MACSALT))) (7)

The elements of MACSALT are used to generate FSRP and
CDT. PRIMEindex is used to extract the value of FSRP and
CDT is obtained by XORing FSRP and KEYSALT as shown
below in eq. (8)-(10).

MACSALT = KEYSALT ||PRIMEindex (8)

FSRP = FRAC (SQRT (PRIMEindex)) (9)

KEYSALT = CDT ⊕ FSRP (10)

Finally, the session key is derived by applying hash on CDT
and FSRP as in eq. (11).

CDT = FSRP ⊕KEYSALT (11)

HMACreceiver = HASH (C (RN),CDT ||FSRP) (12)

HMAC is computed at the receiver using C(RN), CDT &
FSRP, as in eq. (12) to compare with HMACsender to check
data integrity. The HMAC of the sender and receiver are
checked, if both are equal it moves to the next step, else the
message is discarded. The session key SK is then validated
using CDT and FSRP as in eq. (13). The session key is XORed
with C(RN) to get the RN as shown in eq. (14).

SK = HASH(CDT ||FSRP) (13)

648 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Fig. 4. Process diagram of encryption and decryption of data in secure SCADA communication.

RN = C (RN)⊕ SK (14)

The receiver will send an acknowledgement to the sender
by encrypting RN + 1 using the same session key to vali-
date secure key exchange. Figure 3 illustrates the secure key
exchange mechanism between SCADA devices, namely, MTU
and RTU.

The proposed scheme uses RN, CDT, and FSRP to gener-
ate the session key (Ks) for both the communication devices,
namely, MTU and RTU. However, during the key exchange,
these elements are not transferred openly, rather RN is
encrypted by the key generated using the combination of CDT
& FSRP. Moreover, the modulo-2 operator (XOR) is applied
on CDT and FSRP to generate the keysalt which will be shared
over the communication channel along with an index of FSRP
and the cipher text of RN. The index of FSRP is consid-
ered as the root of trust for the entire scheme. Furthermore,
the Vernam cipher is used for symmetric key cryptography,
which requires a fresh key for each message during the encryp-
tion and decryption process. This symmetric key is generated
using the session key (Ks) and key parameters, namely, CDT
and FSRP, depending on the proposed approaches. The FSRP
can be generated using a random prime generator (Method 2)
or a prime counter (Method 3). Furthermore, hash chaining
(Method 4) can be combined with any of these approaches
to generate a new fresh symmetric key for the Vernam
cipher.

B. Secure Information Exchange

In SCADA systems, the field site components are con-
trolled and monitored using short messages communicated
between RTU and MTU. Based on the reading obtained from
the field control devices, namely, RTU, PLC, and IED, the
SCADA master (MTU) makes a proper decision and sends

an appropriate signal to the field components to operate
plant machinery. Generally, the control messages are short
in length (typically 256 bits), which control the sensors and
actuators of plant machinery. For example, in water manage-
ment systems, the signals used during communication include
OPEN/CLOSE the valve, SWITCH_ON/SWITCH_OFF the
devices, RAISE/LOW the water level tank, etc. [22]. Such
systems operate using short messages. Hence the average
length of the control message consists of 24 to 32 characters
(192 to 256 bits) for one frame.

The Vernam cipher requires the same length for key and
message. Moreover, each communication message requires
a distinct key for encryption and decryption. To gener-
ate such a unique key every time, we have proposed two
main approaches, namely, multi-layered architecture, and hash
chaining with FSRP. Moreover, both these approaches are fur-
ther divided in the multiple methods to generate a unique value
of FSRP, namely, random prime generator (RPG), and prime
counter (PC). Figure 4 illustrates the symmetric key generation
process used to encrypt and decrypt the message at both the
communication endpoints. Both the sender and receiver nego-
tiate RN (random number), CDT (current date and time), and
the index number of FSRP (which acts as a seed for random
prime generator/ prime counter) to generate session key (Ks).
Using RPG/PC, both the sender and receiver generate a distinct
FSRP for each message. Moreover, Blake2s (cryptographi-
cally secure hash function [32]) is applied on the session key
and FSRP to generate the encryption key (Ke). Similarly, the
receiver produces the decryption key (Kd) using the pre-shared
Ks and the value of FSRP. Note that, the value of the sym-
metric key not only depends on the previous key but also on
the value of FSRP (which is generated using RPG/PC). In the
case of our multi-layered architecture, instead of two parame-
ters, both, MTU and RTU use three parameters, namely, CDT,

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 649

Algorithm 1: Multi-Layered (Hybrid)
Input: M = Input Message
begin

Sender:
while (Session!=END) do

(1) Generate CDT
(2) Generate FSRP
(3) Ke ← HASH(Ks , CDT, FSRP)
(4) C (M) ← M ⊕ Ke , Ks ← Ke

(5) HMACS ← HASH(C (M), CDT || FSRP)
(6) KEYSALT ← FSRP ⊕ CDT
(7) MACSALT ← KEYSALT || Index
(8) Bundle ← Krpub(Kspri (C (M), HMACS ,
MACSALT))

end
Receiver:
while (Session != END) do

(1) Bundle ← Krpri (Kspub(C (M), HMACS ,
MACSALT))
(2) FSRP = Frac(Sqrt(PRIME (Index)))
(3) CDT ← KEYSALT ⊕ FSRP
(4) HMACR ← HASH(C (M), CDT || FSRP)
if ((HMACS , HMACR) == TRUE) then

(5) Kd ← HASH(Ks ,CDT,FSRP)
(6) M ← C (M) ⊕ Kd , Ks ← Kd

else
(7) Discard M

end
end

end

FSRP, and Ks to generate the symmetric key. These parame-
ters are exchanged securely using MACSalt and NTRUEncrypt
public-key cryptography.

For our evaluation, we assume that the length of the key is
256 bits as Blake2s depends on a 32 byte word size. In the
case of 256 bits < input string < 512 bits, we can replace
Blake2s with Blake2b to generate the symmetric key, which
consists of a 64 byte word size.

The following section describes four methods to implement
secure SCADA framework for information exchange.

1) Hybrid Multi-Layered Architecture: We can use the
same nomenclature of session key agreement for further secure
communication in which after successful distribution of the
session key the message is communicated between two par-
ties using both symmetric and asymmetric key cryptography.
The data encryption and decryption are obtained using Vernam
cipher. The key generator of the Vernam cipher follows the
same procedure of session key derivation to generate the sym-
metric key at the sender and receiver sides. The symmetric
key, HMAC and MACSALT are derived using FSRP and CDT.
Further encrypted message C(M), HMAC and MACSALT are
shared securely using asymmetric key cryptography. Here, the
complexity of the method is obtained by N * (Asymmetric Key
+ Symmetric Key) during each session which provides high

Algorithm 2: RPG & Prime Counter
Input: M = Input Message, Ks = Session Key

(a) FSRP = frac(Sqrt(RPG(Seed))) OR (b)
FSRP = frac(Sqrt(PC (Index)))

begin
Sender:
while (Session!=END) do

(1) Generate CDT
(2) Ke ← HASH(Ks , CDT, FSRP)
(3) C (M) ← M ⊕ Ke , Ks ← Ke

(4) HMACS ← HASH(C (M), CDT || FSRP)
(5) MACSALT ← FSRP ⊕ CDT
(6) Index ← Index + 1
(7) Transmit C (M), HMAC,MACSALT

end
Receiver:
while (Session != END) do

(1) CDT ← MACSALT ⊕ FSRP
(2) HMACR ← HASH(C (M), CDT || FSRP)
if ((HMACS , HMACR) == TRUE) then

(3) Kd ← HASH(Ks , CDT, FSRP)
(4) Ks ← Kd , Index ← Index + 1
(5) M ← C (M) ⊕ Kd

else
(6) Discard M

end
end

end

security with moderate availability. N is the number of mes-
sages exchange during the session. The steps of this approach
are shown in Algorithm 1.

The following methods describe the approach of symmetric
key cryptography instead of using a combination of public-
private key pairs. After secure session key and prime seed
distribution, further encryption process can be carried out
using one of the three symmetric key based proposed methods
as listed below.

2) Random Prime Number Generator: In this method, the
seed of the prime index value is used to determine FSRP
using next random prime number. Also, CDT and hash of
the input message h(M) are determined to generate symmetric
key, HMAC and MACSALT. This information is sent to the
recipient over the communication channel. Using MACSALT
and random number prime generator, the receiver can generate
the symmetric key to decrypt the data using the Vernam cipher.
Here the complexity of algorithm is measured by Asymmetric
key + N * Symmetric key for every session where asymmetric
and symmetric key are used during session key distribution
while the symmetric key is used during secure communica-
tion. However, this approach is comparatively less secure as
the adversary could intercept the MACSALT to derive the keys
such as FSRP and CDT. Algorithm 2 summarizes the above
process.

3) Prime Counter: In this method, instead of random prime
generator, we have used prime counter which significantly
increases the execution speed. The rest of the steps are same

650 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Fig. 5. Complete process diagram of secure communication between MTU and RTU.

Algorithm 3: HASH Chaining
Input: M = Input Message, Ks = Session Key

FSRP = Frac(Sqrt(PC (Index)))
begin

Sender:
while (Session!=END) do

(1) Ke ← HASH(Ks ,FSRP)
(2) C (M) ← M ⊕ Ke , Ks ← Ke

(3) HMACS ← HASH(C (M),FSRP)
(4) Index ← Index + 1
(5) Transmit C (M), HMAC

end
Receiver:
while (Session != END) do

(1) HMACR ← HASH(C (M), FSRP)
(2) Index ← Index + 1
if ((HMACS , HMACR) == TRUE) then

(3) Kd ← HASH(Ks , FSRP), Ks ← Kd
(4) M ← C (M)⊕ Kd

else
(5) Discard M

end
end

end

and hence we have highlighted the difference in red font in
Algorithm 2. The previous prime number is used to determine
next FSRP. Similarly CDT and hash of the input message h(M)

are used to determine symmetric key, HMAC and MACSALT.
This information is sent to the recipient. Using MACSALT
and prime counter, the receiver can generate symmetric key
to decrypt the data using Vernam cipher. In this approach the
adversary could also intercept the MACSALT to derive the
essence of the keys such as FSRP and CDT. The complexity of
algorithm is measured by Asymmetric key + N * Symmetric
key for every session. Consequently, the model provides good
security with high availability.

4) Hash Chaining: This proposed method is one of the
robust solutions for SCADA systems which covers all the
security mechanisms. This approach not only provides high
security but also offers high availability. In this, the pre-shared
session key is used as input of the hash function to generate
the next symmetric key. Moreover, the previous FSRP is used
to generate HMAC which can be derived independently at both
the ends and is used to check the integrity of the message. The
generated symmetric key is then used to encrypt and decrypt
the message using the Vernam cipher, as mentioned in the
Algorithm 3. The complexity of this method is based on the
Asymmetric + N * Symmetric key cryptography.

The complete process diagram of the proposed framework
of secure SCADA systems is shown in Figure 5.

V. EXPERIMENTS

A. Algorithm Selection of Cipher Suite for Proposed
Framework

The choice of the algorithms to design the security frame-
work generally depends on the nature of the application.

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 651

The communication of SCADA systems relies on a real-
time request-response mechanism. Moreover, SCADA field
devices are equipped with micro controllers for process-
ing information and have limited computational power and
resources. Consequently, identifying the most appropriate
algorithms for the proposed scheme is one of our imple-
mentation’s crucial steps. The identified algorithms for our
cipher suite should provide faster execution speed and be suit-
able for deploying in an embedded system environment. The
comparative analysis of various algorithms was carried out
using wolfSSL and libntru 0.5 cryptosystems on Linux sub-
system of Windows 10 with Intel Core i5-8300H 2.30GHz
processor and 8 GB RAM. The wolfSSL is a lightweight and
portable embedded SSL library that is specially meant for IoT,
embedded, and RTOS environments [33]. The libntru 0.5 is an
open source library that supports the implementation of the
public-key encryption scheme NTRUEncrypt in C language
by following the IEEE P1363.1 standard [34]. Moreover, the
proposed symmetric schemes are implemented on an inte-
grated development environment for Python called IDLE on
Windows 10 operating system.

1) HASH Functions: In this framework, the hash function
plays a vital role as it acts as a message authentication code
and is used to generate a symmetric key. To identify the cryp-
tographically secure and computationally efficient function, we
have compared various hash functions. Based on the compar-
ative analysis of computational speed presented in Table I,
Blake seems to be most prominent. There are three flavors
of Blake’s hash function, namely, Blake, Blake2, and Blake3.
Furthermore, Blake2 is subcategorized in two types, namely,
Blake2s and Blake2b. Blake2b is designed for 64 bits of word
length while Blake2s and Blake3 are designed for 32 bits.
Both the categories of Blake2 are cryptographically secure
hash functions and used to target various applications such
as cloud storage intrusion detection, version control systems,
and Internet of Things. Moreover, it is computationally effi-
cient like MD5, and provides security similar to SHA-3 [35].
We can also take advantage of Blake2 in multicore architec-
tures for parallel processing. Furthermore, Blake2 uses 32%
less RAM than Blake and has proven efficient MAC func-
tion [36]. These features make Blake2 a suitable candidate for
SCADA systems. For the framework implementation, we have
used Blake2s as one of our proposed cipher suite elements.
A new version of Blake, namely Blake3, has been released
recently [37]. Blake3 is comparatively faster than Blake2s as
it uses seven rounds, whereas Blake2s uses ten rounds to com-
pute the hash function [38]. One scope for future work for our
research would be to implement our framework using Blake3.

2) Symmetric Key Cryptography: Advanced Encryption
Standard (AES) is the well-known symmetric key cryptog-
raphy used to design secure systems. AGA has used AES as a
symmetric key component in its standard protocol suite [16].
Nowadays, AES modes are preferred to secure the systems
owing to better security and faster execution speed. 3DES
is also used in traditional cryptosystems. In Table II, we
have compared the computational speed of various modes of
AES and DES with the proposed hash-based Vernam Cipher.
The computational speed of Vernam Cipher is calculated by

TABLE I
COMPARATIVE ANALYSIS OF VARIOUS HASH FUNCTIONS

TABLE II
COMPARATIVE ANALYSIS OF COMPUTATIONAL SPEED OF

VARIOUS SYMMETRIC KEY ALGORITHMS

adding the execution speed of Blake2S hash with the speed
of Exclusive-OR operation. The comparative analysis shows
that the hash-based symmetric key technique used in Vernam
Cipher is faster than other algorithms.

3) Asymmetric Key Cryptography: Asymmetric key cryp-
tography not only offers the confidentiality but also ensures
integrity, authentication, and non-repudiation during communi-
cation. Some public key algorithms such as Diffie-Hellman key
exchange provide key distributions and secrecy, whereas some
provide encryption and digital signature such as RSA, ECC,
and NTRU [39]. We have compared various well-established
public key algorithms, namely, RSA, DH, ECC, and NTRU
by considering the key size and total operations performed per
second. According to the output results presented in Table III,
NTRU outperforms the other methods. NTRU public-key cryp-
tography is also known as NTRUEncrypt. This is constructed
using a lattice-based technique by applying the concept of the
shortest vector problem. It depends on the factoring of cer-
tain polynomials in a polynomial ring into a quotient of two
minimal coefficients. Both encryption and decryption follow
simple polynomial multiplication, which makes NTRU faster
than other asymmetric key cryptosystems [40]. Moreover, the
points mentioned below represent the capabilities of the NTRU
based public key cryptography. Therefore, we have chosen the
NTRU public key algorithm for our proposed cipher suite.

• NTRU is the highest performing public key cryptograpic
system for embedded devices [41].

• NTRU decryption is more than 92 times faster than RSA
decryption at an equivalent security level [42].

• NTRU is nearly 60% faster than RSA at encryption and
TLS with a 370 times improvement in key generation
time [42].

652 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

TABLE III
COMPARATIVE ANALYSIS OF THE COMPUTATIONAL SPEED OF

VARIOUS PUBLIC KEY CRYPTOGRAPHY

• NTRU encryption and decryption are faster than the
best-performing ECC algorithms at equivalent security
levels [42].

• NTRU is only around 20 times slower than a recent AES
implementation [42].

• Both RSA and ECC are vulnerable to quantum computing
attacks where NTRU offers resistance to that [43].

• NTRU accomplishes TLS authentication and key nego-
tiation by combining classic cryptography which offers
quantum-safe cryptography [43].

• Parallel implementation of NTRU is possible on top of
the existing crypto infrastructure [41].

B. Computational Speed of Proposed Framework

This section represents the calculation of the overall compu-
tational speed of the proposed framework. We have considered
the execution time of the major four elements, namely, ses-
sion key, symmetric key, HMAC, and asymmetric key. First,
we have calculated the time to generate and extract the ses-
sion key. After that, we have computed the execution time
of symmetric and asymmetric key generation, distribution,
encryption, and decryption. Finally, we have calculated the
overall time by combining it with execution time to generate
and extract the HMAC.

1) Execution Time of Session Key Generation and
Extraction: We have generated the session key, KEYSALT,
and MACSALT using two random parameters CDT and FSRP,
along with Blake2s HASH function. These parameters are
securely exchanged between two communication SCADA
devices and extracted back at the receiver side. The aver-
age execution time and total execution time to generate and
extract these elements are shown in Figure 6 and Figure 7. We
observed that it takes approximately 0.15 milliseconds average
execution time to create and extract a 256-bit session key.

2) Execution Time of Symmetric Key Cryptography: This
section presents the execution time of three symmetric key
cryptography methods, namely, Random Prime Generator
(RPG), Prime Counter (PC) and Hash Chaining (HC). To
calculate the execution time of each method we have consid-
ered the overall time of each module to generate and extract
the symmetric key along with encryption and decryption time
taken by the Vernam stream cipher. In Table IV, we present the
time of three proposed symmetric key cryptography methods

Fig. 6. Average Execution Time for Session Key Generation and extraction.

Fig. 7. Overall Time (Session Key).

TABLE IV
EXECUTION TIME OF PROPOSED SYMMETRIC KEY METHODS

(in seconds) for various sizes of input streams. Based on the
results, hash chaining seems to be the most efficient in terms
of computational speed amongst the three proposed methods.

3) Execution Time of NTRU Based Public Key
Cryptography: We have compared NTRU based imple-
mentations based on security levels, namely, moderate,
standard, high, and highest security. Each security level
is defined considering the size of cipher text, a public
key, and private key. In most applications, the standard
security level is used to avoid lattice-based, brute force, and
man-in-the-middle attacks. The observation is carried out
using total execution time by considering key generation,
encryption, and decryption as shown in Table V. Moreover,
we have computed the average execution time of public-key
pair generation, which is around 1.51 ms with an encryption
time of 0.073 ms and a decryption time of 0.106 ms.

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 653

TABLE V
EXECUTION TIME OF NTRU BASED PUBLIC KEY CRYPTOGRAPHY

TABLE VI
CONSIDERABLE PARAMETERS OF DIFFERENT

CRYPTOGRAPHIC COMPONENTS

TABLE VII
TOTAL EXECUTION TIME CALCULATION

4) Total Execution Time: In order to achieve consistent
results, we have measured the execution time of each cryp-
tographic components. The execution time of these elements
is listed in Table VI.

Moreover, Table VII presents the mathematical equations
that calculate the total execution time of all the four meth-
ods, namely, ML, RPG, PC, and HC. In hybrid approach,
both symmetric and asymmetric algorithms are used to secure
the information. In contrast, in the other three approaches,
once the session key has been shared between two communi-
cation devices, only the symmetric key algorithm is used for
performance improvement. Furthermore, the execution time of
these three symmetric key algorithms is varied due to how they
generate the keys to secure the information.

Table VIII represents the total execution time of all the four
proposed methods by considering the major four parameters,
namely, key generation, key extraction, encryption and decryp-
tion. According to the results, the execution time of HC is

TABLE VIII
TOTAL EXECUTION TIME IN SECONDS

lower than the other three methods and has proven most effi-
cient amongst all. Moreover, PC and ML approaches are more
prominent than RPG. Comparatively, RPG takes more time
because of its intricate design to generate a random prime
number based on a seed value.

C. Calculation of Key Storage Cost

Storage cost is another important parameter to evaluate the
performance of SCADA networks. Field control devices such
as RTUs, PLCs, and IEDs are typically located at the plant
floor and remote from the MTU. Hence they require to update
the session keys periodically. On the other hand, if field control
devices have many static keys, and if any of them is com-
promised, it can expose the entire network communication.
Consequently, the session key update process is a very crucial
step. Since the key generation, distribution, and extraction are
periodic and costly operations, the SCADA network should
have fewer stored keys on each field control device. For this
reason, we have identified the storage cost of our proposed key
management scheme. Table IX summarizes the storage cost by
considering the three types of communication, namely, point-
to-point, broadcast, and multicast amongst MTU, Sub-MTU,
and RTU. The total cost of keys is calculated at each SCADA
location, where m denotes the number of sub-MTU’s keys,
and r represents the maximum number of RTU’s keys.

D. Randomness Evaluation

Many cryptography applications may need to meet more
robust random number generator requirements when the ran-
domness of the keys is one of the most critical factors for
that system. We have used the Vernam stream cipher for
our proposed framework, which requires a distinct and ran-
dom key to secure the information. In particular, the key
generator’s output must be unpredictable. Hence, we have
evaluated the proposed symmetric key generator using the
National Institute of Standards and Technology (NIST) sta-
tistical toolkit. We have configured this tool in the Linux
subsystem of the Windows 10 operating system. This toolkit
offers a total of sixteen different statistical tests to determine
whether a generator is suitable for a particular cryptosystem.
Each test evaluates the randomness based on specific criteria
by considering the number of 1’s and 0’s in the binary stream
and accordingly produces the P-value. If the test has P-value

654 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

TABLE IX
KEY MANAGEMENT : STORAGE COST OF KEYS

Fig. 8. Randomness assessment of symmetric key.

≥ 0.001, that means an input binary sequence would be ran-
dom with a 99.9% confidence. Figure 8 presents all the 16
tests and corresponding P-values for the proposed symmetric
key generator for Vernam cipher. Our proposed key generator
passes all the statistical tests and proven to be random.

VI. PERFORMANCE ANALYSIS

A. Formal Analysis of Protocol

Researchers currently use two main approaches to verify
security protocols, namely, provable security and the formal
method approaches [44], [45], [46]. Provable security defines
a rigorous framework to describe and prove cryptographic
properties from a mathematical point of view. However, the
formal method approach proposes a model to describe and

analyze cryptographic protocols by abstracting basic proper-
ties. Dalal et al. [47] discusses various tools such as Avispa,
ProVerif, and Scyther that are useful for the formal verification
of the cryptographic protocols. Scyther outperforms the state-
of-the-art Avispa tools. Although Scyther uses no abstraction
techniques, it still offers a performance level similar to the
abstraction-based ProVerif tool [47]. In Scyther, small (e.g.,
Needham-Schroeder, Yahalom, Otway-Rees) to medium-sized
(e.g., TLS, Kerberos) protocols are usually verified in less than
a second. Moreover, Scyther is currently the fastest protocol
verification tool that does not use approximation methods [48].

Therefore, we have used the Scyther tool to formally
verify our security protocol, which performs the evaluation
under the cryptographic assumption. We define all the crypto-
graphic functions completely. Moreover, the entire assessment
is carried out by considering the presence of an adversary.
This tool uses an unbounded model checking approach that
demonstrates the soundness of a protocol for all the possible
behaviors in the presence of an adversary [49]. The lan-
guage used in Scyther is called Security Protocol Description
Language (SPDL). It is also known as role-based language that
describes the entire protocol using roles and sending/receiving
events.

SPDL provides expressions for encryption and hashing.
Furthermore, we can verify authentication, confidentiality and
message integrity using claims in the Scyther. We have mainly
focused on three types of goals, namely, non-injective syn-
chronization, non-injective agreement, and secrecy for our
proposed approach. We have generated a trace pattern route
that represents the packet forwarding from RTU to MTU,
as illustrated in Figures 9 and 10. Figure 11 illustrates the
protocol design code for Scyther to analyze the attacks by
considering all the participants, namely, MTU, RTU, and

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 655

Fig. 9. Formal Analysis of proposed protocol for secure communication between MTU and RTU using Scyther Tool.

Fig. 10. Claims & trace pattern validation of proposed protocol for secure
communication between MTU and RTU using Scyther Tool.

the attacker. We have verified the protocol using “automatic
claim” and “verification claim” procedures. As illustrated in
Figure 12, our proposed framework is resistant to all the
attacks over the communication channel.

B. Attack Analysis on Hash Function

Generally, a hash function can be broken by three types of
attacks, namely, collision attack, preimage resistance attack,
and length extension attack [35], [50], [51], [52], [53]. A brief
description of each attack is described below.

1) Collision Attack: This attack aims to identify two dif-
ferent inputs that will generate the same hash value

to create a collision with transmitted data over the
communication channel. For example, the attacker will
try to find messages m1 & m2, leading to the same
hash function, i.e., Hash(m1) = Hash(m2). In gen-
eral, for two different precedes, p1 & p2, the intruder
chooses two appendages m1 & m2 such that Hash(p1||
m1) = Hash(p2||m2) which leads to the chosen-prefix
collision attack.

2) Preimage Resistance Attack: This attack is intended to
find out the message for the particular hash value. That
means, given a hash value h, the attacker will find a
message m such that Hash(m) = h.

3) Length Extension Attack: In this attack, an attacker
can use Hash(m1) and the length of m1 to calcu-
late Hash(m1||m2), where an attacker will control m2
without knowing the content of m1.

Three types of approaches are used to check the strength
of the hash function to test if the given hash function
can be broken practically, theoretically or partially as listed
below [54].

1) Practically Broken: The attack has been demonstrated
in practice and able to break the entire hash function.

656 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

Fig. 11. Claims & Protocol Design Code for Scyther for Analysis of attacks.

TABLE X
COMPARATIVE ANALYSIS OF THE VARIOUS HASH FUNCTIONS (COL:

COLLISION ATTACK, PR: PREIMAGE RESISTANCE ATTACK,
LE: LENGTH EXTENSION ATTACK)

2) Theoretically Broken: Attack demonstrates in theory by
proof of concept which is able to break all the rounds
of the hash function.

3) Partially Broken: No attack has demonstrated to break
the entire function successfully. However, only a reduced
version of the hash is broken and requires more work
than the claimed security level.

Table X compares the types of attacks and the breaking
mechanisms of various popular hash functions. As illus-
trated in Table X, Blake2 is comparatively better than other
functions. Blake2 can be partially broken and fragile due to
collision and preimage resistance attacks. To overcome this
issue, we have incorporated two approaches, namely, PNG
(Prime number generator) and HMAC. To prevent the system

Fig. 12. Claims & Attack Analysis of proposed protocol for secure
communication between MTU and RTU using Scyther Tool.

from collision attacks, we have introduced the parameters
FSRP and CDT, which generate a unique key at each iteration.
In this case, even if the attacker identifies a similar input which
generates the same hash function as the transmitted data, it will
not help in successfully launching a correlation attack. In our
proposed solution, we use HMAC, which not only relies on
the hash of the message but also uses CDT & FSRP. Hence,
during the validation process, the authentication and message
integrity are identified at the receiver end and can prevent the
system from correlation and preimage resistance attacks. The
following discussion gives the security proof of our proposed
approach against correlation and preimage resistance attack.

Security Proof: With reference to the proposed framework,
let us denote the original Message as C(M1) and the key
parameters used to generate HMAC as CDT & FSRP.

HMACSender = Hash((C (M 1),CDT ||FSRP)) (15)

Let us assume, over the communication channel, the attacker
identifies another message C(M2) and replaces C(M1) with
C(M2) where, Hash(C(M1)) = Hash(C(M2)). The receiver
computes HMAC based on received message C(M2) as
follows.

HMACReceiver = Hash((C (M 2),CDT ||FSRP)) (16)

HMACSender �= HMACReceiver (17)

The difference in signature of the HMAC identifies if the
integrity is compromised and in such a case M1 is discarded.

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 657

The above proof illustrates that the proposed security frame-
work prevents the collision attack. Similarly, even though
the intruder can identify message C(M1) which generates
Hash(C(M1)), the message integrity or authentication cannot
be broken owing to the key parameters CDT and FSRP. Thus,
the pre-image attack is prevented.

C. Analysis of Avalanche Effect for Hash Function

Confusion and diffusion techniques have traditionally been
used to evaluate the security of cryptographic primitives [56].
In the context of the hash function, confusion is defined using
the relation between the secret key and a hash value for a
given input message. Confusion is obtained naturally due to
the inherited property of chaos [57]. Diffusion, also known as
the avalanche effect, is a desirable property for cryptograph-
ically secure hash functions [57]. This is one of the factors
to check the randomization capability of the given function.
The ideal hash function should exhibit the evidence of the
avalanche effect up to the significant level which supports
the randomization and make difficult to predict by cryptanal-
ysis [58]. Generally, the butterfly effect and large data blocks
are used to generate the avalanche effect [59], in which a small
change to an input value will make a significant change in the
output hash value. Moreover, there is no correlation between
current and previous hash outputs. In our proposed approach,
we have used the Blake hash function, which demonstrates a
higher-order avalanche effect in that there is a probability of
50% of data alteration in the hash output if a single bit is mod-
ified in the input [60]. The example in [32] demonstrates the
avalanche effect of Blake and is proven to generate random
hash output that doesn’t rely on the previous hash value.

D. Randomness Analysis of Keys

Session Key Generation (Parameters): A session key is
derived and communicated to both parties during initial
authentication. This key is derived using three parameters,
namely, random number (RNi), where i = 1,2,3, . . . n, index
of the function of the fraction of square root of a prime num-
ber (FSRP(index)), where index = 1,2,3, . . . n, and CDT =
current date and time in a microsecond. These parameters
are generated at each session and exchanged securely using
NTRUEncrypt (public-key cryptography). We have analyzed
the following test cases concerning the values of these three
parameters.

Case 1: MTU/RTU generates unique values for RN, Index
of FSRP, and CDT at every session:
SessionKey1 : Hash(RNi ,FSRP(index),CDT) returns

unique value
SessionKey2 : Hash(RNi ,FSRP(index − k),CDT)

returns unique value, where k is any random number
Case 2: MTU/RTU generates the same value of RN & seed

of FSRP for two or more consecutive sessions, however, CDT
is always unique:
SessionKey1 : Hash(RNi ,FSRP(index),CDT) returns

unique value as CDT is always distinct
SessionKey2 : Hash(RNi ,FSRP(index − k),CDT)

returns unique value as CDT is always distinct, where k = 0.

Here we have used the Blake2 hash function which is proven
to be a cryptographically secure function [32] and hence in
both the above cases, our proposed approach always generates
unique and random session keys.

Symmetric key Generation: The symmetric key is derived
using two parameters, namely, session key (Ks) and fraction
square root of a prime number. As mentioned earlier, the ses-
sion key is derived using three randomly generated parameters
and distributed over the secure communication channel using
public-key cryptography. Moreover, the value of FSRP is gen-
erated randomly using a random prime number generator or
prime counter. In this case, the seed of the prime number is
distributed to both the communication ends, namely, control
center, and field site components during session key exchange.
These parameters are further computed by combining the con-
cept of hash chaining and FSRP. This is how the proposed
approach generates unique and random parameters for the
symmetric key used in the Vernam cipher for every message.

Parameters: Here we have used two parameters to derive a
symmetric key for the Vernam cipher, namely, FSRP(index),
where index = 1,2,3, . . ., n (FSRP is generated using a ran-
dom prime generator or prime counter, the index value is
distributed during session key exchange), and session key
SKi = Hash(RNi, FSRP(index), CDT), where i, index = 1,2,3,
. . . n.

Case 1: MTU/RTU generates distinct values of Ks and
FSRP for every message:

SKi = Hash(SKi-1, FSRP(index)) returns unique value
SKi + 1 : Hash(SKi, FSRP(index-n)) returns a unique value,

where n is any random number, and SKi is updated with the
previous session key.

Case 2: MTU/RTU generates the same value of FSRP for
two or more consecutive messages, however, Ks is always
unique:
SKi = Hash(SKi, FSRP(index)) returns a unique value as

SK is always unique for all messages
SKi + 1 = Hash(SKi-1, FSRP(index-n)) returns unique

value as SK is always unique, where n = 0.
In both the above cases, the key is unpredictable and ran-

dom as the index value of FSRP is only known to MTU
and RTU. Moreover, the value of the symmetric key is dif-
ferent even though the value of the FSRP is the same for
two consecutive messages as the current key depends on two
parameters, namely, SK and FSRP, and is generated using a
cryptographically secure hash function.

E. Security Analysis

In this section, the proposed framework is analyzed by con-
sidering various security mechanisms, namely, authentication,
confidentiality, integrity, availability, and scalability. Moreover,
the evaluation is extended by targeting various attacks and
corresponding prevention mechanisms.

1) Message Integrity
• Multi-layered hybrid architecture using symmetric

and asymmetric key cryptography offers integrity.
• Vernam stream cipher provides resistance to cryp-

tography attacks [39].

658 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

TABLE XI
COMPARATIVE ANALYSIS OF STORAGE COST OF KEYS (M = NUMBER OF

SUB-MTU’S KEYS, R = NUMBER OF RTU’S KEYS)

• Randomness of Key offers immunity to collision
and preimage resistance attacks [61].

• Dynamic Salt offers resistance to rainbow table
attack and dictionary attack [61].

• NTRU based public key cryptography offers resis-
tance to quantum attacks, brute force, and meet-
in-the-middle attacks. It also prevents the system
against data harvest attacks [62].

• HMAC provides immunity against length extension
attacks [63].

2) Authentication, Confidentiality
• Public key of sender and private key of receiver

of NTRU based public key cryptography pro-
vides sender’s authentication and recipient’s
confidentiality.

• HMAC offers message integrity and authentication.
3) High Availability—Faster execution

• Once the session key distribution is established
using hybrid method, further communication will
take place using symmetric key cryptography that
increases the computation speed.

• Symmetric key generation using hash chaining and
prime counter offers high execution speed.

• Use of Vernam stream cipher uses modulo operation
for encryption and decryption which requires only
4 cycles in hardware implementation [64].

• NTRU is one of the fastest public key cryptographic
systems compared to well-known methods such as
RSA and ECC [41].

• HMAC is derived using the same components used
to generate the key. This reusability of elements
reduces the computational time.

4) Scalability
• Same symmetric key cryptography (Vernam cipher)

is used for both encryption and decryption.
• Authentication and confidentiality are established

using public-private key pairs amongst communi-
cation parties.

F. Storage Cost

The periodic session key agreement is a crucial step in
SCADA communication that offers key refreshment. However,
field control devices have limited power and memory require-
ments. Hence, an effective key agreement scheme with fewer

TABLE XII
COMPARATIVE ANALYSIS OF VARIOUS CIPHER SUITES

stored keys can significantly improve the efficiency of SCADA
networks. Many key management and agreement schemes
have been proposed to address the problem of key storage
costs. We have compared the key storage cost of our proposed
scheme with various published techniques, as presented in
Table XI.

G. Execution Speed

Table XII depicts the comparative analysis of the proposed
scheme with various state-of-the-art techniques by implement-
ing various cipher suites using the wolfSSL library. AGA has
proposed two cipher suites for secure SCADA communication
including the bundle of ECDHE, AES, RSA, and SHA256 and
ECDHE, AES, ECC and SHA256 for authentication, confiden-
tiality, message integrity and digital signature [16].The cipher
suite RSA, AES, CBC and SHA is used in TLS communica-
tion, whereas we have used the NTRU, Vernam Cipher and
Blake2s for our proposed framework. The average execution
time of our proposed cipher suite is comparatively better than
other protocol standards.

VII. CONCLUSION

The protection of critical industrial infrastructure against
cyber-attacks is crucial for ensuring public safety, security,
and reliability. SCADA system are used to control and monitor
such industrial control systems. A robust solution to strengthen
the security of these systems against cyber-attacks is a crucial
requirement in the design of SCADA systems. Through this
work, we aim to cover the protection of the industrial control
system landscape by offering a low cost and robust framework
for SCADA networks, which protects them against various
cyber-attacks. In this paper, we have proposed a session key
agreement in addition to lightweight multi-layered encryp-
tion techniques. The framework combines both symmetric and
asymmetric cryptography to achieve high computational speed
by covering all the security mechanisms. This security model
is proposed to enhance the security of various industrial sec-
tors such as water and sewage plants, power stations, chemical
plants, oil industries, product manufacturing units, and trans-
portation systems. The successful deployment of this model
will allow operators and technicians to monitor and control
the plant devices remotely as it will protect the entire system
from potential breaches.

UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 659

REFERENCES

[1] D. Upadhyay, S. Sampalli, and B. Plourde, “Vulnerabilities’ assessment
and mitigation strategies for the small linux server, Onion Omega2,”
Electronics, vol. 9, no. 6, p. 967, 2020.

[2] D. Upadhyay and S. Sampalli, “SCADA (supervisory control and data
acquisition) systems: Vulnerability assessment and security recommen-
dations,” Comput. Security, vol. 89, Feb. 2020, Art. no. 101666.

[3] Y. Cherdantseva et al., “A review of cyber security risk assessment
methods for SCADA systems,” Comput. Security, vol. 56, pp. 1–27,
Feb. 2016.

[4] A. Rezai, P. Keshavarzi, and Z. Moravej, “Key management issue in
SCADA networks: A review,” Int. J. Eng. Sci. Technol., vol. 20, no. 1,
pp. 354–363, 2017.

[5] F. M. Salem, E. Ibrahim, and O. Elghandour, “A lightweight authenti-
cated key establishment scheme for secure smart grid communications,”
Int. J. Safety Security Eng., vol. 10, no. 4, pp. 549–558, 2020.

[6] D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Gradient boosting
feature selection with machine learning classifiers for intrusion detection
on power grids,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1,
pp. 1104–1116, Mar. 2021, doi: 10.1109/TNSM.2020.3032618.

[7] D. Choi, S. Lee, D. Won, and S. Kim, “Efficient secure group com-
munications for SCADA,” IEEE Trans. Power Del., vol. 25, no. 2,
pp. 714–722, Apr. 2010.

[8] T. C. Pramod and N. R. Sunitha, “Polynomial based scheme for
secure SCADA operations,” Procedia Technol., vol. 21, pp. 474–481,
Nov. 2015.

[9] A. Rezai, P. Keshavarzi, and Z. Moravej, “Secure SCADA communica-
tion by using a modified key management scheme,” ISA Trans., vol. 52,
no. 4, pp. 517–524, 2013.

[10] A. Rezai, P. Keshavarzi, and Z. Moravej, “Advance hybrid key man-
agement architecture for SCADA network security,” Security Commun.
Netw., vol. 9, no. 17, pp. 4358–4368, 2016.

[11] D. Choi, H. Jeong, D. Won, and S. Kim, “Hybrid key management
architecture for robust SCADA systems,” J. Inf. Sci. Eng., vol. 29, no. 2,
pp. 281–298, 2013.

[12] R. Jiang, R. Lu, C. Lai, J. Luo, and X. Shen, “Robust group key
management with revocation and collusion resistance for SCADA in
smart grid,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2013,
pp. 802–807.

[13] A. Rezai, P. Keshavarzi, and Z. Moravej, “A new key management
scheme for SCADA networks,” in Proc. 2nd Int. Symp. Comput. Sci.
Eng., 2011, pp. 373–378.

[14] S. Ghosh and S. Sampalli, “A survey of security in SCADA
networks: Current issues and future challenges,” IEEE Access, vol. 7,
pp. 135812–135831, 2019.

[15] V. Manjunatha, A. Rao, and A. Khan, “Complex key generation with
secured seed exchange for vernam cipher in security applications,”
Mater. Today Proc., vol. 35, no. 3, pp. 497–500, 2021.

[16] R. Chandia, J. Gonzalez, T. Kilpatrick, M. Papa, and S. Shenoi, “Security
strategies for SCADA networks,” in Proc. Int. Conf. Crit. Infrastruct.
Protect., 2007, pp. 117–131.

[17] M. F. Moghadam, M. Nikooghadam, A. H. Mohajerzadeh, and
B. Movali, “A lightweight key management protocol for secure commu-
nication in smart grids,” Electr. Power Syst. Res., vol. 178, Jan. 2020,
Art. no. 106024.

[18] R. Dawson, C. Boyd, E. Dawson, and J. M. G. Nieto, “SKMA—A
key management architecture for SCADA systems,” in Proc. 4th Aust.
Symp. Grid Comput. e-Res. (AusGrid) 4th Aust. Inf. Security Workshop
(Network Security) (AISW-NetSec), vol. 54, 2006, pp. 183–192.

[19] D. Choi, H. Kim, D. Won, and S. Kim, “Advanced key-management
architecture for secure SCADA communications,” IEEE Trans. Power
Del., vol. 24, no. 3, pp. 1154–1163, Jul. 2009.

[20] D. Wu and C. Zhou, “Fault-tolerant and scalable key management
for smart grid,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 375–381,
Jun. 2011.

[21] D. J. Kang, J. J. Lee, B. H. Kim, and D. Hur, “Proposal strategies
of key management for data encryption in SCADA network of elec-
tric power systems,” Int. J. Electr. Power Energy Syst., vol. 33, no. 9,
pp. 1521–1526, 2011.

[22] T. C. Pramod, G. S. Thejas, S. S. Iyengar, and N. Sunitha, “CKMI:
Comprehensive key management infrastructure design for industrial
automation and control systems,” Future Internet, vol. 11, no. 6, p. 126,
2019.

[23] T. M. D. Hadley and K. A. Huston. AGA-12, Part 2 Performance
Test Results. Accesed: Oct. 12, 2020. [Online]. Available:
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/9-
AGA-12_Part_2_Performance.pdf

[24] D. Abbasinezhad-Mood, A. Ostad-Sharif, and M. Nikooghadam, “Novel
anonymous key establishment protocol for isolated smart meters,” IEEE
Trans. Ind. Electron., vol. 67, no. 4, pp. 2844–2851, Apr. 2020.

[25] N. Saxena, B. J. Choi, and R. Lu, “Authentication and authorization
scheme for various user roles and devices in smart grid,” IEEE Trans.
Inf. Forensics Security, vol. 11, pp. 907–921, 2015.

[26] K. Mahmood, S. A. Chaudhry, H. Naqvi, T. Shon, and H. F. Ahmad,
“A lightweight message authentication scheme for smart grid commu-
nications in power sector,” Comput. Electr. Eng., vol. 52, pp. 114–124,
May 2016.

[27] M. Keshk, E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil, “An inte-
grated framework for privacy-preserving based anomaly detection for
cyber-physical systems,” IEEE Trans. Sustain. Comput., vol. 6, no. 1,
pp. 66–79, Jan.–Mar. 2021.

[28] J. Qian, C. Hua, X. Guan, T. Xin, and L. Zhang, “A trusted-id refer-
enced key scheme for securing SCADA communication in iron and steel
plants,” IEEE Access, vol. 7, pp. 46947–46958, 2019.

[29] D. G. Brosas, A. M. Sison, and R. P. Medina, “Modified OTP based
Vernam Cipher algorithm using multilevel encryption method,” in Proc.
IEEE Eurasia Conf. IOT Commun. Eng. (ECICE), 2019, pp. 201–204.

[30] R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari,
and S. Pan, “Machine learning for power system disturbance and cyber-
attack discrimination,” in Proc. 7th Int. Symp. Resilient Control Syst.
(ISRCS), Aug. 2014, pp. 1–8.

[31] R. Zazkis, “Representing numbers: Prime and irrational,” Int. J. Math.
Educ. Sci. Technol., vol. 36, nos. 2–3, pp. 207–217, 2005.

[32] Wikipedia. Blake (Hash Function). Accesed: May 12, 2021. [Online].
Available: https://en.wikipedia.org/wiki/BLAKE_(hash_function)

[33] WolfSSL. Embedded TLS Library for Applications, Devices, IoT, and
the Cloud.Accessed: Aug. 12, 2020. [Online]. Available: https://www.
wolfssl.com/download

[34] Libntru. The NTRU Project. Accessed: Aug. 12, 2020. [Online].
Available: https://tbuktu.github.io/ntru/

[35] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: Simpler, smaller, fast as MD5,” in Proc. Int. Conf. Appl.
Cryptogr. Netw. Security, 2013, pp. 119–135.

[36] J. O’Connor and J.-P. Aumasson. BLAKE2: Simpler, Smaller, Fast
as MD5. Accesed: Feb. 15, 2021. [Online]. Available: https://www.
blake2.net/blake2.pdf

[37] J. O’Connor, S. Neves, and Z. Winnerlein. Blake3—One Function, Fast
Everywhere. Accesed: Feb. 12, 2021. [Online]. Available: https://github.
com/BLAKE3-team/BLAKE3-specs/raw/master/blake3.pdf

[38] J. O’Connor, S. Neves, and Z. Winnerlein. Blake3 is an Extremely
Fast, Parallel Cryptographic Hash. Accesed: Feb. 15, 2021. [Online].
Available: https:/www.infoq.com/news/2020/01/blake3-fast-crypto-hash/

[39] H. Delfs, H. Knebl, and H. Knebl, Introduction to Cryptography, vol. 2.
New York, NY, USA: Springer, 2002.

[40] A. A. Kamal and A. M. Youssef, “An FPGA Implementation of the
NTRUEncrypt cryptosystem,” in Proc. Int. Conf. Microelectron., 2009,
pp. 209–212.

[41] J. Hermans, F. Vercauteren, and B. Preneel, “Speed records for NTRU,”
in Proc. Cryptogr. Track RSA Conf., 2010, pp. 73–88.

[42] J. N. Gaithuru and M. Bakhtiari, “Insight into the operation of NTRU
and a comparative study of NTRU, RSA and ECC public key cryp-
tosystems,” in Proc. 8th. Malaysian Softw. Eng. Conf. (MySEC), 2014,
pp. 273–278.

[43] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case
problems over ideal lattices,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptogr. Techn., 2011, pp. 27–47.

[44] C. Jacomme and S. Kremer, “An extensive formal analysis of multi-
factor authentication protocols,” ACM Trans. Privacy Security, vol. 24,
no. 2, pp. 1–34, 2021.

[45] N. Mouha and A. Hailane, “The application of formal methods to
real-world cryptographic algorithms, protocols, and systems,” Computer,
vol. 54, no. 1, pp. 29–38, Jan. 2021.

[46] S. Szymoniak, “Security protocols analysis including various time
parameters,” Math. Biosci. Eng., vol. 18, no. 2, pp. 1136–1153, 2021.

[47] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala, “A comparative analysis
of tools for verification of security protocols,” Int. J. Commun. Netw.
Syst. Sci., vol. 3, no. 10, p. 779, 2010.

[48] A. H. Shinde, A. Umbarkar, and N. Pillai, “Cryptographic protocols
specification and verification tools—A survey,” ICTACT J. Commun.
Technol., vol. 8, no. 2, pp. 1533–1539, 2017.

http://dx.doi.org/10.1109/TNSM.2020.3032618

660 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

[49] C. J. Cremers, “The scyther tool: Verification, falsification, and analysis
of security protocols,” in Proc. Int. Conf. Comput. Aided Verification,
2008, pp. 414–418.

[50] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions
MD4, MD5, HAVAL-128 and RIPEMD,” IACR, Lyon, France, Rep.
2004/199, 2004.

[51] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The first collision for full SHA-1,” in Proc. Annu. Int. Cryptol. Conf.,
2017, pp. 570–596.

[52] Y. Sasaki, L. Wang, and K. Aoki, “Preimage attacks on 41-step SHA-256
and 46-step SHA-512,” IACR, Lyon, France, Rep. 2009/479, 2009.

[53] D. A. Osvik, “Fast embedded software hashing,” IACR, Lyon, France,
Rep. 2012/156, 2012.

[54] J. Vidali, P. Nose, and E. Pašalić, “Collisions for variants of the BLAKE
hash function,” Inf. Process. Lett., vol. 110, nos. 14–15, pp. 585–590,
2010.

[55] J. Daemen and G. Van Assche, “Producing collisions for PANAMA,
instantaneously,” in Proc. Int. Workshop Fast Softw. Encrypt., 2007,
pp. 1–18.

[56] M. Coutinho, R. T. De Sousa, and F. Borges, “Continuous diffusion
analysis,” IEEE Access, vol. 8, pp. 123735–123745, 2020.

[57] N. Abdoun. (2019). Design, Implementation and Analysis of Keyed
Hash Functions Based on Chaotic Maps and Neural Networks. [Online].
Available: https://hal.archives-ouvertes.fr/tel-02271074/document

[58] N. Abdoun, S. E. Assad, T. M. Hoang, O. Deforges, R. Assaf, and
M. Khalil, “Designing two secure keyed hash functions based on
sponge construction and the chaotic neural network,” Entropy, vol. 22,
no. 9, p. 1012, 2020. [Online]. Available: https://www.mdpi.com/1099-
4300/22/9/1012

[59] S. Al-Kuwari, J. H. Davenport, and R. J. Bradford, “Cryptographic
hash functions: Recent design trends and security notions,”
IACR, Lyon, France, Rep. 2011/565, 2011. [Online]. Available:
https://eprint.iacr.org/2011/565

[60] H. Feistel, “Cryptography and computer privacy,” Sci.
Amer., vol. 228, no. 5, pp. 15–23, 1973. [Online]. Available:
http://www.jstor.org/stable/24923044

[61] M. Stevens, “Attacks on hash functions and applications,” Ph. D. dis-
sertation, Math. Inst., Fac. Sci., Leiden Univ., Leiden, The Netherlands,
2012.

[62] H. Wang, Z. Ma, and C. Ma, “An efficient quantum meet-in-the-
middle attack against NTRU-2005,” Chin. Sci. Bull., vol. 58, nos. 28–29,
pp. 3514–3518, 2013.

[63] S. N. Kumar, “Review on network security and cryptography,” Int. Trans.
Electr. Comput. Eng. Syst., vol. 3, no. 1, pp. 1–11, 2015.

[64] S. Ghosh, M. LeMay, D. M. Durham, and M. R. Sastry, “Processor hard-
ware and instructions for SHA3 cryptographic operations,” U.S. Patent
16 709 837, Apr. 16 2020.

Darshana Upadhyay received the master’s degree
in computer science from Nirma University,
Ahmedabad, India. She is currently pursuing the
Ph.D. degree with the Faculty of Computer Science,
Dalhousie University. She also served as a Lecturer
with Nirma University, before moving to Canada to
pursue her Ph.D. degree. She was awarded the Gold
Medal for securing the first position during her grad-
uate study. Her primary research includes algorithm
conceptualization, hardware design in the field of
embedded systems, vulnerability assessments, and

intrusion detection techniques for IoT/SCADA based systems. She is the co-
recipient of the Indo-Canadian Shastri Research Grant in the field of wireless
security and intrusion detection systems. She has been invited to be one of the
Women in International Security–Canada’s 2020 Emerging Thought Leaders.

Marzia Zaman received the M.Sc. and Ph.D.
degrees in electrical and computer engineering
from the Memorial University of Newfoundland,
Canada, in 1993 and 1996, respectively. She started
her career with Nortel Networks, Ottawa, ON,
Canada, in 1996, where she joined the Software
Engineering Analysis Lab and later joined the
Optera Packet Core Project as a Software Developer.
She has many years of industry experience as a
Researcher and a Software Designer with Accelight
Networks, Excelocity, Sanstream Technology, and

Cistel Technology. Since 2009, she has been working closely with the Centre
for Energy and Power Electronics Research, Queen’s University, Canada,
and one of its industry collaborators, Cistel Technology, on multiple power
engineering projects. Her research interests include renewable energy, wire-
less communication, IoT, cyber security, machine learning, and software
engineering.

Rohit Joshi received the bachelor’s degree in
mechanical engineering from the Birla Institute
of Technology, Mesra, India, and the master’s
degree in innovation and technology management
from the University of New Brunswick Saint John,
Canada. He has over 20 years of experience in
the domains of information security, risk man-
agement, and networking across multiple geogra-
phies. He has worked with organizations, such
as Cistel Technology, Inc., Mariner Partners, HCL
Technologies, Ramco System, and Sify Technologies

Limited handling a variety of roles and providing end-to-end, IT secu-
rity management consulting and solutions to large clients across various
industry verticals. At Sify Technologies Limited, he was associated with
Safescrypt which was the first licensed certifying authority in India that was
set up in association with Verisign. His research interest include wireless
communication, IoT, and cyber security.

Srinivas Sampalli (Member, IEEE) received the
Bachelor of Engineering degree from Bangalore
University and the Ph.D. degree from the Indian
Institute of Science, Bangalore, India. He is currently
a Professor and a 3M National Teaching Fellow
with the Faculty of Computer Science, Dalhousie
University. He has led numerous industry-driven
research projects on Internet of Things, wireless
security, vulnerability analysis, intrusion detection
and prevention, and applications of emerging wire-
less technologies in healthcare. He currently over-

sees and runs the Emerging Wireless Technologies (MYTech) Lab and has
supervised over 150 graduate students in his career. His primary joy is
in inspiring and motivating students with his enthusiastic teaching. He has
received the Dalhousie Faculty of Science Teaching Excellence Award, the
Dalhousie Alumni Association Teaching Award, the Association of Atlantic
Universities’ Distinguished Teacher Award, the Teaching Award Instituted
in his name by the students within his Faculty, and the 3M National
Teaching Fellowship, Canada’s most prestigious teaching acknowledgement.
Since September 2016, he holds the honorary position of the Vice President
(Canada), of the International Federation of National Teaching Fellows, a
consortium of national teaching award winners from around the world.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

