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Abstract—With the increasing traffic of Video on Demand
(VoD), network providers are seeking to deliver high Quality
of Experience (QoE) for their users. Many methods have been
proposed to assess VoD-related QoE. Some of them rely on
client instrumentation and reporting QoE information to network
elements, such as Server and Network Assisted DASH, others
are based on statistical methods that make QoE inferences using
monitored network conditions, such as throughput and delays.
In this article, we present a practical method to estimate QoE
for VoD using the widely supported Internet Control Message
Protocol (ICMP) probes. Measured network conditions are used
as input to a Machine Learning (ML) model that estimates QoE
in terms of Mean Opinion Score (MOS), based on the ITU-
T P.1203 Recommendation. The estimation encompasses video
quality switches and playback stalls. We estimate MOS with an
average Root Mean Square Error (RMSE) of 1.05 for a catalog of
25 different videos, training a model with sessions of the shortest
video, and evaluating the generalization to the full catalog. We
performed experiments using a virtualized setup as well as in a
Wide Area Network.

Index Terms—Quality of Service, Quality of Experience, DASH
video, Machine Learning

I. INTRODUCTION

Video content represents a significant amount of current IP

traffic. According to Cisco, 82 % of network traffic will be

composed by video by 2022 [1], being mostly comprised by

Video on Demand (VoD) services such as Netflix, YouTube,

among others. With the prominence of VoD services and the

pressure that they pose to network resources, operators are

expected to keep up with the increasing demand for perfor-

mance to satisfy user expectations. An Accenture survey shows

that 60% of users are dissatisfied with their connectivity and

network experience [2]. Network operators should assess user

satisfaction in order to avoid customer churn. Both industry

and academia have drawn their attention to Quality of Experi-

ence (QoE), which indicates the users’ degree of satisfaction

or annoyance when consuming services or applications [3].

Operators must then employ QoE measurements to improve

their resource provisioning and troubleshooting policies [4].

Most VoD services are now based on HTTP Adaptive

Streaming (HAS) [5], [6]. In HAS the QoE is degraded by

events such as playback stalls, initial buffering delay and video

quality variations [7]. Different methods have been proposed to

gather this information on user devices and estimate user QoE

[8], [9]. Although such information is easily computed on the

streaming client application, operators must reach agreements

with each video service provider to obtain it.

Due to the lack of interactions with the client’s playback

software, operators must resort to indirect QoE measurements.

This is the preferred method for operators because it maintains

their client’s privacy and avoids the introduction of specialized

equipment [9]. Limitations of the state of the art are the

reliance on technology-dependent information (e.g. quality of

signal [10]), limiting the application of the solution on network

with other technologies, and the use of monitoring software

that does not cover the last mile of the connection [11].

In this work, we propose and evaluate a method for QoE

assessment based on network-level Quality of Service (QoS).

To measure end-to-end QoS between the VoD server and

a VoD client, we employ active Internet Control Message

Protocol (ICMP) probing. The network QoS measurements are

fed into a regression tree ensemble-based Machine Learning

(ML) model. The model estimates Mean Opinion Score (MOS)

according to the ITU-T P.1203 Recommendation, encompass-

ing playback stalls, video quality switches and user equipment

characteristics [8]. We focus on deployments where small scale

Content Delivery Networks (CDNs) are deployed within Inter-

net Service Providers (ISPs) domains, known as CDN-ISP or

Mobile Edge Computing (MEC) [12], [13]. For such deploy-

ments, more flexibility in regards of probing frequency and

link monitoring is expected. However, deployments traversing

multiple domains can also be monitored due to the general

support of ICMP probing, albeit with more restrictions and

lower accuracy. Our method has the following benefits: (i) it

is widely supported by recent and legacy network equipment

due to the use of ICMP probes; (ii) it is privacy-preserving,

since active probing replaces Deep Packet Inspection (DPI)

techniques; (iii) it works with encrypted video traffic; and (iv)
it allows the operator to take preventive actions even before

the video flow starts.

We performed experiments using a controlled environment

to generate a dataset to train and evaluate the inference model.

We first provide a set of analyses about the relation between

network QoS conditions and the QoE they generate, giving

insights on the expected performance of the proposed method.

The method provided MOS inferences with Root Mean Square

Error (RMSE) of 1.05, for a model trained using samples of

all available videos in the catalog, as well as for a model

trained with samples of a single video. Furthermore, the model

trained with samples of a single video of the catalog was able

to generalize to the rest of the catalog.

This article is an improvement of our previous work [14],
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adding the following aspects:

• In previous work [14], we evaluated the inference model

using samples from a single video. We now compare a

similar model trained with data from a single video with

another one created with samples of all videos.

• The inference model now uses more network input

metrics such as percentiles and standard deviation of

measurements. The training dataset is now labeled using

Mode 3 of ITU.T P.1203. Mode 3 is more comprehensive,

considering more video characteristics, better reflecting

user’s perceived QoE.

• This article shows the feasibility of the method on more

realistic network conditions. We added experiments over

wireless links, and crossing different domains and geo-

graphically distributed testbeds.

• We evaluate the effects of lower probing rates, consider-

ing cases where ICMP probing rate is restricted on cross-

domain measurements. We present the results evaluating

sampling rates from 0.25 up to 42 samples per second.

• We provide a comprehensive analysis of the individual

impact of uplink and downlink network QoS condi-

tions on the resulting MOS, investigating the general

differences in network conditions between sessions that

presented high MOS and low MOS.

This article is organized as follows: Section II discusses

related work. Section III describes the proposed method, while

the setup of experiments are detailed in Section IV. The results

are presented and discussed in Section V. Section VII presents

the conclusion and future work. We use several acronyms

throughout the article, and a list of them can be found at the

end of the document.

II. RELATED WORK

Focusing on cellular networks, Costa et al. [11] use network

measurements to estimate Application QoS (AQoS) condi-

tions of video streaming, and from AQoS predict the user’s

QoE. They first use Decision Tree (DT) to map delay, jitter,

throughput and packet loss into AQoS metrics of startup time,

stall count and total stall time. Network measurements are

performed using NetMetric [15], requiring probes as close as

possible to the points of interest. The experiments do not

evaluate adaptive video streaming, being restricted to one

video with 1080p resolution and one with 720p resolution.

Relying on DPI for granular traffic analysis, the method pre-

sented by Huysegems et al. [16] reconstructs a video session

by analyzing packets that pass through an intermediate node.

Information such as number of segments, video duration and

quality levels are extracted from the manifest file, while other

information such as segment sizes and requested video quality

level are obtained through traffic inspection. The session

is then reconstructed to obtain the QoE-related parameters,

e.g. rebuffering events and bit rate variation. In view of the

increasing use of encrypted traffic [17], traffic inspection may

be infeasible. The method proposed by Ge and Wang [18]

overcomes this limitation using an HTTP proxy, however it

also requires flow inspection to identify video streams. The

QoE-related metrics estimated by the algorithm in [18] are

initial playback delay, number of rebuffering events and their

duration. For evaluation, the authors used one video encoded

in one representation, thus the performance of the system is

not clear when quality adaptation algorithms are active.

Addressing challenges imposed by encrypted traffic,

Khokhar et al. [17] present a method to estimate MOS

based on network-level measurements and ITU-T P.1203 [8].

The authors created a dataset by consuming YouTube videos

while emulating network impairments using Traffic Control

(TC)1. Throughput, packet inter-arrival times, chunk sizes and

other information were also included, totaling 48 features.

Multiple models were trained to estimate different QoE-related

playback characteristics, e.g. occurrence of playback stalls,

whether video playback started or not, occurrence of quality

switches and MOS. Despite using information about network

QoS (e.g. delay, jitter, bandwidth and loss rate), the work does

not address how to monitor this information in real networks.

Also focusing on encrypted YouTube traffic, the work by

Seufert et al. [19] presents ViCrypt: a stream-based ML

approach to predict stalling of video streaming in real time.

The video session is analyzed in one-second slots, but a

combination of all slots can be used to evaluate the complete

session. An ML model based on Random Forests (RF) is used

to predict whether a slot contains a stalling or not. For this the

model takes 208 input features, including uplink and downlink

TCP/UDP packet counts, upload versus download ratio, among

others. Prediction of stall occurrence achieves an accuracy of

94.67% using the complete set of features, however, train and

evaluation were performed using a highly unbalanced dataset,

in which over 70% of video sessions did not present stalls.

The work from Wassermann et al. [20] also employs ViCrypt

on a similar context as by Seufert et al. [19], but extends it to

also predict video resolution and bitrate. The dataset consisted

of videos in 6 different resolutions, with 55% of data with

vertical resolution of 480p. To estimate resolution the authors

used a classification method, achieving 66% accuracy with a

k-Nearest Neighbors (kNN) method. A RF method was used

for bitrate estimation, returning predictions with 233 kbps of

mean absolute error.

Table I summarizes the works analyzed in this section. The

first column references the work. Column QoS Metrics indicate

which network-level QoS information are used as input for

the QoE estimation, while column QoE Metrics describes the

QoE formulation. The Monitoring Type column describes how

the QoS metrics are obtained in the proposal: through active

or passive monitoring, specialized monitoring software, and

if DPI is employed. The column Video Catalog describes the

video catalog used in each work. The Generalization column

indicates whether the model was validated with videos outside

of the training set. As shown on the table, as far as we are

aware, the work presented in this paper is the first one to

explicitly evaluate model inference generalization. We focus

on works that utilize Network-level QoS (NQoS) to estimate

QoE, as we consider that NQoS can be directly influenced by

management actions of an ISP. Other approaches that focus

on mapping AQoS (e.g. initial buffering time, duration of

1http://man7.org/linux/man-pages/man8/tc.8.html
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resolution drops) to QoE such as the work by Bampis et al.

[21], were not included.

In this work we encode videos in 10 quality levels, thus the

Dynamic Adaptive Streaming over HTTP (DASH) adaptation

algorithm can adjust playback quality during a session as it

would perform on a real VoD service. Our MOS estimation

approach comprises playback stalls, stall duration, playback

quality, and quality switches through ITU-T P.1203 Recom-

mendation. Methods that estimate MOS based only on stalls

may fail to identify low QoE when playback is smooth but

at the lowest or oscillating video quality, also reducing user

experience [7]. Using active probing, our method is suitable to

monitor VoD services that transmit encrypted or unencrypted

traffic. Moreover, network monitoring is based on ICMP

probing that is widely supported by new and legacy network

equipment. This method is technology agnostic, and eliminates

the need for specialized monitoring tools.

III. PROPOSED SOLUTION

We propose a solution that is tailored to ISPs that manage

their networks using QoE-based Service-Level Agreements

(SLAs). It monitors network-level QoS through active ICMP

probing and employs an ML model to estimate the QoE level

of video flows. It overcomes one of the main challenges in

ISP traffic monitoring: how to obtain meaningful information

from both encrypted and unencrypted traffic while preserving

the user’s privacy. Our solution can be integrated into self-

management software in order to implement QoE-aware man-

agement, providing the necessary feedback for management

control loops. For example:

• Tuning Wi-Fi parameters: Moura et al. [24] use the

estimated MOS of user flows to reconfigure the channel

and the transmit power of Wi-Fi access points;

• Improved routing: Costa et al. [25] use a QoE inference

model for traffic routing.

• Scheduling in datacenters: Carvalho et at. [26] rely on

the inferred QoE to schedule containers on Kubernetes.

Before describing the implementation details, we present

the envisaged use cases.

A. Use cases

There are two use cases for our monitoring tool shown in

Figure 1. The first is in the context of CDN-ISP partnership or

MEC [12], [13], depicted in Figure 1a. This use case considers

a partnership between ISPs and Over The Top (OTT) services

to deploy a small scale VoD CDN within the ISPs domains.

The monitoring software is installed in the best vantage point

(near to the server), and the probes are free from third-party

traffic shaping. This is the ideal use case for the tool, and

also simplifies the identification of the startup of a new video

session, as well as the classification of the traffic as VoD.

Traffic classification is out of the scope of this article, however,

the methods presented by Dias et al. [27], and Lotfollahi et

al. [28] can be combined with our solution to detect and

classify VoD traffic. The first method classifies individual

flows that belong to a VoD session using a modified Naı̈ve

Bayes algorithm, taking features of IP headers of a flow as

input. The second method uses Deep Learning to automatically

extract features and classify traffic types and applications, by

processing packets as vectorized byte streams. Both methods

can perform real-time classification of a network flow and

determine that a VoD streaming session is in progress with

over 90 % accuracy.

(a) Use case example in a CDN-ISP context

(b) Use case example restricted to ISP domain

Fig. 1. Use cases of the proposed solution

Figure 1b shows a more complex deployment, where the

VoD server is outside of the domain of the ISP. Because the

tool is installed in the middle of the end-to-end path, multiple

instances of the Probing Module (PM) are required in order to

monitor all links involved. Information gathered for a common

link can be used to perform estimates for multiple clients, as

is the case between routers C and E. Measurements from the

multiple instances can then be combined following the process

described in Section 8 of ITU-T Y.1541 Recommendation

[29], and the QoE for each client can be estimated. This second

scenario is the most challenging for the tool, as routers outside

of the ISP may block ICMP traffic or perform rate limitations

(which may reduce the precision of the QoE estimation).

The use of our method may be limited in contexts where

clients are behind firewalls (restricting ICMP probing) or

Network Address Translation (NAT). However, the network

provider can still perform measurements until before the link

applying such restrictions, giving useful information about

whether QoE-impairing conditions occur in its own domain or

in the last-mile (e.g. user’s personal Wi-Fi network). Moreover,

with the wide adoption of IPv6, the reachability issues posed

by NAT tend to be diminished.

Our solution is composed of two modules: The PM mea-

sures QoS conditions between the VoD server and a VoD

client and adapts the probing frequency to varying network
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TABLE I
SUMMARY ON RELATED WORK

Reference QoS Metrics QoE Metrics Monitoring Type Video Catalog Generalization

[11] Delay, Jitter,
Throughput, Loss

A mathematical function de-
rived from observations in
[5], [22], [23]

Active measurements us-
ing NetMetric [15]

One video clip encoded in
two fixed quality levels (720p
and 1080p)

✗

[16] TCP/HTTP session
reconstruction based
on DPI

Video quality, quality
switches, and playback stalls

Passive (using DPI) Not specified Not specified

[18] DPI and download
time of video seg-
ments

Initial playout delay, buffer
level, playback stalls, quality
switches

Passive monitoring of
TCP/HTTP session

One video encoded in one
quality level

✗

[17] Up to 48 features MOS derived from ITU-T
P.1203 Recommendation [8]

Not specified A catalog of over 1 million
videos from YouTube

✗

[19] 69 packet-level statis-
tics of the video flow

Initial delay, playback stalls,
and stall duration

Passive monitoring A catalog of videos from
YouTube

Not specified

[20] 69 packet-level statis-
tics of the video flow

Video resolution and bitrate Passive monitoring A catalog of videos from
YouTube

Not specified

This work RTT, Jitter, PLR MOS derived from ITU-T
P.1203 Recommendation [8]

Active ICMP probing 25 videos encoded in 10 qual-
ity levels

✓

conditions. The second component is an MOS inference model

created using supervised ML. It receives the QoS measure-

ments and returns an MOS inference based on ITU-T P.1203

Recommendation.

B. Probing Module (PM)

We implement the PM based on the fping2 tool for ICMP

probing. It measures Round-Trip Time (RTT), jitter (i.e. delay

variation in a period) and Packet Loss Rate (PLR) between

VoD server and client. ICMP probing is a network probing

method widely supported by network devices, allowing the

PM to be adopted even on networks with legacy equipment.

Moreover, end-to-end measurements can be achieved without

requiring installation of new software on clients or servers. The

PM aims to obtain N probing samples during a window of T
seconds. To achieve this, it runs multiple probing threads, each

one performing independent requests and reporting to a central

thread. Each thread makes a probing attempt and waits for the

reply before reporting the observed RTT or a timeout, which

is treated as a packet loss, to the central thread. The interval

between probe attempts is adjusted on-the-fly according to the

observed RTT to avoid generating more traffic than needed

while still collecting N samples during T seconds.

For probing frequency adaptation we developed the Algo-

rithm 1. Input parameters are the monitoring time window (in

milliseconds), minimum amount of samples to be collected,

and the IP of the host to be probed. Line 1 creates a probing

thread and adds it to a list of probes. In the main loop

(line 2) the first operation is to gather and consolidate data

from probing threads (lines 3 to 5). Then, the algorithm

calculates the required statistics for the inference model: mean

RTT, median RTT, standard deviation of RTT, 10th and 90th

quantiles of RTT; mean jitter, median jitter, standard deviation

of jitter, 10th and 90th quantiles of jitter; PLR (line 7). Results

are published to other services like the QoE model in line 8.

Probing frequency adaptation starts in line 9, calculating if

the number of existing probes provide the required amount

2https://fping.org/

of samples. If the minimum sampling frequency cannot be

achieved, new probing threads are created (line 11).

Algorithm 1 Algorithm for ICMP probing

Input: timeWindow ms, minSamples, destination

1: probes.add(spawnProbe(destination))

2: while True do

3: for all probes do

4: probeData = getProbeData()

5: allData.concat(probeData)

6: if allData > 0 then

7: rtt, jitter, loss, statistics = getQoS(allData)

8: publishQoS(rtt, jitter, loss, statistics)

9: samplesPossible = timeWindow / rtt * probes.len()

10: if samplesPossible < minSamples then

11: probes.add(spawnProbe(destination))

12: if allData.length < 0.9 * minSamples or

allData.length > 1.2 * minSamples then

13: interval = max(1, ((timeWindow * probes.len()) /

(minSamples * 1.1)) - rtt)

14: for all probes do

15: probe.setInterval(interval)

16: removeOldData(allData, timeWindow)

17: if (samplesPossible > 1.5 * minSamples) and

(probes.len() > 1) then

18: probes.remove()

Line 12 checks if the sampling frequency for the threads is

adequate. Looser limits are defined to avoid constant correc-

tions caused by delay variation. The interval between ICMP

requests is calculated in line 13. A constant value of 1.1 is

multiplied to minSamples to account for other delay sources

during program execution (e.g. inter-process communication),

and was defined empirically. The calculated interval is applied

to all probes from line 14 to 15. Line 16 discards data older

than the time window. If network conditions change and the

number of probes is higher than the necessary, lines 17 and 18

remove probing threads. Each fping process waits a timeout

of 2 seconds before considering a packet loss. This value must
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be adjusted in case of higher network delays.

C. QoE Model

Formulation: The QoE Model is an ML model that takes

QoS data as input and returns the inferred QoE in terms of

MOS. Methods based on Decision Trees (DT) have shown

better results (predictions with lower RMSE) when mapping

QoS to QoE than other methods [30], which motivated the use

of a DT-based approach. Through the last decades, ensemble

techniques such as boosting have been developed to combine

multiple DTs and create more accurate models. Boosting

is an ensemble technique, that combines several weak (or

low-accuracy) learners to build a strong learner capable of

performing accurate predictions. A weak learner performs

slightly better than random guessing, while a strong learner

is said to be close to the perfect performance [31]. During the

training process new trees are added to predict the residuals (or

errors) of the existing trees, and then combined to provide the

final predictions. Due to the superior performance achieved by

gradient boosting methods over many different ML problems

[32], we opted for this type of algorithm and the eXtreme

Gradient Boosting (XGBoost) framework [33].

The model is formally defined in (1), and is a function of

eleven variables: mean RTT, median RTT, standard deviation

of RTT, 10th and 90th quantiles of RTT; mean Jitter, median

Jitter, standard deviation of Jitter, 10th and 90th quantile

of Jitter; and Packet Loss Ratio. All these elements are

represented in 1 as QoS. The output of the model is a MOS

value between 1 and 5. The MOS values used in this work

are estimates based on ITU-T P.1203 Recommendation and

obtained using the software3 provided by Raake et al. [34]

and Robitza et al. [35].

f(QoS) 7→ MOSITU ∈ R | 1 ≤ MOSITU ≤ 5 (1)

PLR is calculated by 1 − (Prep/Preq) ∗ 100, where Prep

is the number of probe replies received and Preq are the

number of probe requests sent during the time window. It is

worth noting that the estimator does not perform throughput

measurements, however, metrics such as RTT and PLR have

been used in previous work to obtain effective throughput and

estimate link capacity. For example, Padhye et al. [36] and

Chen et al. [37] present a model to compute the throughput of

a TCP transfer as function of PLR and RTT, Chan et al. [38]

use RTT and packet dispersion to measure asymmetric link

capacity. As will be shown in the results section, the model

accuracy achieved is similar for various ranges of bandwidth

setups.

Training set: We created a labeled dataset to train the

model using supervised learning as follows. Each sample

is composed by the eleven QoS elements mentioned above

and a label, i.e. the MOS for the video session at the time

the input features were recorded. To create this dataset, we

setup a video server with a catalog of videos encoded with a

similar process as used by VoD services, and instrumented

3https://github.com/itu-p1203/itu-p1203

a client to record playback information such as resolution

and rebuffering events. The MOS for each data point was

then estimated based on the ITU-T P.1203 Recommendation

[8]. This client instrumentation process is required only for

model training, during system operation the MOS is estimated

without requiring client feedback. Further details about the

videos, their encoding format, and the complete data collection

process are provided in Section IV.

D. Assumptions, limitations and overhead

We now describe some assumptions of the proposal. Then,

we proceed to requirements and limitations related to the PM,

as well as an analysis of the generated overhead.

Assumption #1 - uniform video encodings: We aim to

create a QoE inference model suited for all videos hosted

by the same VoD server. Therefore, it is important to have

a standardized number of resolutions for the videos. To con-

textualize this, Figure 2 illustrates the typical operation of a

DASH-based VoD service. An HTTP server stores multiple

representations of a given video, each representation is a

version of the video that can be encoded in a different format

in terms of resolution, codec and bitrate. If each video is

encoded following a different standard in terms of resolution,

codec, bitrate, and other parameters, the relation between file

sizes of video segments and a specific video quality can have

little to no correlation. Therefore, our solution requires all

videos and their representations to be prepared following a

consistent standard (same number of representations and same

configuration for each representation). The bitrate ladder we

used for all videos is described on Table III.

Fig. 2. DASH server and client operation.

Assumption #2 - A high probing frequency is needed to

accurately measure packet losses: A preliminary analysis of

data collected in our testbed showed that MOS is strongly

affected by PLR, as shown in Figure 3 (data collection

methodology is detailed in Section IV). A PLR below 1 %

can make the MOS value drop from 5 to approximately 3,

a significant impact on user’s QoE. If we aim to detect PLR

with a granularity of 0.1 %, then we need historical data of

at least 1,000 probing attempts. Hence, the PM is configured

to store results of the last 1,000 attempts. The timeliness of

probing data is also relevant. The PM holds data only of a

recent window of time, which is configured as 30 seconds

in this work. This value was determined based on the buffer
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length of the VoD client: as our client was configured to buffer

up to 12 seconds of video, we used a window that is twice

as large as the buffer in a way that the playback conditions

reflect a recent network state, not a previous situation of when

the buffer was filled. Based on these requirements, a probing

rate of about 33 packets per second is necessary.

Fig. 3. MOS achieved according to PLR

Assumption #3 - Audio track is equal for every repre-

sentation: The audio track of a video usually is not an issue

in QoE for two reasons: first, a common audio track is usually

shared among all video quality levels, so it practically adds

a constant overhead to all video representations. Second, in

terms of file size, the audio track is much smaller than the

video.

Limitation #1 - Model considers symmetrical links: Our

method cannot differentiate uplink from downlink conditions,

as it is based on ICMP request-reply. ICMP brings already

mentioned benefits, such as operation without additional soft-

ware at the edges, however it limits the precision of the PLR

measurements. Section V-A will show how the precision of

VoD QoE is impacted by this limitation.

Limitation #2 - ICMP probing restricted on some net-

works: ICMP rate-limiting policies will reduce the precision

of the proposal. Because of that, section V-E evaluates the

precision using lower probing rates.

Overhead: Probing overhead depends on: i) ICMP data

size; ii) protocol overhead; iii) timeWindow setting; iv) min-

Samples setting. Factors (i), (iii) and (iv) are configured in

the algorithm. Factor (ii) depends on overhead generated by

underlying networks. The per second probing overhead on a

given direction (Odir, where direction is downlink or uplink),

in bits per second, is given by Equation 2. The first term

gives the probing frequency required to obtain minSamples.

To calculate the overhead, timeWindow is used in seconds.

The result is multiplied by the size of the probes (Sicmp)

plus protocol overhead (Pov). This is an approximation, since

different technologies in the path may change the size of Pov .

Odir =
minSamples

timeWindowseconds

× (Sicmp + Pov) (2)

IV. EXPERIMENT SETUP

Figure 4 shows the setup used to perform the experiments,

composed by three Docker containers. A Server runs NGINX

HTTP server [39]. The DASH client is based on the reference

player provided by DASH Industry Forum4, modified to collect

playback metrics and executed using Firefox Web Browser.

Playback metrics are stored locally to avoid additional traffic

on the client’s network. Network impairments are generated

using TC. Server and QoS Monitor are deployed on the same

network point, so similar impairments are applied to both

containers.

Probing Module

Fig. 4. Experimental environment

TABLE II
SAMPLE VIDEOS

Video Duration Type
1Sony Another World (another) 00:03:11 Nature
1Sony Another World 2 (another2) 00:03:06 Nature
1Samsung: Around The World (aworld) 00:05:39 Documentary
1Panasonic Football Barcelona
(barcelona)

00:03:14 Sports

2Big Buck Bunny (bbb) 00:10:35 Animation
1Sony The Fountains Of Bellagio (bella-
gio)

00:03:43 Arts

1LG La Boheme (boheme) 00:04:29 Music Video
1Samsung Power of Curve (curve) 00:03:15 Promotional
1Samsung The Quiet Czech (czech) 00:03:24 Documentary
1Samsung Phantom Flex (flex) 00:03:07 Promotional
1LG Garden (garden) 00:03:05 Promotional
1LG Cymatic Jazz (jazz) 00:04:58 Concert
1Jimix Put Your Hands Up (jimix) 00:03:56 Music Video
1Samsung Landscape (landscape) 00:03:10 Nature
1Panasonic Lumix (lumix) 00:03:07 Documentary
4Sintel (sintel) 00:14:48 Animation
1LG Slam Dunk (slam) 00:02:56 Sports
1Sony Surfing (surfing) 00:02:59 Sports
1Samsung Lovely Swiss (swiss) 00:03:41 Documentary
3Tears of Steel (tearsofsteel) 00:12:14 Short film
1Samsung Travel With My Pet (travel) 00:02:35 Documentary
1TravelXP HDR/HLG (travelxp) 00:05:00 Documentary
1Samsung & RedBull See the Unex-
pected (unexpected)

00:03:18 Sports

1Life Untouched (untouched) 00:03:18 Nature
1Samsung 7 Wonders Of The World
(wonders)

00:03:51 Documentary

1http://4kmedia.org 2https://peach.blender.org/
3https://mango.blender.org/ 4https://durian.blender.org/

The server offers 25 videos listed in Table II. The table

shows video names on the source website, a short name in

parenthesis for reference in this work, video duration, and an

indication of content type. All videos were encoded in 10

representations (i.e. 10 versions of the videos with specific

resolutions and bitrates), as described on Table III. A Media

Presentation Description (MPD) file describes representations,

4https://dashif.org/
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location of files and directives for quality adaptation (e.g.

bandwidth field). For each representation the MPD bandwidth

field was fixed with the values shown in the fourth column.

The videos were split into segments of four seconds. The

DASH client adjusts playback quality by selecting segments

according to network conditions, then segments are assembled

and played sequentially. All videos were encoded using the

ffmpeg5 tool, H.264 codec (x264 implementation6) with no

audio track, as our focus is on video quality.

TABLE III
VIDEO REPRESENTATIONS

Representation Resolution Bitrate MPD Bandwidth

1 320x180 200 kbps 256,000 bps

2 320x180 400 kbps 512,000 bps

3 480x270 600 kbps 760,000 bps

4 640x360 800 kbps 1,020,000 bps

5 640x360 1,000 kbps 1,260,000 bps

6 768x432 1,500 kbps 1,900,000 bps

7 1024x576 2,500 kbps 3,160,000 bps

8 1280x720 4,000 kbps 4,960,000 bps

9 1920x1080 8,000 kbps 10,000,000 bps

10 3840x2160 12,000 kbps 15,000,000 bps

We used TC to limit network bandwith and insert delay,

jitter and PLR, setting different conditions in upstream and

downstream for each session. We drawn bandwidth and delays

values from a uniform distribution, the former between 0 and

500 Mbps, and the latter from 0 to 800 ms. For jitter we drawn

values based on the delay set for the session, being a random

uniform value between 0 and 0.5×session delay. Due to the

sensitivity of playback quality to PLR, we opted for a Gamma

distribution (with shape k = 0.3, and scale θ = 1) instead of

a uniform distribution. The Gamma distribution was derived

from the traffic characterization found on Measurement Lab

(M-Lab)7. Although we used a wide bandwidth range, the

throughput between containers is highly affected by delay,

jitter and PLR. Therefore, even settings with over 300 Mbps of

bandwidth could present low MOS due to other impairments.

Jitter and PLR values applied with TC are upper bounds for a

random uniform sampling, therefore, those values can oscillate

during a single video session.

For evaluation purposes and dataset creation, the video

streaming client was instrumented to collect the following

metrics in one second intervals: i) Current video representation

being played, as described in Table III; ii) Playback rate:

indicates whether the video playback is stalled or not; iii)

Timestamp: marks the time the metric was collected, used

to determine stall characteristics and to synchronize client

logs and ICMP measurements. The collected metrics were

used to calculate our ground truth MOS using ITU-T P.1203.

This standard defines four “modes of operation” (from 0 to

3) with increasing levels of inspection of media playback

and input complexity. We used the operation mode 3, which

offers the most accurate estimates of MOS. This way, the

MOS inferences returned by our method will better reflect the

5http://ffmpeg.org/
6https://www.videolan.org/developers/x264.html
7https://www.measurementlab.net/

user experience. MOS calculation used the software8 provided

by Raake et al. [34] and Robitza et al. [35], setting device

type as PC, display resolution as 3840x2160, and viewing

distance as 150 cm. The player was configured with a buffer

of 12 seconds. This way the network oscillations are more

quickly reflected on playback quality. Other configurations of

the player were kept as default.

V. RESULTS

A. Data Analysis

We executed a total of 183,876 sessions, being 63,879 of

the “travel” video and the remaining with the other videos

(an average of 5,000 sessions each). Each second of a video

session became a data point in our dataset, resulting in over

44 million samples, with more samples of the “travel” video

due to its shorter duration.

Table IV shows the Spearman correlation between the

QoS metrics and the resulting MOS. The first eight rows

of the table show the correlation between values set with

TC and the resulting MOS. The last seven rows show the

correlations between the main metrics collected by the PM

and the resulting MOS. The bandwidth values showed a weak

correlation with MOS. This was caused by the wide bandwidth

range used for tests. Sessions with lower bandwidth values

presented a stronger correlation with MOS, so we performed

a more in-depth analysis for all variables.

TABLE IV
QOS AND MOS SPEARMAN CORRELATION

QoS Condition Correlation to MOS p-value

Downlink Bandwidth 0.0230 p < 0.001

Uplink Bandwidth 0.0003 0.0884

Downlink Delay −0.2732 p < 0.001

Uplink Delay −0.1650 p < 0.001

Downlink Jitter −0.2697 p < 0.001

Uplink Jitter −0.1246 p < 0.001

Downlink PLR −0.7175 p < 0.001

Uplink PLR −0.0067 p < 0.001

RTT (mean) −0.2956 p < 0.001

RTT (median) −0.3065 p < 0.001

RTT (std. dev.) −0.1993 p < 0.001

Jitter (mean) −0.2437 p < 0.001

Jitter (median) −0.2745 p < 0.001

Jitter (std. dev) −0.1960 p < 0.001

PLR −0.4346 p < 0.001

Figure 5 shows the absolute correlation values for each

metric. The figure shows that the effect of downlink bandwidth

decreases from 0.66 (on sessions with bandwidth below 5

Mbps) to 0.27 (on sessions with bandwidth up to 25 Mbps).

On the other hand, the correlation with downlink PLR quickly

scales from 0.10 (at 0.1 %) to 0.61 (at 2 %). We can

also observe that while the correlation between MOS and

bandwidth drops, it becomes slightly stronger with delay and

jitter. Correlations with uplink bandwidth and PLR are low for

the entire evaluated range. PLR showed dissonant values for

uplink and downlink. Downlink PLR showed strong correla-

tion with MOS while uplink loss shows a weak correlation. It

8https://github.com/itu-p1203/itu-p1203
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is important to highlight this difference, since our PM does not

differentiate downlink from uplink loss. The implications of

this limitation will be shown later in this section. It should be

noted that a configured bandwidth of 80 Mbps, for example,

does not translate into 80 Mbps of throughput. The effective

throughput is also subject to conditions like delays and PLR.

Fig. 5. Correlation according to network impairment limits

Figure 6 shows the distribution of values found in two

distinct classes of sessions. We compare the distribution of

QoS values for sessions with high QoE (MOS > 4) and

sessions with low QoE (MOS < 2), in order to highlight

the differences between sessions with high overall QoE and

sessions with low overall QoE. Figure 6a shows that sessions

with low QoE had a slightly higher amount of samples with

downlink bandwidth between 0 and 10 Mbps. On the other

hand, for delay and jitter (Figures 6b and 6c), we see that

sessions of high quality had usually lower values, specially in

downlink. Figure 6d highlights the different effect of packet

losses in uplink and downlink: while high quality sessions

had downlink PLR closer to zero, the uplink PLR of high

quality and low quality shows the same distribution curve.

These observations obtained through the experimental setup

can be leveraged to define queuing policies regarding packet

dropping, buffer length allocation and other control operations

to optimize QoE for VoD.

B. Model Training

We evaluate two approaches for model training. The first

uses data from all 25 videos to train a model (hereby referred

Fig. 6. Distribution of QoS values on sessions with high overall quality (MOS
> 4) and sessions with low overall quality (MOS < 2).

as Full model). The second uses only data of the “travel”

video for training, and generalization is evaluated with the

remaining videos. This second model is referred as Reduced.

The “travel” video was selected due to its shorter duration,

which allows us to collect more video sessions on a given

period of time. With this approach we were also able to

execute more sessions with different QoS conditions. If this

model shows satisfactory generalization capacity, the building

time of the inference model can be significantly accelerated.

For the Full model, a third of the sessions of each video were

used for hyperparameter tuning, training and Cross Validation

(CV), leaving the other two thirds for generalization analysis.

For the Reduced model we used data from 55,893 sessions

of the “travel” video for hyperparameter tuning, training and

CV. 7,986 sessions of “travel” and all sessions of the other

videos were used to evaluate the generalization of the Reduced

8



model.

We used random search to define the models’ hyperparame-

ters9 [41]. Combinations of randomly selected hyperparameter

values are evaluated and the set that yields the best model

is selected. Random search has shown many advantages over

grid search (another widely used technique for hyperparameter

tuning), usually generating better models and requiring less

computational time [41].

Table V describes the evaluated and selected values after

200 trials, for each model. The first three parameters introduce

randomization to the training and improve the generaliza-

tion capacity. Column Sampling by Tree (colsample bytree)

defines the percentage of randomly selected features to be

used during creation of each tree. Column Sampling by Level

(colsample bylevel) has a similar effect, but for each level

of depth in a tree. Row Sampling (subsampling) determines

the percentage of training data to be sampled and used for

training at each iteration. The Learning Rate (learning rate)

determines model updates and training speed. Alpha is a

regularization term that impacts training performance and

model accuracy. The Maximum Depth of each decision tree is

determined by max depth, and the maximum number of trees

in all cases were 1000. We also used early stopping to interrupt

the training after 20 iterations without accuracy improvement.

TABLE V
XGBOOST HYPERPARAMETERS EVALUATED AND SELECTED WITH

RANDOM SEARCH

Hyperparameter Evaluated Values
Selected Values
Full Reduced

colsample bytree uniform(0.1, 1) 0.76 0.88

colsample bylevel uniform(0.1, 1) 0.86 0.62

subsample uniform(0.1, 1) 0.11 0.43

learning rate loguniform(0.005, 0.5) 0.07 0.10

alpha uniform(1, 5) 2 2

max depth uniform(1, 5) 4 4

Table VI shows the overall results obtained with each model.

The first row shows the RMSE of 3-Fold CV and the standard

deviation during this phase. The lower RMSE obtained by

the Reduced model in 3-Fold CV is due to using data from

the same video for train and validation, which offers less

variation of video content. The same effect is observed when

the final model is evaluated. On the other hand, the Full model

generalized better than the Reduced model, which is expected

since it was trained using samples of all videos.

TABLE VI
OVERALL INFERENCE ACCURACY OF TRAINED MODELS

Evaluation
MOS RMSE

Full Reduced

3-Fold CV (Std. Dev.) 1.0462 (0.0050) 1.0364 (0.0051)

Final Model 1.0211 1.0065

Generalization 1.0376 1.0419

9Hyperparameters are configurations that cannot be inferred from data
during training and impact on model accuracy and generalization [40]. More
information about the hyperparameters can be found on https://sites.google.
com/view/lauraepp/parameters

C. Generalization Analysis

For the generalization analysis we evaluate how much accu-

racy is lost when we train the model using data from sessions

of a single video. Table VII shows the RMSE obtained with

the Full and Reduced models for sessions of each individual

video. The data used for this test was not part of training or

hyperparameter search phases. The first column indicates the

video, the second column shows the inference RMSE using

the Full model, the third column gives the RMSE with the

Reduced model, and the last column indicates the percent dif-

ference between RMSE values. Negative values in the fourth

column indicates that the Reduced model generalized better for

a given video than the Full model. This occurred for 11 videos,

while for the other 14 videos the Full model generalized better.

The Full model obtained a slightly lower average RMSE.

Nevertheless, the results show that the accuracy loss by using

the Reduced model is negligible, with the advantage that this

model can be built faster.

TABLE VII
INFERENCE RMSE ACCORDING TO VIDEO

Video Full Reduced % Difference

another 1.0468 1.0411 -0.5460

another2 1.0122 1.0197 0.7382

aworld 1.0493 1.0458 -0.3341

barcelona 1.1185 1.1184 -0.0089

bbb 1.0167 1.0110 -0.5622

bellagio 1.0659 1.0581 -0.7344

boheme 1.0664 1.0676 0.1124

curve 1.0572 1.0609 0.3493

czech 1.0364 1.0341 -0.2221

flex 1.0492 1.0673 1.7103

garden 1.0780 1.0820 0.3703

jazz 1.0665 1.0759 0.8775

jimix 1.0491 1.0536 0.4280

landscape 1.0710 1.0785 0.6978

lumix 1.1126 1.1108 -0.1619

sintel 1.0015 1.0016 0.0099

slam 1.0845 1.0758 -0.8054

surfing 1.0250 1.0232 -0.1757

swiss 1.0370 1.0442 0.6919

tearsofsteel 0.9841 0.9880 0.3955

travel 1.0352 1.0298 -0.5230

travelxp 1.0734 1.0793 0.5481

unexpected 1.0479 1.0614 1.2800

untouched 1.0479 1.0486 0.0667

wonders 1.0635 1.0625 -0.0940

Average 1.0518 1.0535 0.1649

D. MOS Inference

Figure 7 shows the error according to MOS range using

the Reduced model. We observed higher inference errors in

cases where the MOS is high (between 4 and 5). On the

other hand, when MOS is below 4, the distribution of error

values is similar for all classes of MOS, with errors below 1

in approximately 80 % of samples. This result can be taken

as a pessimistic behavior of the method, inferring a low QoE

when the client is actually receiving a high QoE, making the

method more precise when the client is not receiving optimal

QoE. This is a consequence of the limitation of the PM to

distinguish downlink from uplink PLR.
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Fig. 7. MOS inference error by MOS class

We also analyzed the RMSE obtained for sessions with

different configurations of bandwidth, since this metric is not

measured by the PM. We split the data into 9 different ranges

of downlink bandwidth and analyzed the distribution of errors

for each class. The results shown in Figure 8 indicate that

inference errors per class were consistent with the average

RMSE shown on Table VII. Even though the PM does not

monitor bandwidth, the relation between the other QoS metrics

and user MOS can still be captured by the inference model.

Fig. 8. MOS inference error by bandwidth range

E. Probing Module Performance

Network devices can be configured to limit ICMP probing

rate and affect the precision of inferences. We performed a

set of experiments to evaluate the accuracy loss when a lower

probing rate is selected either to reduce probing overhead, or

due to limitation by endpoints. In Figure 9 we show the ab-

solute error obtained for each “minSamples” configuration of

Algorithm 1. Results indicate similar errors for configurations

of 8, 16 and 32 samples. From 64 to 1,024 samples the median

error dropped from 1 to 0.6. These results indicate that it is

possible to obtain estimates even with probing restrictions,

albeit with slightly higher error. Based on Equation 2 we

estimated a probing overhead of 27 Kbps during monitoring.

The traffic generated to constantly monitor a video session

for one hour would generate approximately 11.5 MBytes of

additional traffic, using minSamples configuration of 1,000.

This value can be even lower if the PM is configured to use

fewer samples or monitor for shorter intervals. This overhead

can take up to 1.4% of traffic if the video is served at lowest

quality. If we consider the video served at highest quality the

value is negligible.

Fig. 9. Inference error according to number of collected samples

VI. TESTBED RESULTS

We performed experiments on a production network us-

ing four videos with different content, namely “another”,

“barcelona”, “jimix”, and “travel”. Our experiments were

performed using two distinct testbeds in Belgium, shown in

Figure 10. The first is Virtual Wall10 in the city of Ghent, and

the second is CityLab11 [42] in the city of Antwerp, both

separated by approximately 53Km crossing administrative

domains of Ghent University and University of Antwerp. We

deployed the VoD server at the Virtual Wall testbed. Using

CityLab we set up 10 different pairs of Wi-Fi Access Point

(AP) and Clients, detailed on Table VIII. With the exception

of Setup 1, used as baseline, we selected pairs that the

testbed reported less than ideal connectivity conditions (e.g.

asymmetric link reliability, or high noise). On the table we

also show the number of other APs that our nodes detected

operating on the same channel. The APs were connected to

the server and allowed the clients to consume the videos. The

monitor container, also deployed at Virtual Wall, performed

ICMP probing and MOS inferences. More information about

node specifications and locations can be found on the testbed

website.

The connection between VirtualWall and CityLab nodes

(i.e., between VoD server and the AP) was stable, achieving

throughput of over 500Mbps with RTT of 3.01 ms, jitter lower

than 0.5 ms, and 0 % of PLR. Therefore, network impairments

during tests were caused by interference and connectivity

issues on the wireless segment. We performed 10 repetitions

for each video in each setup. Figure 11 shows the distribution

of MOS of the sessions performed in the testbed, indicating

10https://doc.ilabt.imec.be/ilabt/virtualwall/
11https://doc.lab.cityofthings.eu/wiki/Main Page
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Fig. 10. Experimental testbed in Belgium

TABLE VIII
SETUP OF TESTBED NODE PAIRS AND OTHER APS DETECTED

CONFIGURED ON THE SAME CHANNEL

Setup
Node Pair Other APs

AP Client AP Client

1 6 72 6 6

2 71 6 9 6

3 24 28 1 5

4 14 18 10 4

5 34 35 7 27

6 14 15 4 1

7 4 5 4 4

8 3 5 5 4

9 8 12 1 0

10 4 36 8 18

30 % of samples with the highest level of MOS. However, we

still have significant amount of samples around MOS values

of two, three and four.

Fig. 11. Distribution of MOS values during sessions in the testbed

Table IX shows the inference RMSE obtained for each video

and setup of the testbed, using the Reduced Model. The last

column of the table shows the RMSE achieved using all videos

on the same setup. Similarly, the last row shows the RMSE

for each video across all setups. The cell on the bottom right

shows the overall RMSE achieved in the testbed experiments.

We observed that on setups 2, 4, 5, and 10 the RMSEs were

above the expected. Comparing with Table VIII, these setups

had more networks configured on the same channel near to

our nodes, which may cause higher link fluctuations and link

asymmetry. Such link asymmetry may reduce the accuracy

of the models, as mentioned on Limitation #1. Nevertheless,

the results indicate that the method is capable of providing

MOS estimates within the expected error margin, especially

considering the challenges posed by the wireless connections.

TABLE IX
INFERENCE RMSE ON TESTBED

RMSE by Video and Setup
another barcelona jimix travel All videos

Setup 1 0.30 0.26 0.24 0.28 0.27

Setup 2 1.68 1.17 1.44 1.06 1.38

Setup 3 1.19 1.13 1.14 1.26 1.17

Setup 4 1.89 1.45 1.93 1.85 1.78

Setup 5 1.76 1.62 1.83 1.58 1.71

Setup 6 1.08 1.28 1.27 0.77 1.15

Setup 7 1.02 0.88 1.01 1.18 1.02

Setup 8 0.97 0.76 0.75 0.81 0.82

Setup 9 1.08 0.77 1.13 1.13 1.04

Setup 10 1.79 1.64 1.46 1.40 1.58

All Setups 1.37 1.18 1.32 1.21 1.28

Figure 12 shows the distribution of inference errors of both

models on the testbed experiments. For the testbed results we

observe that the Full Model is slightly more accurate. This

is expected since this model was trained using more data

and from more different videos. These results are also in line

with the results of Table VII, that shows the Full Model with

marginally better performance. The results obtained with the

wireless testbed indicate that despite not using data collected

on wireless networks, the method can still provide relevant

feedback across different technologies.

Fig. 12. Distribution of RMSE on testbed using both Full and Reduced models

VII. CONCLUSION AND FUTURE WORK

In this work we propose a practical method for QoE

inference for DASH VoD. Different from other methods in

the literature, ours does not require instrumentation of client

devices, modification of existing network elements, deploy-

ment of monitoring tools in multiple network points, or deep

inspection of video traffic. Instead, a Probing Module performs

active ICMP probing using a freely available ping tool. As

ICMP is widely supported by network devices, the PM can

be used even with legacy equipment. Network measurements

are fed to a ML model that takes QoS values as input and

estimates MOS based on the ITU-T P.1203 Recommendation.

We evaluated two methods of creating such model and

concluded that a model trained using samples obtained with

a single video can perform MOS inferences with similar
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accuracy if the videos available on a VoD server are prepared

following a consistent bitrate ladder. The monitoring overhead

can take up to 1.4 % of traffic if the video is served at lowest

quality, however, at the highest quality levels the probing

overhead is negligible. Results in a production networks show

the applicability of the solution, despite ICMP rate limiting

policies. In future work we plan to perform more experiments

in real deployments and with clients that employ different

quality adaptation techniques. We will also investigate the

combination of QoS measurements provided by different mon-

itoring tools, for example, using In-band Network Telemetry

(INT) to measure QoS within the provider’s network, and the

ICMP measurements to cover the last mile of links. We aim

to apply this method as a feedback signal for an automated

network control loop. We will evaluate methods to identify

asymmetric links and their applicability to enhance the PM.

This way we can improve QoE estimation accuracy over

asymmetric packet loss conditions.
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GLOSSARY

AP Access Point

AQoS Application QoS

CDN Content Delivery Network

CV Cross Validation

DASH Dynamic Adaptive Streaming over HTTP

DPI Deep Packet Inspection

DT Decision Tree

HAS HTTP Adaptive Streaming

ICMP Internet Control Message Protocol

INT In-band Network Telemetry

ISP Internet Service Provider

MEC Mobile Edge Computing

ML Machine Learning

MOS Mean Opinion Score

MPD Media Presentation Description

NAT Network Address Translation

NQoS Network-level QoS

OTT Over The Top

PLR Packet Loss Rate

PM Probing Module

QoE Quality of Experience

QoS Quality of Service

RF Random Forests

RMSE Root Mean Square Error

RTT Round-Trip Time

SLA Service-Level Agreement

TC Traffic Control

VoD Video on Demand

XGBoost eXtreme Gradient Boosting
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