
4834 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

DIVERGENCE: Deep Reinforcement
Learning-Based Adaptive Traffic Inspection and

Moving Target Defense Countermeasure Framework
Sunghwan Kim , Member, IEEE, Seunghyun Yoon , Member, IEEE, Jin-Hee Cho , Senior Member, IEEE,

Dong Seong Kim , Senior Member, IEEE, Terrence J. Moore , Member, IEEE, Frederica Free-Nelson,
and Hyuk Lim , Member, IEEE

Abstract—Reinforcement learning (RL) is a promising
approach for intelligent agents to protect a given system under
highly hostile environments. RL allows the agent to adaptively
make sequential defense decisions based on the perceived cur-
rent state of system security aiming to achieve the maximum
defense performance in terms of fast, efficient, and automated
detection, threat analysis, and response to the threat. In this
paper, we propose a deep reinforcement learning (DRL)-based
adaptive traffic inspection and moving target defense coun-
termeasure framework, called ‘DIVERGENCE,’ for building a
secure networked system. The DIVERGENCE provides two main
security services: (1) a DRL-based network traffic inspection
mechanism to achieve scalable and intensive network traffic
visibility for rapid threat detection; and (2) an address shuffling-
based moving target defense (MTD) technique to defend against
threats as a proactive intrusion prevention mechanism. Through
extensive simulations and experiments, we demonstrate that the
DIVERGENCE successfully caught malicious traffic flows while
significantly reducing the vulnerability of the network through
MTD.

Index Terms—Traffic inspection, moving target defense, deep
reinforcement learning, software-defined networking.

Manuscript received 12 April 2021; revised 16 September 2021 and
7 December 2021; accepted 21 December 2021. Date of publication
3 January 2022; date of current version 31 January 2023. This material is
based upon work supported by the International Technology Center Pacific
(ITC-PAC) under Contract No. FA520920C0022, and the research was partly
supported by the Army Research Office under Grant Contract Numbers
W91NF-20-2-014 and NSF Grant 2107450. The associate editor coordinating
the review of this article and approving it for publication was A. Dhamdhere.
(Corresponding author: Hyuk Lim.)

Sunghwan Kim is with the Samsung Research, Samsung Electronics, Seoul
06765, South Korea (e-mail: sh001.kim@samsung.com).

Seunghyun Yoon is with the Korea National Engineering Technology
Center, Korea Institute of Industrial Technology, Cheonan 15588, Gyeonggi,
South Korea (e-mail: syoon@kitech.re.kr).

Jin-Hee Cho is with the Department of Computer Science, Virginia Tech,
Falls Church, VA 22043 USA (e-mail: jicho@vt.edu).

Dong Seong Kim is with the School of Information Technology and
Electrical Engineering, University of Queensland, Brisbane, QLD 4072,
Australia (e-mail: dan.kim@uq.edu.au).

Terrence J. Moore and Frederica Free-Nelson are with the Network Science
Division, U.S. Army Research Laboratory, Adelphi, MD 20783 USA (e-mail:
terrence.j.moore.civ@mail.mil; frederica.f.nelson.civ@mail.mil).

Hyuk Lim is with the AI Graduate School, Gwangju Institute of Science
and Technology, Gwangju 61005, South Korea (e-mail: hlim@gist.ac.kr).

Digital Object Identifier 10.1109/TNSM.2021.3139928

I. INTRODUCTION

THE NEED for automated defense mechanisms has been
significantly grown due to a large volume of Internet

users and network traffic. This naturally leads to the criti-
cal role of artificial intelligence (AI), which allows a system
to make autonomous defense decisions dealing with various
attacks, such as network scanning attacks, denial-of-service
(DoS) attacks, and malware attacks. Deep reinforcement learn-
ing (DRL), which combines reinforcement learning (RL)
with deep neural networks, has a great potential in solving
automated defense decision problems under time-varying envi-
ronments where there is unknown future information. In recent
years, DRL has been successfully adopted for network opera-
tion and management automation, such as routing optimization
and resource allocation [1], [2], [3].

An intrusion detection system (IDS) is a well-known mech-
anism to defend against attacks by inspecting network traffic
and providing alerts for detected attacks. Based on the inspec-
tion of network traffics by the IDS, a network can be protected
from malicious activities. For IDSs, traffic inspection resource
allocation is an important issue for inspecting network traffic
because it is impossible to inspect huge amounts of network
traffic with a single IDS with a limited processing capacity.
In the literature, various traffic inspection resource allocation
approaches for IDSs have been proposed [4], [5]. However,
deterministic approaches for IDS resource management do not
perform well because the amount of network traffic from the
large volume of devices significantly increases, and malicious
attack patterns become more complicated and intelligent in
modern Internet environments. The resource allocation for
traffic inspection should be efficient because it is not feasible
to inspect every traffic flows on the entire network using a
small number of IDSs with a limited processing capacity for
traffic inspection. If the traffic flows sent to an IDS exceed the
processing capacity of the IDS, packets would be discarded at
the IDS without any inspection. Therefore, it is important to
allocate the inspection capability to more vulnerable devices
or suspicious traffic flows, especially on the real-time traffic
inspection.

For the autonomous defense against malicious attacks, sus-
picious network traffic flows should be captured and re-routed
to the IDS for traffic inspection. To this end, we leverage

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8708-1699
https://orcid.org/0000-0001-6264-976X
https://orcid.org/0000-0002-5908-4662
https://orcid.org/0000-0003-2605-187X
https://orcid.org/0000-0003-3279-2965
https://orcid.org/0000-0002-9926-3913

KIM et al.: DIVERGENCE: DRL 4835

the advanced features of software-defined networking (SDN)
technology providing high flexibility and programmability. In
conventional networks, a routing decision (i.e., packet forward-
ing) is made at each switch, which often causes a lack of
controls over switches, leading to running a system in a less
optimized manner. In an SDN environment, an SDN controller
takes control and can effectively run all the packet forward-
ing operations in a centralized manner by decoupling network
control and data planes. The use of SDN technology becomes
popular in developing various network management applica-
tions and cybersecurity applications in networked systems.
For example, the SDN controller allows a switch to rewrite
packet headers (i.e., changing IP address) and steer traffic
toward specific network devices (i.e., IDS) by simply updat-
ing the forwarding table of the switch via an OpenFlow
protocol [6]. Using the SDN technology, various defense coun-
termeasures, such as simple malicious traffic blocking and
moving target defense (MTD), can be easily implemented and
automated [7]. As a proactive defense countermeasure, MTD
randomly changes network configuration to cause confusion
or uncertainty for attackers. For example, random network
address shuffling-based MTD can effectively nullify reconnais-
sance attacks and prevent the attacker from sending malicious
traffics to target devices.

For real world applications such as network environment
management and operation, RL algorithms such as Q-learning
encounter complexity and scalability problems due to the large
space of states and actions in a Markov decision process
(MDP), which consists of state space, action space, transi-
tion probability, and reward function. To solve the scalability
problems caused by value-based learning such as Q-learning,
RL has been combined with deep learning in a DRL. The
objective of the DRL is to learn an optimal policy by utiliz-
ing a multi-layer perceptron (MLP)-based non-linear function
approximator, which represents the probability distribution of
a DRL agent’s action strategies in order to maximize the
expected long-term reward. DQN, a typical DRL algorithm,
is widely used to solve the complex state space problem in Q-
learning [8]; however, since DQN has a discrete action space,
it is difficult to apply in environments for which the number
of actions increases or continuous action control is required.

To solve this problem, a deep deterministic policy gradient
(DDPG) using an actor-critic method based on a determin-
istic policy gradient (DPG) algorithm was proposed. The
actor-critic method comprises a critic model that updates an
action-value function to maximize long-term rewards and an
actor model that determines policies according to the critic
model. The DPG finds the optimal deterministic policy using
a policy gradient method that optimizes the parameterized pol-
icy for non-linear function approximators such as MLP via
the gradient ascent algorithm. The DDPG is a model-free,
off-policy, and actor-critic algorithm to solve MDP that has
tremendous state and action spaces [9], [10].

In this paper, we present a DRL-based adaptive traffic
inspection and MTD countermeasure framework, the so-called
DIVERGENCE (deep reinforcement learning-based adaptive
traffic inspection and moving target defense countermeasure
framework). The DIVERGENCE aims to effectively decide

a resource allocation policy for traffic inspection and MTD
countermeasure in order to capture more malicious flows for
multiple IDSs while reducing the vulnerability of devices on
an SDN-enabled network using a DDPG algorithm. The
DIVERGENCE framework includes two parts, the resource
allocation for traffic inspection and the IP shuffling-based
MTD for countermeasure. By transforming the network flow
information into specially designed groups, the traffic inspec-
tion part can map the huge state space to the resource
allocation for each group state. By inspecting the network flow
states with a trained DRL agent, the MTD countermeasure can
find the most vulnerable group on the network that should get
the most attention for the IP address shuffling-based MTD.

The key contributions of this paper are summarized as
follows.
• We formulate a resource allocation problem for traffic

inspection and MTD countermeasure on the SDN-enabled
network as a MDP, which considers the uncertainty
of malicious flow occurrence by maximizing the long-
term reward function to enhance the traffic inspection
capability.

• We adopt the DDPG algorithm to automatically allo-
cate resources for adaptive traffic inspection and an IP
address shuffling-based MTD to enhance the security of
the devices on the network.

• This DDPG-based approach gradually learns a better
traffic inspection policy under uncertainty in the future
network flows to capture more malicious flows and
enhance the security of the network.

II. RELATED WORK

A. Traffic Inspection

To inspect and detect network-based threats, such as
network scanning and DoS attacks, it is necessary to obtain
traffic visibility through network traffic monitoring. In tradi-
tional networks, a traffic monitoring agent provided by the
network device vendor can be installed at a specific switch, and
thus only limited flow information can be collected [11], [12].
Thanks to the SDN’s flexibility, scalability, and programmabil-
ity, the SDN technology has been widely used to develop more
efficient network traffic monitoring schemes with higher accu-
racy and lower overhead. Ha et al. formulated an optimization
problem to obtain optimal traffic sampling rates of switches for
IDS traffic inspection on an SDN-capable network [4]. They
attempted to minimize the malicious traffic sampling failure
rate by allocating higher sampling rates to the flows that are
identified to be more suspicious. Yoon et al. proposed a mon-
itoring point and flow capture rate decision method that uses
a flow-based centrality measure and a traffic matrix for scal-
able network traffic monitoring in SDN-enabled networks [13].
Wang et al. presented time-based fine-grained flow monitoring
architecture in the SDN-enabled network [5]. They analyzed
the spatial-temporal factors of SDN switches to decide the
monitoring point and duration.

Recently, learning-based approaches such as RL and
DRL have been applied to the traffic inspection problems
because it is important to efficiently exploit the traffic

4836 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

inspection resources and SDN capability for security purposes.
Deng et al. proposed a deep Q-network-based traffic monitor-
ing framework to capture more short-life time flows without
redundancy [14]. Castillo et al. proposed IPro, an RL-based
traffic monitoring architecture, which focuses on solving the
problem of control plane overhead and extra CPU usage of
the SDN controller [3]. Phan et al. proposed DeepMatch, a
flow matching framework to provide a fine-grained flow mea-
surement in SDN using deep dueling neural networks [15].
DeepMatch maximizes flow granularity by learning a flow rule
updating strategy through the DRL algorithm while protecting
SDN-enabled switches from a flow-table overflow. Kim et al.
proposed a DDPG-based traffic sampling algorithm on an
SDN-capable network equipped with multiple traffic analyz-
ers. They proposed system can learn a sampling resource
allocation policy for multiple traffic analyzers by taking the
inspection results of previously traffic flow samples as the
reward of the learning system [16].

B. Moving Target Defense

MTD is one of the promising cybersecurity mechanisms
to proactively thwart potential attackers as an intrusion pre-
vention mechanism. The key underlying idea of MTD is to
increase the uncertainty of the system by changing attack sur-
faces (i.e., system or network configurations) with the aim
of invalidating the attacker’s malicious activities. Cho et al.
provided a comprehensive survey on various aspects of MTD
including design principles, classifications, key methodologies
and algorithms, and evaluation metrics in [7].

MTD is designed to increase uncertainty and/or confu-
sion to attackers attempting to penetrate into a system by
identifying vulnerabilities of the target system. The main
functions of MTD are to change the attack surfaces (i.e.,
system or network configurations), consequently invalidating
the intelligence gathered by the attackers and wasting their
resources and time [17]. The MTD techniques can be cate-
gorized in terms of shuffling, diversity, and redundancy [7].
Suffling-based MTD is the most commonly deployed MTD
that randomizes system and networking configurations, which
includes IP shuffling [18], [19], [20], [21], [22], packet header
randomization [23], port hopping [24], virtual machine or
proxy migration [25], [26], software reconfiguration [27], [28],
or service replacement [29]. Recently, some studies [30], [31]
have introduced network topology shuffling-based MTD tech-
niques. Diversity-based MTD provides the capability to
deploy different implementations of the same functionalities
or services such as software stack diversity for enhancing
network resilience and service provisions [32], code diversity
for providing functionally-equivalent variants [33], network
diversity for using the diversity of network configurations [34],
data diversity for generating N-variants framework [35], and
programming language diversity for avoiding code injection
attacks [36]. Redundancy-based MTD improves system reli-
ability by creating multiple replicas of network components
such as redundancy of Web servers [37] or network sessions
in cyber-physical systems [38]. Redundancy can be used in

conjunction with the shuffling [39] or diversity techniques [40]
to implement the MTD.

Nowadays, some recent studies verify that the use of SDN
functionalities, such as packet header management, dynamic
IP/MAC address management, and routing path modification,
can enable the execution of MTD operations to further enhance
system security [20], [41]. Using the SDN technology,
various defense countermeasures, such as simple malicious
traffic blocking and rerouting, can be easily implemented and
automated [7]. As a proactive defense countermeasure, the
SDN technology provides all the programmable functionali-
ties needed to implement MTD that randomly change network
configuration to cause confusion or uncertainty for attack-
ers. For example, random network address IP/MAC address
shuffling-based MTD can be readily implemented using the
standard SDN OpenFlow protocol to nullify reconnaissance
attacks and prevent the attacker from sending malicious traf-
fics to target devices. Recently, several MTD technologies
using SDN were presented such as network topology shuffling-
based MTD [31], an OpenFlow-based random host muta-
tion, called as OF-RHM, architecture [41], and port-hopping
MTD [20], [42].

One of the IP shuffle-based MTD implementations using
SDN is to allow only an SDN controller to know the real IP
addresses of hosts, while the hosts on the network use only
virtual IP addresses for communicating with each other [43].
Suppose a source host sends a packet to a destination host. The
SDN controller securely maintains a mapping of real-virtual
addresses in its database. As the mapping is shuffled randomly,
each host would have a different virtual IP address over time.
When the source host requests the IP address of the desti-
nation using DNS (Domain Name System) query, the SDN
controller generates the DNS reply with the virtual IP address
of the destination rather than the real IP address and delivers
the DNS reply to the source host using OpenFlow Packet-Out
message. As the result, the source host can use the virtual IP
address for the destination host. When a new packet arrived
at an SDN-enabled switch, the SDN controller looks up the
virtual addresses for the source host and installs the appropri-
ate flow rules on the SDN-enabled switches. The first switch
converts the real source IP address to a virtual IP address in
the packet header using the flow rule sent by the SDN con-
troller. Then, the packet is forwarded to the destination with
the virtual IP address. On the switch directly connected to the
destination host, the virtual IP address of the destination host
in a packet header is converted to its real IP address. The
source and destination hosts as well as the relay nodes do not
know the real IP address of each other, but they can com-
municate with each other on the SDN network. Performing
the MTD on the SDN networks incurs the overhead of the
computing resource of the SDN controllers, traffic conges-
tion on the data plane of the SDN network, the breakdown
of data flows in transit, or quality-of-service (QoS) degrada-
tion of ongoing services, especially in the network layer MTD
strategy [44]. Therefore, it is essential to develop an MTD
strategy that can allocate more MTD resources to vulnera-
ble devices and suspicious traffic flows. Our proposed method

KIM et al.: DIVERGENCE: DRL 4837

Fig. 1. DIVERGENCE framework on an SDN-enabled network.

can differentiate the MTD resource usage for the traffic flows
depending on the suspiciousness level reported by the traffic
inspectors.

III. PROPOSED DIVERGENCE FRAMEWORK

We propose an SDN-based intelligent cybersecurity frame-
work, which consists of a DRL agent, an SDN controller,
SDN-enabled switches, and multiple IDSs as shown in
Figure 1. In the proposed framework, the DRL agent on the
SDN controller learns an optimal traffic inspection resource
allocation policy under the uncertainty of malicious flow
occurrence and performs MTD according to traffic inspec-
tion results reported from multiple IDSs. The DRL has a
great potential for solving the automated resource allocation
problem under time-varying environments with uncertainty of
future network flows. The proposed framework includes three
processes:
• Monitoring: The DRL agent on the SDN controller

observes network state information and takes action
according to the action-selection policy. The SDN con-
troller updates the switch’s flow table based on actions
determined by the DRL agent to capture network traffic.

• Inspection: Multiple IDSs receive and analyze the traffic
captured by the switches and report the inspection results
containing information related to IDS alerts to the SDN
controller’s DRL agent as a reward.

• Reconfiguration: The SDN controller adjusts the traffic
inspection resource of each switch and the IP address
of each device according to the traffic inspection and
MTD resource allocation policy determined by the DRL
agent.

The entire process is conducted periodically over time and the
DRL agent gradually learns a better resource allocation policy
to maximize IDS alerts while reducing the vulnerability of the
network.

A. Threat Model

We consider network scanning and DoS attacks, which are
performed at multiple stages. We assume that the attack has
the following attack behaviors:
• Identification and analysis of currently active devices

in the network: Active devices in the network can be
identified by the attacker’s scanning activities. Attackers
leverage network scanning tools to identify active devices
in the network. For example, an attacker can use the
Nmap [45] tool to know which devices are currently
running on the target network.

• DoS attack to a target device: Depending on an attack
goal, an attacker decides how to attack the device based
on the scanning results. Attackers may perform DoS
attacks to invalidate the running services on the target
device. DoS attacks make the system’s resources insuf-
ficient, preventing its use for its intended purpose. It is
assumed that these malicious activities can be identified
by the IDS.

B. Proposed Markov Decision Process Model in
Reinforcement Learning

We assume that there are I devices to be protected, J SDN-
enabled switches, and K IDSs in the network. The devices,
switches, and IDSs are denoted by v = [v1, v2, . . . , vI]

T ,
o = [o1, o2, . . . , oJ]

T , and d = [d1, d2, . . . , dK]T , respec-
tively. The SDN controller periodically allocates resources
for traffic inspection and MTD operations. Let t denote the
resource allocation period that represents a time step in MDP.
The processing capacity of IDS dk is denoted by ck (pack-
ets/t) and the total capacity of IDSs can then be calculated as
follows:

∑

k

ck = C . (1)

4838 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Let Ftot be the set of total flows in the network during t and
the element fm be defined as:

fm = {(srcm , dstm)|srcm ∈ v and dstm ∈ v}, (2)

where srcm and dstm represent the source and destination
IP address, respectively. The data rate of flow fm during t is
denoted by λm (packets/t). We obtain network environment
information through Openflow protocol so we can model the
network using MDP to adopt DRL algorithm.

Let g = [g1, g2, . . . , gN]T denote a set of groups used in
resource allocation for which |Ftot | flows are clustered into
N groups. Note that |Ftot | is changed dynamically at each
resource allocation period t, and N is determined by a hash
function H (·). The key of H (·) is the destination IP address
of each flow, and the hash value is a sub-net of them. For
example, H (·) maps flows with the destination IP addresses
ranging from 10.0.1.1 to 10.0.1.255 into a single hash value
of 10.0.1.0 and flows with the destination IP addresses from
192.168.1.1 to 192.168.1.255 into 192.168.1.0 depending on
their sub-net IP addresses. Therefore, we can manage traffic
inspection resources in the unit of the sub-net group.

Given λ̂ = [λ̂1, λ̂2, . . . , λ̂N]
T

denoting a set of the current
total data rate of flows in each group at time step t, the element
λ̂n can be calculated by:

λ̂n =
∑

m∈gn
λm . (3)

We define a traffic inspection resource allocation of each group
vector, x = [x1, x2, . . . , xN]T , where the element xn ∈ (0, 1).
Let y = [y1, y2, . . . , yN]T be the set of allocated traffic
inspection resources for each group gn depending on the x ,
the element yn can be given by:

yn = xn · λ̂n . (4)

Because the total amount of traffic inspection resource should
not exceed the total processing capacity of IDSs, the relation-
ship between C and y is given by:

∑

n

yn ≤ min{C , Cmax}, (5)

where Cmax is a tunable parameter to adjust the amount of
network resource to be used for the proposed method. If C is
too large to be supported by the SDN network without scar-
ifying normal data delivery, the resource should be reduced
appropriately by setting smaller Cmax . Here, we assume that
C � Cmax for simplicity. Let ȳ = [ȳ1, ȳ2, . . . , ȳN]T be
the set of normalized allocated traffic inspection resource, the
element ȳn can be obtained by:

ȳn =
yn∑
n yn

· C . (6)

After assigning traffic inspection resources to each group,
we should distribute a certain amount of resources to each
flow in each group because traffic inspection is conducted in
the unit of flow at the IDS. The inspection result for each flow
fm is defined by:

wm =
NA
fm

PA
fm

, (7)

where NA
fm

is the number of alerts for fm and PA
fm

is the
priority of alert for fm . Note that the number of alerts is
estimated based on one alert per one malicious packet while
the priority of alert is scaled from 1 to 5 where a smaller
number represents high priority meaning a higher risk alert.
One of the popular IDSs, Snort, which is an open-source
IDS software that inspects network traffic by matching it with
pre-defined security rule sets, generates an alert message con-
sisting of a priority, flow information with IP address, port
number, and alert name. In order to increase traffic inspec-
tion performance, multiple IDSs can be deployed. We utilize
the weighted max-min fair share (WMMFS) mechanism to
inspect each flow fairly in each group by allocating normal-
ized traffic inspection resource ȳn depending on the weight for
inspection result wm . The WNNFS is widely used for network
resource allocation, flow routing, and load balancing schemes.
For example, the WMMMFS is applied to a pricing scheme
for networks that use priorities to provide differentiated qual-
ity of service [46], [47], [48]. The WMMFS is the ideal fair
distribution of a shared scarce resource with the considera-
tion of weights. We define the WMMFS for our proposed
DIVERGENCE by:
• Traffic inspection resources are allocated in the order of

increasing demand depending on the data rate of flows,
which are normalized by the weighted summation of IDS
alerts.

• No flow obtains a resource share that exceeds its demand.
• Flows with unsatisfied demands obtain resource shares in

proportion to their weights.
In the WMMFS, given the normalized resource capacity, ȳn ,
to capture the maximum flows, flow fm∈gn is guaranteed to
have the minimum resource defined by:

ȳmin = max(
1

|gn | · ȳn ,
wm∑

m∈gn wm
· ȳn). (8)

If some flows need less than what they are entitled to, then
other flows can receive more than ȳmin .

After inspecting flows by allocated resource ȳ in the
WMMFS, the DIVERGENCE performs an IP address
shuffling-based MTD countermeasure for security enhance-
ment of each device in each group. We define a probability of
IP address shuffling for sub-net group gn during time step t as:

Pgn (t) =

∑
m∈gn wm∑

n

∑
m∈gn wm

. (9)

The above equation means that the probability of changing IP
addresses of devices belonging to the sub-net group at each
time step is proportional to the IDS inspection result.

State space: The state space of the DIVERGENCE consists
of the current network traffic state and allocated resources for
the traffic inspection state. Let st denote state at time step t,
represented by the current total data rate of flows in each group
vector and the normalized allocated traffic inspection resource
for each group vector as:

st = [̂λ, ȳ]. (10)

KIM et al.: DIVERGENCE: DRL 4839

Fig. 2. Simple network topology.
TABLE I

AN EXAMPLE OF STATE, ACTION, AND REWARD TABLE

The state st changes in accordance with a given traffic inspec-
tion resource allocation policy and the uncertainty of the
network flows.

Action space: The action space of the DIVERGENCE is an
action that determines the traffic inspection resource allocation
for each group. An action at time step t is given by:

at = [x]. (11)

An action at indicates that changing traffic inspection resource
allocation for each group at time step t. When the agent
is in the state st , it will decide which group to change
resource allocation depending on x ∈ [0, 1], and then the
allocated resource of each group ȳ and the weight for inspec-
tion result wm for each flow will be changed. The probability
that the DIVERGENCE undergoes a transition from state st
to state st+1 when action at is taken can be represented
as Psa :(st , at) → sat . Since the traffic inspection resource
of each group can be changed dynamically using an SDN
controller, Psa can be determined using the probability of
selecting action at at state st defined by policy π.

Reward: The comprehensive reward of the DIVERGENCE
should be designed to achieve the adaptive flow inspection
to capture more malicious flows under the uncertainty of the
malicious flow occurrence. To achieve more intensive mali-
cious flow inspection, we define flow inspection reward as
follows:

rt =
∑

n

∑

m∈gn
wm . (12)

Let R denote the reward function that returns a cost value
indicating whether the proposed framework utilizes IDSs to

inspect more malicious flows. When the action at is taken in
the state st , the reward function is defined by:

R(st , at) = rt . (13)

This reward function is used to measure the performance of
the proposed framework.

Figure 2 shows a simple network topology, and Table I
shows a list of corresponding state, action, and reward. For
example, group g1 and g2 have 4 and 2 flows, respectively,
and the alert priority for malicious flows PA

f5
and PA

f7
are

set to 1, and PA
f6

is set to 2, respectively. We assumed that
at is set to [1, 0.5] initially. At time t + 1, the DRL agent
allocates resource 10 for each flow in g1 and 5 for each
flow in g2 using (8) and WMMFS strategy. Note that ȳn for
state st+1 is calculated using (4) and (6) depending on the
initial action at . After traffic inspection at the IDS depend-
ing on the allocated resource, the reward is calculated as 7.5
according to (7) and (12) because w1, w2, w3, and w4 are
zero, and w5 and w6 are 2.5 and 5, respectively. Then, the
DIVERGENCE decides to conduct MTD for all devices in
g2 using (9). Similarly, at t + 2, when taking action at+1,
the state is changed to st+2 and the reward increases to 12.5
according to (12) because the traffic inspection resource 12.5
is allocated to the new malicious flow f7.

C. DDPG-Based Resource Allocation for Traffic Inspection
and MTD Operations

To account for the impact of the current action on future
rewards, we define the total expected discount reward accord-
ing to the π policy, which defines the probability of selecting

4840 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Fig. 3. Block diagram for DDPG training process.

action at at state st , as follows:

Rπ
t = R(st , at) +

∞∑

i=1

γi · R(st+i , at+i). (14)

The goal of the DRL agent is to identify the optimal action
selection policy that increases the probability of capturing
malicious flows under the uncertainty of malicious flow occur-
rence. To achieve this objective, we consider the action-value
function that returns the total expected discounted reward
when action at is taken in state st following policy π as:

Q(st , at) = E{Rπ
t }

= E

{
R(st , at) +

∑

i

γi · R(st+i , at+i)

}
. (15)

To approximate the optimal action-value function, Q∗ is
defined as:

Q∗(s , a) = E

{
R(st , at)

+
∑

i

γi max
at+i

R(st+i , at+i)|s=st ,a=at

}
. (16)

In continuous action space as modeled in Section III-B, it is
difficult to discriminate the optimal action from the action-
value function because the agent is required to explore every
Q-value, i.e., μ(st) = argmaxatQ(st , at), and since complex-
ity grows exponentially according to the size of the state and
action spaces [49].

To determine the action-selection policy that increases the
total expected discounted reward defined by (14), we con-
sider a DDPG algorithm, which has model-free, off-policy,
and actor-critic characteristics [9]. To deal with the contin-
uous action space in DRL, the DDPG algorithm tries to
approximate the optimal action-value function defined by (16)
using two neural networks as shown in Figure 3. The first
neural network is used for approximating the action-value
function defined by (15), termed a critic-network. Its inputs
are action and observation, and the output is the value of

the action-value function, i.e., Q(st , at). The second neural
network is an actor-network that approximates behavior pol-
icy. Its input is observation and its output is action-value, i.e.,
μ(st). Let Q(s , a|θQ) and μ(s |θμ) denote the critic-network
and actor-network, respectively. The network functions for the
critic and actor target network are thus represented as Q ′ and
μ′, respectively.

The DDPG uses θQ for the critic-network and θμ for the
actor-network to parameterize non-linear function approxima-
tors. θQ and θμ are updated according to loss function and
policy gradient, respectively. The weight of critic-network θQ

is optimized by minimizing loss as follows:

L(θQ) =
1

N
∑

i

(
yi −Q

(
si , ai |θQ

))2
, (17)

where yi = R(si , ai) + γQ ′(si+1, μ
′(si+1|θμ′

)|θQ ′
) and N

is the number of transitions sampled from a replay buffer B.
The DDPG optimizes θμ by updating J (θμ), which is the
objective function of policy gradient method in the direction
of ∇θµJ (θ

μ) defined as follows:

∇θµJ (θ
μ) ≈ 1

N
∑

i

∇aQ
(
s , a|θQ

)
|s=si ,a=μ(si)

∇θµμ(s |θμ)|s=si . (18)

To update the target networks gradually, the agent updates
θQ

′
and θμ

′
according to θQ

′
= τcθ

Q + (1 − τc)θ
Q ′

, and
θμ

′
= τaθ

μ+(1− τa)θ
μ′

, where τc and τa are positive small
numbers between 0 and 1 used to learn rates corresponding to
the critic-network and actor-network, respectively.

The proposed DDPG-based resource allocation policy
update solution is described in Algorithm 1. The critic-
network, actor-network, and target networks are initialized
with experience replay buffer and initial observation in lines 1
– 4. Overall, the algorithm consists of a loop for time step t.
Lines 5 – 13 show the loop for each time step t. This loop
is repeated infinitely. One action at is selected by following
the actor-network policy with adaptive noise process P in line
6. To assure exploration efficiency, the algorithm adds adap-
tive noise to the parameters of the neural network policy, not

KIM et al.: DIVERGENCE: DRL 4841

Algorithm 1 The DDPG-Based Resource Allocation
Algorithm

1: Initialize critic-network Q(s, a|θQ) and actor-network μ(s|θµ) with
randomly generated weight θQ and θµ

2: Set target networks Q ′ and μ′ with weights θQ
′ ← θQ and θµ

′ ← θµ

3: Initialize experience replay buffer B
4: Set initial state s0 according to the initial resource allocation policy
5: for each time step do
6: Select action at = μ(st |θµ) + P
7: Take action at , observe R(st , at), st+1, and store transition

{st , at ,R(st , at), st+1} in B
8: Perform the IP address shuffling-based MTD with a probability in (9)

for security enhancement
9: Randomly sample a batch of N transitions {si , ai ,R(si , ai), si+1}

from B
10: Set yi = R(si , ai) + γQ ′(si+1, μ

′(si+1|θµ
′
)|θQ)

11: Update critic θQ and actor θµ in (17) and (18)
12: Update the targets softly to θQ

′
and θµ

′

13: end for

the action space [50]. In line 7, the reward R(st , at) and the
next state st+1 are observed by taking the selected action at ,
and the observed transition is stored as replay buffer B. In
line 8, the IP shuffling-based MTD countermeasure according
to the probability in (9) for security enhancement of devices
in the network. In lines 9 – 12, Based on the randomly sam-
pled mini batch from B, θQ and θμ are updated according
to (17) and (18), and targets θQ

′
and θμ

′
are updated softly.

IV. PERFORMANCE EVALUATION

A. Simulation Results

In order to evaluate the performance of the proposed
resource allocation algorithm based on DDPG, we have con-
ducted simulations using the networkX [51] for network
topology generation and Stable-Baselines [52] for DDPG algo-
rithm implementation. Simulations were performed on two
types of network topologies as shown in Figure 4.
• Fat-tree data center: This topology shows the representa-

tive topology of a data center network environment. The
fat-tree topology has the same bandwidth on each link
using the same commodity switch [53].

• Internet autonomous system (AS): This topology is a ran-
dom graph-based topology similar to the Internet network
environment. The Internet AS topology has three tiers
for nodes i.e., tier-1, mid-level, customer or content
provider [54].

We compared the performance of the proposed DDPG-based
method with that of two non-learning-based methods.
• Uniform: This method distributes traffic inspection

resources to every switch equally.
• Rate-Proportional: In this method, each flow gets a traffic

inspection resource proportional to its data rate.
• Centrality: This method allocates traffic inspection

resources in each switch depending on the betweenness
centrality (BC) value of the switch [13]. The BC value
for a switch is given by the total number of flows that
pass through the switch. The sampling rate of a switch
is proportional to the BC value of the switch.

All methods conduct an alert-proportional MTD countermea-
sure for each device with a probability, which is the ratio of the

TABLE II
HYPER-PARAMETER VALUES USED FOR THE DDPG ALGORITHM

TABLE III
PARAMETER VALUES USED FOR NETWORK TOPOLOGIES

number of alerts for a victim device to the total number of alerts
for all devices depending on the traffic inspection method. We
compare two security performance metrics as follows.
• Capture-failure rate: This metric represents the average

probability of capturing a packet belonging to the mali-
cious flow. The capture-failure rate of a malicious flow is
calculated as the number of non-captured malicious pack-
ets over the total number of packets for the malicious
flow.

• Degree of security vulnerability: This metric indicates the
percentage of the number of malicious flows successfully
sent to the target device. If all malicious flows are suc-
cessfully transmitted to their target devices, the degree of
security vulnerability is 1.

We assumed the traffic inspection and MTD countermeasure
policy was updated every second (t = 1 second) and the pro-
cessing capacity of each IDS was set to 1 Gbps. To account for
the uncertainty in the malicious activity, 2% of total flows are
randomly selected as malicious flows, and the malicious flows
decide whether they perform an attack at each time step with
a probability of 0.2. Malicious flows are either IP scanning
attacks with alert ‘priority 4’ or packet flooding DoS attacks
with alert ‘priority 2’ against devices in a group of victims.
It was assumed that whenever a packet of a malicious flow
is captured by IDS, a single IDS alert is generated for the
flow. In the fat-tree data center topology, the maximum num-
ber of flows |Ftot | was set to 10,000, and the average data
rate of flows was set to 20 Mbps. In the Internet AS topol-
ogy, |Ftot | was set to 40,000, and the average data rate of
flows was set to 20 Mbps. The hyper-parameter values for
the DDPG algorithm and the other parameter values for the
simulation were set as shown in Table II and Table III, respec-
tively. We set policy object that implements actor and critic,
using a MLP (two layers of 64 nodes in each), with layer
normalisation.

Figure 5 shows that the proposed method maintains lower
capture-failure rate for malicious flows than the other meth-
ods on both network topologies. In the simulations, if most
attacking flows go through a set of switches with high BC

4842 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Fig. 4. Network topologies for simulation: a) fat-tree data center; b) Internet AS.

Fig. 5. Capture failure rate of malicious flows with respect to κ: a) fat-tree data center; b) Internet AS.

value, then the traffic inspection problem becomes straightfor-
ward because the switches with high BC would be the best
place where the traffic flows are sampled. However, if this sam-
pling strategy is known to the attackers, they can simple detour
such switches. Here, we introduce a parameter κ ∈ [0, 1] to
consider more realistic pattern of attack paths in the topol-
ogy. κ is defined by a percentage of dominant switches (with
high BC value) to be excluded from routing paths of mali-
cious traffic flows in the simulations. For example, if κ is set
at 0.1, any switches with a top 10% BC value are excluded
from the path when routing malicious flows. As κ increases,
less malicious flows pass through switches with high BC
values. As expected, the capture-failure rate for the centrality-
based method increases rapidly as κ increases in Fig. 5. Even
in these cases, the proposed method can capture malicious
flows that do not pass through a switch with a high BC
value.

Figure 6 represents the degree of a security vulnerability
with respect to the number of time steps on both network
topologies. As shown in the figures, the proposed algorithm
based on DDPG decreases the security vulnerability more than
the other methods as the number of time steps increases. The
reason is that the proposed method allocates more inspection
resource to the victim groups in which more alarms for mali-
cious flows are reported and changes more frequently the IP
addresses of the victim devices in the group.

B. Testbed Experiment Results

For verification and empirical evaluation of the proposed
algorithm, we have constructed an SDN testbed and imple-
mented the proposed DRL-based traffic inspection and MTD
countermeasure framework on the testbed. Figure 7 repre-
sents the architecture of the SDN testbed and the graphical
user interface (GUI) for the network topology. The testbed
consists of a DRL agent, an SDN controller, Snort IDSs, 10
HP 2920 SDN-capable switches, Open vSwitch with Docker
containers for end nodes, and a traffic generator. We imple-
mented the DRL agent on a workstation with NVIDIA TITAN
Volta GPU using OpenAI framework and the SDN controller
on a workstation using OpenDaylight. For the DRL agent,
we used Stable-Baselines [52], a fork of OpenAI-Baselines
with additional RL algorithms such as DQN and DDPG. For
multiple IDSs, we utilized Snort for malicious flow detection
on a workstation. Snort is a lightweight IDS for UNIX and
MS Windows operating systems. Specifically, with Snort, we
can monitor network traffic in real-time to detect dangerous
payloads or suspicious anomalies. For the MTD countermea-
sure, we adopted the virtual IP shuffling-based MTD that only
the SDN controller knows the real IP addresses of hosts,
while other hosts in the network only use virtual addresses
to communicate with each other. Specifically, the MTD coun-
termeasure on the SDN controller deals with the following

KIM et al.: DIVERGENCE: DRL 4843

Fig. 6. Degree of security vulnerability with respect to time steps: a) fat-tree; b) Internet AS.

Fig. 7. SDN testbed network topology: a) architecture; b) GUI on OpenDaylight.

tasks: (1) making shuffling decisions of each host; (2) select-
ing virtual IP addresses that do not overlap (3) mapping from
real IP address to virtual IP address during communication,
and (4) ensuring communication for normal flows by allow-
ing connection with the previous IP for a certain period of
time excluding malicious flows [43]. We constructed a fat-tree
network topology with 10 HP 2920 SDN-capable switches and
100 Docker containers. For traffic generation, we used Iperf for
normal TCP or UDP flows, and Nmap for a network scanning
attack on a desktop. The generated traffic samples includ-
ing the normal TCP/UDP flows and Nmap network scanning
attack flows were saved as a pcap dataset and can be replayed
for comparison purposes.

The SDN testbed operates in the following order. First,
depending on the traffic inspection policy generated by the
DRL agent, the OpenDaylight SDN controller updates the traf-
fic inspection policy and captures packets from each switch to
the IDS server. And, the IDS server with four Snort processes
analyzes the captured packets from the switches. We used
Snort to detect malicious flows from captured packets and gen-
erate IDS alerts. Then, the IDS analysis results (i.e., IDS alerts)
are reported to the DRL agent for calculating the rewards.

Finally, the SDN controller conducts the virtual IP shuffling-
based MTD for each group according to the IDS analysis
results.

The hyper-parameter values for the DDPG algorithm and
the other parameter values for the testbed topology configura-
tion were summarized in Table II and Table III, respectively.
We set the policy object for actor and critic using an MLP
(two layers of 64 nodes in each) with layer normalisation.
The traffic sampling resource allocation policy was updated
every 10 seconds (t = 10 seconds). If the time step t is large
(e.g., t = 100 seconds), the IDS can process more traffic sam-
ples, and the number of IDS alerts would be less fluctuating
on average. This statistical stability is helpful to achieve the
convergence of learning. However, it slows down the learning
process because one action change is performed per each time
step. The total processing capacity of IDSs was set to 1 Gbps.
The maximum number of flows |Ftot | generated by the traf-
fic generator was set to 10,250 (10,000 normal flows and 250
malicious flows). The average data rate of flows was set to
1 Mbps for normal flows and 740 bps for malicious flows,
respectively. To account for the uncertainty in the malicious
activity, Nmap on the traffic generator generated a total of

4844 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

Fig. 8. SDN testbed experiment results for network scanning attack: a) reward; b) attack success probability result.

250 scanning malicious flows for two randomly-selected vic-
tim groups. Each malicious flow performs an attack at each
time step with 50% probability. In the testbed configuration, if
a packet of a malicious flow was captured by Snort, one IDS
alert was generated for that flow. The proposed method was
compared with the centrality method, which allocates traffic
inspection resources to each switch according to the BC value
and changes the IP address of the device with the probability
of the number of alerts for that device out of the total number
of alerts.

We compared the performance of the proposed
DIVERGENCE with the other methods:
• OF-RHM: This method performs random host mutation,

which randomly changes IP addresses of devices in the
network with the fixed mutation rate of 0.01 [41].

• Centrality-IDS: This method performs the BC value-
based traffic inspection but only uses the IDS. This
method does not disturb the attacker through the MTD
and simply drops the flows for which the alarm occurred.

• Centrality-MTD: This method allocates traffic inspection
resources in each switch depending on the BC value of
the switch, and performs MTD using (9) according to the
traffic inspection result.

Figure 8(a) shows the rewards of the agent with respect to
the time elapse. Each point is a measured reward at a traffic
inspection resource allocation period (t = 10 seconds). The
DRL agent is more likely to behave randomly at the start of
training. However, the reward increases and levels off as the
training time increases. The result shows that the agent can
capture more malicious flows as the training time increases
because the reward indicates how many malicious flows are
captured and analyzed at IDSs.

Figure 8(b) shows the network scanning attack success
probability with respect to time elapse. As shown in the fig-
ure, the proposed method achieves better attack prevention
performance than the centrality-MTD method as time goes
by because it can prevent more malicious flows. The OF-
RHM method only performs MTD, so there is no visibility
of IDS alerts, and the central-IDS method only drops flows
that raise IDS alerts but do not change the IP address of the

victim device. For the few minutes at the beginning, all of
the scanning attacks succeed, but the scanning attack success
probability abruptly decreases after the procedures of adaptive
traffic inspection and MTD countermeasure.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a DRL-based automated
cybersecurity framework, DIVERGENCE, for allocating traf-
fic inspection and MTD resources. The DIVERGENCE frame-
work includes two parts, the resource allocation for traffic
inspection and the IP shuffling-based MTD for countermea-
sure. By transforming the network flow information into
specially designed groups, the traffic inspection part can map
the huge state space to the resource allocation for each group
state. By inspecting the network flow states with a trained DRL
agent, the MTD countermeasure can find the most vulnerable
group on the network that should get the most attention for
the IP address shuffling-based MTD. Simulation and experi-
ment results showed that our proposed method outperforms
the other methods for capturing more malicious flows and
reducing security vulnerabilities of the system.

For future work, we will focus on how to expedite the
retraining of the DIVERGENCE model to fit dynamic changes
of network and attack patterns. Analyzing the overhead caused
by traffic inspection and MTDs and incorporating them into
the DIVERGENCE model are also challenging issues. Finally,
we will enhance the adaptation capability of DIVERGENCE
for resource allocation problems in situations where IDSs have
the heterogeneous capability and more sophisticated attack
detection is required.

ACKNOWLEDGMENT

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of CCDC ITC-PAC, CCDC-ARL, or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any
copyright notation hereon.

KIM et al.: DIVERGENCE: DRL 4845

REFERENCES

[1] T. A. Q. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep reinforcement
learning based QoS-aware routing in knowledge-defined networking,” in
Proc. Int. Conf. Heterogeneous Netw. Qual. Rel. Security Robustness,
2018, pp. 14–26.

[2] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing
in software-defined networks with deep reinforcement learning,” IEEE
Access, vol. 6, pp. 64533–64539, 2018.

[3] E. F. Castillo, L. Z. Granville, A. Ordonez, and O. M. C. Rendon, “IPro:
An approach for intelligent SDN monitoring,” Elsevier Comput. Netw.,
vol. 170, Apr. 2020, Art. no. 107108.

[4] T. Ha et al., “Suspicious traffic sampling for intrusion detection
in software-defined networks,” Elsevier Comput. Netw., vol. 109,
pp. 172–182, Nov. 2016.

[5] X. Wang, X. Li, S. Pack, Z. Han, and V. C. Leung, “STCS:
Spatial-temporal collaborative sampling in flow-aware software defined
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 999–1013,
Jun. 2020.

[6] W. Queiroz, M. A. Capretz, and M. Dantas, “An approach for SDN
traffic monitoring based on big data techniques,” J. Netw. Comput. Appl.,
vol. 131, pp. 28–39, Apr. 2019.

[7] J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Commun. Surveys Tuts., vol. 22, no. 1,
pp. 709–745, 1st Quart., 2020.

[8] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[9] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. I-387-ŰI-395.

[10] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[11] R. Sommer and A. Feldmann, “NetFlow: Information loss or win?” in
Proc. ACM SIGCOMM Workshop Internet Meas., 2002, pp. 173–174.

[12] M. Wang, B. Li, and Z. Li, “sFlow: Towards resource-efficient and agile
service federation in service overlay networks,” in Proc. IEEE Distrib.
Comput. Syst., 2004, pp. 628–635.

[13] S. Yoon, T. Ha, S. Kim, and H. Lim, “Scalable traffic sampling using
centrality measure on software-defined networks,” IEEE Commun. Mag.,
vol. 55, no. 7, pp. 43–49, Jul. 2017.

[14] J. Deng, H. Cai, and X. Wang, “Improved flow awareness by intelligent
collaborative sampling in software defined networks,” in Proc. Int. Conf.
5G Future Wireless Netw., 2019, pp. 182–194.

[15] T. V. Phan, T. G. Nguyen, and T. Bauschert, “DeepMatch: Fine-grained
traffic flow measurement in SDN with deep dueling neural networks,”
IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2056–2075, Jul. 2021.
[Online]. Available: https://doi.org/10.1109/JSAC.2020.3041406

[16] S. Kim, S. Yoon, and H. Lim, “Deep reinforcement learning-based traffic
sampling for multiple traffic analyzers on software-defined networks,”
IEEE Access, vol. 9, pp. 47815–47827, 2021.

[17] J.-H. Cho and N. Ben-Asher, “Cyber defense in breadth: Modeling and
analysis of integrated defense systems,” J. Defense Model. Simulat.,
vol. 15, no. 2, pp. 147–160, 2018.

[18] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space ran-
domization,” Elsevier Comput. Netw., vol. 51, no. 12, pp. 3471–3490,
2007.

[19] T. E. Carroll, M. Crouse, E. W. Fulp, and K. S. Berenhaut, “Analysis of
network address shuffling as a moving target defense,” in Proc. IEEE
Int. Conf. Commun. (ICC), 2014, pp. 701–706.

[20] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
moving target defense network protection,” in Proc. IEEE Int. Symp.
World Wireless Mobile Multimedia Netw., 2014, pp. 1–6.

[21] D. C. MacFarland and C. A. Shue, “The SDN shuffle: Creating a
moving-target defense using host-based software-defined networking,”
in Proc. ACM Workshop Moving Target Defense, 2015, pp. 37–41.

[22] D. P. Sharma, D. S. Kim, S. Yoon, H. Lim, J.-H. Cho, and T. J. Moore,
“FRVM: Flexible random virtual IP multiplexing in software-defined
networks,” in Proc. IEEE Int. Conf. Trust Security Privacy Comput.
Commun. IEEE Int. Conf. Big Data Sci. Eng. (TrustCom/BigDataSE),
2018, pp. 579–587.

[23] Y. Wang, Q. Chen, J. Yi, and J. Guo, “U-Tri: Unlinkability through
random identifier for SDN network,” in Proc. ACM Workshop Moving
Target Defense, 2017, pp. 3–15.

[24] Y.-B. Luo, B.-S. Wang, and G.-L. Cai, “Effectiveness of port hopping
as a moving target defense,” in Proc. IEEE Int. Conf. Security Technol.,
2014, pp. 7–10.

[25] W. Peng, F. Li, C.-T. Huang, and X. Zou, “A moving-target defense
strategy for cloud-based services with heterogeneous and dynamic attack
surfaces,” in Proc. IEEE Int. Conf. Commun. (ICC), 2014, pp. 804–809.

[26] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive compatible
moving target defense against VM-colocation attacks in clouds,” in Proc.
IFIP Intl. Inf. Security Conf., 2012, pp. 388–399.

[27] V. Casola, A. De Benedictis, and M. Albanese, “A moving target defense
approach for protecting resource-constrained distributed devices,” in
Proc. IEEE Intl. Conf. Inf. Reuse Integr. (IRI), 2013, pp. 22–29.

[28] S. Vikram, C. Yang, and G. Gu, “NOMAD: Towards non-intrusive
moving-target defense against Web bots,” in Proc. IEEE Conf. Commun.
Netw. Security (CNS), 2013, pp. 55–63.

[29] S. Sengupta, A. Chowdhary, D. Huang, and S. Kambhampati, “Moving
target defense for the placement of intrusion detection systems in
the cloud,” in Proc. Int. Conf. Decis. Game Theory Security, 2018,
pp. 326–345.

[30] S. Achleitner, T. F. La Porta, P. McDaniel, S. Sugrim,
S. V. Krishnamurthy, and R. Chadha, “Deceiving network recon-
naissance using SDN-based virtual topologies,” IEEE Trans. Netw.
Service Manage., vol. 14, no. 4, pp. 1098–1112, Dec. 2017.

[31] J. B. Hong, S. Yoon, H. Lim, and D. S. Kim, “Optimal network reconfig-
uration for software defined networks using shuffle-based online MTD,”
in Proc. IEEE Symp. Rel. Distrib. Syst. (SRDS), 2017, pp. 234–243.

[32] Y. Huang and A. K. Ghosh, “Introducing diversity and uncertainty
to create moving attack surfaces for Web services,” in Moving Target
Defense. Springer, 2011, pp. 131–151.

[33] M. Azab, R. Hassan, and M. Eltoweissy, “ChameleonSoft: A moving
target defense system,” in Proc. IEEE Int. Conf. Collaborative Comput.
Netw. Appl. Worksharing (CollaborateCom), 2011, pp. 241–250.

[34] R. Zhuang, S. Zhang, S. A. DeLoach, X. Ou, and A. Singhal,
“Simulation-based approaches to studying effectiveness of moving-target
network defense,” in Proc. Nat. Symp. Moving Target Res., vol. 246,
2012, pp. 1–12.

[35] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and J. W. Davidson,
“Security through redundant data diversity,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw. FTCS DCC (DSN), 2008, pp. 187–196.

[36] M. Taguinod, A. Doupé, Z. Zhao, and G.-J. Ahn, “Toward a moving
target defense for Web applications,” in Proc. IEEE Int. Conf. Inf. Reuse
Integr., 2015, pp. 510–517.

[37] E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari, “Architecture-
based self-protecting software systems,” in Proc. ACM Conf. Qual.
Softw. Archit., 2013, pp. 33–42.

[38] Y. Li, R. Dai, and J. Zhang, “Morphing communications of cyber-
physical systems towards moving-target defense,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2014, pp. 592–598.

[39] H. Alavizadeh, D. S. Kim, J. B. Hong, and J. Jang-Jaccard, “Effective
security analysis for combinations of MTD techniques on cloud com-
puting (short paper),” in Proc. Int. Conf. Inf. Security Pract. Exp., 2017,
pp. 539–548.

[40] A. Gorbenko, V. Kharchenko, and A. Romanovsky, “Using inherent
service redundancy and diversity to ensure Web services dependabil-
ity,” in Methods, Models and Tools for Fault Tolerance. Springer, 2009,
pp. 324–341.

[41] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: Transparent moving target defense using software defined
networking,” in Proc. ACM SIGCOMM Workshop Hot Top. Softw.
Defined Netw. (HotSDN), 2012, pp. 127–132.

[42] A. Chowdhary, S. Pisharody, and D. Huang, “SDN based scalable MTD
solution in cloud network,” in Proc. ACM Workshop Moving Target
Defense, 2016, pp. 27–36.

[43] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson, and
H. Lim, “Attack graph-based moving target defense in software-
defined networks,” IEEE Trans. Netw. Service Manag., vol. 17, no. 3,
pp. 1653–1668, Sep. 2020.

[44] D. S. Kim, M. Kim, J.-H. Cho, H. Lim, T. J. Moore, and F. F. Nelson,
“Design and performance analysis of software defined networking based
Web services adopting moving target defense,” in Proc. IEEE-IFIP Int.
Conf. Dependable Syst. Netw. Suppl. Vol. (DSN-S), 2020, pp. 43–44.

[45] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. Sunnyvale, CA, USA:
Insecure, 2008. [Online]. Available: https://nmap.org/

[46] P. Marbach, “Priority service and max-min fairness,” in Proc. IEEE
Comput. Commun. Soc., vol. 1, 2002, pp. 266–275.

[47] M. Allalouf and Y. Shavitt, “Maximum flow routing with weighted
max-min fairness,” in Quality of Service in the Emerging Networking
Panorama. Springer, 2004, pp. 278–287.

4846 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

[48] D. Chen and V. Kuehn, “Weighted max-min fairness oriented load-
balancing and clustering for multicast cache-enabled F-RAN,” in Proc.
IEEE Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC), 2016,
pp. 395–399.

[49] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[50] M. Plappert et al., “Parameter space noise for exploration,” 2017,
arXiv:1706.01905.

[51] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network struc-
ture, dynamics, and function using networkx,” in Proc. Python Sci. Conf.
(SciPy), 2008, pp. 11–15.

[52] A. Hill et al. “Stable Baselines.” 2018. [Online]. Available:
https://github.com/hill-a/stable-baselines

[53] Y. Li and D. Pan, “OpenFlow based load balancing for fat-tree networks
with multipath support,” in Proc. Int. Conf. Commun. (ICC), Budapest,
Hungary, 2013, pp. 1–5.

[54] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
BGP: The role of topology growth,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 8, pp. 1250–1261, Oct. 2010.

Sunghwan Kim (Member, IEEE) received the
B.S. degree in computer science and engineer-
ing from Dongguk University, Seoul, Republic of
Korea, in 2015, and the M.S. and Ph.D. degrees
in electrical engineering and computer science
from Gwangju Institute of Science and Technology,
Gwangju, Republic of Korea, in 2021. He has been
a Staff Engineer with Samsung Research, Samsung
Electronics, Seoul, since September 2021. His
research interests include communications system,
software-defined networking, artificial intelligence,

in-network computing, and moving target defense.

Seunghyun Yoon (Member, IEEE) received the
B.S. degree in computer science from Handong
Global University, Pohang, Republic of Korea, in
2016, and the Ph.D. degree in electrical engineer-
ing and computer science from Gwangju Institute
of Science and Technology, Gwangju, Republic of
Korea, in 2021. He has been a Senior Researcher
with the Korea National Engineering Technology
Center, Korea Institute of Industrial Technology
since April 2021. From August 2019 to February
2020, he was a Visiting Scholar with the Department

of Computer Science, Virginia Tech. His research interests include software-
defined networking, network resource allocation and optimization, deep rein-
forcement learning, cybersecurity for various network domains, and moving
target defense.

Jin-Hee Cho (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from Virginia Tech in 2004 and 2008, respectively,
where he has been an Associate Professor with the
Department of Computer Science since August 2018
and the Director of the Trustworthy Cyberspace Lab.
Prior to joining the Virginia Tech, she worked as a
Computer Scientist with the U.S. Army Research
Laboratory, Adelphi, MD, USA, since 2009. He has
published over 120 peer-reviewed technical papers in
leading journals and conferences in the areas of trust

management, cybersecurity, metrics and measurements, network performance
analysis, resource allocation, agent-based modeling, uncertainty reasoning
and analysis, information fusion/credibility, and social network analysis. She
received the best paper awards in IEEE TrustCom’2009, BRIMS’2013, IEEE
GLOBECOM’2017, 2017 ARL’s publication award, and IEEE CogSima 2018.
She is a winner of the 2015 IEEE Communications Society William R. Bennett
Prize in the Field of Communications Networking. In 2016, he was selected
for the 2013 Presidential Early Career Award for Scientists and Engineers,
which is the highest honor bestowed by the U.S. government on outstand-
ing scientists and engineers in the early stages of their independent research
careers. She is a member of ACM.

Dong Seong Kim (Senior Member, IEEE) received
the Ph.D. degree from Korea Aerospace University
in February 2008. He has been an Associate
Professor of Cybersecurity with The University of
Queensland, Australia, since January 2019. He was
a Senior Lecturer/Lecturer of Cybersecurity with
the University of Canterbury from August 2011
to December 2018. He was a Visiting Scholar
with The University of Maryland, College Park,
in 2007. From June 2008 to July 2011, he was a
Postdoctoral Researcher with Duke University. His

research interests are in automated cybersecurity modeling and analysis for the
Internet of Things, cloud computing, and moving target defense. He was the
General Co-Chair of ACISP2019 and the General Chair of IEEE PRDC 2017.
He served as a Program Co-Chair of IEEE TrustCom2019, IEEE ICIOT2019,
ATIS2017, GraMsec2015, IEEE DASC2015 and Program Committee Member
of international conferences, including IFIP/IEEE DSN, ISSRE, SRDS, and
ICC CISS, respectively.

Terrence J. Moore (Member, IEEE) received
the B.S. and M.A. degrees in mathematics from
American University in 1998 and 2000, respec-
tively, and the Ph.D. degree in mathematics from
the University of Maryland, College Park, in 2010.
He is currently a Researcher with the Network
Science Division, U.S. Army Research Laboratory.
His research interests include sampling theory, con-
strained statistical inference, stochastic optimization,
network security, geometric and topological applica-
tions in networks, and network science.

Frederica Free-Nelson is a Researcher and the
Program Lead with the U.S. Army Research
Laboratory (ARL), Adelphi, MD, USA, where she
leads research on machine learning and intru-
sion detection methods and techniques to promote
cyber resilience and foster research on autonomous
active cyber defense. She manages and negotiates
the Research and Project Agreements for ARL
between the network security branch and Academia
or International Organizations. She is the lead for the
Robust low-level cyber-attack resilience for Military

Defense (ROLLCAGE) program working in collaboration with Army Tank
Automotive Research, Development and Engineering Center, Office of Naval
Research, and Air force Research Laboratory to build a cohesive in-
vehicular resilient system for defense against sophisticated enemy malware
that strives to blend in with normal system activities. She has over 20
years’ combined experience in Cybersecurity Research, Software Engineering,
and Program Management within the DoD and other federal services to
include the Federal Bureau of Investigation and the Department of Justice.
She has expertise in leading projects to success from conception to exe-
cution and delivery/transfer. She currently serves as the Chairperson to
the International Science Technology (IST-163) Panel – NATO Science &
Technology Organization on the topic of Deep Machine Learning for military
cyber defense. She is a participant in the Army Education Outreach Program
as an ambassador and a virtual judge for the eCybermission program.

Hyuk Lim (Member, IEEE) received the B.S., M.S.,
and Ph.D. degrees from the School of Electrical
Engineering and Computer Science, Seoul National
University, Seoul, Republic of Korea, in 1996,
1998, and 2003, respectively. From 2003 to 2006,
he was a Postdoctoral Research Associate with
the Department of Computer Science, University
of Illinois at Urbana–Champaign, Champaign, IL,
USA. He is currently a Full Professor with the
AI Graduate School and jointly with the School
of Electrical Engineering and Computer Science,

Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
His research interests include wired and wireless networks, cyber-security,
and artificial intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

