Universidad

ucdm | Carloslil -Archivo
de Madrid

This is a postprint/accepted version of the following published document:

Reviriego, P., et al. Adaptive one memory access bloom filters. In: |EEE
Transactions on Network and Service Management, 19(2), June 2022, Pp.
848-859

DOI: https://doi.org/10.1109/TNSM.2022.3145436

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://doi.org/10.1109/TNSM.2022.3145436
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Adaptive One Memory Access Bloom Filters

Pedro Reviriegol, Alfonso Sanchez-Macian?, Ori Rottenstreich® and David Larrabeiti!

Abstract—Bloom filters are widely used to perform fast ap-
proximate membership checking in networking applications. The
main limitation of Bloom filters is that they suffer from false
positives that can only be reduced by using more memory.
Recently, exploiting the fact that in many cases a few elements are
queried many times on the filter, has been proposed to increase
accuracy in other filters with a similar functionality. The idea is
that once an element returns a false positive, the filter is adapted
so that future queries for that element will not return a false
positive. However, to the best of our knowledge, so far no scheme
has been presented to support dynamic adaptation in Bloom
filters. In this paper, one memory access Bloom filters are used
to design an adaptation scheme that can effectively remove false
positives while completing all queries in a single memory access.
The proposed filters are well suited for scenarios on which the
number of memory bits per element is low and thus complement
the existing adaptive cuckoo filters that are not efficient in that
case. The evaluation results using packet traces show that the
proposed adaptive Bloom filters can significantly reduce the false
positive rate in networking applications with the single memory
access. In particular, when using as few as four bits per element,
false positive rates below 5% are achieved.

Index Terms—Computer networks; Data Structures; Bloom
Filter.

I. INTRODUCTION

In many networking applications, approximate membership
checking is used to quickly determine if further processing is
needed for a data element or if it can be safely discarded. This
initial checking can significantly improve performance when
most of the elements do not need full processing. For example,
before accessing an element stored in a slow external memory,
a fast false-negative-free check using a faster memory can
speed up the system and reduce bandwidth requirements for
the external memory. This fast checking has been traditionally
implemented with Bloom filters [1] that are commonly used
in networking systems [2], [3]. More recently, the cuckoo
filter [4], [5] has also been widely adopted in a similar manner,
offering some advantages over Bloom filters like the support of
deletions or a lower false positive probability when the number

This work was supported by the ACHILLES project PID2019-104207RB-
100 and the Go2Edge network RED2018-102585-T funded by the Spanish
Agencia Estatal de Investigacion (AEI) 10.13039/501100011033 and by the
Madrid Community research project TAPIR-CM grant no. P2018/TCS-4496.

1Pedro Reviriego and David Larrabeiti are with Universidad
Carlos III de Madrid, Leganés 28911, Madrid, Spain. email:
revirieg,dlarra@it.uc3m.es

2Alfonso Sanchez-Macian is with ARIES Research
Universidad Antonio de Nebrija, 28040, Madrid, Spain.
asanchep@nebrija.es

30ri Rottenstreich is with the Taub Department of Computer Science and
the Viterbi Department of Electrical Engineering, Technion, Israel. email:
or@technion.ac.il

Center,
email:

of memory bits per element stored in the filter is large [6].
Cuckoo filters have, however, also disadvantages, for example
in terms of a relatively high false positive rate when occupancy
is low and most cells are empty [6] and in lookup speed [7].
In fact, Bloom filters can be implemented in such a way that
lookups only require one memory access [8], whereas cuckoo
filters require two memory accesses for negative lookups that
would be the majority in practical scenarios. Additionally,
cuckoo filters can suffer from insertion failures at low occu-
pancy when the number of memory bits per element is below
six, which limits their use for memory constrained applications
[4]. For Bloom filters, constructions that completely avoid
false positives have been recently suggested but they imply
hard restrictions on the size of the represented set and the size
of the universe from which elements are taken [9], [10].

An interesting observation is that, in many cases, the same
elements are repeatedly queried in the filter. For example,
when monitoring a small fraction of the flows on a link, a
filter can be used to quickly determine if a packet belongs
to one of the flows being monitored. In this case, elements
correspond to flows and thus each element (flow) is queried
for each packet in the flow and flow distribution is biased
[11]. When the frequency or popularity of the elements is
known in advance, the number of hash functions used for
insertions and queries can be set according to the likelihood
of the element to reduce the false positive rate [12], [13].
However, this approach requires additional offline information
on the elements that is not commonly available or easy to
obtain in networking applications. For example, when the filter
is used to process flows of packets in a network and each
flow can have potentially many packets but the number of
packets of each flow is not known in advance. This opens
an opportunity to adapt the filter when a false positive is
detected so that subsequent lookups for the same element
do not return a positive [14]. This can significantly reduce
the number of false positives for workloads with repeated
elements. The first practical implementation of adaptive filters
was recently presented in [15] and extended cuckoo filters
to support adaptation. The evaluation results demonstrated a
large reduction in the number of false positives, for example
when the filters are used to process network traffic. However,
adaptive cuckoo filters have some limitations and drawbacks
and thus it would be beneficial to have alternative schemes to
implement adaptive filters.

To the best of our knowledge, so far no mechanism has been
proposed to support adaptation in Bloom filters, reacting to
false positives to eliminate them. In this paper, such a scheme

is presented and evaluated. In more detail, the main benefits
of the proposed scheme are:

1) To support adaptation in Bloom filters.

2) To implement adaptation with only one external memory
access.

3) To reduce the false positive rate in practical scenarios,
specially when the number of memory bits per element
is low.

4) To complete all lookups in one memory access.

We evaluated the proposed scheme and the results show
that adaptive Bloom filters can effectively reduce the number
of false positives while completing all lookups in a single
memory access. This makes them attractive for high-speed
networking applications for which accessing the memory can
be a bottleneck. Adaptive Bloom filters are of interest as they
can provide better speed than cuckoo filters and achieve lower
false positive rates for some settings.

The rest of the paper is organized as follows. Section
IT covers the preliminaries on Bloom filters and adaptation
on filters. The proposed Adaptive Bloom Filters (ABFs) are
presented in section III and analyzed theoretically in section
IV. The performance of the ABFs is evaluated in section V
both for synthetic workloads and for real packet traces to
illustrate the benefits of the proposed adaptive Bloom filters.
Section VI discusses how the proposed ABFs can be extended
and generalized. Finally, the paper ends with the conclusion
and ideas for future work in section VIIL.

II. PRELIMINARIES

A Bloom filter is formed by a bit array of size m to which
elements are mapped using & hash functions g1 (z), ..., gx(z)
computed for an element x as shown in Figure 1. To insert
an element z into the filter, positions g;(z) are set to one in
the array. Conversely, to check if an element has been inserted
into the filter, positions g;(x) are read and when they are all
equal to one, a positive is obtained as a response. Otherwise,
the element is for sure not in the filter and the response is
negative. We shall call the elements not in the set of elements
represented by the Bloom filter negative elements.

By construction, Bloom filters suffer from false positives
as the positions an element maps to may have been set
to one upon inserting other elements. Two parameters are
commonly used to measure false positives: the false positive
probability and the false positive rate. The first one gives
the probability that a randomly chosen element not in the
set yields a false positive. Instead, the second gives the
fraction of false positives for a given collection of queries
for negative elements. In expectation over uniformly selected
elements, the false-positive rate should be equal to the false-
positive probability. However, in many cases, the elements
queried are not randomly chosen and the same elements may
appear multiple times. In that case, if elements that yield false
positives are queried many times, then the false-positive rate
may be much higher than the false-positive probability.

m bits array B[j]
(initially set to 0)

iTl
iTi w
1 bit
Insertion A ! e
if B[g(x)] = 0 o
set Bgi(x)] =1 1]
0 1 w
X Il
P 1 bits
o
Lookup —
If any B[g{x)] =0
return false au(x) ==
else ii
return true o)} w
—| bits
L
| 1
[

Fig. 1: Illustration of a Bloom filter. Each element is first mapped
to k positions using hash functions g;(x) and those bits are set
(insertion) or checked (lookup).

The False Positive Probability (FPP) of a Bloom filter
depends on the number of elements stored in the filter n, its
size m and the number of hash functions k. The FPP can be
approximated by:

— 1\ kN E
FPP ~ (1 — (L>) . 1)
m

When the size of the filter m is large, this value can be
approximated by the simpler expression:

k-n

FPP ~ (1—6_T)k.)

Instead, when m is small (e.g., less than a few hundred
bits) more complex equations are needed to obtain an accurate
estimate [16].

The traditional bit-based Bloom filters just described have
some drawbacks when implemented in modern memory sys-
tems. The first one is that memories are in most cases larger
than one bit wide. For example, most modern processors use
words of 64 bits. This implies reading many additional bits that
are not needed to check a single bit thus wasting power and
memory bandwidth. A second issue is that in the worst case,
an operation on the filter requires up to & memory accesses.

To address those issues, block Bloom filters were proposed
in [17]. In a block Bloom filter, a first hash function h(x)
is used to select a block of bits, and then a group of hash
functions g;(x) is used to select bits within that block. This
ensures that the bits read are physically close and thus can
be accessed faster, for example when the block size matches
the cache line size. The concept of block Bloom filters was
later optimized in [8] by mapping each block to exactly
one memory word. This means that all query operations can

TABLE I: Summary of main notations

Symbol Meaning
k number of hash functions
M number of words in the filter
w number of bits per word
N number of elements inserted in the filter
n; number of elements inserted in the ¢ word of the filter
A number of negative elements queried in the filter
a; number of negative elements queried in the 32 word of the filter
h(zx) word selection hash function
gi(x) first set of bit selection hash functions
fi(z) second set of bit selection hash functions
s number of selector bits
S number of sets of bit selection hash functions
d decimation rate for adaptation
Z; number of elements that are false positive on the i¢” set of bit selection hash functions
ABF array of M words that stores the filter
Bloomia array of M words that stores the external Bloom-1 filter for set g; ()
Bloom array of M words that stores the external Bloom-1 filter for set f;(z)
Word of w bits setting one of the bits to zero to remove a false positive can
— o - create false negatives [18]. Instead, in cuckoo filters, the fact
!
00|01} - [1]0) that each element is associated with a fingerprint in the filter
hix)= 2 lol1lolo]| - [1]0] makes adaptation simpler as only that fingerprint needs to be
/ - r Y changed and this can be done without creating false negatives
Query for for other elements. Indeed, the adaptive cuckoo filters [15]
element x gi(x) =2 " galx) = w-1 have shown how adaptation can be efficiently implemented in
cuckoo filters. On the other hand, for Bloom filters, performing
jpEmmmmmom oo —ooo oo ‘ a simple filter modification to remove false positives without
1]0 L 0 creating false negatives is not straightforward. In the next
i 0/1/0 | section, it is shown that, by using Bloom-1 word based filters,
SN I S S

Fig. 2: Nlustration of a Bloom-1 filter, each element is first mapped
to a word with h(z) and then k = 2 bits in indices gi(z), g2(x) in
that word are set (insertion) or checked (lookup).

be completed in one memory access. This filter, denoted as
Bloom-1 is illustrated in Figure 2. The concept of word-based
Bloom filters can also be extended by mapping to more than
one word, to a bounded number of words. In more detail, word
selection hash functions hi(x), ..., h;(z) are used to select j
words and in each, a set of bit selection hash functions is
used. These are known as Bloom-j filters. However, in that
case, some operations including positive lookups require j
memory accesses, making it less attractive for high speed
implementations.

In many applications, the access pattern is biased. This is,
for example, the case in packet processing when elements
are flows and each flow is queried for each of its packets.
A key observation is that, in that case, the number of false
positives can be reduced by detecting elements that are false
positives and changing the filter to avoid further positives for
those elements. This can be done, for example, by changing
the fingerprint that creates a false positive for filters that rely
on fingerprints [14]. The change or adaptation of the filter has
to be simple so that its cost is negligible compared to the
benefit of the reduction in false positive rate that it provides.
This is not straightforward for Bloom filters as, for example,

adaptation can be implemented efficiently in Bloom filters. The
main notations used in the rest of the paper are summarized
in Table I.

III. ADAPTIVE ONE MEMORY ACCESS BLOOM FILTERS
(ABFs)

This section first discusses the motivation and goals for the
proposed filters and then presents and describes the Adaptive
One Memory Access Bloom Filters.

A. Motivation and Goals

Many networking systems are implemented with ASICs [19]
or FPGAs [20] on which there is a limited amount of on-chip
fast memory and much a larger but slower external memory
[21]. Therefore, we consider systems that have abundant slow
off-chip memory but with limited bandwidth and a small but
faster on-chip memory. In these systems, per packet operations
need to be handled on the fast memory while the slow memory
can be used for operations that are done on a small fraction
of the packets only. The filters are commonly used to reduce
the number of accesses to the external memory [22]. In fact,
in many cases, the filter is an approximate representation of
a full hash table that is stored in the external memory [15]
so that on a positive the full table is checked. This means
that false positives on the filter are detected when checking
the full table as part of the packet processing. This facilitates
adaptation as detecting false positives is needed to trigger

adaptation. Finally, on our target systems lookups are the most
frequent operations as they are done per packet and a system
can process many millions of packets per second. Instead,
insertions or removals are orders of magnitude less frequent
as they only occur when the state of the system changes,
for example when a route is updated in BGP that occurs at
relatively low rate [23]. A similar reasoning applies partly
to packet processing systems that are implemented in servers
with the use of processor caches and an external DRAM. In
that case, the external DRAM is very large but has a high
latency and limited bandwidth and the processor caches are
much faster but smaller [22]. In that scenario, we would like
all the lookups to complete on a single cache line access.

The design of the proposed adaptive one memory access
Bloom filters has several goals:

o Reduce the false positive rate in scenarios where the
memory is scarce so that only eight or fewer memory
bits can be allocated per element.

o Complete all lookup operations in one memory access so
that the maximum number of lookups can be executed
for a given memory bandwidth.

« Have a design as simple as possible on which adaptation
can be performed efficiently.

The combination of these features can make filters attrac-
tive, for example, in high-speed network applications that have
to process hundreds of millions of packets per second posing
a challenge in terms of memory bandwidth [22]. In fact, in
packet processing, typically a few elements are queried many
times and thus adaptation is expected to provide significant
benefits as shown in [15].

B. Filter Design and Description

To achieve those goals, we propose to extend the Bloom-
1 filter presented in [8] to support adaptation. The overall
structure of the proposed adaptive Bloom filter is illustrated in
Figure 3. To support adaptation while minimizing the adapta-
tion cost, two groups of k hash functions: g;(x) and f;(x) are
used to determine the bits in the word to set upon insertion
(or to check upon a lookup). Then, two Bloom-1 filters are
constructed using the same word selection hash function h(x)
and the two groups of bit selection hash functions g;(x), f;(x).
These are stored in the external slower memory. The adaptive
Bloom filter is located in the fast memory and for each word
it uses the content of one of the external filters. The group
of bit selection hash functions g;(x),f;(x) is determined by a
selector bit that is added to each word of the adaptive Bloom
filter. Then, all the bits in positions g;(x) (respectively, f;(z))
in the word should be one to obtain a positive response when
the selector bit is zero (respectively, one). It is important to
note that the critical resource in the target implementation is
the fast memory while the slow memory is abundant. This is
indeed the case in networking ASICs for which fast on-chip
memory is constrained as discussed before [19].

Adaptation is performed when a false positive is observed
upon the query of some element x. This is the case when the

filter returns a positive indication but the element cannot be
found in the checking of the full table. Then, the selector bit
in word h(x) is read. If the bit has a value of zero, word
h(zx) from the external Bloom-1 filter with functions f;(x) is
queried to check if x is a negative. If so, the contents of the
Bloom-1 filter with functions f;(z) for that word are written
in the adaptive Bloom filter to replace word h(x), setting
the selector bit to one. Then, if element x is queried again,
it will return a negative. Instead, when x returns a positive
on the external Bloom-1 filter with functions f;(x), the false
positive cannot be removed. This however will occur with low
probability as the false positive probability of each Bloom-1
is low. Similarly, if the selector bit was set to one, the check
would be done on the external Bloom-1 filter with functions
gi(x). As can be observed, the adaptation process is simple
and requires only one access to the external memory. For
applications on which the full table is not stored on the external
memory, it is also possible to detect most false positives by
checking the alternative Bloom-1 on the external memory
on a positive. If a negative is obtained on the alternative
Bloom-1, a false positive is detected. To limit the amount of
external memory accesses this can be done for a fraction of
the positives only.

The selector bits are initialized to zero and the word contents
to those of the first set of hash functions g;(z). The operations
on the adaptive Bloom filter are more formally described in
Algorithms 1, 2 and 3. It can be seen that the lookup or check
only requires to access one word and thus only one memory
access. Instead, insertions and adaptations are slightly more
complex. This should not be an issue as the most frequent
operation of the filters in our target systems are lookups as
discussed before.

The lookup is described in Algorithm 1. It basically reads
the corresponding word in the ABF, extracts the selector bit
and based on its value applies one of the groups of bit selection
hash functions to determine the bits to check. Compared with
the lookup in a Bloom-1 filter, the complexity is similar and
the number of memory accesses is the same, just one.

Algorithm 1 Procedure ABF: Element Query x

W = ABFh(x)].
if Wiselectorbit] == 0 then
for : =1to k do
if Wlgi(z)] == 0 then
return negative;
end if
end for
return positive;
else
for : =1 to k do
if W{[fi(z)] == 0 then
return negative;
end if
end for
return positive;
end if

Algorithm 2 describes the insertion procedure. In this case,

Fast memory

Slow memory
Select ABF
elector .
bit o, JyAofwhis, Bloom;g
n i 00 1 1 i words
h(x)=2 / Tolilolol - Tilol generated
Query for _—| ‘“7“'_:"’“ R ‘ with g;
element x g:(x) =2 ""gz(x) - w-1
fily) =1 fiy)=4 Bloom;,
h(y)= M-1 N words
Query for ____| . TR A J
element y \> 1|0{1{0] e | 0| gem_erate
o| lo[1]o]o] - 1| with f;

Fig. 3: Tllustration of the proposed adaptive Bloom filter. Each word has a bit to select the hash functions to use. When the selector is zero

use g;(x) and when it is one use f;(z).

in addition to the adaptive Bloom filter, both external Bloom-
1 filters need to be updated requiring two additional external
memory accesses for read and write. As insertions are typically
orders of magnitude less frequent than lookups in networking
applications [23], the impact of those additional accesses on
the memory bandwidth would be negligible.

Algorithm 2 Procedure ABF: Element Insertion x

W = ABF[h(z)].
WG = Bloomig[h(z)].
W F = Bloomir[h(z)].
for i =1 to k do
if Wiselectorbit] == 0 then
Wlgi(z)] = 1;
else
W) = 1;
end if
WG[gi(z)] = 1;
WF[fi(z)] =1
end for
ABFh(z)] =W.
Bloomag|h
Bloomir[h

Finally, the adaptation procedure is presented in Algorithm
3. First, the word of the filter that has suffered the false
positive, ABF[h(x)] is read. If the selector bit is zero (one),
that means that the first (second) set of bit selection hash
functions g;(x) (f;(x)) is being used so adaptation is tried
with the second (first) set f;(x) (gi(z)). To do so, the relevant
word Bloom p[h(x)] (Bloomig[h(z)]) is read and we check
that = is a negative on that word. If that is the case, then
word ABF[h(z)] in the filter is written with the corresponding
word Bloomiplh(x)] (Bloomig[h(x)]) and the selector bit is
set accordingly. In this case, only one external memory read
access is needed plus a write to the adaptive Bloom filter when
adaptation succeeds. As adaptation is only triggered when a
false positive occurs and those should be a small fraction of the
lookups in practical configurations, the overhead introduced by
adaptations should be low.

Algorithm 3 Procedure ABF: Element Adaptation =

W = ABFh(x)].
if Wiselectorbit] == 0 then
W F = Bloomir[h(z)].
for : =1 to k do
if WF[fi(z)] == 0 then
ABFh(z)] = WF with selector bit = 1.
return true;
end if
end for
return false;
else
WG = Bloomig[h(z)].
for i =1 to k do
if WG[gi(x)] == 0 then
ABFh(z)] = WG with selector bit = 0.
return true;
end if
end for
return false;
end if

The adaptation capability of the proposed adaptive Bloom
filter can be improved by using more than two sets of bit
selecting hash functions. For example, two selector bits can
be used so one of four sets of hash functions can be chosen
to eliminate false positives. In general s selector bits can
be used to support up to S = 2° sets of bit selection
hash functions. The extension of the algorithms for insertion,
lookup, and adaptation presented for s = 1 to the general case
is straightforward. This extension requires s selection bits per
word on the adaptive Bloom filter and 2° Bloom-1 filters in
the slower memory. Therefore, it should only be used when
it reduces the false positive rate significantly over the use of
two sets. In section V, adaptive Bloom filters with more than
two sets of bit selecting hash functions will be evaluated to
show when they provide significant benefits.

Finally, the use of the s selector bits reduces the fast
memory available for the filter by a ratio > < 1. For example,

for w = 64 and s = 1,2,3 the memory is reduced by

approximately 1.6%, 3.1% and 4.7% respectively. The impact
of those reductions on the false positive rate are negligible
compared to the reduction on the false positive rate that
the ABF provides for skewed traffic as will be seen in the
experimental evaluation (Section V). Indeed, reducing the false
positive rate by a factor of two already requires 1.44 bits!
per element stored in the filter and typically the number of
elements is at least eight.

IV. ANALYSIS

In this section, analytical expressions for the false positive
rate of the proposed adaptive Bloom filters are derived for
the case of two sets of bit selection hash functions when the
elements appear with the same probability. The extension of
the expressions for a larger number of sets of bit selection
hash functions is straightforward.

Before starting the analysis it is worth to discuss a few
examples to illustrate how adaptation can reduce the false
positive rate. Let us consider two elements x, x5 that map to
the same block of the ABF being false positives on the g; and
fi groups of bits selection hash functions respectively. Then if
the elements are queried multiple times, the ABF would adapt
back and forth from one group of hash functions to the other.
It may seem that this would result in a larger number of false
positives. Let us consider the following sequence of queries
r1,T1,%1,%1, T2, T1,T1,21,21,T1, 1. Here, a non adaptive
filter would suffer ten false positives, one per each query to
z1. The ABF would adapt on the first query, then again on
the query for x5 and a third time on the following query for
x1, so having only three false positives.

This illustrates how even in this scenario on which we have
false positive elements on both groups of bits selection hash
functions, the ABF can exploit the skew in the number of
queries per element to reduce the false positive rate. This is
of interest in networking applications as traffic tends to be
highly skewed. Finally, the worst case would be an element
x1 that is a false positive in both groups of bits selection hash
functions. In this case the ABF would not be able to reduce the
false positives, however these would be only a small fraction
of the original false positives.

Let us start by considering the false positive rate for one
of the words in the proposed adaptive Bloom filter. In more
detail, let us assume that the word has w bits (in addition to
the selector bit), that k& bit selection functions are used, and
that n elements have been inserted on the word. Since w is
small, the traditional approximation for the false positive rate
is not accurate and more accurate expressions have to be used.
In particular, the false positive rate f(n,w) can be estimated
using the following formula presented in [16]:

‘kn

w! v i—d gk gk
f(nvw)%m'zz:(—l) ! 3)

P (w—9)l51(— 4)!

IThis is the number of bits needed to reduce the false positive rate of a
Bloom filter by 2x in its optimal configuration [3].

Adaptation will be used only when the first set of bit se-
lecting hash functions g;(x) exhibit false positives. Following
[15], the number of false positives on a word to which a
negative elements are queried can be modeled as a binomial
distribution with a tries each with probability of success
f(n,w), whose probability distribution function is denoted in
the following as b(a, f, x). Therefore, the probability that the
first set of bit selecting hash functions has false positives can
be approximated by 1 — b(a, f(n,w),0). When that occurs,
there are two possibilities: 1) the second set of hash functions
has no false positives and 2) the second set of hash functions
does have false positives. In the first case, after the first positive
adaptation is performed no further positives occur. Instead, in
the second case, the word will keep adapting between the two
sets of hash functions.

The first case occurs with a probability approximated as:

Py~ (1—"0,)-bg 4)

for b, = b(a, f(n,w),0).

Assuming for now that all a elements appear ¢t > 1 times,
in this scenario the word will experience a false positive rate
of F1 = ﬁ compared to at least % of a traditional Bloom
filter.

For the second case, the number of elements that create
false positives on each set of hash functions are denoted as
Z1 > 0 and Zy > 0, respectively. Then, the probability that
Z1, Zo false positives are observed on each configuration can
be approximated by:

Py(Zy,Z3) = b(a, f(n,w), Z1) - b(a, f(n,w), Z2) (5)

In that scenario, the word will loop between the two sets of
hash functions as false positives occur. Therefore, it will stay
in the first state on average Zil lookups and on the second
state - before going back to the first state. This gives a false
positive rate of:

2
Foy(Zh,22) = == (©)
o %
It can be seen that the false positive rate will be low when
either Z; or Z5 are small.

In deriving this equation, it has been assumed that all
the a elements appear with the same probability. In many
applications, that is not the case and the frequency of elements
follows a heavy tailed distribution like for example a Pareto
or a Zipf distribution [14]. In that case, the fraction of false
positives when Z; elements are false positives would be given
by the sum of the frequencies of those Z; elements. This
corresponds to a sum of heavy tailed distributions that has
been shown to still have a skewed distribution [24]. This would
tend to make adaptation more effective as will be seen in the
evaluation results for packet traces that are heavily skewed
presented in the next section.

Finally, combining the previous equations, the false positive
rate for the word can be estimated by:

F=~P I+ Z Py(Z1,Z2) - Fo(Z1,Z2). (1)
Z1,Z2>0

The first term corresponds to the first case on which after the
first adaptation there are no further false positives. The second
term corresponds to the case on which there are false positives
on both states and adaptation keeps transitioning between the
two states. The adaptation will be able to reduce the false
positive rate when Z; is larger than Zs. Instead when Z5 is
larger than Z; adaptation would increase the false positive
rate. However, on average adaptation would reduce the false
positive rate as the benefits of the first case are larger than
the losses introduced by the second case. This is due to the
harmonic averaging done in equation (6). Therefore, the larger
the differences between Z; and Zs, the greater the benefits of
adaptation. These differences will tend to be larger when a
is small. For the more general case of non uniform element
frequencies, the differences can still be significant when a is
large as the sum of heavy tailed distributions tends to still be
skewed as discussed before.

To obtain the false positive rate for the entire filter with
M words, the false positive rates of all its words need to
be combined. Those false positive rates would be in general
different as the number of elements stored (queried) to each
word n; (a;) is different. As discussed in [8], for a filter with
M words that store N elements, the probability of storing n;
elements is given by:

N 1\ 7 1 \N—-n; N 1\N
Plni) = <n) () G = (n) (37) ®
The same expression can be used for the probability of

mapping a; elements to a word when A elements are queried
in the entire filter:

A 1\ 1\A-n A 1\A4

o= (1) G G = () () o

(a:) <a) M M o) \az) @

Finally, putting all together and taking into account that the

weight of each word towards the false positive rate depends

on the ratio of a; to the average number of negatives per word
% we obtain:

; - M

A

FPR~ Z P(n;) -

Mg,

P(al) F(nz,al) (10)

This expression approximates the average false positive rate
of a filter. In deriving the equation, it has been assumed that
the false positive probability of a w bit word that stores n
elements is given by f(n,w). This is the expected probability
but when w is small as in our case, each instance of such a
word will have a probability that can deviate from that value.
That would benefit adaptation as it will tend to stay more
time in the word instance that has the lowest false positive

probability. Therefore, the approximation given by equation
(10) tends to be larger than the average false positive rate of the
filter. Finally, since in practical settings, filters are composed
of many words, the observed false positive rate should be close
to the average. To extend the approximation to the general case
of S sets of bit selection hash functions, the same derivation
can be used but having 2° states instead of two states on which
we have Z; elements that have false positives.

A potential issue of the proposed adaptive Bloom filters
is the cost of adaptations. Each adaptation requires to access
the alternative Bloom filter word on the external memory and
write it on the fast memory. Let us consider our target system
in which the filter is used to reduce the number of accesses to
the full table of elements that is stored on the external memory.
Then, a false positive would typically require several external
memory accesses depending on the type of hash table used to
store the elements. Additionally, checking each element would
also consume more memory bandwidth than reading a Bloom
filter block. For example, when elements are [Pv4 5-tuples they
have more than 100 bits and close to 300 for IPv6 so much
larger than a 64 bit Bloom filter word. Therefore, the external
memory access for adaptation would have a much lower cost
than that of a false positive. Additionally, the previous analysis
suggests that when t is sufficiently large, the false positive
rate could be similar if adaptation is done only each d false
positives instead of on each false positive. In more detail, in
equation (7), only the first term would change when adapting
each d false positives while the second would remain the
same. That is, when there are false positives in both states,
the adaptation speed should not impact the false positive rate
because regardless of the adaptation speed, the filter will stay
on each state the same fraction of the time. Instead for the
case of no false positives in the second state, the false positive
rate would increase by a factor of d. Therefore, the impact of
reducing the adaptation speed would depend on the number of
times that elements appear and on the relative importance of
the two terms of equation (7). In the next section, this will be
evaluated in one of the simulation experiments. Finally, it is
important to bear in mind that adaptations are only done when
false positives occur and thus would be much less frequent
than lookups in all cases.

V. EXPERIMENTAL EVALUATION

The proposed adaptive Bloom filters have been implemented
in Python®. For simplicity, in the implementation, adaptation
is always done without checking if the new set of bit selecting
hash functions eliminates the false positive. This should have
a minor impact as the false positive rate is low and thus most
adaptations would indeed eliminate the false positive. In any
case, checking if adaptations remove the false positive would
result in better performance for the proposed filters when S is
larger than two, so the results presented in the following are
actually a worst case. To compare filters that use exactly the
same amount of fast memory, the size of the filter is set to w

2The code is available at https:/github.com/amacian/ABF

bits for the Bloom-1 filter and to w — s for the ABF. As will be
shown later despite this small reduction in filter size, the ABF
is still able to reduce the false positive rate with adaptation.

The code has been used to evaluate the performance of the
proposed adaptive Bloom filters in different scenarios. The
main goals are to first check that the result match the analytical
expressions obtained in section IV for synthetic workloads and
then to evaluate the benefits of the proposed filters in a real use
case. In the first set of experiments, synthetic workloads are
used and the simulation results are compared with those of the
theoretical model presented in section IV. Then, in a second
set of experiments, the performance of the filters is evaluated
using real packet traces to illustrate the potential benefits of
the proposed filter in practical scenarios. Since the proposed
filters complete all lookups in one memory access, the main
reference for comparison are Bloom-1 filters that are the only
ones that provide the same feature. Additionally, comparisons
are also made with adaptive cuckoo filters to assess the benefits
of adaptation. In all the comparisons, the same amount of fast
memory is allocated to the different filters considered to make
the comparison fair.

A. Synthetic workloads

To evaluate the proposed filters with synthetic workloads,
first, N elements are generated and inserted in the filter.
Then, A negative elements are generated and finally, A - ¢
lookups are performed taking one element randomly from the
A negative elements with all having the same probability of
being selected. This emulates a workload on which elements
are repeated and all have the same probability of occurring.
This is the same as assumed in the derivation of the theoretical
model. The filter parameters are M = 1024 words each having
w = 64 — s bits and the results are the average over 10 runs.

In the first experiment, N = 8 - M elements are inserted
in the filter corresponding to %, so eight bits per element.
The number of negatives is set to A = N,2N,3N,...,10N
giving ratios of % = 1,2,3...,10. Finally, values of t = 10
and k = 3,4,5 were tested. The results are shown in Figure
4. The value of k that provides the lowest false positive rate
is k = 4 which is lower than the one for a traditional Bloom
filter, this is due to the fact that in a Bloom-1 filter, words to
which many elements map tend to degrade the false positive
rate of the entire filter and a lower k reduces the false positive
rate of those words. It can be observed that the proposed
filters are only able to reduce the false positive rate when the
% ratio is small. In fact, the false positive rate for both the
traditional Bloom-1 and the proposed ABF are significantly
larger than those of the cuckoo filter and the adaptive cuckoo
filter respectively [15]. This can be expected as the traditional
Bloom filter has a larger false positive probability than the
cuckoo filter in this configuration. In fact, the Bloom-1 has
worse false positive rate than traditional Bloom filters in
exchange for completing all lookups in a single memory
access. Finally, the theoretical and simulation results are very
similar in all cases which suggests that the theoretical model

can be used to estimate the false positive rate of adaptive
Bloom filters when all elements appear the same number of
times.

As discussed in [4], the cuckoo filter cannot reduce the
number of fingerprint bits below six without impacting the
maximum occupancy that can be achieved and thus it is of
interest to evaluate the proposed filters for lower bits per
element. In the second experiment, the number of elements
in the filter was increased to N = 12 - M, so fewer than
6 bits per element and the same configurations were tested.
The results are summarized in Figure 5. It can be seen that
the proposed adaptive Bloom filters are still able to reduce the
false positive rate for low % ratios. This suggests that adaptive
Bloom filters can be useful when the number of memory bits
per elements is low.

B. Packet traces

The synthetic workloads used in the first experiments are
actually a worst case of repetitions for adaptive filters as noted
in [15]. In many applications, the frequency of the elements
is different, and a few elements account for many of the
lookups. This is, for example, the case in network traffic
where a few flows have many packets and the rest have just
a few [25]. Intuitively, this is better for adaptation as false
positives on flows with many packets can be removed by
adaptation. The performance of the proposed adaptive Bloom
filter has been evaluated using packet traces from high speed
Internet links®. The traces correspond to one minute of traffic
containing millions of packets and the number of packets per
flow is highly skewed. This is shown in Figure 6 that presents
the number of flows having 1-10,11-100,101-1000 and 1001-
10000 packets in each of the traces. It can be observed that
most of the flows have only a few packets but there are a few
that have many packets. Removing false positives on those
flows with the high number of packets is the focus of the
suggested adaptation.

In the simulations, for each trace, N randomly selected
elements have been added to the filter and the false positive
rate when performing a lookup for each packet in the trace
has been measured. This would correspond to the sampling
of N flows on the link. The experiment has been done for
N = 8M,12M,16M that correspond approximately to 8,5
and 4 bits per element and different values of k. Ten different
random selections of the N elements inserted in the filter
have been simulated and the average value is reported. In
theses experiments, different values of S were also tested to
evaluate the potential benefits of using more than two sets of
bit selection hash functions.

The results are presented in Figures 7, 8, 9 for N =
8M,12M,16 M. The simulation results for the Bloom-1 are
also included as well as the theoretical estimate of their false

3The same traces in [15] have been used to make results directly com-
parable. Those correspond to CAIDA 2014 dataset [26] and are equinix-
sanjose.dirA.20140320-130400 (Trace 1) equinix-chicago.dirA.20140619-
130900 (Trace 2) and equinix-chicago.dirB.20140619-132600 (Trace 3).

. k=3 , k=4 . k=5
10° 107 10
2 L 2
[[[
E ® R S ®B®@ s 2 *
2 6 ¢ £ @®°®°®®$$$ 2 0996®$$$
g o @ g ¢ ¢ g ¢ ¢
o $ o ¢ @ 9 ¢
2 ¢ 2 A 2 $
w % Bloom-1 simulated w @ % Bloom-1 simulated w % Bloom-1 simulated
@ O Bloom-1 theoretical Q O Bloom-1 theoretical @ O Bloom-1 theoretical
+ ABF simulated + ABF simulated + ABF simulated
ABF theoretical O ABF theoretical ABF theoretical
102 102 102
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Ratio

Ratio

Ratio

Fig. 4: False positive rate versus A/N ratio when N = 8 - M elements are stored in the filter for k¥ = 3 (left), kK = 4 (middle), and k = 5

(right).

o k=3 o k=4 ‘ k=5 ‘
938?@0009* 23806000009 X X EEEEKKXK
¢ @ ¢

L8] 8

[[[

[[[

2 = =

z 2 z

Q o Q

o o o

@ @ @

[© ©

w % Bloom-1 simulated w % Bloom-1 simulated w % Bloom-1 simulated
O Bloom-1 theoretical O Bloom-1 theoretical O Bloom-1 theoretical
+ ABF simulated + ABF simulated + ABF simulated
{) ABF theoretical { ABF theoretical {) ABF theoretical

02 2 4 6 8 10 0% 2 4 6 8 10 0 2 4 6 8 10

Ratio

Ratio

Ratio

Fig. 5: False positive rate versus A/N ratio when N = 12- M elements are stored in the filter for k& = 3 (left), k = 4 (middle), and k = 5

(right).

—¥—Trace 1
——Trace 2

Trace 3

Number of flows
3

10°

10° 10' 10? 10° 10*

Flow size (number of packets)

Fig. 6: Number of flows on the packet traces with a number of
packets in a given interval, 1-10,11-100,101-1000 and 1001-10000
(the x-axis value in the plot corresponds to the maximum value in
the interval).

positive rate provided in [27]. It can be observed that for the
traditional Bloom-1, the simulation results match the theoret-
ical estimate. Comparing the proposed adaptive Bloom filters
with the traditional Bloom-1, it can be seen that they reduce
the false positive rate for all traces in all the configurations.
The lowest false positive rates are obtained when using S = 8
sets of bit selection hash functions but the benefit over using
S = 4 is small and in some cases negligible. However, as
discussed before, larger values of S require additional Bloom-

1 filters in the external memory and selector bits in the adaptive
Bloom filter. Therefore, it seems that S = 4 would be the best
option when filters are used to process network traffic.

The simulation results are summarized in Table II. For each
filter, the % that gives the lowest false positive rate is reported.
This enables a direct comparison of the different filters and
shows the benefits of the proposed scheme. In more detail,
the reductions in false positive rate are at least 2.02x, 2.67x,
2.77x for S = 2,4,8. The lowest false positive rates are
achieved when S = 8 but the benefit over S = 4 is limited.
The reductions are larger when % is smaller corresponding
to larger number of memory bits per element. There is some
variation on the results with the traces but the qualitative
trends with S and % are the same for all traces. Finally,
comparing with the adaptive cuckoo filter [15], the reduction
on the false positive rate is smaller. However, as discussed
before, the adaptive cuckoo filter is not attractive when the
number of bits per element is small. In summary, the proposed
adaptive Bloom filters can effectively reduce the false positive
for network traffic even when the number of memory bits per
element is small.

The impact of the overhead introduced by adaptation de-
pends on the relative cost of a false positive versus an adap-
tation that is system dependent as discussed in the previous
section. In many cases, adaptation would require only a
fraction of the cost of a false positive and thus the impact
would be small. Additionally, for configurations in which the
cost of an adaptation is similar to that of a false positive, the

N/M = 8, Trace 1

N/M =

8, Trace 2 N/M = 8, Trace 3

% Bloom-1 % Bloom-1 % Bloom-1
O Bloom-1 theoretical O Bloom-1 theoretical O Bloom-1 theoretical
! O ABFS=2] O ABFS=2 ! O ABFS=2
o { ABFs=4 o { ABFsS=4 o { ABFs=4
g ® O ABFS=8 o ® O ABFS=8 e (] O ABFS=8
2 @ [) ® g ® ® 2 ® [@
E: 8 : f:
[s N a o
[0} [} D (o]
@ 102 @ 102 0 102 S
g & 8 8 2 6 O o 0O 2 8 2 3
© 8 ©
102 10 107
2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
k k k

Fig. 7: False positive rate versus the number of hash functions k¥ when N = 8 - M elements are

2 (middle), and Trace 3 (right).

N/M =12, Trace 1

N/M =12, Trace 2

stored in the filter for Trace 1 (left), Trace

N/M =12, Trace 3

10° 10°

10°

% Bloom-1 % Bloom-1 % Bloom-1
O Bloom-1 theoretical O Bloom-1 theoretical O Bloom-1 theoretical
O ABFS=2

@ @ { MBFS=4 @

e e O ABFS=8 e

o o o

2 3 2

§1o" ® ® ® ® ém" ® ® ® ® §1o" ® ® @ ®

[@ [

iz} @)

(] © (]

w] m} w w u}

3) ') [m] il o] [m] o o @
102 102 102
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
k k k

Fig. 8: False positive rate versus the number of hash functions ¥ when N = 12- M elements are stored in the filter for Trace 1 (left), Trace

2 (middle), and Trace 3 (right).

N/M = 16, Trace 1 o

N/M =16, Trace 2

10 N/M = 16, Trace 3

®
£ e o o ©® & & o & £ e o o ©®
g g g g & g g &
3 § 3 39 : 6 o 3 8§ 8
o o o
[} [0} [}
2 % Bloom-1 2 % Bloom-1 2 % Bloom-1
w O Bloom-1 theoretical w O Bloom-1 theoretical w O Bloom-1 theoretical
. O ABFS=2 102 O ABFS=2 . O ABFS=2
10) ABFs=4 O ABFs=4 10) ABFs=4
O ABFs=38 O ABFsS=38 O ABFs=38
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
k 3 k

Fig. 9: False positive rate versus the number of hash functions k¥ when N = 16- M elements are stored in the filter for Trace 1 (left), Trace

2 (middle), and Trace 3 (right).

adaptation speed can be reduced so that the overhead is small.
In the last experiment, the impact of reducing the adaptation
speed on the false positive rate was explored. To that end,
the same simulations were run but instead of performing
adaptation on each false positive, adaptation was done only
once after 5 false positives. From the analysis presented in the
previous selection, if flows have a large number of packets,
this should not affect the effectiveness of the proposed scheme
when the two states have false positives. In that case it only
slows down transitions between the two states but does not
change the probability of being in each state and thus the
false positive rate does not change. In our case, the average
number of packets per flow is not so large, partly due to
using only one minute of traffic. Instead, if the second state

has no false positives, reducing adaptation would increase the
false positive rate by the decimation factor. Therefore, some
degradation of the false positive rate is expected. The results
for the first trace are presented in Figure 10 that shows the false
positive rate for both no decimation and d = 5. It can be seen
that there is indeed an increase on the false positive rate but
even with decimated adaptation, the proposed filters are still
able to significantly reduce the false positive rate compared
to a traditional Bloom-1 filter.The results for the other two
traces were similar showing reductions in the false positive
rates. Therefore, for systems in which the cost of adaptation
is large, the proposed adaptive filters can still be used with
low overhead by reducing the adaptation speed.

TABLE II: Comparison of false positive rate of filters with different .S for the £ that achieves the lowest false positive rate

l Trace [% [Bloom-1 [ABES =2 [Reduction [ABES =4 [Reduction [ABES =8 [Reduction [ACF [Reduction ‘
Trace 1 8 0.0331 0.0109 3.04x 0.0082 4.03x 0.0079 4.19x 0.0019 17.42x
Trace 1 12 0.0894 0.0389 2.30x 0.0282 3.17x 0.0272 3.29x N.A. N.A.
Trace 1 16 0.1557 0.07771 2.02x 0.0582 2.67x 0.0563 2.77x N.A. N.A.
Trace 2 8 0.0328 0.0079 4.15x 0.0052 6.30x 0.0044 7.45x 0.0020 17.0x
Trace 2 12 0.0893 0.0278 3.21x 0.0174 5.13x 0.0158 5.65x N.A. N.A.
Trace 2 16 0.1533 0.0608 2.51x 0.0386 3.97x 0.0352 4.36x N.A. N.A.
Trace 3 8 0.0330 0.0093 3.55x 0.0063 5.24x 0.0059 5.59x 0.0024 13.66x
Trace 3 12 0.0885 0.0321 2.76x 0.0227 3.90x 0.0216 4.10x N.A. N.A.
Trace 3 16 0.1553 0.0680 2.28x 0.0481 3.23x 0.0458 3.39x N.A. N.A.
o N/M = 8, Trace 1 o N/M =12, Trace 1 N/M = 16, Trace 1
t O ABFS=2
-L $ ABFS=2,d=5 + $
ABFS=4 + | +
° % ABFS=4,d=5 I L] + ; * [} 910@ : : 9)
s O ABFS=8 o 6 % © s 0
E + X ABFS=8,d=5 2 o © E © ©
% g + + + § O ABFS=2 q% O ABFS=2
2] " o + ABFS=2,d=5 2 + ABFS=2,d=5
w02t o ® w Q ABFS=4 w { ABFs=4
[© © e % ABFS=4d=5 * ABFS=4d=5
[O ABFsS=8 O ABFS=8
‘[X ABFS=8,d=5 X ABFS=8,d=5
1

k

k

4 5 6 1 2 3 4 5 6
k

Fig. 10: positive rate versus the number of hash functions & with adaptation on every false positive d = 1 and decimated adaptation d = 5
for Trace 1 and N = 8- M (left), N = 12 - M (middle), and N = 16 - M (right).

VI. DISCUSSION AND GENERALIZATION

In this paper we have focused on implementing adaptation
on one memory access Bloom filters that are stored in fast
memory having a larger slower memory on which additional
information can be stored at low cost. However, the ideas
presented can be extended in several directions. For example,
the proposed adaptive Bloom filter can also be extended to
general Bloom filters either word or bit based. For word based
Bloom filters, the same scheme can be used keeping two
different Bloom-j filters in the slower memory and performing
adaptation on each of the 7 words until the false positive is
removed. Instead, for traditional bit based Bloom filters that
use a single array of bits, the array can be arranged in blocks of
w bits that are treated as a word in Bloom-1 with a single hash
function to select a bit. Then adaptation can be implemented
by adding a selector bit per block and using similar procedures
to those described described in section III.

Finally, in some implementations both the adaptive Bloom
filter and the Bloom-1 filters may be stored in the same
memory and the adaptive Bloom filter is used to reduce the
number of memory accesses. In those scenarios, a potential
optimization is to keep only one Bloom-1 filter that stores the
word that corresponds to the bit selection hash functions not
used for that word in the adaptive Bloom filter. That is, if the
adaptive Bloom filter on a given word stores the configuration
that corresponds to g;(x), then the Bloom-1 stores in that same
word the configuration that corresponds to f;(z). This reduces
the amount of memory needed at the cost of requiring an
additional write access in adaptations to save the configuration
being removed from the adaptive filter to the Bloom-1 so that

it can be later used should more adaptations be needed.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a scheme to implement adaptation in Bloom
filters has been proposed and evaluated. The proposed design
uses word-based Bloom filters and, on a false positive on a
given word, it is replaced with the word from a second filter
to remove it. This makes adaptation simple, requiring only
one external memory access to retrieve the alternative word.
Lookups in the filter are also always completed in a single
memory access. This makes the proposed filters attractive for
high-speed implementations. The evaluation results show that
the proposed adaptive Bloom filters can significantly reduce
the false positive rate in practical applications, especially when
the distribution of the frequency of elements is skewed. From
a different perspective, adaptation can be used to reduce the
fast memory needed to achieve a target false positive rate.

The proposed scheme can also be used to implement adap-
tation in Bloom-j word-based filters and also in traditional
Bloom filters by replacing blocks of bits to implement adap-
tation. Although those Bloom filters require several memory
accesses for some lookups, they have lower false positive
probabilities than Bloom-1. Therefore, their adaptive versions
may also achieve lower false positive rates than the proposed
one memory access adaptive filters. Analyzing and evaluat-
ing those extensions is an interesting area for future work.
Finally, security is an increasingly important consideration for
probabilistic data structures and thus studying the proposed
filters in adversarial environments to see if they expose any
new vulnerability is also a direction for future work.

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

REFERENCES

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422426, 1970.

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys
Tutorials, vol. 14, no. 1, pp. 131-155, 2012.

L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys Tutorials, vol. 21, no. 2, pp. 1912-1949, 2019.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in ACM CoNEXT, 2014.
L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren,
“A capacity-elastic cuckoo filter design for dynamic set representation,”
IEEE Transactions on Network and Service Management (TNSM),
vol. 18, no. 4, pp. 4860-4874, 2021.

P. Reviriego, J. Martinez, D. Larrabeiti, and S. Pontarelli, “Cuckoo filters
and Bloom filters: Comparison and application to packet classification,”
IEEE Transactions on Network and Service Management (TNSM),
vol. 17, no. 4, pp. 2690-2701, 2020.

H. Lang, T. Neumann, A. Kemper, and P. Boncz, “Performance-optimal
filtering: Bloom overtakes cuckoo at high throughput,” VLDB Endow.,
vol. 12, no. 5, p. 502-515, 2019.

Y. Qiao, T. Li, and S. Chen, “Fast Bloom filters and their generalization,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25,
no. 1, pp. 93-103, 2014.

S. Z. Kiss, E. Hosszu, J. Tapolcai, L. Rényai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” IEEE Transactions on
Network and Service Management (TNSM), vol. 18, no. 2, pp. 2334—
2349, 2021.

O. Rottenstreich, P. Reviriego, E. Porat, and S. Muthukrishnan, “Avoid-
ing flow size overestimation in Count-Min sketch with Bloom filter
constructions,” IEEE Transactions on Network and Service Management
(TNSM), vol. 18, no. 3, pp. 3662-3676, 2021.

R. Durner and W. Kellerer, “Network function offloading through
classification of elephant flows,” IEEE Transactions on Network and
Service Management (TNSM), vol. 17, no. 2, pp. 807-820, 2020.

J. Bruck, J. Gao, and A. Jiang, “Weighted Bloom filter,” in [EEE
International Symposium on Information Theory (ISIT), 2006.

M. Zhong, P. Lu, K. Shen, and J. Seiferas, “Optimizing data popularity
conscious Bloom filters,” in ACM symposium on Principles of distributed
computing (PODC), 2008.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

M. A. Bender, M. Farach-Colton, M. Goswami, R. Johnson, S. Mc-
Cauley, and S. Singh, “Bloom filters, adaptivity, and the dictionary
problem,” in [EEE Symposium on Foundations of Computer Science
(FOCS), 2018.

M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” ACM J. Exp. Algorithmics, vol. 25, pp. 1-20, 2020.

K. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of the
false positive rate of a Bloom filter,” Information Processing Letters,
vol. 110, no. 21, pp. 944 — 949, 2010.

U. Manber and S. Wu, “An algorithm for approximate membership
checking with application to password security,” Inf. Process. Lett.,
vol. 50, no. 4, p. 191-197, 1994.

B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloom filters:
Allowing networked applications to trade off selected false positives
against false negatives,” in ACM CoNEXT, 2006.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN.,” in ACM
SIGCOMM, 2013.

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” /EEE
Micro, vol. 34, no. 5, pp. 3241, 2014.

Y. Kanizo, D. Hay, and I. Keslassy, “Maximizing the throughput of hash
tables in network devices with combined SRAM/DRAM memory,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 26, no. 3,
pp- 796-809, 2015.

S. Pontarelli, P. Reviriego, and M. Mitzenmacher, “Emoma: Exact match
in one memory access,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 30, no. 11, pp. 2120-2133, 2018.

A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
BGP: The roles of topology growth and update rate-limiting,” in ACM
CoNEXT, 2008.

C. M. Ramsay, “The distribution of sums of i.i.d. pareto random
variables with arbitrary shape parameter,” Communications in Statistics
- Theory and Methods, vol. 37, no. 14, pp. 2177-2184, 2008.

N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging Zipf’s law for traffic offloading,” ACM SIGCOMM Comput.
Commun. Rev., vol. 42, no. 1, p. 16-22, 2012.

CAIDA. (2014) realtime passive network monitors. [Online]. Available:
http://www.caida.org/data/realtime/passive.

P. Reviriego, K. Christensen, and J. A. Maestro, “A comment on “fast
Bloom filters and their generalization”,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 27, no. 1, pp. 303-304, 2016.

	portadilla_postprint_IEEE
	Reviriego, P., et al. Adaptive one memory access bloom filters. In: IEEE Transactions on Network and Service Management, 19(2), June 2022, Pp. 848-859
	DOI: https://doi.org/10.1109/TNSM.2022.3145436

	ABF-Preprint.pdf

