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FIPAM: Fuzzy Inference based Placement and
Migration Approach for NFV-based IoTs

Muhammad Arslan Tariq, Muhammad Umar Farooq, Member, IEEE, Muhammad Zeeshan, Member, IEEE,
Ali Hassan, and Adnan Akhunzada, Senior Member, IEEE

Abstract—The advancement and spread of the internet-of-
things (IoT) have massively been increased over a decade. With
the widespread of IoT networks, it is becoming difficult to acquire
and execute real-time data. Network function virtualization
(NFV) provides a flexible and efficient solution for IoT-based
applications and service management. NFV creates a virtualized
environment that can run a large number of micro-services for
different IoT applications by using the virtual network functions
(VNFs) through placement and chaining. In this paper, we
propose a novel fuzzy inference-based placement and migration
(FIPAM) approach for placement and migration/chaining of
VNFs to ensure that resource allocation is carefully carried out
during VNF orchestration and embedding. Firstly, we formu-
late the VNF chaining and placement problem. Secondly, we
propose a lightweight VNF placement solution that considers
the underlying network conditions while making the placement
decisions. A novel usage of fuzzy inference is proposed to optimize
the chaining mechanism along with the dynamic instantiation of
VNFs to meet specific service needs. Simulation results are shown
to validate the superiority of the proposed algorithm over existing
schemes.

Index Terms—IoT, Network Function Virtualization, Fuzzy
Inference Systems

I. INTRODUCTION

THE internet of things (IoT) is becoming a reality with the
exponential growth of information and communication

technology. Computers, sensors, actuators, and software sys-
tems with communication capacity can be the "things" in the
IoT. These connected things bring remarkable transformation
by embedding data acquisition, contextual awareness, and ac-
tuation in every domain of life [1], [2], [3]. This unprecedented
human-to-device and device-to-device interaction is continu-
ously bringing holistic improvements in user experience. As
a result, IoT-dependent services are multiplying every year.
With the number of IoT devices expected to reach 25 billion by
2025, IoT applications are likely to claim a significant internet
traffic share [4]. Besides, the rise in applications involving
data analytics, artificial intelligence, and machine learning
is encouraging a massive digitization roll-out. The need is
so immense that many countries have already formulated
their AI policy frameworks and have started massive digital
transformation drives ranging from healthcare to industrial
IoTs. With more and more IoT technologies emerging, it
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is becoming increasingly difficult for conventional network
frameworks to match the diversity of IoT traffic specifications.
These ubiquitous and autonomous networks of mainly het-
erogeneous devices require distinctiveness in many network
services [5]. For instance, security and privacy needs are
different for healthcare, precision farming, home appliances,
etc. Similarly, the mobility of devices for intelligent transport
systems and industrial IoTs require frequent adjustment of
forwarding rules. Traditionally, different services like network
address translation (NAT), authorization, and routing for IoT
applications run over dedicated hardware appliances. As a re-
sult, it has become challenging to manage service policies and
security parameters for IoT applications. The impact is not just
increased capital/operational expenditures. These operational
hindrances also limit innovation and increase time-to-market.
The solution is to forfeit proprietary hardware. To avoid these
challenges and offer separate hardware infrastructure for every
IoT application to run, network function virtualization (NFV)
[6] provides a new way to create, operate, and distribute
networking services. It is a simple way to decouple different
network functions from various hardware appliances. Those
decoupled functions can run over commodity hardware or
dedicated cloud infrastructure. Thus, the main aim of NFV is
to replace conventional hardware-based network devices with
the virtualized network functions (VNF). The primary motive
for such transformation is to offer flexible services, and reduce
costs and time-to-market.

The need for NFV is so immense that European Telecom-
munication Standards Institute (ETSI) has formed an industry
specifications workgroup [7]. Several large telecom opera-
tors have already joined the workgroup to define general
standards for orchestration, interfacing, and management of
VNFs. The flexible interfacing and sequential ordering of
VNFs can noticeably accelerate the offering of innovative
and customized network services. Generally, it requires two
stages: (1) Placement, and (2) Chaining [8]. The placement
and chaining of VNFs involve interconnecting many system
capacities (e.g., firewall, load balancer, cache servers) to
guarantee that system streams are given the right treatment.
These streams must experience a start-to-finish sequence of
navigating a particular set of capacities. In placement, we
decide how many network functions (and their instances)
are to be orchestrated to complete the service requirements
efficiently. It also involves finding the right spots for these
functions. For instance, having a firewall service entertained
at multiple points can help minimize latency and add to
the network’s performance. Usually, VNFs are best suited

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 25,2022 at 08:04:06 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3145658, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, AUGUST 20XX 2

when placed at the network’s points of presence (N-PoPs)
[8] to efficiently manage the traffic flows and create the ideal
environment for uninterrupted IoT services.

In the chaining phase, we create the process and service
flows through interconnected VNFs throughout the system.
Suppose we are running different IoT services simultaneously
within the same network. Forwarding the traffic through the
same paths (VNFs) may create latency and congestion issues
over the network. However, with the help of chaining, we
can make different network paths among multiple instances
of the same set of VNFs according to their requirements to
overcome such issues, i.e., one service requires user authenti-
cation. In contrast, the other one is fetching data from the
server. Then we can choose different data paths according
to their needs. Effective use of chaining involves flow-based
traffic engineering empowered by software-defined networking
(SDN) [8], that separates the control and data planes for better
data engineering.

Modern IoT applications usually require micro-services.
Since VNFs can also be orchestrated on commodity hard-
ware by using various virtualization technologies, offering a
large number of micro-services by chaining VNFs hosted at
commodity servers is becoming easier. Such micro-services
can be the core of many functional and non-functional re-
quirements, including redundancy, and latency, etc. The rules
for orchestration and chaining of such VNFs are similar.
However, they significantly increase the complexity of the
placement problem. Therefore, the need for placement and
chaining of a large number of in-network VNFs in ultra-
dense IoT networks needs to be investigated. Since the VNF
placement and chaining problems are proved to be NP-hard
[9], different heuristic/greedy approaches are usually applied
to find closer approximations to the optimal solution. Fur-
thermore, such approximations usually ignore parameters like
traffic/computational load distribution and maximal bandwidth
utilization. At the same time, points of interests for differ-
ent IoT applications may change frequently, requiring re-
adjustment (migration) of VNFs at appropriate location.

To meet these challenges, a fuzzy inference-based place-
ment and migration (FIPAM) approach is proposed in this
paper. The major contributions of this paper are as follow:

1) We first formulate the VNF placement as an opti-
mization problem with an aim to maximize network
utilization and minimize the number of congested links
by maintaining balanced distribution of compute load,
bandwidth, and latency.

2) To derive the solution for the placement problem, we
first propose an algorithm to find the most appropri-
ate locations to achieve near-optimal VNF placement.
The proposed scheme summarizes latency, bandwidth,
and compute capacity in cost matrix, and performance
weight vector. Based on this information, the near-
optimal placements are achieved by using the proposed
shortest path algorithm.

3) Since, the proposed shortest path algorithm is compu-
tationally extensive, therefore, a fuzzy-inference based
solution is proposed that achieves better distribution in
terms of computational load, latency and bandwidth.

This approach efficiently reduces the network conver-
gence time, while showing superiority to the existing
chaining solutions.

4) In contrast to the existing greedy/heuristics based place-
ment and chaining solutions, the proposed lightweight
FIPAM algorithm incorporates additional parameters
like traffic/computational load distribution, and maximal
bandwidth utilization etc, making it unsuitable for ultra-
dense IoT networks.

II. RELATED WORK

The VNF orchestration and chaining problem has received
considerable attention during recent years. Most researchers
have used several optimization techniques for solving this
NP-Hard problem, mainly focusing on computation and com-
munication cost [10], [9]. However, network dynamics and
service function needs are highly variable in IoT-based large-
scale networks. Therefore, latency and reconstruction costs are
equally essential [11], [12].

Recently, several literature studies [13], [14], [15] have
focused on various NFV challenges, including VNFs orches-
tration and management. These algorithms propose various
models for the optimization and heuristic solutions for optimal
or near-optimal placement of VNFs. Some other works have
addressed the development of platforms for NFV management
[16], [17]. In [11], authors employ admission control to satisfy
resource management objective during SFC embedding and
make use of MILP with relaxations and reformations to
achieve their goal. In [18], VNFs placement and deployment
problem in a mobile edge computing infrastructure is inves-
tigated to achieve the conflicting goal of latency, deployment
cost, and performance.

In [19], a framework of dynamical service chaining in the
software-defined NFV system is presented. In this framework,
the role of SDN and NFV is to enable high efficiency and
flexibility in the construction of service chaining. It includes
the flows of steering through the required service chain. In
this research, an optimization framework and a unified control
are elaborated and explained for enabling the SDN-NFV
framework that is utilized for the optimization of the service
chaining according to the requirements of the user and the
network environment. An idea of utilizing a net virtualization
machine (NetVM) is proposed in [20]. NetVM carries virtu-
alization to the network by empowering high transfer speed
system capacities to work at close line speed while exploiting
the ease item servers’ adaptability and customization. NetVM
operates the network function by this technique while gaining
the flexibility and slow pace of the low-cost commodity
servers. In [21], an enterprise security architecture is proposed.
The authors placed firewall as virtualized network function
at multiple cloud locations. This solved the locality problem
according to changing network needs to protect enterprise
networks from external and internal threats.

A group mapping scheme to satisfy network service re-
quirements is proposed in [22]. The suggested scheme is
based on dependency perception and adaptive mapping to
save the network’s computational and bandwidth resources. A
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heuristic-based algorithm to solve a MILP problem is proposed
in [23] to find a near-optimal solution. The algorithm first
finds optimal first-hop scheduling and used a greedy approach
to complete the SFC length. In [24], VNF mapping and
scheduling scheme for space-air-ground integrated networks
(SAGIN) is proposed. Authors have considered the dynamic
nature of internet-of-vehicles (IoV) services. VNF mapping
and scheduling are formulated as a MILP problem with
specific delay and cost models. Two algorithms based on
Tabu search are proposed, i.e., TS-based VNF remapping and
rescheduling (TS-MAPSCH) algorithm, and TS-based pure
VNF rescheduling (TS-PSCH) algorithm. A joint routing and
placement (JORP) algorithm for IoT service chain is proposed
in [12]. This algorithm is capable of dynamically scaling the
number of VNF instances. To solve the formulated JORP,
a deep learning approach is proposed that impersonates the
branching, and mitigates the unlikely solutions.

An algorithm for VNF placement with the aim to maximize
the number of accepted SFC requests is proposed in [25]. The
proposed algorithm guarantees the network latency require-
ments. The optimization problem is solved by using delay
guarantee heuristic approach. An SFC embedding problem is
considered in [26] for multi-domain networks where there is
no knowledge regarding the network topology and resources.
A column generation method is proposed to solve the opti-
mization problem. It is shown that the acceptance ratio is close
to that of the optimal algorithm. A scalable SFC chaining
algorithm is proposed in [27] for NFV-enabled networks
through federated reinforcement learning technique. In [28],
an intent-based networking (IBN) protocol is combined with
NFV to achieve efficient VNF placement in a cloud-based
infrastructure. The aim is to automatically configure network
services according to the service quality and security require-
ments. With the aim to decrease the servers, a semi online
VFN placement (SIVA) algorithm is proposed in [29]. This
algorithm is based on bin-packing algorithm while taking care
of migrations. Extensive simulation and experimental results
show the superiority of the SIVA algorithm over existing state-
of-the-art. In [30], the problem of SFC placement and chaining
in NFV-enabled networks is modeled as capacitated shortest
path tour problem (CSPTP) based on integer linear program-
ming. The efficiency of the proposed scheme is analyzed in
terms of the standard deviation in latency and link utilization.

For the placement of VNFs in the IoT network, an important
challenge is to investigate the latency issue [31]. In [32],
authors have proposed a resource orchestration for vertical
industries of 5G transport networks. They have applied the
placement model into the edge cloud model. In the content
delivery network (CDN), an optimal solution in a multi-
cloud scenario is derived in [10] after studying the VNF
placement model. In contrast to the conventional cloud-based
environment, one of the major concerns is that uncertain loads
of IoT devices and propagation latency directly affect the VNF
placement problem [33], [34].

After extensive literature review, one or more of the follow-
ing limitations have been found, to the best of our knowledge;
(1) large number of in-network VNF placement and chaining
problem has not been explored, (2) existing greedy/heuristic

approaches are computationally extensive and/or often ignore
parameters like traffic/computational load distribution, and
maximal bandwidth utilization etc, making them unsuitable for
ultra-dense IoT networks, and (3) the VNFs are usually placed
at nearest/high-capacity compute nodes without taking into
account their corresponding link bandwidths that eventually
results in congested links, and (4) lack of re-adjustment
(migration) mechanisms for VNF instances to move network
services at appropriate locations according to service needs.
In this work, we address the VNF placement, migration, and
chaining problem for large-scale IoT networks to overcome
the above mentioned limitations.

III. SYSTEM OVERVIEW

Application requirements and service provisioning policies
define a specific order in which data flows traverse through the
network, usually referred to as a service function chain (SFC).
Before proceeding further, the four network functions usually
used for enterprise network security are defined below.

• A firewall (FW) is considered a security tool that controls
network traffic according to the security rules.

• A deep packet inspection (DPI) function is a packet pro-
cessing application that digs deeper into IP data payload
rather than only looking into protocol headers. Scanning
payload helps identify worms like Slammer and Nimda
that carry a specific signature (a string of bytes) in the
payload.

• An intrusion prevention system (IPS) is a system secu-
rity framework that checks and recognizes errors. This
framework screens the system continuously, watches out
for all possible malicious occurrences, and accumulates
data accordingly.

• A deception system (DS) is a process that defends attacks
from hackers by transmitting dummy or any random data
to them. It works to identify the hacker’s signature to
block their access to the system.

To understand the VNF placement/migration and service
chaining problem, we use a miniature IoT network presented in
figure 1. We consider four VNFs namely firewall, DPI, IPS and
DS to build a hypothetical security framework. Here, different
security checks are possible for different applications/users.
For instance, all traffic flows are passed through a firewall.
Trusted traffic flows are immediately granted service access,
whereas suspected traffic flows are passed through a DPI mod-
ule to further investigate traffic patterns. Any malicious traffic
flows are then passed to an IPS that may decide on the basis
of certain parameters to log and discard the traffic or pass to
a deception system for further traffic analysis (zero-day attack
identification). The above mentioned mechanism divides the
traffic flows in different service chains, i.e., 𝑛𝑖 → 𝐹𝑊 → 𝑛𝑒,
𝑛𝑖 → 𝐹𝑊 → 𝐷𝑃𝐼 → 𝑛𝑒, and 𝑛𝑖 → 𝐹𝑊 → 𝐷𝑃𝐼 →
𝐼𝑃𝑆 → 𝐷𝑆. It is worth mentioning that any VNF instance (e.g.
firewall) may be shared between multiple SFCs or a separate
instance may be generated for each SFC. Figure 1 shows
the placement and chaining of multiple instance of firewall
and a single instance of IPS, IDS, and DS, each to form
different service paths, i.e., 𝑛𝑖 → 𝑁1 → 𝑁4 → 𝑁8 → 𝑛𝑒,
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Fig. 1. An example enterprise network with multiple VNFs

𝑛𝑖 → 𝑁2 → 𝑁3 → 𝑁6 → 𝑁9 etc, to offer the network
security service with different enforcement levels. Similarly,
multiple replications of the same SFC may be triggered
to minimize service latency/traffic load in different network
segments, i.e. 𝑛𝑖 → 𝑁1 → 𝑛𝑒, and 𝑛𝑖 → 𝑁2 → 𝑛𝑒 represents
replication of the same SFC in the enterprise network shown
in figure 1.

As evident from the above discussion, interconnecting the
VNFs fulfilling end-to-end service path is essential for NFV.
When a traffic flow arrives, it must be steered through a
specific set of VNFs defined by the policy and service pro-
visioning agreements. Therefore, service policy and chaining
problems are tied. This procedure makes ways that intercon-
nect different sets of system capacities on the basis of start-
to-finish latency, and system capacity etc.

IV. PROBLEM FORMULATION

Let 𝐺 = {𝑁, 𝐸} be the undirected graph, where 𝑁 and
𝐸 represent physical nodes and links, respectively. Here,
𝑁 = {𝑁𝑐 ∪ 𝑁𝑅} gives the union of compute nodes (for
hosting network functions) and switching nodes (for traffic
forwarding). Considering the total number of distinct virtual
functions be 𝑁𝑣 , so that 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝑁𝑣

} represents the set
of virtual functions. Any 𝑖𝑡ℎ virtual function 𝑓𝑖 may comprise
of several instances represented by 𝑓𝑖 = {_1

𝑖
, _2

𝑖
, ..., _

𝑁𝐼,𝑖

𝑖
},

where 𝑁𝐼,𝑖 is the number of instances of 𝑖𝑡ℎ virtual function.
Only one instance of an VNF can be implemented on a simple
compute node. Let _ 𝑗 ,𝑘

𝑖
represents 𝑗 𝑡ℎ instance of 𝑖𝑡ℎ VNF

running on 𝑘 𝑡ℎ compute node.

TABLE I
NOTATIONS

Notation Description
𝑁 Number of physical nodes
𝐸 Number of links in the network
𝑁𝑐 Number of compute nodes
𝑁𝑅 Number of switching nodes
𝑁𝑣 Number of distinct VNFs
𝐹 Set of virtual functions
𝑓𝑖 𝑖𝑡ℎ virtual function

𝑁𝐼,𝑖 Number of instances of the 𝑖𝑡ℎ VNF
_
𝑗,𝑘

𝑖
𝑗𝑡ℎ instance of 𝑖𝑡ℎ VNF running on 𝑘𝑡ℎ compute node

𝑆 Set of 𝑀 service chains
𝑆𝑙 𝑙𝑡ℎ service chain
𝐶𝑖 Unused compute capacity of the 𝑖𝑡ℎ compute node
𝐵𝑖 Bandwidth of the 𝑖𝑡ℎ link
Δ𝑖 Latency of the 𝑖𝑡ℎ service chain
𝐿𝑐 Cumulative latency
𝐿𝑑 Demanded latency
𝐶𝑑 Demanded compute load
𝐿0 Latency of a single VNF instance
Θ0 Compute load of single VNF instance

Also let 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑀 } represents 𝑀 service chains,
so that 𝑙𝑡ℎ service chain 𝑆𝑙 is represented with a sequence
< 𝑛𝑖 , 𝑓𝑠𝑡𝑎𝑟𝑡 , ..., 𝑓𝑒𝑛𝑑 , 𝑛𝑒 >, where 𝑛𝑖 and 𝑛𝑒 are ingress and
egress routers, and 𝑓𝑠𝑡𝑎𝑟𝑡 and 𝑓𝑒𝑛𝑑 are the starting and ending
virtual function in the service chain 𝑆𝑙 . It is worth-mentioning
that all virtual functions in between 𝑓𝑠𝑡𝑎𝑟𝑡 and 𝑓𝑒𝑛𝑑 are not
necessarily part of the service chain. Let 𝐶𝑖 , 𝐵 𝑗 , and Δ𝑘 be the
unused compute capacity, available bandwidth, and latency of
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𝑖𝑡ℎ compute node, 𝑗 𝑡ℎ link, and 𝑘 𝑡ℎ service chain, respectively.
In order to efficiently deploy and execute multiple service
chains, balanced utilization of computational load

∑𝑁𝑐

𝑖=1 𝐶𝑖 ,
network bandwidth

∑𝐸
𝑗=1 𝐵 𝑗 , and network latency

∑𝑀
𝑘=1 Δ𝑘 is

desired. The compute load distribution, bandwidth utilization,
and latency distribution are given by

𝐷𝐶 =
min𝑖∈𝑁𝑐

𝐶𝑖

1
𝑁𝑐

∑𝑁𝑐

𝑖=1 𝐶𝑖

(1)

𝐷𝐵 =
min 𝑗∈𝐸 𝐵 𝑗

1
𝐸

∑𝐸
𝑗=1 𝐵 𝑗

(2)

𝐷𝐿 =
min𝑘∈𝑀 Δ𝑘

1
𝑀

∑𝑀
𝑘=1 Δ𝑘

(3)

In order to efficiently deploy and execute multiple service
chains, we define the cost function as the weighted sum of
compute load distribution (𝐷𝐶 ), bandwidth utilization (𝐷𝐵),
and latency distribution (𝐷𝐿). The aim is to maximize network
utilization and minimize the number of congested links by
maintaining balanced distribution of compute load, bandwidth,
and latency. Thus, the optimization problem can be stated as

max 𝐽 = 𝜔1𝐷𝐶 + 𝜔2𝐷𝐵 + 𝜔3𝐷𝐿 (4)

subject to constraints,

𝑃𝑈𝑖,𝑟𝑒𝑞 < 𝑃𝑈𝑖

𝐿𝑑 >

𝑁𝐹∑︁
𝑖=1

𝐿0,𝑖

𝐵𝑖,𝑟𝑒𝑞 < 𝐵𝑖

where 𝜔1, 𝜔2, and 𝜔3 are the weighting factors so that
𝜔1 + 𝜔2 + 𝜔3 = 1. Here, the first constraint means that
the demanded compute load of 𝑖𝑡ℎ VNF instance (𝑃𝑈𝑖,𝑟𝑒𝑞)
must be less than the available compute capacity of 𝑖𝑡ℎ VNF
instance. The second constraint ensures that the cumulative
latency of any service chain (having 𝑁𝐹 functions) is less
than the demanded latency (𝐿𝑑). The last constraint ensures
that the demanded bandwidth of 𝑖𝑡ℎ VNF instance (𝐵𝑖,𝑟𝑒𝑞) is
less than the available bandwidth at the compute node hosting
the 𝑖𝑡ℎ VNF instance.

V. PROPOSED FIPAM: FUZZY INFERENCE-BASED
PLACEMENT AND MIGRATION

This section presents our proposed FIPAM approach for
efficiently placing, assigning, and chaining network functions.
This is done in two phases. In the first phase, deployment
of VNF instances at different compute nodes is achieved.
The deployment (placement) process assures low-cost (la-
tency, bandwidth, etc.) reachability to all deployed network
functions. In the second phase, service chains are formed by
connecting already deployed VNFs. The chaining process is
based on the novel usage of the fuzzy inference approach
to solve the optimization problem presented in equation (4).
The proposed mechanism efficiently selects VNF instances for

service chains. In a large network, the network dynamics and
service needs are constantly changing. Therefore, the proposed
FIS-based chaining process is mandated to change VNF loca-
tions or instantiate new instances according to service needs.

Separating the placement and chaining problem has certain
benefits. In placement, a deep insight in to a large number
of parameters ranging from computational capacity to service
policies is desired. Therefore, a comprehensive optimal place-
ment algorithm is executed at network start-up and after certain
events to identify the best locations for hosting the VNFs.
On the other hand, the chaining process needs to be executed
frequently, e.g. whenever a new service is created/replicated,
or changes in network capacity/priorities are observed. Having
a large number of VNF instances already placed at ideal
locations allows the fuzzy inference system to efficiently chain
the VNF instances to meet different service requirements with
minimal computational needs that helps scaling the solution
to much larger networks.

A. Proposed Placement Process

The proposed placement process deploys a small number of
VNF instances at the most accessible locations in the network.
Usually, such locations include the network’s points of pres-
ence (PoPs), ingress routers, or egress routers. The aim is to
minimize accumulative service latency and maximize network
throughput by utilizing the most appropriate links. The process
also ensures that any compute node hosting a certain VNF has
sufficient computational capacity to host that VNF. Without
loss of generality, performance units (PU) for each compute
node are calculated using three different parameters, i.e., CPU,
RAM, and GPU, as depicted by (5). More parameters can be
added, if required, however we assume that the number of
parameters for PU calculation never exceeds a small constant.
Here, 𝛼, 𝛽 and 𝛾 are aggregation factors. PU indicates a node’s
total computational capacity. After hosting a VNF instance on
a compute node, we re-evaluate available PUs as

𝑃𝑈 = 𝛼 × 𝐶𝑃𝑈 + 𝛽 × 𝑅𝐴𝑀 + 𝛾 × 𝐺𝑃𝑈 (5)

For the placement process, all edges are assigned weights
based on their delay and throughput. The lower the edge-
weight, the better is the service quality offered by that edge.
A modified shortest path algorithm is used to populate a cost
matrix (𝚲) having dimensions of 𝑁𝑐 × 𝑁 , as depicted by
algorithm 1. Each entry 𝚲𝑖 𝑗 indicates the accumulative cost
of the best possible path between nodes 𝑖 and 𝑗 , where 𝑖

is necessarily a compute node. The general arrangement of
matrix 𝚲 is given by

𝚲 =


𝑐11 𝑐12 . . . 𝑐1𝑁
𝑐21 𝑐22 . . . 𝑐2𝑁
...

...
. . .

...

𝑐𝑁𝑐1 𝑐𝑁𝑐2 . . . 𝑐𝑁𝑐𝑁


The accumulated path weight for 𝑖𝑡ℎ compute node is

computed by adding 𝑖𝑡ℎ row of the cost matrix 𝚲. These
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Algorithm 1: Proposed algorithm for VNF placement
1: Notations:
2: 𝑁: Number of physical nodes
3: 𝑁𝑐: Number of compute nodes
4: 𝐸 : Number of edges
5: 𝚲: Cost matrix
6: 𝑐𝑣: Cost vector
7: 𝑝𝑎𝑣: Available performance unit vector
8: 𝑃𝑈𝑖: Available performance units in 𝑖𝑡ℎ node
9: 𝜔𝑖, 𝑗 : Edge weight for edge (𝑖, 𝑗). If 𝑖 and 𝑗 do not form

a link, then 𝜔𝑖, 𝑗 → ∞
10: Start Procedure:
11: for (Each edge (𝑖, 𝑗) in 𝐸) do
12: 𝚲𝑖 𝑗 = 𝜔𝑖, 𝑗 ;
13: end for
14: for (𝑖 = 1 : 𝑁𝑐) do
15: for ( 𝑗 = 1 : 𝑁𝑐) do
16: for (𝑘 = 1 : 𝑁𝑐) do
17: if 𝚲 𝑗𝑘 > 𝚲 𝑗𝑖𝚲𝑖𝑘 then
18: 𝚲 𝑗𝑘 = 𝚲 𝑗𝑖 + 𝚲𝑖𝑘 ;
19: end if
20: end for
21: end for
22: end for
23: for (Each 𝑖 ∈ 𝑁𝑐) do
24: 𝑐𝑣,𝑖 = sum of 𝑖𝑡ℎ row of 𝚲 ;

𝑝𝑎𝑣,𝑖 = 𝑃𝑈𝑖 ;
25: end for
26: for (Each 𝑖 ∈ 𝐹) do
27: Select all 𝑗 ∈ 𝑁𝑐 where 𝑝𝑎𝑣, 𝑗 is greater than

performance need of 𝑓𝑖 ;
28: for (Each 𝑗 ∈ 𝑁𝐼,𝑖) do
29: Place _ 𝑗 ,𝑘

𝑖
at lowest metric node 𝑘 ;

Update 𝑝𝑎𝑣 ;
30: end for
31: end for

accumulated path weights are used to populate composite
weight vector 𝑐𝑣 , as shown below.

𝑐𝑣,𝑖 =

𝑁∑︁
𝑗=1
𝑐𝑖 𝑗 ∀𝑖 ∈ 𝑁𝑐 (6)

Similarly, an available performance unit vector (𝑝𝑎𝑣) is
maintained to hold available number of PUs for each node.
The proposed algorithm tries to place instance of VNFs at
compute nodes having lowest composite weight values, only
if their available PUs are higher that the performance needs
of the current VNF.

B. Proposed FIS-based Chaining Mechanism

This section presents a novel usage of fuzzy inference
system (FIS) to optimize the chaining mechanism of VNFs
after placement using the scheme mentioned in the previous
section. Another contribution of the proposed mechanism is
the dynamic instantiation of VNFs to meet specific service

Algorithm 2: Proposed algorithm for VNF migra-
tion/chaining

1: Notations:
2: 𝑁: Number of physical nodes
3: 𝑁𝑐: Number of compute nodes
4: 𝑃𝑈𝑖: Available performance units in 𝑖𝑡ℎ node
5: Ψ = {Ψ𝐿 ∪ Ψ𝑀 ∪ Ψ𝐻 }: Segments of NFs according to

ascending latency
6: Π = {Π𝐿 ∪ Π𝑀 ∪ Π𝐻 }: Segments of NFs according to

ascending compute load
7: Start Procedure:
8: for (Each 𝑆𝑙 ∈ 𝑆) do
9: Input 𝐿𝑑 ;

10: for (Each 𝑓𝑖 ∈ 𝑆𝑙) do
11: Select 𝐶𝑑 ;

𝐿𝑐 = 𝐿𝑐 + 𝐿 𝑓𝑖 ;
Select 𝐿0 and Θ0 using FIS ;

12: if (No. of compute nodes in selected segment > no.
of compute nodes in adjacent segment) then

13: Keep selected segment ;
14: else
15: Select adjacent segment ;
16: end if
17: if (∃ 𝑘 ∈ 𝑁𝑐 : {𝑛𝑘} ∈ {Ψ ∩ Π}) then
18: Place _ 𝑗 ,𝑘

𝑖
∈ 𝑓𝑖 in 𝑛𝑘 having lowest metric in 𝑐𝑣 ;

19: else
20:
21: if (𝑃𝑈𝑖 > requirement) then
22: Create new _

𝑗 ,𝑘

𝑖
∈ 𝑓𝑖 at 𝑛𝑘 ∈ Ψ ;

23: else
24: Deny service ;
25: end if
26: end if
27: end for
28: end for

needs. As the VNF chaining optimization problem is chal-
lenging to solve using traditional mathematical techniques,
fuzzy logic seems appropriate to address this problem being
simple and computationally less extensive. Fuzzy logic has
recently been used in several applications, including channel
allocation, buffer management, traffic scheduling, congestion
control, simultaneous management of multiple radio resources
[35], and resource management for multiple networks [36].

The first stage is the design of FIS to select appropriate
VNF instance having suitable latency and compute load for
inclusion in the service chain. In contrast to the standard
optimization techniques, fuzzy logic is based on human intu-
ition and is very close to natural language. A fuzzy inference
system generates output(s) based on one or more inputs,
similar to a human decision. In general, a FIS consists of
three components.

1) Fuzzification
2) Fuzzy Rule Matrix
3) Defuzzification
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Fig. 2. Triangular Membership Function

The first component, fuzzification, is used to convert crisp
input values into fuzzy numbers. The second component
generates a fuzzy number corresponding to the compensated
output by using the fuzzified input variables. Finally, these
numbers are converted back to crisp values in the third
component.

The main difference between traditional and fuzzy logic is
that it considers the input and output parameters as vague, e.g.,
high throughput, low latency, moderate service quality, etc. In
our proposed scheme, there are 3 inputs and 2 outputs of FIS,
described below.

• Input 1: Cumulative latency (𝐿𝑐) is the incremental la-
tency of all VNF instances already included in the service
chain

• Input 2: Demanded latency (𝐿𝑑) is the end-to-end latency
of all VNF instances included in the service chain

• Input 3: Demanded Compute load (𝐶𝑑) is the quantified
number of computational capacity required to execute a
certain network function, measured in PU

• Output 1: Latency of VNF (𝐿0) is the latency of single
VNF instance selected for participation in the service
chain during the current iteration.

• Output 2: Compute load of VNF (Θ0): It is the measure
of performance units of the VNF instance selected for the
service chain during the current iteration.

Once the inputs and outputs are defined, the next step is
the selection of appropriate membership function (MF) for
each input and output. We have used triangular MFs for all
the inputs and outputs. A triangular MF 𝑀 (𝑥) with endpoints
(𝑎, 0) and (𝑐, 0) and the high point (𝑏, 𝛼), as shown in Figure
2, is given as

𝑀 (𝑥) =


𝛼
(
𝑥−𝑎
𝑏−𝑎

)
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝛼
(
𝑥−𝑐
𝑏−𝑐

)
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, otherwise
(7)

The fuzzy sets for all the inputs and outputs are low,
moderate, and high. The corresponding MFs for all the inputs
and outputs are shown in figures 3 and 4, respectively. The
universe of discourse (range of the parameter) for 𝐿𝑐, 𝐿𝑑 , and

Fig. 3. MFs for inputs of the FIS

Fig. 4. MFs for outputs of the FIS

𝐿0 is taken in milliseconds, whereas, for 𝐶𝑑 and Θ0, it is taken
in terms of PUs.

After the fuzzification stage, the next and the most crucial
step is to formulate a fuzzy rule matrix (FRM). This table
consists of IF-ELSE fuzzy rules based on human intuition
for the proper selection of output variables. In our proposed
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system, there are 3 inputs with 3 fuzzy sets each; therefore,
the FRM consists of 27 rules shown in table II. An example
of the IF-ELSE rule is given below:

IF (𝐿𝑐 is Low) & (𝐿𝑑 is High) & (𝐶𝑑 is High) THEN (𝐿0
is Moderate) & (Θ0 is High)

In the above rule, moderate latency is selected because
the proposed algorithm tries to offer better than demanded
service while trying to achieve a fair distribution of service
chains. After generating fuzzified output through FRM, the
last stage of defuzzification converts these fuzzy outputs to
crisp numbers through the centroid of area (COA) method.

To achieve load distribution, a dynamic scheme for select-
ing compute nodes, hosting the required VNF instance, is
proposed. We first identify the number of nodes hosting the
required VNF in the selected latency segment. This number
is compared with that of the adjacent segments. The latency
segment with the highest number of such nodes is selected.
The node with minimum composite weight is included in the
service chain from the nodes satisfying the selection criteria.
If no such node is found, a new VNF instance is created at
a node in the selected latency segment whose available PU
is greater than the demanded. If no such node is found, the
service is denied.

The two-phase placement and chaining approach helps in
better capacity planning and traffic engineering, i.e., prior-
itization, and service-based traffic forwarding. Algorithm I
results in appropriate placement of VNF instances and precise
information of available PUs and latencies at all compute
nodes. Algorithm II chains VNF instances while conforming
to the required service needs. The service prioritization is
an inherent attribute of the proposed FIS-based chaining
algorithm controlled through FRM. If an SFC doesn’t conform
to the required service needs, it is discarded and re-constructed
using the proposed FIS to meet the service needs. Algorithm
I is executed at the network start-up and when the number
of denied requests from FIS exceeds a certain threshold, thus
minimizing the network compute overhead.

Now we discuss the computational complexity of the pro-
posed FIPAM algorithm. The complexity of the first part i.e.
VNF placement is 𝑂 (𝑁3

𝑐), where 𝑁𝑐 is the number of compute
nodes. The complexity of the second part of the algorithm
i.e. VNF migration/chaining is 𝑂 (𝑀 × 𝐾), where 𝑀 is the
number of service chains and 𝐾 is the complexity of the
fuzzy inference system. The complexity of FIS depends on the
number of fuzzy sets, number of inputs and outputs, number
of rules, and discretization of inputs and outputs universe of
discourse [37].

VI. WORKING EXAMPLE

As a working example, we re-consider and further in-
vestigate the enterprise network security problem, already
presented in figure 1. Such networks are usually protected by a
perimeter gateway firewall (PGF). The security rules of PGF
filter any incoming traffic. Placing PGF instances at clouds
close to the network security boundaries can solve the PGF
acquisition and management problems, reducing capital and
operational costs. However, in the case of large IoT-based

enterprise networks, many other considerations are essential.
For instance, price reduction and development speed often
result in compromised security fundamentals in IoT devices.
Compromised IoT devices within the organization’s security
boundaries can generate serious threats to enterprise security.
Different security policies may be needed according to the
devices’ make, location, communicating peers, inter-network
communications, etc. Access to the same devices may be
filtered with simple firewall rules. On the other hand, we may
need to protect some of the devices with an additional intru-
sion detection system (IDS) and DPI modules. Computational
requirements of these devices also vary greatly. For instance,
only shallow packet inspection (SPI), focusing on mean-
variance in packet sizes, inter-packet latency, and correlation
to specific events, is enough. On the other hand, deep packet
inspection, including packet headers, payload, and communi-
cating peers’ information, may be necessary. Similarly, VNF
placement updates may trigger due to network dynamics or
frequent location changes of specific IoT devices/services.

We introduce the model with different nodes, and start-
ing/ending points for data packets’ regulation and processing.
As already discussed, the compute nodes’ computational ca-
pacity is measured by three different parameters, i.e., CPU
utilization, RAM, and GPU. The aggregation factors (𝛼, 𝛽, and
𝛾) are used to quantify the available computational capacity
into a single variable. We use PU, defined in eq. 5, to evaluate
the total capacity of each node, and after measuring usage of
each node, we evaluate its utilization ratio. In this example,
values of 𝛼, 𝛽, and 𝛾 are taken to be 0.5, 0.3, and 0.2,
respectively.

Now we calculate the performance units of five compute
nodes N1, N2, N3, N6, and N9, to determine the less utilized
node. Assuming utilization ratio (UR) of five nodes to be 60%,
45%, 70%, 51%, and 40% respectively, the PU and APU of
each node, computed using eq. (5), and (8), are shown in table
III.

𝐴𝑃𝑈 = 𝑃𝑈

(
1 − 𝑈𝑅

100

)
(8)

Table III suggests that node N2 has more available computa-
tional resources than other compute nodes. Therefore, node N2
should be preferred for hosting a new VNF instance. However,
latency and bandwidth of node N2 from other nodes hosting
VNF instances corresponding to the same service chain should
also be considered. Therefore, we determine each node’s cost
(latency, bandwidth, etc.) to other nodes to find the shortest
path through the proposed placement mechanism, shown in
algorithm 1. The weighted graph of the network, as mentioned
earlier, is shown in figure 5. The weights are calculated based
on link capacity and latency. The computed cost matrix by
using the proposed algorithm is given by

𝚲 =


3 0 6 2 4 8 7
5 6 0 4 6 10 9
5 2 4 0 2 6 7
7 4 6 2 0 4 6

11 8 10 6 4 0 8
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TABLE II
FUZZY RULE MATRIX (FRM) FOR THE PROPOSED ALGORITHM

Cd

Low Moderate High
Lc Ld L0 𝚯0 L0 𝚯0 L0 Θ0

Low Low Low Low Moderate Low High

Low Moderate Moderate Low Moderate Moderate Low High
High High Low High Moderate Moderate High
Low Low Low Low Moderate Low High

Moderate Moderate Low Low Low Moderate Low High
High Moderate Low Moderate Moderate Moderate High
Low Low Low Low Moderate Low High

High Moderate Low Low Low Moderate Low High
High Moderate Low Moderate Moderate Moderate High
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TABLE III
PERFORMANCE UNITS OF COMPUTE NODES

Parameters CPU RAM GPU PU UR APU
N1 4 8 4 5.2 60% 2.1
N2 6 16 4 8.6 45% 4.8
N3 4 4 8 4.8 70% 1.5
N6 6 16 4 8.6 51% 4.2
N9 4 8 4 5.2 40% 2.1

The sum of each row (except the first and last column) gives
the cumulative cost of each compute node to all other compute
nodes in the network, given by

𝑐𝑣 =


20
26
14
16
28


The smaller cumulative cost value indicates better access

of the compute node from all other nodes in the network.
In this example, node N3 is the best candidate for hosting
VNF instances. However, placement of VNF instances at any
compute node also requires sufficient available computational
capacity (i.e. APU). A subset of compute nodes having APU
greater than the VNF compute demand is selected from the
cost vector. In this example, five virtual functions form dif-
ferent SFCs offering micro-services to enhance the network’s
security. Initially, four virtual functions (FW, SPI, IPS, and
IDS) are needed to form two SFCs i.e. 𝑆1 = 𝐹𝑊 → 𝐼𝐷𝑆,
and 𝑆2 = 𝐹𝑊 → 𝑆𝑃𝐼 → 𝐼𝑃𝑆. For this purpose, one instance
of each VNF is deployed on compute nodes N1, N3, and N6,
as shown in the overlay network of compute nodes given in
figure 6. These VNFs are embedded into 𝑆1 and 𝑆2 using the
proposed fuzzy inference-based chaining mechanism described
in algorithm II.

Now, let’s suppose an internal network threat is suspected.
Therefore, a new service chain 𝑆3 = 𝐹𝑊 → 𝐷𝑆 is needed.
Since the existing firewall instance cannot be over-scaled due
to limited computing resources at N1, a new instance for
the firewall needs to be orchestrated. To further evaluate the
nature of malicious traffic, an instance of deception system
is orchestrated to log all activity triggered by the malicious
traffic. Using algorithm II, the firewall instance is placed on
N6, and the deception system is placed on N2.

VII. SIMULATION RESULTS

For performance evaluations, we simulate an enterprise
network security model having multiple SFCs comprising of 2-
5 VNFs, and 50 compute nodes. The nodes’ compute capacity
is randomly set as 4, 10, and 20 performance units to indicate
low, medium, and high compute capacity. The volume for
one service traffic is 25, 50, and 100 MBs. The bandwidth
for all links is set to 1 GB, and 50 edges are randomly
placed in the network to connect all compute nodes. NFV
chains are embedded using the FIPAM algorithm in MATLAB.
The results are compared with stochastic hill climbing (SHC)
based placement/chaining strategy and capacitated shortest
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Fig. 7. Acceptance ratio against increasing service chains

path tour problem (CSPTP) [30]. The CSPTP scheme solves
the placement problem as a shortest path tour problem, by ap-
plying greedy-based heuristic on sub-paths between source and
destination. This makes CPSTP computationally expensive, on
cost of achieving better service paths. Performance metrics
include the acceptance ratio for the service requests and link
load balancing indicators. For acceptance ratio, an increasing
number of SFC requests are made with low, medium, and high
service demands. Figure 7 depicts that the proposed FIPAM
algorithm’s intelligent placement and migration mechanism
accommodated a larger number of service requests while
conforming to the required service needs. For IoTs requiring a
large number of short-lived micro-service requests, fuzzy rule-
based chaining and VNF migration mechanism can yield better
results. Furthermore, the proposed FIPAM algorithm also
maintains a closer approximation to the optimal acceptance
ratio.

For link-load balancing, standard deviations in terms of
link utilization and end-to-end service latency are presented
in figures 8 and 9, respectively. As one of the objectives
of the proposed algorithm is to achieve better traffic load
distribution that also impacts end-to-end delays by minimizing
the number of congested links. The standard deviation of
link utilization ratio and service latency indicate that the
proposed FIPAM yields better load distribution as compared
to both SHC and CSPTP schemes. The reason is that the
proposed FIPAM algorithm looks into multiple parameters i.e.
cumulative latency and demanded compute load to provide a
diversified placement and chaining of VNFs. In addition, the
proposed FIPAM algorithm maintains closer approximation to
the optimal standard deviation of link utilization and latency.

The impact of increasing number of compute nodes on
the computational time is depicted in figure 10. We measure
the computational time consumed by the algorithms through
MATLAB simulation. Although the computational complexity
of the proposed VNF placement algorithm is 𝑂 (𝑁3

𝑐), however,
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Fig. 8. Standard deviation of link utilization against increasing service chains
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Fig. 9. Standard deviation of latency against increasing service chains

the number of compute nodes in any network is usually
much smaller than the total number of nodes. It can be
seen that the computational time for the proposed FIPAM
algorithm is reasonably small as compared to both SHC and
CSPTP schemes, even for large number of compute nodes (i.e.
𝑁𝑐 = 500).

It is also worth mentioning that the proposed VNF place-
ment algorithm is executed at a lower frequency, i.e. at network
start-up and when the number of denied requests from fuzzy
inference system exceeds a certain threshold. The threshold
is usually adjustable as per the application requirements. A
smaller threshold value will increase the frequency of read-
justments that results in lesser number of VNF migrations,
maintaining near-optimal placement of VNFS. However, it
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Fig. 10. Impact of increasing compute nodes on computational time

TABLE IV
SUMMARY IN TERMS OF PERCENTAGE IMPROVEMENT

FIPAM vs SHC FIPAM vs CSPTP
STD of latency 45–62% 7–33%

STD of link utilization 45–70% 14–38%
Computational time 12–66% 40–80%

will increase the computational time. Therefore, a trade-off
is maintained between threshold value and computational
time, and is adjusted on the basis of application scenario
and computational resources in the network. The impact
of threshold on computation time is depicted in figure 10.
This is also worth mentioning that the points of interest for
any service may continue to change from time-to-time in a
large-scale IoT network. One contribution of the proposed
algorithm is the readjustment of VNF instances to the most
fitting locations. The percentage improvement of the proposed
FIPAM algorithm in terms of the standard deviation (STD) of
latency, link utilization and computational time is summarized
in table IV.

VIII. CONCLUSION

Network function virtualization (NFV) has gained con-
siderable attention during recent years to provide a flexible
and efficient solution for IoT-based applications. This paper
has proposed a novel fuzzy inference-based placement and
migration (FIPAM) approach for VNF placement and chain-
ing. The proposed approach carefully carries out the resource
allocation process to properly utilize all the NFs. The complete
FIPAM approach is divided into two stages; placement and
chaining. After formulating the VNF optimization problem,
we have proposed a lightweight placement solution consid-
ering underlying network parameters. For chaining, we have
proposed a novel usage of a fuzzy inference system to optimize
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the process that can meet specific service requirements. The
superiority of the proposed FIPAM approach over existing
techniques is validated through simulation results.

REFERENCES

[1] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[2] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11,
2011.

[3] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the
internet of things (IoT),” IEEE Internet Initiative, vol. 1, no. 1, pp.
1–86, 2015.

[4] “IoT Middleware Market - Growth, Trends, and Forecasts (2020 -
2025),” Tech. Rep., 2020.

[5] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Dynamic service function
chain embedding for NFV-enabled IoT: A deep reinforcement learning
approach,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 507–519, 2019.

[6] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[7] N. F. Virtualisation, “Architectural framework (RGS/NFV-002),” 2014.
[8] M. C. Luizelli, W. L. da Costa Cordeiro, L. S. Buriol, and L. P. Gaspary,

“A fix-and-optimize approach for efficient and large scale virtual network
function placement and chaining,” Computer Communications, vol. 102,
pp. 67–77, 2017.

[9] A. De Domenico, Y.-F. Liu, and W. Yu, “Optimal virtual network func-
tion deployment for 5G network slicing in a hybrid cloud infrastructure,”
IEEE Transactions on Wireless Communications, vol. 19, no. 12, pp.
7942–7956, 2020.

[10] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal VNFs
placement in CDN slicing over multi-cloud environment,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 616–627, 2018.

[11] M. A. T. Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi,
and B. H. Khalaj, “vSPACE: VNF simultaneous placement, admission
control and embedding,” IEEE Journal on Selected Areas in Communi-
cations, vol. 36, no. 3, pp. 542–557, 2018.

[12] C. Pham, D. T. Nguyen, N. H. Tran, K. K. Nguyen, and M. Cheriet,
“Optimized IoT service chain implementation in edge cloud platform: A
deep learning framework,” IEEE Transactions on Network and Service
Management, 2021.

[13] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2008–2025, 2017.

[14] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Communications Mag-
azine, vol. 55, no. 2, pp. 216–223, 2016.

[15] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware elasticity support in
cloud-native 5G systems,” in 2016 IEEE International Conference on
Communications (ICC). IEEE, 2016, pp. 1–6.

[16] I. Cerrato, M. Annarumma, and F. Risso, “Supporting fine-grained net-
work functions through intel DPDK,” in 2014 Third European Workshop
on Software Defined Networks. IEEE, 2014, pp. 1–6.

[17] T. Taleb, A. Ksentini, and R. Jantti, “"anything as a service" for 5G
mobile systems,” IEEE Network, vol. 30, no. 6, pp. 84–91, 2016.

[18] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF
placement optimization at the edge and cloud,” Future Internet, vol. 11,
no. 3, p. 69, 2019.

[19] Y. Li, F. Zheng, M. Chen, and D. Jin, “A unified control and optimization
framework for dynamical service chaining in software-defined NFV
system,” IEEE Wireless Communications, vol. 22, no. 6, pp. 15–23,
2015.

[20] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: high per-
formance and flexible networking using virtualization on commodity
platforms,” IEEE Transactions on Network and Service Management,
vol. 12, no. 1, pp. 34–47, 2015.

[21] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert,
N. Gray, T. Zinner, and P. Tran-Gia, “An SDN/NFV-enabled enterprise
network architecture offering fine-grained security policy enforcement,”
IEEE communications magazine, vol. 55, no. 3, pp. 217–223, 2017.

[22] M. Jalalitabar, E. Guler, D. Zheng, G. Luo, L. Tian, and X. Cao,
“Embedding dependence-aware service function chains,” Journal of
Optical Communications and Networking, vol. 10, no. 8, pp. C64–C74,
2018.

[23] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimization
of service function chaining and resource allocation in network function
virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

[24] J. Li, W. Shi, H. Wu, S. Zhang, and X. Shen, “Cost-aware dynamic
SFC mapping and scheduling in SDN/NFV-enabled space-air-ground
integrated networks for internet of vehicles,” IEEE Internet of Things
Journal, 2021.

[25] Y. Yue, B. Cheng, M. Wang, B. Li, X. Liu, and J. Chen, “Throughput
optimization and delay guarantee VNF placement for mapping SFC
requests in NFV-enabled networks,” IEEE Transactions on Network and
Service Management, 2021.

[26] R. Lin, S. Yu, S. Luo, X. Zhang, J. Wang, and M. Zukerman, “Column
generation based service function chaining embedding in multi-domain
networks,” IEEE Transactions on Cloud Computing, 2021.

[27] H. Huang, C. Zeng, Y. Zhao, G. Min, Y. Y. Zhu, W. Miao, and J. Hu,
“Scalable service function chain orchestration in NFV-enabled networks:
A federated reinforcement learning approach,” IEEE Journal on Selected
Areas in Communications, 2021.

[28] A. Leivadeas and M. Falkner, “VNF placement problem: a multi-
tenant intent-based networking approach,” in 2021 24th Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN).
IEEE, 2021, pp. 143–150.

[29] Y. Xie, S. Wang, and B. Wang, “Virtual network function placement
with bounded migrations,” Cluster Computing, pp. 1–12, 2021.

[30] M. Sasabe and T. Hara, “Capacitated shortest path tour problem-
based integer linear programming for service chaining and function
placement in nfv networks,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 104–117, 2020.

[31] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Resource
management and orchestration for a dynamic service chain steering
model,” in 2016 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2016, pp. 1–6.

[32] K. Antevski, J. Martín-Pérez, N. Molner, C.-F. Chiasserini, F. Malan-
drino, P. Frangoudis, A. Ksentini, X. Li, J. SalvatLozano, R. Martínez
et al., “Resource orchestration of 5G transport networks for vertical
industries,” in 2018 IEEE 29th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE,
2018, pp. 158–163.

[33] M. Otokura, K. Leibnitz, Y. Koizumi, D. Kominami, T. Shimokawa,
and M. Murata, “Application of evolutionary mechanism to dynamic
virtual network function placement,” in 2016 IEEE 24th International
Conference on Network Protocols (ICNP). IEEE, 2016, pp. 1–6.

[34] Y. Nam, S. Song, and J.-M. Chung, “Clustered NFV service chaining
optimization in mobile edge clouds,” IEEE Communications Letters,
vol. 21, no. 2, pp. 350–353, 2016.

[35] M. W. Khan and M. Zeeshan, “QoS-based dynamic channel selection
algorithm for cognitive radio based smart grid communication network,”
Ad Hoc Networks, vol. 87, pp. 61–75, 2019.

[36] L. Giupponi, R. Agusti, J. Perez-Romero, and O. S. Roig, “A novel
approach for joint radio resource management based on fuzzy neural
methodology,” IEEE Transactions on Vehicular Technology, vol. 57,
no. 3, pp. 1789–1805, 2008.

[37] M. W. Khan and M. Zeeshan, “Fuzzy inference based adaptive channel
allocation for ieee 802.22 compliant smart grid network,” Telecommu-
nication Systems, vol. 72, no. 3, pp. 339–353, 2019.

Muhammad Arslan Tariq received his BS degree
in Electrical Engineering from Center for Advanced
Studies in Engineering (CASE), Pakistan and Mas-
ter’s degree in Computer Engineering from National
University of Science and Technology (NUST), Pak-
istan. His current research interests include network
function virtualization, cloud computing, virtualiza-
tion and software-defined networks.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 25,2022 at 08:04:06 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3145658, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, AUGUST 20XX 13

Muhammad Umar Farooq received his Master’s
in computer science from Quaid-i-Azam University
Pakistan, Master’s in software engineering from
National University of Sciences and Technology,
Pakistan and Ph.D. in computer science from Uni-
versity Politehnica of Bucharest, Romania. He is
currently an Assistant Professor of computer and
software engineering with the College of Electrical
and Mechanical Engineering, National University
of Sciences and Technology. His research interests
include routing and MAC protocols for wireless ad

hoc networks, delay tolerant networks, and the internet of things. He is
an inventor of one awarded US patent, reviewer of several international
conferences and journals, and author of several international publications.

Muhammad Zeeshan (M’16) received Ph.D. de-
gree in Electrical Engineering with specialization in
wireless communications, from College of Electrical
and Mechanical Engineering, National University
of Sciences and Technology (NUST), Pakistan in
2015. From July 2010 to March 2016, he was with
the Center for Advanced Research in Engineering
(CARE), Pakistan, first as a Senior Design Engineer,
and then as a Member Technical Staff starting July
1, 2014. In March 2016, he joined the faculty of the
College of Electrical and Mechanical Engineering,

National University of Sciences and Technology (NUST), Pakistan, where
he is currently an Assistant Professor of wireless communications in the
Department of Electrical Engineering. At this department, he is also heading
the Cognitive Radio Wireless Communications (CoRWiC) research group. His
research interests include SDR waveform development, physical layer design,
synchronization techniques, and digital design of wireless communication
systems. He has a number of international journal and conference publications.
He is a reviewer of the IEEE Transactions on Communications. IEEE Access,
and Wireless Personal Communications.

Ali Hassan received the BE and MS degrees in
computer engineering from the College of Electri-
cal and Mechanical Engineering (CEME), NUST,
Islamabad, Pakistan, in 2004 and 2007, respectively,
and the Ph.D. degree in electrical engineering from
the University of Southampton, UK, in 2012. He is
currently the Head of Department of the Department
of Computer and Software Engineering, College of
Electrical and Mechanical Engineering, NUST. His
areas of specialization are machine learning and
speech processing.

Adnan Akhunzada (SM) has more than 12 years
of research and development experience both in ICT
industry and academia. He has a proven track record
of high impact published research (i.e., Patents,
Journals, Transactions, Commercial Products, Book
chapters, Reputable Magazines, Conferences, and
Conference Proceedings). His experience as an Edu-
cator and a Researcher is diverse that includes work
as a lecturer, a senior lecturer, a year tutor, and an
occasional lecturer at other engineering departments,
as an Assistant Professor at COMSATS University

Islamabad (CUI), a Senior Researcher at RISE SICs Vasteras AB, Sweden,
as a Research Fellow and a Scientific Lead at the DTU Compute, Technical
University of Denmark (DTU), and a visiting professor having mentorship of
graduate students, and a supervision of academic and research and develop-
ment projects both at UG and PG level. His research interests include cyber
security, machine learning, deep learning, reinforcement learning, artificial
intelligence, large scale distributed systems (i.e., edge, fog, cloud, and SDNs),
the IoT, Industry 4.0, and internet of everything (IoE). He is also a member
of technical programme committee of varied reputable conferences, journals,
and editorial boards.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 25,2022 at 08:04:06 UTC from IEEE Xplore.  Restrictions apply. 


