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Abstract—In this paper, we study a Deep Reinforcement
Learning (DRL) based framework for an online end-user service
provisioning in a Network Function Virtualization (NFV)-enabled
network. We formulate an optimization problem aiming to
minimize the cost of network resource utilization. The main
challenge is provisioning the online service requests by fulfilling
their Quality of Service (QoS) under limited resource availability.
Moreover, fulfilling the stochastic service requests in a large
network is another challenge that is evaluated in this paper.
To solve the formulated optimization problem in an efficient
and intelligent manner, we propose a Deep Q-Network for
Adaptive Resource allocation (DQN-AR) in NFV-enable network
for function placement and dynamic routing which considers
the available network resources as DQN states. Moreover, the
service’s characteristics, including the service life time and
number of the arrival requests, are modeled by the Uniform and
Exponential distribution, respectively. In addition, we evaluate
the computational complexity of the proposed method. Numerical
results carried out for different ranges of parameters reveal
the effectiveness of our framework. In specific, the obtained
results show that the average number of admitted requests of the
network increases by 7 up to 14% and the network utilization
cost decreases by 5 and 20%.
Index Terms— Deep reinforcement learning, service lifetime,
resource allocation, NFV.

I. INTRODUCTION
A. State of The Art and Motivation

In recent years, new applications have emerged rapidly
with diverse Quality of Service (QoS) requirements [1]. To
meet their requirements in an efficient manner with a com-
mon physical infrastructure, exploiting advanced technolo-
gies is indispensable where these technologies are expected
to have pivotal impacts on network performance in terms
of enhancing QoS and resource efficiency which result in
cost reduction. One such technology is Network Function
Virtualization (NFV) providing an array of benefits such as
great flexibility, resource efficiency, and cost reduction [2].
However, in such an NFV-enabled network, providing an
efficient resource allocation algorithm is a challenging task.
In addition, handle online service requests and also service
arrival and departure and its effect on the network resources
are the other challenges that we have in this paper. To tackle
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these challenges and design adaptive and intelligent networks,
recently, Deep Reinforcement Learning (DRL) based methods
have been used to solve various resource allocation problems
[3], [4].

Besides, devising online and adaptive/on-demand service
provisioning algorithms under dynamic network resource vari-
ations is another challenging task in NFV-enabled networks.
Online and on-demand services by considering lifetime, i.e,
while previously provisioned services are running, new service
requests can arrive. Recently, some researchers have made
great efforts to address the mentioned challenges, but, to the
best of our knowledge, a few researchers consider the lifetime
and online service requests, and the effect of this, on the
Resource Allocation (RA) problem [5]–[7]. The prevailing
works inspire us to seek a “smart“ and “online” service
provisioning method with considering service “lifetime” in
a NFV-enabled network. The term “service” indicates a type
of end user request with specific QoS and Service Function
Chain (SFC) characteristics, and “provisioning” means that
such request’s requirements are fulfilled, hence, the service
request is admitted. In brief, this work focuses on a main
question which is: how a service provider offers heterogeneous
services with a probabilistic lifetime on the common physical
resources in a smart and efficient manner?

B. Research Outputs and Contributions

Different from previous works [7]–[9], this work provides a
DRL-based online service provisioning algorithm in an NFV-
enabled network in which the considered service requests are
online with a probabilistic lifetime. In addition, by deploying
the proposed online service provisioning method, new requests
can be served while previously accepted services are running.
The main results and contributions of this work are listed as
follows:
• We propose a new service assurance model leveraging NFV
to perform their Network Functions (NFs) and guarantee QoS
in terms of latency and bandwidth. To this end, we formulate
an optimization problem with constraints on the QoS and the
limitation of network resources.
• We deploy DRL method to fulfill the different requests at
each time under dynamic network resources in a long-term
run. To improve the convergence speed of the considered case
with large number of states and large action space, we deploy
a Deep Q-Network (DQN) algorithm.
• We propose an online service provisioning method in which
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each user has a service timeline and new users can request ser-
vice at each time slot while some services are running from the
previous time slots. We also consider the dynamics of resource
consumption and release in the network due to admitting new
services and terminating previous services. Moreover, request
arrivals are modeled by Uniform distribution, and service
duration time (service time) is modeled by the exponential
distribution.
• To apply the DQN algorithm for RA (i.e., solving the
optimization problem), we develop the available calculation
algorithm that updates the state space (e.g., due to resource
releasing or failure occurring) at the beginning of each time
slot to find an appropriate action.
• To evaluate the performance of the proposed method, we
consider different baselines. The obtained results unveil that
the proposed method has considerable performance. The main
baselines are greedy and online-Tabu search algorithms which
are well known methods in online algorithm consideration.

C. Related Work

Recently some works define a service with a specific SFC
which includes a set of Virtual Network Functions (VNFs)
and these VNFs need to be executed in a tolerable delay [10],
[11]. These VNFs run on a specific virtual machines which
are created on top of the physical network by leveraging NFV.
Hereupon, service provisioning means that the requested SFC
with QoS requirement for each request is done successfully
by performing the SFC and RA in the NFV environment [12].
The basic principles of NFV Resource Allocation (NFV-RA)
is studied in [5] comprehensively. Also, online scheduling with
minimizing the total execution time of VNFs is studied in [13].
Furthermore, the authors in [6] propose NFV-RA for traffic
routing by deploying game theory. They focus on routing
and embedding of VNFs and do not consider the scheduling
problem. Similarly, placement of VNF instances for different
services with link allocation and fixed delay for links is studied
in [14]. Delay-aware cost minimization for random arrival
service requests by deploying stochastic dual gradient method
is studied in [15].

At the same time, DRL-based methods to solve various RA
problems have attracted much attention [16]–[18]. In [19], a
ML algorithm for extracting feature of data traffic in NFV-
cloud network for predicting computation and demands of
resources is deployed. In [20], DRL based mechanism with
Markov Decision Process (MDP) is proposed for reducing
congestion probability and also choosing transmission path
for routing and traffic engineering. Network congestion prob-
ability reduce to 50% with compare to Open Short First
Path (OSFP) routing method. Because routing and function
placement problems are related to each other, [21] proposes a
function placement and chaining schemes, jointly with Binary
Integer Programming (BIP) for minimizing End to End (E2E)
delay, and then use Restricted Boltzmann Machine (RBM)
output to determine the next hope node in the network.
The authors in [22] proposes multi-task deep learning for
routing and dynamic SFC with considering network status for
predicting the routing path. Lastly, in [23], the authors use

Integer Linear Programming (ILP) and multi layer perceptron
to minimize E2E delay and placement of VNFs. In [24],
the authors propose multi-objective programming and assume
that access points work as a player in a game theory based
problem that minimizes OpEx and average response time.
In [25],the authors study providing IoT services in an NFV-
enabled network by deploying DRL. Aiming to minimize the
processing and transition delay, the proposed DRL method
reduces the total delay to around 200ms that has decreased up
to 3 times compared to other baselines. In [26], the anthers
propose a matching-based scheduling method that reduces
the scheduling time in a NFV-enabled network up to 50%
compared to the Round-Robin scheduling method. Aiming to
provide a cost-efficient dynamic resource management in a
NFV-enabled network, the authors in [27] propose a practical
method that reduces CPU utilization up to 10% compared to
the traditional approaches. In addition, the authors in [28]–
[30] study the performance of the DRL-based methods for RA
in the context of a NFV-enabled network where th obtained
results show a significant improvement in the results obtained
results compared to the traditional optimization methods.
Motivated by significant effectiveness of DRL-based algorithm
for RA in NFV-enabled networks, we propose a DRL-based
algorithm for service provision in an NFV-enabled network.
In addition, concerning the ability of DRL to support online
algorithms, the proposed DQN algorithm is adopted an online
RA algorithm that different from previous works [31]–[33],
we assume that the services arrive based on the real stochastic
model. Moreover, the required resources are allocated to the
services while the subsequent services arrive. We summarize
related works and compare them with our work in Table. I.

D. Paper Organization

This paper is arranged as follows: Section II displays the
proposed system model and problem formulation. Section III
presents the solution methods of the formulated problem.
Computational complexity of the proposed algorithm and
baselines is evaluated in Section IV. Simulation results are
provided in Section V. At the end, concluding remarks are
stated in Section VII.

Symbol Notations: We use b.c for representing floor func-
tion, that takes input and gives the greatest integer less than
or equal to the input. |.| denotes the absolute value or size of
input argument and ai shows the i-th element of vector a and
ai,j shows the i, j element of matrix A. Also to define a set
and its elements, we use B and bn respectively where bn is
the n-th elements of B. We use R+ and N to show the set
of positive real numbers and natural numbers, receptively. In
addition, for representing modulo operation for the remainder
of the division of a by n, we use a ≡n.

II. PROPOSED SYSTEM MODEL AND PROBLEM
FORMULATION

The proposed system model that has two parts: 1) user’s
request with service characteristics and requirements and 2)
NFV-enabled infrastructure, and an optimization problem for
allocating the resources of the infrastructure to the services.
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TABLE I: Related Works Summary

Ref. Scenarios Strategy Main Contribution Differences with this work

[20] Routing and traffic
engineering

Using DQN
for Routing algorithm

Proposing an online routing
for Routing algorithm

Considering nodes with several
VMs and services specification

[25] NFV
(SFC & Routing)

SFC embedding for
NFV-enabled IoT

and routing by shortest path algorithm
Dynamic SFC embedding Dynamic routing algorithm by considering links state

[26] NFV
(SFC & Scheduling)

Matching-Based
VNF Scheduling

RA to VNF over time
with a matching scheme

Online service assurance with
considering VM and links and using DQN

[22] NFV
(SFC & Routing) Multi task Deep learning Learning traffic routing by SFC

information

Objective, function placement
with considering VM states and dynamic routing algorithm

by considering links state

[21] NFV
(SFC & Routing)

Applying Deep learning (RBM)
to solve a BIP

Minimizing E2E delay
with considering SFC path

Objective, VM state function placement
consideration and link’s state dynamic routing

[27] NFV (SFC) Deploying testbed Real-time flow monitoring and
dynamic resource management

Real service consideration and
evaluation of service life time

[28] NFV
(SFC & Routing)

Deploying DRL to solve
MILP for optimize resource utilization Near optimal results is obtained Evaluation of effect of network topology and geo-distributed DC

[7] NFV (SFC) Deploying DRL to function placement Deploying DRL for SFC Dynamic routing and
considering real service characteristics

[29] NFV (SFC & Routing) Deploying DRL for solving BIP Dynamic SFC embedding Objective and node by node dynamic routing

[30] NFV (SDN & Routing) Deploying DRL to solve mixed
integer quadratic constrained (MIQCP) programming Real time traffic model and NF migration Objective and service life time consideration and evaluation of network topology
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Fig. 1: High level representation of the considered system model.

We assume a central controller for providing cooperation and
coordination between the network component, and a software-
based network control. The high-level representation of the
proposed system model is depicted in Fig. 1. More details
about this figure are provided in the following subsection.

A. Service Specification and Requirements

Based on the 3rd Generation Partnership Project (3GPP)
standardization perspective [34], each communication service
needs some NFs that run on the flow/packets of the services.
European Telecommunications Standards Institute (ETSI) de-
fines a set of NFs with specific chaining and descriptors
as a Network Service (NS) [35] in the NFV environments.
According to these, we consider a set of K services which
is denoted by K = {1, . . . ,K} and a set of all NFs as
F = {1, . . . , F}. Each service k has some NFs with specific
ordering as an SFC that is shown in Fig. 2. We assume that
Fk ⊂ F is the set of specific functions of service k like
Firewall (FW), Network Address Translator (NAT), Intrusion
Detection Prevention System (IDPS), and Video Optimization
Controller (VOC). We assume that each service k is specified

….

Dk = 

{d1, d2, d3,…} Node 5 Node 4 Node 3 Node 1Node 2

Node 4 Node 3 Node 2 Node 1

VNFs:
User data flow:

(Send and Receive)

(a)

(b)

Forwarding device 

(e.g., switch):

Example of network service

Fig. 2: An example of SFC with different scenarios for function
placement. We assume that the functions can placed on the successive
nodes (a) or non successive nodes (b).

by following:

Rk =
(
ni,k, ne,k, Bk, τk,Dk

)
,∀k ∈ K, (1)

where ni,k and ne,k are the ingress and egress nodes of service
k [21], [36] and {ni,k, ne,k} ∈ N . It is worth mentioning
that each of the services has a specific sequence of functions.
For example, in the VoIP service, FW runs after NAT [37]. In
addition, Bk is the data rate in bits per second. Moreover, τk is
the tolerable time which is dependent on the type of services
of the top layer with respect to their latency requirements.1

Also, we define dkf to determine the corresponding processing
requirement for virtualized NF (VNF) f in CPU cycle per bits
of flow/packet in service k [37]. Accordingly, for each service,
we have a set of corresponding processing requirements as
bellow: 2

Dk = {dkf}, ∀f ∈ Fk,∀k ∈ K. (2)

Also, to determine the order of the successive functions in
a certain SFC, we define the order of functions by f i and
f i+1, where f i is i-th function of the SFC and f i+1 is run
after function f i. To increase the readability of this paper,
the main parameters and variables are summarized in Table
II. Moreover, we consider a set U of users with different
service requests. We assume that each user u requests only

1Note that τk is not the E2E latency and is the SFC latency. Hence, it is
the latency of the core network in the view of the cellular network.

2Obviously, the layer two and layer three NFs have different characteristics
and requirements as layer-2/3 processing in [38].
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TABLE II: Main notations and parameters
Notation Definition
G(N ,L) Network graph
N/n Set/index of nodes
L Set of links

U/u Set/index of users
F/f Set/index of NFs
Fk Set NFs of service k
V/v Set/index of VMs
P/p Set/index of the physical paths
E/e Set/index of the virtual paths
L Connectivity matrix of graph

xn,n′ Capacity of the link between nodes n and n′ in bit per second
wm,v Weight/unit costs of VM v on node m
ŵn,n′ Weight/unit costs of the link between nodes n and n′

ni,k, ne,k The ingress and egress nodes of service k
i
pm,m′
n,n′ Link indicator that shows that link between nodes

n and n′ is placed on the physical path pm,m′

Bk Data rate for service k in bits per second
B̃k Packet size in bits
Dk Set of the corresponding processing

requirement in CPU cycle per bit
for the functions of service k

dkf Corresponding processing requirement in CPU cycle per bit
for function f of service k

τk Tolerable latency of service k
ξf,uv,m ∈ {0, 1} Selection indicator of VM v for NF f on node m for user u

γ Decay factor of reinforcement learning
α Learning rate for DQN

ρ
k,e

v,v′
m,m′

pm,m′
∈ {0, 1} Path selection variable that mapping the virtual

path e between virtual machine
v and v′ for service k to physical path pn,n′

between nodes n and n′

Ψv,m Processing resource at VM v
on nodes m in CPU cycle per second

δku Service request indicator where set to 1
for user u that requests service k

ztv,m Available processing resource of VM v that is
raised on node m at time slot t

yt
n,n′ Available capacity resource of link between

nodes n and n′ at time slot t

one service. We define a binary indicator δku, where if user u
requests service k, it is 1 and otherwise 0.

B. Infrastructure Model

In order to model and formulate the NFV-enabled network,
we consider graph G = (N ,L), where N represents the set of
nodes where |N | = N and L is the set of links between
nodes. We further assume that each node m hosts several
VMs that is denoted by Vm = {1m, . . . , Vm} and created
by a hypervisor, hence the set of total VMs in the network
is denoted by VTotal = ∪Nm=1Vm. In addition, we denote the
maximum number of the VMs on each nodes by Vmax.

Each VM v on node m has a specific processing resource
that is denoted by Ψv,m in CPU cycle per second. Hence,
matrix Ψ = [Ψv,m] ∈ RV×N

+ indicates the amount of
processing resources and also determine the VMs of each
node. It is possible that each VM processes a set of NFs for
different users based on the allowable capacity [9]. Moreover,
we consider connectivity matrix as L = [ln,n′ ], that is defined
as

ln,n′ =

{
1, a link between nodes n and n′ exists,
0, otherwise.

(3)

Also, the link between nodes n and n′ has a limited bandwidth
that is represented by matrix X = [xn,n′ ] ∈ RN×N

+ , where
xn,n′ is the capacity of link between nodes n and n′ in bits
per second. Note that as the considered network is connected,
there is at least one path between two nodes. Let pm,m′ denotes
the p-th path between nodes m and m′. Therefore, we have
a set Pm,m′ = {1m,m′ , . . . , pm,m′ , . . . , Pm,m′} of all possible
physical paths between nodes m and m′ such that each path
contains a set of links. To determine which of the physical
links are in a path, we define a link-to-path binary indicator

as follows:

i
pm,m′

n,n′ =


1, the link between nodes n and n′

is in the path pm,m′ ,

0, otherwise.
(4)

Moreover, we consider the set of virtual paths between vir-
tual machine v and v′ on nodes m and m′ as Ev,v

′

m,m′ ={
1v,v

′

m,m′ , . . . , e
v,v′

m,m′ , . . . , E
v,v′

m,m′

}
where ev,v

′

m,m′ is the e-th path
of this set [39], [40], and [41]. 3

C. Optimization Variables

We define a binary decision variable ξf
i,k

v,m to determine that
i-th function of service k is running on VM v that is raised
on node m as follows:

ξf
i,k

v,m =


1, NF f i of service k is running on VM v in

node m,
0, otherwise.

(5)

Moreover, to send data traffic of service k, we define a binary

decision variable ρ
k,ev,v

′

m,m′
pm,m′ where it maps the virtual path ev,v

′

m,m′

to the physical path pm,m′ as follows:

ρ
k,ev,v

′

m,m′
pm,m′ =


1, the physical path pm,m′ is selected to tarnsmit

of service the data traffic of service k from
from virtual machine v to v′,

0, otherwise,
(6)

where for each virtual path just one physical path is selected.
Based on this, we define the following constraint:

∑
pm,m′∈Pm,m′

ρ
k,ev,v

′

m,m′
pm,m′ = 1,∀k ∈ K. (7)

We note that the virtual path ev,v
′

m,m′ is between two successive
functions of SFC of service k, (f i, f i+1), with respect to
the ordering of SFC. For example, in a certain service, the
functions like web browsing, NAT function are always run
before FW.
Moreover, the path between ni,k and the VM that the first
function of SFC is placed is determined by êvni,k,n and also
for the path between the VM that the last function placed on
it and ne,k is determined by êvn,ne,k .

D. Delay Model

This work considers three types of delays as: 1) processing
delay, 2) propagation delay and 3) transmission delay.

3In addition, we assume that in each of physical nodes, there are unlimited
bandwidth links between the VMs. Moreover, we assume that there is at least
a physical path for each virtual path.
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1) Processing delay: The processing delay of NF f on node
m for service k in VM v denoted by τf,kv,m in seconds is given
by

τf,kv,m =
dkf B̃k

Ψv,m
,∀k ∈ K, v ∈ Vm,m ∈ N , (8)

where B̃k is the packet size in bits. In this paper, we assume
the packet size is equal to the number of bits transmitted in one
second. For example, by considering a service with required
100 Kbps data rate, the packet size is 100 Kbits [9]. Also, the
total of processing delay of service k can be calculated by

Dk
Proc =

Fk∑
i=1

∑
m∈N

∑
v∈Vm

ξf
i,k

v,m τ
fi,k
v,m ,∀k ∈ K, f i ∈ Fk,∈ K.

(9)

2) Propagation Delay: To formulate the propagation delay
in the considered system, we define κn,n′as the amount of
propagation delay for the data traffic that traverses on link
between nodes n and n′ depends on the length of this link
and the speed of light. Therefore, the total propagation delay
for service k is obtained by:

Dk
Prop =

∑
n,n′,m∈N

pni,k,m′
∈Pni,k,m′

v∈Vm

κn,ni
pni,k,m

n,n′ ρ
êvni,k,m
pni,k,m

ξf
1,k

v,m + (10)

Fk−1∑
i=1

∑
n,n′,m′,m′′∈N
pm′,m′′∈Pm′,m′′

v′,v′′∈Vm

κn,n′i
pm′,m′′

n,n′ ρ
ev
′,v′′

m′,m′′
pm′,m′′ ξ

fi,k
v′,m′ξ

fi+1,k
v′′,m′′+

∑
n,n′,m′′′∈N

pm′′′,ne,k
∈Pm′′′,ne,k

v′′′∈Vm

κn,n′i
pm′′′,ne,k
n,n′ ρ

êv
′′′
m′′′,ne,k

pm′′′,ne,k
ξf

Fk ,k
v′′′,m′′′ ,

∀k ∈ K.

In the first term of (10), we calculate the propagation delay
between ni,k and the first VM that the first function is placed.
In addition, the second term calculate the propagation delay
of the link between the next functions. Finally the last term
calculates the propagation delay on the link between the last
VM that and ne,k.

3) Transmission Delay: The total transmission delay of
service k is calculated by:

Dk
Tran =

∑
n,n′,m∈N

pni,k,m∈Pni,k,m
v∈Vm

i
pni,k,m

n,n′ ρ
k,êvni,k,m
pni,k,m

ξf
1,k

v,m

B̃k

xn,n′
+

Fk−1∑
i=1

∑
n,n′,m′,m′′∈N
pm′,m′′∈Pm′,m′′

v′,v′′∈Vm

i
pm′,m′′

n,n′ ρ
k,ev

′,v′′

m′,m′′
pm′,m′′ ξf

i,k
v′,m′ξ

fi+1,k
v′′,m′′

B̃k

xn,n′
+

∑
n,n′,m′′′∈N

pm′′′,ne,k
∈Pm′′′,ne,k

v′′′∈Vm

i
pm′′′,ne,k
n,n′ ρ

k,êv
′′′
m′′′,ne,k

pm′′′,ne,k
ξf

Fk ,k
v′′′,m′′′

B̃k

xn,n′
, (11)

ni,k m m' ne,k

f1

n

fFk

n'

lni,k,n

pni,k,m

lm,n'

pm',ne,kpm,m'

n''
lm',n''

Virtual Machine

(VM)

n

Physical 

node

Physical 

link

Path of the 

services

Virtual 

path

Fig. 3: The illustration of equations (10) and (11) for calculation of
propagation and transmission delay. These equations are included
three terms that calculate the propagation and transmission delay
between the ingress nodes and the first VM’ node and the last VM’s
node and egress node of services.

∀k ∈ K,∀f i ∈ Fk.

To have better understanding and realization of (11) and (10),
the details of these equations are depicted in Fig. 3. Based
on the formulated latency, the total delay for each packet of
service k is obtained as:

Dk
Total = Dk

Proc +Dk
Prop +Dk

Tran,∀k ∈ K. (12)

E. Objective Function

We define a weighted cost function that includes the cost of
processing and bandwidth resources at the level of VMs and
links that is given by:

φ(ρ, ξ) =
∑
k∈K

∑
u∈U
m∈N
v∈Vm
f∈Fk

wm,vd
k
fBkδ

k
uξ

f,k
v,m+ (13)

∑
k∈K

∑
u∈U

n,n′,m,m′∈N
pm,m′∈Pm,m′

v,v′∈Vm

ŵn,n′δ
k
ui

pm,m′

n,n′ ρ
k,ev,v

′

m,m′
pm,m′ ξf,kv,mξ

f ′,k
v′,m′Bk,

where wm,v > 0 denotes the unit cost of VM v on node m that
converts the utilized resources to the cost. By considering the
service bandwidth and the processing requirement for each of
the functions that are placed in the VMs, the total processing
cost is calculated by the first term. Subsequently, ŵn,n′ > 0
denotes the unit cost of the link between nodes n and n′. By
considering the links that are included in the selected paths and
the bandwidth of the requested services, the total bandwidth
utilization cost is calculated by the second term.
The values of parameters wm,n and ŵn,n′ depend on the type
of nodes, and links, for example, the edge or core nodes has
different (cost) weights. Based on the definitions, our main
aim is to solve the following optimization problem:

min
ρ,ξ

φ (14a)

s.t.
∑

m,m′∈N
i
pm,m′

n,n′ ρ
k,ev,v

′

m,m′
pm,m′ Bk ≤ xn,n′ ,∀k ∈ K, (14b)
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∀v, v′ ∈ Vm,∀n, n′ ∈ N ,∑
m∈N

ξf
i,k

v,m d
f
kBk ≤ Ψv,m, f

i ∈ Fk,∀k ∈ K,∀v ∈ Vm,

(14c)∑
m∈N

∑
v∈Vm

ξf
i,k

v,m = 1, ∀k ∈ K, f ∈ Fk, (14d)

Dk
Total ≤ τk, ∀k ∈ K, (14e)

ξf
i,k

v,m ∈ {0, 1}, v ∈ Vm, f ∈ Fk,m ∈ N ,∀k ∈ K,
(14f)

ρ
k,ev,v

′

m,m′
pm,m′ ∈ {0, 1} , ∀k ∈ K, pm,m′ ∈ Pm,m′ , (14g)

where ρ = [ρ
k,ev,v

′

m,m′
pm,m′ ] and ξ = [ξf,kv,m]. Constraint (14b) ensures

that the total resources allocated to service k in all links in
path pm,m′ are less that the link capacity. Constraint (14c)
ensures that the total resources allocated to all users are less
than the processing capacity of VM v on node m. Constrain
(14d) indicates that each NF is assigned to one VM. By (14e),
we consider that the total delay is less than the predefined
tolerable latency of the services.

III. PROPOSED SOLUTION

Problem (14) is a integer linear problem witch is compli-
cated to solve efficiently. Therefore, we adopt an RL-based
algorithm to solve it. Adopting a RL-based solution for solving
problem (14) is a challenge that has significant effect on the
obtained results. In this section, first, we evaluate the basic
principles of RL algorithms, and second, we describe how to
adopt these principles to solve the proposed problem.

A. Proposed DQN Adaptive Resource (DQN-AR) Allocation
Algorithm

We propose a RL-based RA algorithm with considering the
basic concepts of RL. The basics of RL are agent, state, action,
reward, and an environment. The agent in each iteration, with
considering the state of the environment, selects an action that
causes that the state changes into the next state. Subsequently,
to evaluate the performance of each action, the agent gets
a reward from the environment. The set of states, actions,
rewards and next state is collocated in each step of RL based
algorithm to the agent, so that based on these experiments, the
agent can select better actions in the same states. Based on the
mentioned assumptions, the main equation for the Q-learning
algorithm is defined as follows [42]:

Q(st, at)← Q(st, at)+ (15)

α

[
rt + γ arg max

a′

(
Q(st+1, a′)−Q(st, at)

)]
,

where st, at, and rt denote the state, action, and the obtained
reward in the t-th step, respectively. In addition, the learning
rate and discount factor are denoted by α and γ, respectively.
Because deploying Q-learning for the huge state-action space
is not possible [17], [30], a DNN is deployed for estimating
the Q-function values.
Based on the mentioned above, we consider the network

components as the basics of components RL.
Descriptions of DQN: We adopt Algorithm 2 where the DQN
algorithm chooses a random action with probability ε. The
parameter ε is set to 1 in the first iteration and has a final
value, ε = 0.1 whereas the decay coefficient of epsilon is set
to 0.9. To make sure that the algorithm does not get the local
optimum, in each time slot with probability 0 ≤ ε < 1, we
choose a random action [43]. In fact, ε parameters determine
the ratio between exploration and exploitation in the search
algorithm [42]. In addition, we store the current sate, action,
new state, and reward in D̂ memory with a certain size. To
update the parameters of DQN, we sample the set B̂ of the
transactions with the number |B̂|. We set the memory size
|D̂| = 2000 for storing transactions and the size of mini-batch
B̂ is set to 8 transactions [25]. The learning rate α and the
discount factor γ is set to 0.001 and 0.95, receptively [7], [43].
The reason for using a discount factor γ is that it prevents the
total reward from going to infinity [44].
• Agent: We consider the SDN controller as the agent that
by considering the network’s states, chooses the actions form
action spaces. For each selected action, the agent gets a reward
and the network’ state changes to the next state over the time.
To have a smart and adaptive algorithm, the agent needs to
have knowledge about the network state and condition in each
time slot t. For this reason, available resources or capacity of
nodes and links at each time slot t is necessary [29]. To this
end, we propose a available calculation algorithm that more
details follow in Algorithm 1.
• Network States: We denote the state space at each time
slot t by St as network resources that includes the available
resources in terms of processing resources of VMs and links’
bandwidth as follows:

St = (Zt,Yt), (16)

Zt = [ztv,m] ∈ RV×N
+ , Yt = [ytn,n′ ] ∈ RN×N

+ ,

where ztv,m and ytn,n′ are the available processing resource of
VM v on physical node m and bandwidth of link between
nodes n and n′ in time slot t, respectively, and obtained by
Algorithm 1. First, we divide the amount of each resource to
I levels. To represent the resources state, we normalized the
gap between beginning time and time slot t as bellow [29]:

stn,n′ = bI
y0n,n′ − ytn,n′

y0n,n′
c, stv,n = bI

z0v,n − ztv,n
z0v,n

c. (17)

In order to apply resources’ state to input of the DQN,
the values of each network component (links and VMs) are
normalized. In addition, we set I to 1000 [7]. In addition, in
RA algorithm, the agent considers the service specification,
the previous selected node and VM in the path from ingress
to egress nodes, and order of the function in SFC as state.
Moreover, we assume that in each time slot t, the agent has
some steps to choose action and perform the RA algorithm.
We denote the state and action at time slot t and step j, for
service k, by st,j and at,jk , respectively. To ensure a limited
solving time in each time slot, we assume a upper bound for
the steps that is denoted by J and it is set to 100 in each time
slot.
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• Calculating Available Resources: As mentioned before, we
need to have an algorithm that returns the available resources
at each time slot. Based on service duration time, the service
of users is terminated and their resources are released. Also,
to calculate the available resources, it is outlined in Algorithm
1.

Algorithm 1: Resource Allocation and Calculating of
Available Resources

Input: The network graph and capacity of the links and VMs; G, Ψ, and X
1 for each time slot t do
2 for each services k do
3 for each users u do
4 Save the arrival time tu for user u
5 if the request accepted (By the Actions) then
6 if at the begining time then
7 z

tu
v,m = Ψv,m − dkfBkξ

f,k
v,m

8 y
tu
n,n′

= x
n,n′ − Bki

p
m,m′
n,n′

ρ
k,e

v,v′
m,m′

p
m,m′

9 else

10 z
tu
v,m = z

tu−t̂
v,m − dkfBkξ

f,k
v,m

11 y
tu
n,n′

= y
tu−t̂
n,n′

+ Bki
p
m,m′
n,n′

ρ
k,e

v,v′
m,m′

p
m,m′

12 if the user departure then
13 Release the user u resource’s

14 ztv,m = z
tu
v,m + dkfBkξ

f,k
v,m

15 yt
n,n′ = y

tu
n,n′

+ Bki
p
m,m′
n,n′

ρ
k,e

v,v′
m,m′

p
m,m′

16 tu ← 0

17 Update State :Zt , Yt according to the utilization of links and nodes
based on the bandwidth and processing resources

Output: Zt, Yt

Algorithm 2: DQN Algorithm
1 Initialize the DNN with random weights and consider the network graph and capacity of the links and VMs;
G,Ψ,X, and set the initial weighth for DNN : θ0

2 if the central controller want taking an action then
3 Action at,j

k
is selected;

4 a
t,j
k

=

{
select a random action with probability ε,
arg maxa(Q(st,j , a)) with probability 1 − ε

5 Store transaction (st,j , at,j
k
, r
t,j
k
, st+1,j ) in memory D̂

6 Sample random minibatch with batch size B̂ of transitions (st,j , a
t,j
k
, r
t,j
k
, st+1,j) from

D̂
7 if a request accepted then
8 Perform Algorithm 1

9 else
10 Perform gradient descent step on Mean Square Erorr (MSE) of (r

t,j
k
− Q(st,j , a

t,j
k

; θ))2

and update parameter θt of network

Action Space: The action space is denoted by A which
includes all the network VMs on the nodes that can be
considered for function placement or as a switch. Based on
the network state and SFC requirements, a subset of actions
is possible that is denoted by Ap ⊂ A. For example, if user
u requests service chain

{
f1 → f2 → f3

}
, the corresponding

action determines that the next node and VM is selected for
function placement or just it is a switch. In fact, we propose
a smart and adaptive NFV-RA algorithm that perform joint
function placement and node by node dynamic routing. More
details are given in Algorithm 3. Thus, the size of all action
space for each of service request is calculated by

|A| = |N | × |VTotal| × 2. (18)

Consequently, the agent for user u in the service k selects
action at,jk ∈ N at time slot t in jth step of Algorithm 3.
• DQN-AR for RA, Dynamic Routing, and Function
Placement: To adopt Algorithm 2 for dynamic routing and

function placement, we propose an algorithm that by an
interactive approach with Algorithm 2, performs a node by
node routing and function placement beginning from ni,k and
in each step of routing algorithm, considers the current node
as nc,k and continues to reach ne,k. On the other hand, for
each of service requests, with considering the network state
and service specification as inputs of DQN, the output of the
DQN determines the corresponding action as the next node and
VM in SFC path. It is worth mention that in each step, only a
set of the actions is possible. We consider the set of nodes that
are directly connected to current node nc,k and it is denoted
by Nc,k. Subsequently, we consider the set of VMs in which
they are on the set Nn,c as set of the possible actions and it
is denoted by N̂c,k. In addition, we assume that the agent can
choose a VM form N̂c,k. The agent can placed a function on
the selected VM or consider the selected VM as a forwarding
device. Furthermore, we assume Ap,p = Ap,s =

{
N̂nc,k

}
where Ap,p and Ap,s are the sets of possible actions for
function placement and router selection, respectively. Thus,
the set of possible action is defined by Ap = Ap,p ∪ Ap,s.
To determine the type of each action, we define an auxiliary
binary variable as at,ks,k as follows:

at,ks,k =

{
0, If at,kk ≡2 0,

1, otherwise.
(19)

It is worth to mention that, if the agent chooses a possible
action, (at,jk ∈ Ap), the sub action at,js,k determines the type
of each action. Based on this, type of each action is defined
by

at,jk ∈

{
Ap,p, at,js,k = 1,

Ap,s, otherwise.
(20)

In each step, if the selected action is possible, then we check
that this action belongs to which set. If constraints (14c) and
(14b) are satisfied, the function is placed on selected VM on
corresponding node otherwise the request is rejected. Simi-
larly, for the links, we check the constraint (14b) sanctification.
Nevertheless, the processing and propagation delay that incur
the action at,jk,u is denoted by τ̂ and calculated by

τ̂ =

τ
f,k
v,m + i

pm,m′

n,n′ ρ
k,ev,v

′

m,m′
pm,m′ κn,n′ , at,ks,j = 1,

i
pm,m′

n,n′ ρ
k,ev,v

′

m,m′
pm,m′ κn,n′ , otherwise.

(21)

In each step, by checking constraints (14e), we ensure the
tolerable time of service request.
• Reward Function: The agent after doing action at,jk obtains
a reward that is denoted by rt,jk in jth step of the RA algorithm
to service k in time slot t. Nevertheless, the agent selects a
VM on a node for function placement or as forwarding device
in jth step of Algorithm 3. Subsequently, if the link between
the current node, and the next node and processing capacity of
the next node’s VM satisfy constraints (14b), (14c) and (14e),
the agent obtains reward that is calculate by the following:

rt,jk = wacc − wcostφ̃
j
k ,∀k ∈ K,∀t, (22)
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where wacc and wcost are coefficient factors of constraint
satisfaction and cost and φ̃jk is the cost of the action, given
below:

φ̃jk = at,ks,kwm,vd
k
fBkδ

k
uξ

f,k
v,m+ (23)

ŵn,n′Bki
pm,m′

n,n′ ρ
k,ev,v

′

m,m′
pm,m′ ,∀u ∈ U ,∀f ∈ Fk,∀k ∈ K.

Otherwise, if the constraints are not satisfied, the request is
rejected and the agent reward is set to 0. Based on this the
reward of each step j is calculated by following:

rt,jk =

{
wacc − wcostφ̃

j
k, if the constraints satisfied,

0, otherwise.
(24)

In fact, for each step j of the Algorithm 3, we define a reward
that depends on constraints sanctification and cost of each
action. Finally, the total reward that the agent obtained is
defined by

rtk =
∑
j

rt,jk . (25)

The designed DQN is depicted in Fig. 5. According to the

Algorithm 3: DQN-based NFV-RA algorithm for dy-
namic routing and function placement

1 for each time slot t do
2 for each service k do
3 tu ←Arivial time, to ← 0, if ← 0, j ← 0, p̂ = {}, nc,k ← ni,k
4 while Constraint (14e) is satisfied, to < τk do
5 while nc,k 6= ne,k do
6 while j < J do
7 if at,j

k,u
∈ Ap then

8 p̂ ← p̂
⋃{

a
t,j
k

}
9 if at,j

k
∈ Ap,p then

10 if if < Fk then
11 if Constraints (14c) and (14b) are satisfied then
12 Calculate rt,j

k
13 if ← if + 1, f ← f′, j ←

j + 1, to ← to + τ̂

14 else
15 request is rejected
16 rtk ← 0

17 else
18 consider at,j

k
as switch

19 j ← j + 1, to ← to + τ̂

20 else
21 if Constraint (14b) is satisfied then
22 Calculate rt,j

k
23 j ← j + 1, to ← to + τ̂

24 else
25 request is rejected
26 rtk ← 0

27 if if < Fk then
28 if Constraint (14c) and if < Fk then
29 Function f is placed on engress node;

30 Calculate rt,j
k

31 if ← if + 1, f ← f′ , j ← j + 1, to ← to + τ̂

32 if to > τk then
33 request is rejected
34 rtk ← 0

figure, by considering the network state as DQN input, the
DNN output layer determines the actions. Note that some of
the nodes in the path are only forwarding devices (e.g., switch)
(see Fig. 2 and 4).

Node 2

Node 3

Node 7

Node 4

Node 1

Node 10

Node 11

Node 12

Node 9

Node 6

Node 5

Node 8

SDN Controller

Service Function ChainService Function Chain

Fig. 4: An example of function placement and node by node routing
algorithm for a specific service
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Fig. 5: The DQN based on the network state and service specification
determines the action.

IV. COMPUTATIONAL COMPLEXITY

We analyze the computational complexity of the proposed
DQN-AR algorithm and then we compare it with the NFV
deep algorithm [7], Tabu search algorithm [45], and greedy
search algorithm which is the well know algorithm that is de-
ployed in [46]–[48]. The complexity of DNN based algorithms
is depended on the architecture, configuration, number of input
and output, and hidden layers. Moreover, for deploying DNN
in the DQN-AR algorithm, considering the action space size
and state space size is required [7]. Also, by considering the
number of output layer neurons as Po, number of the input
layer neurons as Pi, and number of the hidden layers as Ph,
the time complexity of the proposed DQN-AR for each action
is obtained by following:

O(Pn × (Pi + Ph × Pn + Po)), (26)

where Pn is the hidden layer’s neuron number [29]. Also,
as can be seen from Fig. 5, Pi = |L| + |N | × |VTotal| + 5
and Po = |N | × |VTotal| × 2. Moreover, by considering E
iterations in the case of Tabu search, for |K| number of service
requests, the time complexity is obtained by O(E × |K|×F )
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TABLE III: Simulation Setting
Parameters Value

Average Duration Time:
240, 600, 900, 1200 seconds [29]

Data Rate:
Max = 4 Mbps Min = 64Kbps [37]

Average Tolerable Time
Max = 500ms Min = 100ms

VNF and Services:

Service Specification

FW, NAT, IDNS, TM, VOC [37]
Web Browsing, Voice over IP, Video Streaming

VM’s Capacity:
Max = 1200 CPU Cycle per second
Min = 200 CPU Cycle per second

[40]
Link’s Capacity:Network Resources Max = 6400 Mbps

Min = 1600 Mbps
[40]

Number of the Server Node:
10, 20, 30, 50, 100 [7]

Propagation delay on the links
Max = 15ms Min = 5ms

Number VMs of each nodes

Network Configuration

Vmax=6

for F number of functions in a certain SCF. Accordingly, by
increasing the number of iterations, the complexity of the Tabu
search is increasing that can cause more complexity in the case
of problems with a larger space of feasible solutions. Finally,
to find the shortest path from ingress node to egress nodes
for each of services with F functions, in a network with |N |
nodes and |L| links, the total time complexity is obtained by
O(|K| × (|L|+ |N | log(|N |) + F ×K).

V. SIMULATION RESULTS

We analyze the performance of the proposed method using
simulations. Accordingly, first we investigate the convergence
of the proposed method. Next, we evaluate the effect of the
coefficient factors in the the objective function. Afterwards, we
compare the results of the proposed method with the baselines.

A. Simulation Setup

As listed in Table. III, we consider some of the service
specifications based on their QoSs [37] and service lifetime.
We assume that each time slot is equal to one second. We
consider 1000 to 6000 time slots for the simulation time,
and 2000 iterations [7] with 10 Monte Carlo repetitions.
Moreover, we generate the number of service requests by the
Uniform random process [20] and the service life time by the
exponential random process. Also, to set the ingress and egress
nodes for set K, at the beginning of the simulation, we select
some random nodes among the network nodes.

Subsequently, to have a network with certain number of
edges and nodes, we generate a random connected graph
through NetworkX libraries in Python [25], [40]. Also, to
deploy DNN, we use Tensorflow and Keras libraries in Python.
Moreover, for the cost weight, we consider wn,v and ŵn,n′ in
range of 25 to 75 $/Mbps [9]. In addition, the source code of
the proposed DQN-AR is available in [49].

B. Simulation Results Discussions

We evaluate the effect of the main parameters, such as,
services’ life time, number of the server nodes of the network
(network topology), and the number of the arrival service
requests on different baseline algorithms.
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Fig. 6: AAR over the iterations for different network topology

1) Average Acceptance Ratio (AAR): As the network topol-
ogy, such as the number of the nodes and links and their
configurations, has a significant effect on the routing algorithm
and protocols, we evaluate the AAR on different network
typologies. To have a comparison of the effect of the network
topology on the performance of the agent, we consider the
networks with size 10 to 100 nodes to evaluate the AAR
over the iteration number. As can be seen in Fig. 6, in the
first iteration, the AAR for the different network typologies
have significant differences, specially, in the networks with
large number of the server nodes. It is because that in a
large network, the agent needs to select more actions to find
appropriate path from ingress node to egress node and also
the SFC placement on the VMs for each service request.
Gradually, the AAR increases over the iterations. That is
because the agent learns how to handle the requests and find
the appropriate path from ingress nodes into egress nodes in
different states.

2) Average Network Utilization Cost (ANUC): Network
topology and configuration have a significant effect on the
length of the paths. To evaluate the effect of the network
topology on the ANUC, we consider the network with 10
to 100 nodes. Because of the significant differences in the
length of the paths from ingress to egress nodes in small and
big networks, ANUC depends on the network size as shown
in Fig. 7. Since the initial actions are selected by the agent
randomly, we see that the obtained utilization cost is very high.
After that, the agent gets more experience and take the actions
based on the obtained experience and the ANUC gradually
decreases over the iterations.

C. Baselines Algorithms

In order to evaluate the performance of the proposed DQN-
AR, we consider baselines for comparing the results for differ-
ent setting. Since DQN-AR is an online and adaptive algorithm
in routing and function placement, it shows good performance
in different conditions. To evaluate the performance of the
proposed algorithm, we consider NFVdeep as baseline 1,
Tabu search algorithm as baseline 2, and greedy algorithm as
baseline 3, that are studied in [7], [45], and [48], respectively.
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Fig. 8: Average network utilization cost versus the average number
of requests per second

1) Effect of average number of the requests over time:
To analyze the effect of the number of requested services on
the ANUC, we increase the average number of users from
5 to 25 requests per second. As can be seen in Fig. 8, by
increasing the number of arrival services, ANUC increases.
By deploying adaptive function placement and dynamic
routing in the proposed DQN-AR, we obtain lower ANUC
for different number of arrival services.

2) Effect of the coefficient wcost on AAR: The ANUC is very
dependent on the AAR, since when the accepted requests in-
creases, the network utilization cost increases simultaneously.
Based on this, we try to maximize the number of accepted
requests with respect to the constraints and minimize the
utilization cost at the same time. Also, as we denote in (24),
we consider the reward function with certain coefficients as
wacc and wcost. Accordingly, the coefficient wcost determines
the priority of cost in each action. As we show in Fig. 9, by
increasing the coefficient wcost, the AAR deceases.

3) Effect of the coefficient wcost on ANUC: By considering
the coefficient wcost, the agent has more attention to minimize
the ANUC. Therefore, the agent chooses actions that have less
cost, but these actions can not provide sufficient resources
for the next requests Fig. 10. Because ANUC is closely
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Fig. 9: Comparing AAR with considering different coefficient of the
cost in reward function

dependent on the AAR, by decreasing AAR, ANUC gradually
decreases, but by considering this coefficient, AAR decreases
12% and ANUC decreases 20% in the proposed DQN-AR
method. In addition, to evaluate the effect of coefficient wcost
on the baselines, we illustrate the obtained results in Fig. 10.
Baseline 1, by placing the VNF in the VMs by the NFVdeep
algorithm achieves more ANUC compared to the proposed
method. Baseline 2 deploys Tabu-search algorithm for function
placement and routing and achieves higher cost than baseline
1. Finally, baseline 3, by deploying greedy-based selection
criteria, has the worst results specifically in the case of large
networks.

4) Effect of Average Service Life Time on AAR: Average
service life is a parameter that depends on the type of services.
To evaluate the effect of the service life time on AAR, we
consider the service life time with 240 to 1200 seconds. As
can be seen in Fig. 12, increasing the services lifetime has
more effect on AAR compared to the number of requests.
This is because when service lifetime becomes large, the
available resource decreases. In addition, by considering the
exponential distribution for the users’ service lifetime, after a
period of time equal to the mean of exponential distribution
from the users’ arrival time, as can be seen in Fig. 11, only
36% of these users departure the services. Because effective
resource allocation according to the service specification have
a significant effect on the AAR, DQN-AR by considering
network resources and the service specification in the network
state can adapt to the conditions that the available resources
of network is limited. In addition, DQN-AR by performing
an adaptive resource allocation, and dynamic routing achieves
better results than baselines.

5) Effect Network Resources on AAR: To evaluate the effect
of the available network resource on AAR, we consider that
the users have maximum (1200 seconds) service life time.
As can be seen in Fig. 13, by increasing the server nodes
and links, the available resources increases and the agent can
accept more service requests. Because the proposed DQN-AR
algorithm can consider some of the nodes as switch or for
function placement and also deploy a dynamic node by node
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Fig. 10: Performance evaluation of the proposed method and the baselines by changing the coefficient wcost
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routing, it has higher AAR in different network typologies.
6) Effect of the network topology on ANUC: As we evalu-

ated in Section V-B2, by increasing the network size and the
number of the server nodes, because the paths become longer,
the AUNC is increased as shown in Fig. 14. In fact, by increas-
ing the server nodes, the network becomes bigger and also
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Fig. 13: The effect of the network resources on AAR
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Fig. 14: Effect of the network size and number of the server nodes
on ANUC

more scattered. By solving the routing and function placement
jointly in the proposed DQN-AR algorithm, the ANUC is less
than that of the other baselines. In summery, since DQN-AR
is an online and adaptive algorithm in routing and function
placement, it shows good performance in different conditions.
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VI. FUTURE WORKS

It will be important that future researches investigate the
performance of the new RL-based methods that deploy com-
bined methods like Recurrent Deterministic Policy Gradient
(RDPG) to provide proactive and predictive resource allocation
algorithms in NFV-enabled networks. Therefore, in future
works, we will study other RL-algorithms in NFV-enabled
networks.

VII. CONCLUSION

We studied an online service provision framework by con-
sidering lifetime for each service and using RA approach in a
NFV-enabled network. To this end, we formulated the cost
of the network resource utilization for function placement
and routing of the requested services by considering services
requirements and resource constraints. To minimize the re-
source utilization cost by maximizing the service acceptance
ratio, we defined the reward as a piecewise function. Because
of the large number of actions and states space, we used a
DQN structure. Simulation results show the effectiveness of
the proposed model. By evaluating the baselines, the network
utilization cost is decreases by 5 and 20% and average number
of admitted request increases by 7 up to 20%.
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