
2440 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

FaaScinating Resilience for Serverless Function
Choreographies in Federated Clouds

Sasko Ristov , Dragi Kimovski , and Thomas Fahringer , Member, IEEE

Abstract—Cloud applications often benefit from deployment on
serverless technology Function-as-a-Service (FaaS), which may
instantly spawn numerous functions and charges users for the
period when serverless functions are running. Maximum bene-
fit is achieved when functions are orchestrated in a workflow
or function choreographies (FCs). However, many provider lim-
itations specific for FaaS, such as maximum concurrency or
duration often increase the failure rate, which can severely ham-
per the execution of entire FCs. Current support for resilience is
often limited to function retries or try-catch, which are appli-
cable within the same cloud region only. To overcome these
limitations, we introduce rAFCL, a middleware platform that
maintains reliability of complex FCs in federated clouds. In
order to support resilient FC execution under rAFCL, our model
creates an alternative strategy for each function based on the
required availability specified by the user. Alternative strategies
are not restricted to the same cloud region, but may contain
alternative functions across five providers, invoked concurrently
in a single alternative plan or executed subsequently in multiple
alternative plans. With this approach, rAFCL offers flexibility
in terms of cost-performance trade-off. We evaluated rAFCL by
running three real-life applications across three cloud providers.
Experimental results demonstrated that rAFCL outperforms the
resilience of AWS Step Functions, increasing the success rate of
entire FC by 53.45%, while invoking only 3.94% more func-
tions with zero wasted function invocations. rAFCL significantly
improves availability of entire FCs to almost 1 and survives even
after massive failures of alternative functions.

Index Terms—Availability, disasters, failures, function-as-a-
service, HPC, reliability, workflow applications.

I. INTRODUCTION

CLOUD data centers usually comprise several inde-
pendent availability zones to increase their reliability.

Consequently, cloud providers often claim availability of “four
nines” for their services. Moreover, serverless computing,
particularly Function-as-a-Service (FaaS), gains more trac-
tion among developers because it supports a higher level

Manuscript received 23 November 2021; revised 17 March 2022; accepted
20 March 2022. Date of publication 24 March 2022; date of current version
12 October 2022. This research is supported from the European High-
Performance Computing Joint Undertaking (JU) under grant agreement No
951745, in particular, the FF4EUROHPC CALL-2, for the project entitled
“CardioHPC Improving DL-based Arrhythmia Classification Algorithm and
Simulation of Real-Time Heart Monitoring of Thousands of Patients.” The
associate editor coordinating the review of this article and approving it for
publication was M. Tornatore. (Corresponding author: Sasko Ristov.)

Sasko Ristov and Thomas Fahringer are with the Distributed and Parallel
Systems Group, University of Innsbruck, 6020 Innsbruck, Austria (e-mail:
sashko@dps.uibk.ac.at; tf@dps.uibk.ac.at).

Dragi Kimovski is with the Institute of Information Technology, Klagenfurt
University, 9020 Klagenfurt, Austria (e-mail: dragi.kimovski@aau.at).

Digital Object Identifier 10.1109/TNSM.2022.3162036

of automation, simplifies code deployment, eliminates the
need for manual resource provisioning, and provides increased
elasticity with low communication latency. The FaaS model
enables service provisioning within a few milliseconds [1] and
is used for data analytics primarily in the cloud and at the
edge [2].

To fully benefit from FaaS, developers usually build more
complex serverless applications by connecting functions with
data- and control-flow in batch-oriented function choreogra-
phies (FCs) [3] or serverless workflows. For this purpose, all
dominating cloud providers offer FC systems. For example,
AWS offers Step Functions to build FCs but can run functions
only on its corresponding FaaS system AWS Lambda. For
non-critical FCs, users usually rely on providers’ resilient tech-
niques. Unfortunately, failures are inevitable and may occur at
any time, which burdens the execution of critical FCs because
of four deficiencies.

Firstly, although serverless functions are usually lightweight
short-running, still, they could fail, block, or not even start due
to various reasons, such as software, network, or hardware
failures. Functions failures can cause adverse consequences
unless they are not anticipated and handled appropriately [4].
The entire FC may fail even by sporadic failures, that is, if
even a single function fails and no appropriate resilient mea-
sure is taken. While FCs offer a novel programming model
in serverless computing, which provides high degree of paral-
lelism and controlled flow of interconnected functions within
an FC, still, a failure of an individual function usually leads to
a failure to meet the deadline constraint or often a failure of
the entire FC [5]. Therefore, specific resilient techniques are
required for various kinds of FCs [6].

Secondly, FC systems of dominating cloud providers are
still in their infancy with numerous drawbacks, individual lim-
itations, and constraints [7], which may lead to failures. As a
consequence, functions may terminate with errors due to max-
imum duration time of a function, input and output data size,
size of the code, and limited allocated memory. Even worse,
most of these limitations cannot be detected statically and
are visible at runtime only. Furthermore, FCs that need to be
scaled are also affected by the FaaS systems limitations, such
as the declared limit of 1,000 concurrent functions. Running
a higher number of concurrent functions will either cause a
failure, or users will experience a delay in their makespan [8].
Such scenarios often lead to massive failures. Moreover, many
providers offer authentication based on timely limited session
token, which may cause massive failures until the token is
renewed.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0001-5933-3246
https://orcid.org/0000-0003-4293-1228

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2441

Thirdly, although cloud providers offer support for resilient
techniques, the application domain is limited within the same
region of that provider without support for federated clouds.
For instance, AWS Step Functions in Frankfurt may run server-
less functions in its corresponding FaaS system AWS Lambda
in Frankfurt only, thereby the resilient techniques are available
for AWS Step Functions (e.g., alternate resource) and AWS
Lambda (e.g., function retry) in Frankfurt only. Moreover,
these techniques might be unable to handle various natural-
based [9], weather-based [10], technology-based disasters [11],
or disasters deliberately caused by human attacks [12].

Finally, a common weakness of cloud providers is the spec-
ified level of availability in their service level agreements
(SLA). For instance, AWS guarantees 99.95% availability of
their regions. However, the way how the availability is cal-
culated is inconsistent because, for instance, AWS calculates
availability per customer each five minutes. If in this time
period, a customer does not run any function, availability is
considered as 100%.1 This approach results in a much higher
availability than the actually achieved one.

To bridge the gap of the above-mentioned shortcomings
in FC resilience, this manuscript introduces a novel resilient
rAFCL middleware platform that may run an alternative
strategy comprising multiple alternative functions of each pri-
mary function of an FC across the globe. rAFCL’s resilient
techniques are applicable on top of our recent xAFCL FC man-
agement system [13], which runs FCs in federated clouds.
In this paper, we extend xAFCL to monitor FC functions
and run alternatives across the top five clouds AWS, Azure,
Google, Alibaba, and IBM. Unlike existing FC systems which
are limited to a single cloud region, rAFCL may run and
apply resilient techniques on the same region, other region
of the same cloud provider, or even on any region of other
cloud providers without provider lock-in. Moreover, to miti-
gate the impact of the primary functions failure, the decision
how many alternative functions to be invoked in other cloud
providers is taken by rAFCL at runtime for maximum flex-
ibility. rAFCL offers numerous advantages compared to the
resilient techniques of individual cloud providers. Firstly, using
proactive and reactive resilient techniques, rAFCL reaches the
required availability of each function and thereby of the entire
FC. Secondly, rAFCL uses greedy scheduling algorithm which
minimizes the cost of alternative strategies. Finally, rAFCL
can automatically distribute alternative functions of an FC to
multiple regions across several FaaS systems, thus increasing
scalability and improving performance. rAFCL increases the
success rate of the entire FC by 53.45% with average increase
of the average number of invocation by only 3.94% with zero
wasted function invocations for functions with availability of
at least 60%. With the flexible approach of the alternative
strategies to run sequentially or parallel, rAFCL may speed
up execution of a function by 52.8% with a trade-off of 2.5×
higher cost, even for functions with success rate of 25%.

In summary, the contributions of this work are:
• Publicly available rAFCL platform for building, schedul-

ing, and monitoring FCs across five FaaS systems;

1https://aws.amazon.com/lambda/sla/

• Unlike existing approaches, which impose the restric-
tion for resilient techniques within the same region only,
rAFCL offers resilient techniques in federated clouds;

• The rAFCL resilience model considers latest start and
finish time, maximum function duration, and number of
retries for every function of an FC;

• The rAFCL scheduler selects user-provided alternative
functions to reach the required availability and minimize
the cost of each primary function of the FC;

• rAFCL survives even in case of massive failures.
This paper is organized in seven sections. Section II

presents thorough and critical overview of the related work.
Section III provides a summary of the existing resilient
techniques supported by the established cloud providers and
the rAFCL support for resilient FCs in federated clouds.
Section IV describes the overall architecture of rAFCL and
its current implementation. The rAFCL resilience model
and scheduler are elaborated in Section V. We evaluate
resilience of rAFCL and discuss its limitations in Section VI.
Finally, we conclude our work and present future work in
Section VII.

II. RELATED WORK

This section compares resilient techniques of rAFCL with
cloud providers and other FC systems. It also presents how
rAFCL advances beyond the state-of-the-art.

A. Resilient Techniques by Cloud Providers

Many cloud providers offer FC systems to orchestrate func-
tions in the form of an FC. Moreover, their FC systems provide
support for resilience, mainly as a reactive measure in case
some of its functions fail. In general, cloud providers offer
retry and try-catch, and some offer specific resilient techniques
such as function rollback or try-catch-finally.

AWS Step Functions provide both reactive and proactive
resilient techniques. Users can specify the maximum num-
ber of retries for every FC function. Additionally, AWS Step
Functions supports try-catch blocks during the FC devel-
opment. Moreover, AWS Step Functions introduced a state
machine pattern that retains the state of a function by using
reactive measures to invoke another function in case of a fail-
ure state [14]. However, these techniques are limited within
the same AWS region. Similarly, IBM Composer supports
try-catch-finally and function retry. Google Composer pro-
vides retrying a function and raises various kinds of exceptions
without handlers in case a function fails. Alibaba Serverless
Workflow offers try-catch, function retry, and rollback.

B. FC Systems for Federated Clouds

Several FC systems were introduced recently that can run
FCs across FaaS systems. Malawski et al. [15] extended
Hyperflow [16] to support FCs and run them on the specified
regions of AWS or Google. MPSC [17] went a step further as
it can run FCs across backend FaaS systems AWS Lambda and
IBM Cloud Functions. However, both HyperFlow and MPSC
may run an FC on a single FaaS system region at a time,
thereby are restricted to the limitations of that FaaS system.

2442 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Risco et al. [18] introduced OSCAR, a programming language
agnostic serverless framework, which offloads functions to a
single cloud region when the edge resources are overloaded.
However, OSCAR neither considers the concurrency limita-
tions of the FaaS providers nor can it schedule complex FCs
with data and control flow dependencies. Baarzi et al. [19]
present the concept of virtual serverless providers, which fed-
erates multiple cloud providers through a third party entity
responsible for enabling interoperability between the functions
and preventing vendor lock-in. However, the presented concept
does not consider the resilience of FCs, which can lead to a
higher number of Service Level Objective (SLO) violations
due to execution failures.

Other FC systems use Python to orchestrate FCs. One such
FC system is PyWren [20], in which a single serverless func-
tion (the executor) fetches Python code and the input data
from the cloud storage and runs that code. With this approach,
it is possible to overcome some cloud provider limitations
(input data size or function code size). However, there are
still several weaknesses. Firstly, it generates additional run-
time overhead to fetch the code and data input. Secondly,
the function developer must rewrite all functions written in
a programming language different from Python. Thirdly, the
duration of the FC is limited to the maximum duration of
the FaaS system. Finally, if the executor function fails, no
resilient technique is provided and the entire FC fails. Another
FC system is SWEEP [21], which supports AWS Lambda and
AWS Fargate containers as backend FaaS systems. However,
SWEEP does not support FCs with branches and is limited
to a single region of AWS. Finally, CRUCIAL [22] offers a
novel programming model to orchestrate functions in Java by
introducing the concept of cloud thread, which corresponds to
a single cloud function. CRUCIAL relies on AWS Lambda
and uses its retry techniques for fault tolerance. However,
CRUCIAL supports a single cloud region and provider and
the retry resilient technique only.

Another approach for orchestrating serverless functions is
to faasify a monolith and use it to orchestrate functions in an
FC. Node2FaaS [23] supports porting of monoliths as FCs by
offloading their methods as functions. Although Node2FaaS
ports functions on multiple FaaS systems, the generated FC
can run on one region of a single FaaS system at a time, with-
out the option for a multi-FaaS scenario. Moreover, resilient
techniques have to be implemented in the monolith with con-
siderable development effort. Node2FaaS restricts scalability
because the monolithic architectural style does not utilize the
serverless architecture. It also restricts resilience in a single
region because the generated hybrid FC (monolith + server-
less) runs functions on one region only of a single cloud
provider. Moreover, this approach can be applied to simple
functions without code and package dependencies [24].

GlobalFlow [25] is an FC system that can distribute an
FC written in AWS Step Functions across multiple regions of
AWS. This approach may partially overcome the concurrency
limit of a single region and massive failures. Still, the FC is
locked in AWS, thereby limiting portability. Moreover, similar
to PyWren, GlobalFlow runs additional functions, increasing
overall makespan and economic costs.

C. FC Schedulers

Several works describing FCs schedulers exist. The intro-
duced FC scheduling approaches are usually written in
high level languages, such as Python. To begin with,
Pheromone [26] uses data-centric scheduling for FCs and trig-
gers successor functions once data is available. Pheromone
allows developers to explicitly specify shuffling data-flow
between FC functions. Sequoya [27] is another FC system
that acts as a proxy and offers several scheduling policies to
developers, based on various quality of service (QoS) param-
eters. After a function finishes, it runs successor functions of
the FC on OpenWhisk or AWS. Wukong [28] is an FC system
that uses a decentralized scheduler, which splits the directed
acyclic graph (DAG) of the FC into multiple static schedules.
The schedules may contain multiple copies of tasks, however
the executors collaborate with each other to run each task
only once. The three FC systems, Pheromone, Sequoya, and
Wukong, are suitable for scheduling the FCs whose functions
work over the same data in a single storage. However, none
of them is applicable if FC functions are distributed in feder-
ated clouds across the globe. Moreover, they are limited to a
single programming language and cloud region, while rAFCL
is programming language and FaaS provider agnostic.

Other approaches optimize the makespan with budget con-
straints. Kijak et al. [29] introduced a scheduler that selects
functions assigned with various memory size and optimizes
the cost-performance ratio. Skedulix [30], on the other side,
offloads functions from OpenFaaS to AWS Lambda to min-
imize the costs by given deadline constraint. However, both
approaches are restricted to small-scale FCs due to concur-
rency limitations of a single cloud region. In contrast, our
rAFCL scheduler is among the first that considers resilience
of FC functions in federated clouds.

III. RESILIENCE IN SERVERLESS

In general, resilient techniques can be classified as reac-
tive or proactive [31]. Proactive resilient techniques tend to
minimize the number of failures that occur. Their goal is
to anticipate failures and proactively minimize their effects,
thereby increase the system reliability. However, even with
proactive measures, failures are inevitable in computer systems
and networks. As a consequence, reactive resilient measures
are needed to recover the system and minimize failures’
impact. The goal of reactive resilient measures is to continue
to serve client requests even in the presence of failures and to
recover quickly within an acceptable period of time.

A. Reactive Resilient Techniques

Function retry is the simplest reactive measure. This means
restarting the same function again after a failure occurs.
Often, failures caused by network issues, power outages, hard-
ware failures, throttling or API invoked errors are handled by
retrying the functions. Short-running serverless functions will
benefit to be retried in case of a failure. Alternate function
is another reactive technique that may alleviate the impact
of disruptions, especially in case of a permanent failure of
the primary function. The failed function is replaced with the

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2443

same function code but deployed with more memory. Because
serverless functions are in general stateless, they do not keep
the state of executed code in case of a failure. This causes
that the above-mentioned techniques are not applicable if func-
tions increase or decrease value of some data item stored in a
database [22]. Therefore, the presented reactive measures are
valid for idempotent functions, i.e., functions whose result is
not affected if they are executed multiple times.

While reactive measures may reduce the impact of failures,
still, in general, computer systems need mechanisms to mini-
mize the failure rate. For example, reactive measures may be
not applicable in real-time systems where data will be lost if
a function, which handles data stream, fails.

B. Proactive Resilient Techniques

Checkpointing is a proactive resilient technique that saves
the state of the running application to a persistent storage. In
case of a failure, the system may be restored to the state of the
latest checkpoint [32]. However, serverless functions are state-
less which makes checkpointing not applicable. Redundancy
is another proactive technique that performs replication of the
idempotent functions. This technique improves the system reli-
ability, however it induces higher cost as trade-off. In terms of
execution, the successor functions of the FC can start imme-
diately after one replica has finished execution [33] or after
all replicas finish execution [34].

However, all instances of a single function may fail if, for
example, some data input requires more memory than the
function is assigned. In such case, none of the previously
mentioned techniques will succeed. One possible example
is a recursive implementation that may fail due to reach-
ing the memory limit faster, but an iterative implementation
may work for a specific input. Such cases need another
proactive technique, called design diversity, where different
versions of a function are invoked concurrently [35]. This
technique increases the development effort for creating other
implementations; however it improves further resilience of
FCs. Implementations may be developed in different program-
ming languages or with improved algorithms and such diverse
functions be orchestrated in an FC.

C. Function Failures Affect the Entire FC

Functions failures, caused by various reasons, affect the
entire FC [36]. Some functions may not even start if the input
JSON file exceeds the size limit or there is an authentication
error. Functions may stop their execution before completion,
most commonly due to an invalid input. Other types of abnor-
mal execution is if a function execution blocks or runs longer
than its maximum duration, or the output of a function exceeds
the limit. In all cases, the output JSON object is either not
completely generated or contains error key instead of the
correct ones, which may cause all successor functions of the
FC to fail or to produce invalid results. Any of the above-
mentioned failures affect the execution of FCs and may lead
to an error state, such as wrong results produced by the entire
FC, or correct result produced after the deadline constraint.

Fig. 1. Existing FC systems offer resilient techniques within the same
region (a), while rAFCL in federated clouds (b).

D. Resilient Techniques in Existing FC Systems

Fig. 1 a) presents three scenarios for which the execution of
the entire FC may fail using the existing resilient techniques of
FC systems. Firstly, as the example for IBM shows, due to the
provider limitations (e.g., input size limitation), the entire FC
cannot complete even with sporadic failures. The reason is that
when a function fails the specific number of retries and the try-
catch block also fails for the same reason, there is no support
for diversity on another region of the same or another provider
that supports more relaxed limitation. Secondly, even if the
cloud provider offers alternate resource, still, that resource may
also fail, leading again to a failure of the entire FC. Thirdly,
the network communication or the entire data center may be
unreachable, which locks the user in the hands of the cloud
provider’s region. Similarly, the expired session token or any
other failure in authentication may lead to massive failures.

E. Towards Resilient Techniques in Federated Clouds

The lack of advanced support for resilience of FCs moti-
vated us to introduce rAFCL, which offers various types
of resilient techniques, including alternate functions, func-
tion retry, diversity, and redundancy in federated clouds. As
shown in Fig. 1 b), rAFCL allows the FC developer to spec-
ify multiple alternative functions, some of which on another
region of the same cloud provider or even on another cloud
provider. Moreover, rAFCL may run multiple replicas concur-
rently or sequentially across various regions and providers.
Finally, rAFCL supports diversity, or may run various alter-
native functions from the same semantics as the primary
function, if the latter fails. All these resilient techniques
are applicable within a single language Abstract Function
Choreography Language (AFCL) [3], instead of developing
multiple versions of the FC in specific language of each
provider. This means that rAFCL supports resilience for
federated clouds.

IV. rAFCL IMPLEMENTATION

This section describes the rAFCL approach and the system
architecture of the current rAFCL implementation. The imple-
mented proactive and reactive resilient techniques are also
explained. Finally, the extensions to AFCL that were needed
to support the new resilient techniques are also detailed.

2444 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

A. rAFCL Approach

The general rAFCL approach is to support all resilient tech-
niques described in Section III and to provide resilience in
federated clouds. Firstly, rAFCL offers FC developers to spec-
ify the number of retries for each primary function. Secondly,
a backup alternative strategy with multiple subsequent alter-
native plans is introduced for each primary function of the
FC. Each alternative plan comprises the number of concur-
rent invocations of replicas, alternative functions, and diversity
from the primary function.

Each primary function may have multiple alternative func-
tions, which may be a part of an alternative plan. These
alternative functions can be implemented in any programming
language, deployed with arbitrary amount of memory in any
region of all top five FaaS systems. Having multiple alter-
native functions that are hosted in different regions of many
providers, may significantly increase reliability of functions
and the entire FC. The only requirement for each alterna-
tive function is to have the same semantics (functionality),
data inputs and data outputs. This is required to retain the
consistency in the FC execution. Unlike the FC systems of
all well-known cloud providers, which support resilient tech-
niques for FCs that are limited to a single region, to the best
of our knowledge, rAFCL is the first platform that supports
resilience in federated clouds. The main innovation is the pos-
sibility to invoke alternative functions that can be deployed in
federated clouds, rather than in the same region as the primary
function only.

In order to allow a unified resilience in federated clouds,
rAFCL disables the standard resilient settings on every indi-
vidual cloud provider. This way rAFCL creates a homogeneous
starting point and re-configures resilience from scratch to guar-
antee uniform behaviour across all cloud providers and their
regions. For instance, rAFCL automatically deactivates func-
tion retries on the cloud provider side to make sure all FaaS
systems are behaving the same under the control of the FC
developer. The FC developer can then specify a maximum
number of retries for each function in AFCL, which is appli-
cable regardless on which FaaS system the primary function
runs. rAFCL then retries the primary function as many times
as specified, before starting the alternative strategy.

If the primary function fails during execution, or does not
complete within the maximum duration timeout even after the
specified number of retries, then the first alternative plan of
the alternative strategy for that primary function is executed.
An alternative plan is a collection of one or more alternative
functions of the primary function. When any of these alterna-
tive functions returns (finishes with success), rAFCL cancels
the other invoked alternative functions of the same alternative
plan. Subsequently, it ignores the other successive alternative
plans from the alternative strategy and the rest of the FC
continues to run with the other successor primary functions
following the control-flow of the FC. In case all alternative
functions from the first alternative plan fail, rAFCL proceeds
with execution of alternative functions of the second alterna-
tive plan. This process of sequential invocation of the next
alternative plan continues until all alternative plans of the

Fig. 2. rAFCL system architecture.

alternative strategy are invoked. If all alternative plans of the
alternative strategy fail, rAFCL returns an exception. Similar
like the top five cloud providers, rAFCL supports resilience for
idempotent functions, but with at least once function execution
model in federated clouds.

Another innovative resilient technique is the specification
of latest start time (LST), latest finish time (LFT), and maxi-
mum duration for each function. These constraints include the
primary function and all alternative functions within the alter-
native strategy. This feature is very important for the functions
that belong to the critical path of the FC because any delay
of those functions directly affects the makespan of the entire
FC. In case these constraints are not met, then rAFCL cancels
all started functions and returns an exception to save further
costs.

B. rAFCL System Architecture

Fig. 2 depicts the system architecture of rAFCL. It consists
of rAFCL scheduler (rScheduler), function repository (fRepos-
itory) and resilient enactment engine (rEE), which comprises
Invoke Monitor and FaaS Invoker. rAFCL may run FCs across
multi-FaaS federated cloud.

The input to rAFCL is the specified FC and the required
availability for each function. For example, FC developers can
choose how often the individual primary function should be
retried and the required availability for each alternative plan
of the alternative strategy.

f Repository stores two kind of data for each function.
Firstly, the rAFCL administrator configures f Repository with
all cloud providers, their regions, and all deployed functions.
Secondly, rAFCL administrator stores resource link for all pri-
mary functions and their alternative functions. Finally, for each
function invocation, f Repository stores execution logs (invo-
cation time, duration, return time, and status message) and
availability during those executions.

rScheduler uses availability data for alternative functions to
create an alternative strategy for each primary function dur-
ing runtime. It then generates alternative plans that reach the
required availability by including multiple alternative functions
across multiple regions and cloud providers concurrently. This
greatly reduces the probability that all alternative functions
fail. To reduce costs, rScheduler generates alternative plans
using a greedy algorithm that minimizes the number of alterna-
tive functions needed to reach the required availability within
the alternative plans. Finally, rScheduler creates an optimized
AFCL file (rAFCL) for the FC, which includes alternative
strategy for every primary function.

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2445

Afterwards, rScheduler passes the optimized rAFCL file to
rEE, which parses it and creates an executable workflow based
on its control- and data-flow. rEE then runs the executable
workflow by passing all primary functions to the Invoke
Monitor module. This module submits the ready primary func-
tions to the FaaS Invoker module, which invokes them on
the specified FaaS system. Invoke Monitor comprises several
monitors for each FaaS system, which monitors the execu-
tion of all primary functions that are specified with resilience.
The invocation process is monitored and the information is
saved in the f Repository. If a primary function fails, then
Invoke Monitor retries the execution based on the specified
number of retries. If all retries fail, then Invoke Monitor
proceeds with the alternative strategy which contains alterna-
tive plans calculated by rScheduler earlier. Moreover, Invoke
Monitor monitors if the specified time constraints (e.g., LST)
are met and raises exceptions in case they are violated. By
saving data about all previous invocations in f Repository,
rAFCL updates the availability of each function. Instead of
supporting resilient techniques for each FC system individ-
ually, FaaS Invoker interacts with FaaS systems directly to
support resilient techniques in federated clouds.

The overall rAFCL is publicly available on Github.2 This
repository contains the parser for AFCL to extract all primary
functions, and follows the control- and data-flow between
functions. Both modules of rEE are implemented in separate
Java projects. The InvokeMonitor interface is a part of the
FTjFaaS3 project and monitors the execution of a function
on the specified provider. The FaaSInvoker interface is a
part of the jFaaS project,4 which is a portable interface that
invokes functions on various cloud providers and is a part of
our existing xAFCL FC management system.

C. Resilience Specification in FCs

1) Function Description in AFCL: AFCL is a YAML-
based language and allows FC developers to orchestrate func-
tions by connecting them with different control- and data-flow
constructs. AFCL offers a reach set of control-flow constructs
including parallelFor, parallel, switch, or if and
data-flow constructs including data distribution with indexing
or blocking. We refer the reader to our previous paper [3] for
details about how an FC can be developed using AFCL.

AFCL offers FC developers to specify properties of
primary functions (e.g., the location of the function). The loca-
tion of each primary function is specified in the value of the
built-in key resource in the properties, as it is presented
in Fig. 3. The same field is used regardless where the func-
tion is deployed, which allows to run and monitor FCs in
federated clouds. AFCL also offers FC developers to setup
constraints (e.g., number of retries), which are used for
specifying various settings that are important during runtime.

2) Extensions in AFCL for Resilience: Each function of an
FC may be configured with a constraints field, which is

2https://github.com/sashkoristov/enactmentengine/
3https://github.com/sashkoristov/FTjFaaS
4https://github.com/sashkoristov/jFaaS/

Fig. 3. Support for resilience in rAFCL.

parsed by rEE and processed accordingly. We introduced sev-
eral new built-in settings for resilience in rAFCL. To begin
with, the constraint FT-Retries (see Fig. 3) is a manda-
tory field which contains an integer to represent the number
of times the primary function is retried before rAFCL pro-
ceeds with the alternative strategy. Further on, due to the
performance variability of cloud resources and FCs [37], we
introduced three novel time constraints as optional fields.
These novel parameters are important for the overall execution
of the FC, which are also shown in Fig. 3. They define which
parameters should be monitored during execution, i.e., LST,
LFT, and maximum function duration.

The C-latestStartingTime constraint is a times-
tamp that specifies LST at which a primary function has to
be invoked within the FC. For example, if a function belongs
to the critical path, delaying its start will cause the delay of
the entire FC. In many cases, the results of the FC may be
irrelevant after the deadline constraint passes. Before invoking
a function, rAFCL checks if this constraint has been set and
whether the current time is later than LST. If so, neither the
primary function, nor the alternative strategy will be invoked.
Instead, an exception will be thrown to save further execution
costs. Similarly, the C-latestFinishingTime constraint
may be optionally used to set LFT by which the primary func-
tion, or any of the alternative functions must return with a
success. Otherwise, rAFCL throws an exception to save fur-
ther execution costs. Finally, C-maxRunningTime is used
to specify the maximum round trip time (5.000ms) for which
the primary function should finish, after which, rAFCL throws
an exception.

The last constraint (FT-AltStrat-required
Availability) lets the FC developer to specify the
required availability for each alternative plan. If this optional
constraint is specified, rScheduler will automatically gen-
erate multiple alternative plans for that primary function
during runtime. In the resulting optimized rAFCL file, the
FT-AltStrat-requiredAvailability constraint
is removed from the YAML file and is replaced with the
multiple alternative plans of the alternative strategy for
that primary function. The rScheduler adds one constraint
with a prefix FT-AltPlan- and the number of each
alternative plan. Fig. 4 presents an example of an alternative
strategy with two alternative plans FT-Alt-Plan-0 and

2446 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. A possible output of rScheduler. rScheduler replaces the constraint
FT-AltStrat-requiredAvailability from Fig. 3 with calculated
alternative plans.

FT-Alt-Plan-1. The value attribute of each alternative
plan is filled with the total calculated availability and the
resource links for all alternative functions that should be
invoked in that alternative plan. For instance, the calculated
availability for the alternative plan FT-Alt-Plan-0 is
0.9879. If the primary function that runs on AWS fails, then
both alternative functions (in IBM Tokyo and London) will
be invoked concurrently as a part of the alternative plan
FT-Alt-Plan-0. If they both fail, rAFCL proceeds with
the alternative plan FT-Alt-Plan-1.

V. rAFCL RESILIENCE MODEL AND SCHEDULER

rScheduler follows two design principles to satisfy required
availability for each function. Firstly, rAFCL selects the alter-
native functions with the highest availability and minimum
number of alternative functions within the first alternative plan,
with a main goal to minimize the cost. Further on, each follow
up alternative plan has at least the same number of alternative
functions. The second principle is that one alternative function
may be used in maximum one alternative plan of the alterna-
tive strategy. The reason is that if an alternative function does
not finish after the specified number of retries, it is highly
probable that it fails again in another alternative plan.

A. rAFCL Resilience Model

Let F =
⋃j=N

j=1 {fj } denotes the set of all primary functions
fj of an FC with specified resilience constraints. The other
functions of the FC without specification for resilience, as well
as the control- and data-flow between functions are beyond the
scope of this manuscript. Each function fj may be specified
with minimum required availability aj ∈ A, ∀j = 1, 2, . . . ,N
and AFj is the set of all alternative functions for each func-
tion fj ∈ F that can be selected in the alternative strategy.
Furthermore, we denote the set of all sets AFj for each func-
tion AF =

⋃j=N
j=1 {AFj }. Besides, we represent the method

that returns the availability of the alternative function afi as
A(afi). Availability of each function depends on several fac-
tors. First, the network links between rAFCL and the cloud
region must be up and running so that the request for the
function execution reaches the cloud region and the response
of the function returns to rAFCL. Second, the cloud platform
should be up and running and provide required resources to
run the function. For example, different regions may assign
less powerful CPUs, which may breach the maximum function
duration limitation. Finally, the code of the function should run
properly and comply with the cloud infrastructure and limita-
tions. For example, AWS Lambda offers write access to the
/tmp folder and trying to write on another location would

Fig. 5. The output four alternative plans (AP0 to AP3) and their availability
(numbers in red color) from rScheduler for a given single function fj with
required availability aj = 99.5% and given 11 alternative functions afi with
their individual availability A(afi) (numbers in blue color).

cause a failure. Therefore, we model availability A(afi) of an
alternative function afi in Equation (1) as a product of three
availability functions (i) availability of networking NA(afi)
between rAFCL and the cloud region where the function runs,
(ii) availability of the region RA(afi) where the function runs,
and (iii) availability of the code of the function CA(afi).

A(afi) = NA(afi) · RA(afi) · CA(afi) (1)

The current implementation of rAFCL measures A(afi) for
each function without splitting the availability of network,
region, and code.

Finally, AS =
⋃N

j=1 {ASj } denotes the set of alternative
strategies ASj for each fj ∈ F . Each alternative strategy
contains at least one alternative plan APp , such that each
alternative plan contains a subset of alternative functions of
the primary function fj . The overall availability of each alter-
native plan APp is denoted with ap . The total availability
when the first 1 ≤ k ≤ m alternative functions of the array
afi , i = 1, 2, . . . ,m are executed concurrently is calculated
based on Equation (2).

A(k) = 1−
i=k∏

i=1

[1− A(afi)]. (2)

If the first k alternative functions are selected for an
alternative plan APp , then ap = A(k).

B. rScheduler Implementation

We implemented a greedy rScheduler which
determines multitude of alternative plans for each
primary function specified with required avail-
ability. If the FC developer has specified the
“FT-AltStrat-requiredAvailability” constraint
for a primary function, then rScheduler will proactively
generate an alternative strategy for this primary function at
runtime.

We illustrate the rScheduler algorithm with an example. Let
the input to rScheduler is a single primary function fj with
required availability aj = 99.5% for which it needs to create
an alternative strategy. For instance, a function that adds a
timestamp to an image. Let rScheduler receives 11 alternative
functions afi as potential alternative functions of function fj ,
each with individual availability A(afi), as depicted in Fig 5.
For instance, the alternative functions may be deployed in six
regions of AWS, two regions of IBM and three regions of
Google, all in Europe to minimize latency.

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2447

rScheduler firstly orders the alternative functions descend-
ing based on their availability, which is already done in Fig. 5.
Based on the required availability aj = 99.5%, rScheduler
selects the first function af1 alone within the first alterna-
tive plan AP1 because it has a higher availability (A(af1) =
a1 = 99.89%) than the required one (aj = 99.5%). Then,
rScheduler selects the following two alternative functions af2
and af3 in the alternative plan AP2 to achieve total avail-
ability of a2 = 99.99% based on (2), which is higher than
the required aj = 99.5%. We observe that this availability
is even higher than a1, but at the same time more expen-
sive since AP1 runs one function only. Similarly, rScheduler
places af4 and af5 into AP3. Afterwards, rScheduler selects
the next three functions to reach the required availability aj
because the total availability of af6 and af7 is only 99.19% <
99.5%. Finally, rScheduler does not place any of af9, af10, and
af11 in a new alternative plan because their total availability
98.75 < 99.5 = aj .

Note that rScheduler considers the memory configuration of
a function implicitly. Usually, function’s availability is higher
when it is assigned with more memory. Therefore, rScheduler
selects the function’s code with more memory earlier than the
same code with less memory.

C. rScheduler Formal Algorithm

Algorithm 1 presents the formal greedy rScheduler algo-
rithm. The rScheduler algorithm requires the following inputs:
the set of all primary function F of an FC that are specified
with resilience constraints, the set A of required availability
aj for each primary function fj , and the sets of all alter-
native functions AFj , including their availability A(afi), for
each primary function. After the rScheduler algorithm finishes,
it provides as output a set of alternative strategies, one for
each primary function fj . Because the algorithm is greedy
it tries to find the alternative plans with the lowest number
of alternative functions first. Therefore, the algorithm mini-
mizes the number of needed invocations to reach a required
availability.

Algorithm 1 iterates over all primary functions (lines 2-17).
For each primary function, it ranks all alternative functions in
descending order based on their availability (Line 3) and ini-
tializes the starting parameters for each iteration (Lines 4-7).
Afterwards, it iterates over the unassigned alternative functions
(Lines 8-17) to select the first k alternative functions for which
the total availability ap is greater than the required availability
aj . If this is the case, the algorithm creates a new alternative
plan, stores the alternative functions in it and removes them
from the list (lines 11-14). If the total availability ap of the
selected k alternative functions is less than the required aj , the
algorithm increases k by one, that is, checks the total avail-
ability including the following alternative function from the
ranked list (Line 16). At the end of each iteration for the
primary functions, the algorithm ignores the last alternative
functions whose total availability is smaller then the required
one. If the algorithm finds at least one alternative plan within
the alternative strategy, it includes the alternative strategy in
the set of all alternative strategies (Line 17).

Algorithm 1: rScheduler Greedy Algorithm

Input : F =
⋃j=N

j=1

{
fj
}

; // A set of functions with

specified resiliency constraints

Input : A =
⋃j=N

j=1

{
aj

}
; // Min. availability for each fj

Input : AF =
⋃j=N

j=1

{
AFj

}
; // A set of AFj (alternative

functions) for each function fj ∈ F

Output: AS =
⋃N

j=1

{
ASj

}
; // a set of alt. strategies

∀fj ∈ F
1 Function rAFCL(F, A, AF):
2 for j ← 1 to N do // Iterate over all functions
3 RANK ← Desc(AFj) ; // order all alternative

functions of fj descending based on availability
4 ASj ← ∅ ; // create an empty strategy for fj
5 m ← |AFj | ; // the number of alternative functions

for fj
6 k = 1 ; // initialize the number of replicas in the

alt. plan
7 p = 0 ; // initialize the counter for fj ’s

alternative plans
8 while k < m do
9 ap = Avail(RANK) ; // Calculate joint

availability of the first k functions based
on (2)

10 if ap ≥ aj then
11 APp ←

⋃k
r=1 {rankr} ; // add the k

functions in the alternative plan APp

12 RANK ← ⋃m
r=1 {rankr} \

⋃k
r=1 {rankr} ;

// remove the first k functions from the
rank

13 ASj ← ASj
⋃

APp ; // store the alt. plan
to the strategy

14 p++ ; // increase the alternative plans
counter

15 else
16 k++ ; // try with one more alternative

function to reach the required
availability

17 AS← AS
⋃

ASj

18 return AS;

VI. rAFCL EVALUATION

This section evaluates rAFCL and its rScheduler with three
complementary use cases. Firstly, we show the availability
level that rAFCL may achieve theoretically and the cost-
performance trade off if it uses various number of alternative
functions distributed on 23 regions across the globe, consid-
ering all AWS regions (Section VI-A). Further on, using a
synthetic version of a real business FC with complex control-
and data-flow, we evaluate how sporadic functions failures
affect FCs that run on AWS Step Functions FC system
in one region only and FCs that run across 23 regions of
AWS and IBM using our rAFCL (Section VI-B). Finally,
we evaluate how embarrassingly parallel FCs survive mas-
sive functions failures with AWS Step Functions and our
rAFCL (Section VI-C). Although we used only the AWS’s
Step Functions FC system in our evaluation, the results will be
similar for all other cloud providers because their FC systems
offer similar resilient techniques within a single cloud region
only, as presented in Section II-A. Finally, this section also
discusses rAFCL’s limitations.

A. Theoretical Analysis of rAFCL Resilience for a Single
Function Deployed Across Multiple Regions

Before evaluating resilience of entire FCs, we analyze how
different success rates (availability) of alternative functions

2448 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 6. Total availability A(k) based on (2) for concurrent execution of
various number of alternative functions af as a function of availability of a
single alternative function A(af). The left figure shows the total availability
for all possible values of A(af). The right figure is focused on total availability
more than 95%.

and their number affect the execution costs and performance.
The total theoretical availability of a system that uses multiple
alternative functions for a single primary function can be
calculated using (2), where availability of each alternative
function can be retrieved from its historical executions. Using
multiple alternative functions across the globe significantly
increases availability of the entire FC, which can be observed
in Fig. 6. A(1) represents the availability of a single alternative
function, which is the case with all cloud providers. This locks
the user with the given availability of the selected provider.
rAFCL, on the other side, allows FC developers to specify
multiple alternative functions across the globe if the primary
function fails. For instance, by using all six AWS regions
in Europe, which have similar network latency to University
of Innsbruck, Austria of up to 20ms,5 rAFCL can achieve
A(6) = 99.5% availability even if availability of a single alter-
native function is only A(af) = 0.6. More realistic use case is
if the alternative function has the lowest reimbursable avail-
ability of A(af) = 95% at AWS, for which rAFCL can achieve
total availability of A(2) = 99.75% using two regions only.
Moreover, A(23) shows an example of availability close to 1
that can be achieved by using all 23 AWS regions across the
globe. rAFCL may run alternatives across all regions from the
other cloud providers (ca. 50).

Further on, we analyze the cost-performance trade-off of
parallel execution of all alternative functions within a single
alternative plan versus sequential execution of multiple alter-
native plans, each with a single alternative function. Namely,
since the failures of functions are independent events, avail-
ability of the alternative functions is the same, regardless if
they are executed as a sequence, one after the other, or concur-
rently. The concurrent invocation reduces the overall execution
time but may increase the invocation cost compared to the
sequential execution of alternatives. On the other side, the
sequential execution of alternative plans minimizes the invo-
cation cost, but may increase overall execution time. Table I
shows the results of the cost-performance tradeoff as a func-
tion of the success rate used for the primary function using
the sequential and parallel execution of alternative functions.
We observe that all functions achieved their success rate of

5https://cloudharmony.com/

TABLE I
AVERAGE EXECUTION TIME (ET) IN SECONDS, AVERAGE INVOCATIONS

OF ALTERNATIVE FUNCTIONS, AND SUCCESS RATE OF 100 EXECUTIONS

OF A SINGLE PRIMARY FUNCTION WITH VARIOUS SUCCESS RATE, BOTH

FOR SEQUENTIAL AND PARALLEL EXECUTION OF ALTERNATIVE

FUNCTIONS. δET AND δc REPRESENT THE REDUCTION OF ET AND

INCREASE OF THE INVOCATION COST IN %

Fig. 7. The GCA FC.

minimum ap = 99%. However, the way how this is achieved
differs. We observe that execution time of the parallel alter-
natives is always better than the sequential alternatives by
up to δET = 52.8% for the lowest function success rate
A(afi) = 0.25. However, for functions with high success rate,
execution time is higher in parallel alternatives because the
FaaS Invoker needs more time to invoke larger number of alter-
natives compared to sequential alternatives. On the other side,
the number of invocations of alternative functions is signifi-
cantly higher when they are executed concurrently compared
to sequential execution. This is also emphasized for the experi-
ment with the lowest success rate A(afi) = 0.25, with increase
of the cost by δc = 2.56×.

B. How Do Sporadic Function Failures Affect FCs?

This set of experiments evaluates how FCs behave in
case of sporadic failures of functions. We used the Gate
Change Alert (GCA) FC [3], a public section FC to evalu-
ate how is the FC execution affected by functions failures.
We implemented the GCA FC in rAFCL and AWS Step
Functions FC systems. Fig. 7 presents both implementa-
tions visualized with the corresponding GUIs (the FCEditor
of rAFCL6 and AWS Step Functions’ GUI). The GCA FC

6https://github.com/sashkoristov/FCEditor

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2449

Fig. 8. The results of invoking the GCA FC 100 times with configured
resilience with various success rate for each function of the GCA FC using
rAFCL and AWS Step Functions; columns show the number of successful FC
executions; tF denotes the average numbers of function invocations per FC
(minimum is 63), while wF the average number of function invocations that
where wasted for failed FCs.

performs several actions at an airport after a gate of a specific
flight has changed. After reading the information about the
new gate of the flight (getFlight), selectPassenger
loads data of all passengers of that flight that are already
at the airport, including their position. Thereafter, a set of
additional functions are invoked in parallel for each pas-
senger that selectPassenger returns. The passenger is
informed about the new gate with informPassenger.
At the same time, calculateTimeToGate estimates the
time to gate based on the passenger positions and notifies
the passenger. Afterwards, based on the passenger location,
recommendShop recommends a few nearby shops and their
special offers. Finally, after all passengers are informed, log
is executed to log the status for all passengers.

We have bounded the parallel loop iteration count to 20
passengers at the airport, which resulted in execution of
20 · 3 + 3 = 63 functions for the overall FC. If any of these
primary function does not succeed, the whole FC is considered
failed. Moreover, the critical path contains all 43 functions
except the 20 instances of informPassenger. This means
that if any of these 43 functions fails and is retried and its
finish time is delayed, then the makespan of the FC increases
accordingly.

All functions in the GCA FC were developed to run with
various success rate probability, starting from the lowest value
of 15% up to 99.5%, as presented in Fig. 8. We used the
same success rate probability for all functions of both FCs.
We set up both FCs with the following resilient techniques.
Since AWS Step Functions can run FCs only within the same
region, we configured each primary function to be retried two
times (default), after which the entire FC fails. Our rAFCL,
on the other side, supports resilience techniques in federated
clouds. Instead of retries in the same region, we configured
23 alternative plans for the primary function, each of which
contains one alternative function in a separate region. This
approach is cost-aware, but relaxes the deadline.

The goal of this experiment is to determine success rate of
the GCA FC on both platforms. For both platforms, we deter-
mined the number of successful executions of the entire FC,
the total numbers of function invocations per FC (minimum
is 63), and the average number of wasted function invocations
for failed FCs.

The results of the experiment are shown in Fig. 8. In contrast
to AWS, which achieved 100% success rate for the entire FC,

only in the cases when the function success rate is A = 99.5%,
our rAFCL provided a high success rate of 100% for all exper-
iments whose functions had at least A = 60% success rate.
However, the entire GCA FC finished one time on AWS Step
Functions when its functions had a success rate A = 60%.
On average, rAFCL increases the success rate of entire FC by
53.45% with average increase of the average number of invo-
cation by only 3.94% with zero wasted function invocations.
For functions with smaller success rates, AWS Step Funcitons
could not finish any FC, while rAFCL succeeded even with
success rate A = 15%.

By comparing the number of invoked functions (tF), we
observe that the additional cost for such high FC success is
similar for both platforms. With a very low success rate of
individual functions A ≤ 20% the number of function invoca-
tion rapidly increases, but still rAFCL succeeds 66% of FCs,
while all FCs that were executed on AWS failed. Finally, wF
shows the number of wasted function invocations due to fail-
ure of the entire FC. We observe a high number of wasted
function invocation per FC for AWS for the realistic cases
when A ≥ 60%. The low number of wasted functions for A ≤
20% was observed because all retries of the first or the sec-
ond function failed and thereby the entire FC failed. On the
other hand, rAFCL tries 23 alternatives and succeeds, with the
trade-off of much higher cost.

C. How Do Massive Functions Failures Affect FCs?

The final set of experiments was conducted to evaluate
how FCs behave in case of massive failures when most of
the functions, nested in a parallel loop, fail. Such failures
may happen if the functions reach the limitations from the
provider [7], [38]. For example, a function within a parallel
loop is assigned with low amount of memory, or is invoked
with a big problem size, or exceeds maximum duration
time, or the function deployment is deleted or not reachable.
Moreover, due to the concurrency or throughput limitations by
cloud providers, the maximum number of concurrent function
invocations is also limited. After exceeding the provider con-
currency limit, all invocations will be rejected and thereby
fail, leading to a massive failure. Finally, massive failures
may happen due to failed authentication, such as an expired
session or token for that cloud provider. Neither retries nor try-
catch resilient techniques are useful within the same region.
However, our rAFCL may run alternative functions on another
provider where the authentication succeeds.

For this purpose, we used the embarrassingly paral-
lel Monte Carlo algorithm, which is intensively used in
HPC, cloud, and serverless computing [39], [40], [41], [42].
We implemented it as an FC, as presented in Fig. 9.
The FC comprises of a parallel loop that runs multiple
instances of a single primary function monteCarloFT,
which is specified with resilience. Afterwards, the reduc-
tion summary function collects the data from all instances
of the monteCarloFT function and returns the final
result.

In order to evaluate massive failures in a real life sce-
nario, we used three cloud providers AWS, IBM, and Alibaba
and their regions in Frankfurt and Tokyo. We developed

2450 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 9. The Monte Carlo algorithm implemented as an FC in rAFCL and
AWS Step Functions.

TABLE II
REGION, NETWORK, AND THE TOTAL AVAILABILITY FOR EACH

ALTERNATIVE MONTECARLOFT FUNCTION. rSCHEDULER

OUTPUTS TWO ALTERNATIVE PLANS FOR REQUIRED

AVAILABILITY aj = 99.5%

monteCarloFT in Python. We used the deployment of AWS
Frankfurt as a primary function, while the other five deploy-
ments as alternatives. The summary function was deployed
in AWS Frankfurt, but only monteCarloFT functions were
monitored due to the massive failures scenario.

Each deployment of monteCarloFT was configured with
a predefined success rate based on the real values given of
the providers’ SLAs, as specified in column RA of Table II.
We used 95% availability for AWS and Alibaba regions and
99% for IBM. Our justification is that IBM is a highly avail-
able cloud as it offers reimbursement for the highest ceiling
of availability of 99.99%. For networking, we used 99.9%
availability for Frankfurt since Frankfurt is closer to Austria,
while for remote regions in Tokyo we used lower availability
of 95%. Since the code of MonteCarloFT is simple, we set
the code availability CA = 100%. With these configurations,
the alternative function in IBM Frankfurt has the highest avail-
ability, while the alternative functions in Alibaba and AWS
Tokyo were configured with the lowest availability (90.25%),
calculated with Equation (1).

rScheduler developed an alternative strategy with two alter-
native plans for the primary function in AWS Frankfurt with
specified required availability aj = 99.5%. The first alternative
plan included the alternative functions deployed in IBM and
Alibaba Frankfurt with calculated availability of ap = 99.7%.
The second alternative plan included the other three functions
all deployed in the Tokyo region of all evaluated providers with
calculated availability of ap = 99.94%. With above-described
configuration we achieved realistic sporadic failures.

Fig. 10. Failed primary (sporadic) and invoked alternative functions of the
Monte Carlo FC running on rAFCL.

This experiment tackles the concurrency limit of cloud
providers. All top five cloud providers AWS, Google,
Microsoft, Alibaba, and IBM report that they limit their
FaaS systems to 1000 concurrent functions. However, several
researchers reported that the real concurrency limit is in fact
smaller because of several reasons. First, FaaS systems have
other limitations, such as the total number of running func-
tions within a second, which means that the FaaS system,
such as Alibaba, will fail many short-running functions [13].
Second, Sampe et al. [8] reported huge delay of 40 s to invoke
1000 functions on IBM, which may breach the deadline con-
straint of the FC. Therefore, based on the reported value of
Wang et al. [38] that AWS supports 200 concurrent invoca-
tions, we configured the primary monteCarloFT function in
AWS Frankfurt to fail all instances in the parallel loop once
the concurrency limit of 200 is reached. For this purpose, we
added an input parameter funcId which overwrites the avail-
ability from Table II to 0 for all functions that are invoked
with funcId > 200. This means that two kind of failures may
happen. Firstly, from the first 200 functions, some sporadic
number of functions fail, based on the specified availability in
Table II. Secondly, all functions with funcId > 200 fail.

We ran both implementations of the Monte Carlo FC
in AWS Frankfurt. For statistically relevant observations,
we repeated each execution five times, similar as done by
Casanova et al. [43]. As expected, all executions on AWS
Step Functions failed because all functions with funcId >
200 failed after default times of retrying. However, for each
failed monteCarloFT function, rAFCL activates the alter-
native strategy. Fig. 10 shows the number of failed primary
functions and invoked alternative plans for the Monte Carlo FC
executed with rAFCL. We observe that the average sporadic
failures are as expected (ca. 10), and together with massive
failures, rAFCL invoked 62.4 alternative functions on average.
On average, two alternative functions of the first alternative
plan also failed, for which the follow up alternative plan was
successful. We can conclude that the scheduled plan of rAFCL
succeeded to achieve the required availability of aj = 99.5%,
even for massive failures.

The evaluated massive failures that are initiated by concur-
rency limitations of the cloud providers may never happen, if
users run FCs with a small problem size. Another option to
avoid concurrency limitations is if the FC management system
controls the concurrency of the parallel loops. rAFCL offers
such option with another constraint concurrency within a
parallel loop, which expects a positive integer number that

RISTOV et al.: FaaScinating RESILIENCE FOR SERVERLESS FUNCTION CHOREOGRAPHIES 2451

specifies the number of active threads such that each thread
manages one function invocation. However, although this con-
straint eliminates the risk of massive failures, still, it affects
the overall FC makespan.

D. rAFCL Limitations

To the best of our knowledge, rAFCL is the only middleware
platform that overcomes resilience limitations of each individ-
ual FaaS system by unifying the maximum allowed limitations
of each cloud provider, thereby preventing massive failures in
federated clouds and increasing availability. The trade-off for
high availability of rAFCL is potentially increased cost and
higher execution time. However, resilient techniques of related
work do not recover from a permanent failure of a function,
which causes the entire FC to fail.

rScheduler may create alternative plans automatically based
on its greedy algorithm. Still, the current implementation of
rScheduler provides the alternative plans proactively and does
not change them in case of massive failures. Moreover, rAFCL
requires that all alternative functions are already deployed to
know their ARN (Amazon Resource Names) or URL and to
be able to run them. Such process of developing and deploy-
ing multiple alternative functions across multiple regions
and FaaS systems may be a tedious operation. However,
several techniques and tools exist to alleviate this process.
Developers can deploy the same function in other regions
of the same FaaS system by running a simple script writ-
ten for serverless.com, Terraform, or Cloudify [44]. Moreover,
the Serverless Application Analytics Framework (SAAF) [45]
allows developers to develop functions in different program-
ming languages only once and then encapsulate it with specific
wrappers (handlers) for each FaaS system.

VII. CONCLUSION AND FUTURE WORK

We developed rAFCL, a FaaScinating resilient platform that
supports software developers to build and run function chore-
ographies on multiple FaaS systems with resilience. In contrast
to existing approaches, rAFCL can exploit the benefits of
multiple alternatives of primary functions across all regions
of multiple FaaS systems. Based on the specified required
availability, the built-in scheduler calculates during runtime
alternative functions that will be invoked in case the primary
functions of the FC fail.

rAFCL can significantly improve availability of a single
function and the entire FC. The rAFCL resilience model can
successfully finish an entire FC even if the success rate of its
functions is only 60%, increasing on average, the success rate
of entire FC by 53.45% with average increase of the aver-
age number of invocation by only 3.94% with zero wasted
function invocations, compared to running FCs on AWS Step
functions. Moreover, rAFCL can successfully recover from
massive failures by invoking many alternative functions to
other regions of the same cloud provider and to any other
provider. We have experimentally confirmed this with an FC
that runs the primary functions on one region (AWS Lambda
Frankfurt), while alternative functions on five other regions on
three cloud providers (AWS Lambda, IBM Cloud Functions,

and Alibaba Function Compute). rAFCL survived even when
both alternative functions in the latter two cloud regions failed.

We showed experimentally that rAFCL achieves availability
of almost 1 when running realistic FC across many providers.
Potentially, rAFCL can run alternative functions of FCs across
more than 50 regions, which also improves scalability by over-
coming concurrency limitation of individual region. Moreover,
the number of concurrent executions of functions, as well as
the number of alternative functions can be increased even fur-
ther by extending the rAFCL enactment engine with other
public FaaS systems (e.g., CloudFlare) or private resources
with open source serverless frameworks.

We plan to extend rScheduler by a multi-objective algorithm
that considers makespan and cost as an addition to availability.
Moreover, we will develop AI-based monitoring module in
rAFCL, which will proactively predict massive failures and
adapt both primary functions and alternative strategies during
runtime accordingly.

REFERENCES

[1] D. Jackson and G. Clynch, “An investigation of the impact of language
runtime on the performance and cost of serverless functions,” in Proc.
Int. Conf. Utility Cloud Comput. Companion, 2018, pp. 154–160.

[2] S. Nastic et al., “A serverless real-time data analytics platform for edge
computing,” IEEE Internet Comput., vol. 21, no. 4, pp. 64–71, Jul. 2017.

[3] S. Ristov, S. Pedratscher, and T. Fahringer, “AFCL: An abstract function
choreography language for serverless workflow specification,” Future
Gener. Comput. Syst., vol. 114, pp. 368–382, Jan. 2021.

[4] B. E. Helvik, P. Vizarreta, P. E. Heegaard, K. Trivedi, and
C. Mas-Machuca, Modelling of Software Failures. Cham, Switzerland:
Springer Nature Switzerland AG, 2020, pp. 141–172.

[5] W. Li, X. Sun, K. Liao, Y. Xia, F. Chen, and Q. He, “Maximizing
reliability of data-intensive workflow systems with active fault toler-
ance schemes in cloud,” in Proc. Int. Conf. Cloud Comput., 2020,
pp. 462–469.

[6] T. Guedes, L. A. Jesus, K. A. C. S. Ocaña, L. M. A. Drummond,
and D. de Oliveira, “Provenance-based fault tolerance technique recom-
mendation for cloud-based scientific workflows: A practical approach,”
Clust. Comput., vol. 23, no. 1, pp. 123–148, 2020.

[7] P. G. López, M. Sánchez-Artigas, G. París, D. B. Pons,
ÃĄ. R. Ollobarren, and D. A. Pinto, “Comparison of FaaS orchestration
systems,” in Proc. Int. Conf. Utility Cloud Comput. Companion, 2018,
pp. 148–153.

[8] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López,
“Serverless data analytics in the IBM cloud,” in Proc. 19th Int. Middlew.
Conf. Ind., Rennes, France, 2018, pp. 1–8.

[9] T. Gomes et al., “A survey of strategies for communication networks to
protect against large-scale natural disasters,” in Proc. 8th Int. Workshop
Resilient Netw. Des. Model. (RNDM), 2016, pp. 11–22.

[10] M. Tornatore et al., “A survey on network resiliency methodologies
against weather-based disruptions,” in Proc. Int. Workshop Resilient
Netw. Des. Model. (RNDM), 2016, pp. 23–34.

[11] C. M. Machuca et al., “Technology-related disasters: A survey towards
disaster-resilient software defined networks,” in Proc. Int. Workshop
Resilient Netw. Des. Model., 2016, pp. 35–42.

[12] M. Furdek et al., “An overview of security challenges in communication
networks,” in Proc. Int. Workshop Resilient Netw. Des. Model., 2016,
pp. 43–50.

[13] S. Ristov, S. Pedratscher, and T. Fahringer, “XAFCL: Run scalable func-
tion choreographies across multiple FaaS systems,” IEEE Trans. Services
Comput., early access, Nov. 16, 2021, doi: 10.1109/TSC.2021.3128137.

[14] S. Hong, A. Srivastava, W. Shambrook, and T. Dumitras, “Go serverless:
Securing cloud via serverless design patterns,” in Proc. Workshop Hot
Topics Cloud Comput. (HotCloud), Boston, MA, USA, 2018, p. 11.
[Online]. Available: https://dl.acm.org/doi/10.5555/3277180.3277191

[15] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
lambda and Google cloud functions,” Future Gener. Comput. Syst.,
vol. 110, pp. 502–514, Sep. 2020.

http://dx.doi.org/10.1109/TSC.2021.3128137

2452 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[16] B. Balis, “HyperFlow: A model of computation, programming approach
and enactment engine for complex distributed workflows,” Future Gener.
Comput. Syst., vol. 55, pp. 147–162, Feb. 2016.

[17] A. Aske and X. Zhao, “Supporting multi-provider serverless computing
on the edge,” in Proc. Int. Conf. Parallel Process. Companion, 2018,
pp. 1–6.

[18] S. Risco, G. Moltó, D. M. Naranjo, and I. Blanquer, “Serverless work-
flows for containerised applications in the cloud continuum,” J. Grid
Comput., vol. 19, no. 3, pp. 1–18, 2021.

[19] A. F. Baarzi, G. Kesidis, C. Joe-Wong, and M. Shahrad, “On merits and
viability of multi-cloud serverless,” in Proc. ACM Symp. Cloud Comput.,
New York, NY, USA, 2021, pp. 600–608.

[20] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proc. Symp. Cloud
Comput., 2017, pp. 445–451.

[21] A. John, K. Ausmees, K. Muenzen, C. Kuhn, and A. Tan, “Sweep:
Accelerating scientific research through scalable serverless workflows,”
in Proc. Int. Conf. UCC Companion, 2019, pp. 43–50.

[22] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. París, and
P. García-López, “Stateful serverless computing with crucial,” ACM
Trans. Softw. Eng. Methodol., vol. 31, no. 3, p. 39, Mar. 2022.

[23] L. R. D. Carvalho and A. P. F. de Araújo, “Remote procedure call
approach using the Node2FaaS framework with terraform for func-
tion as a Service,” in Proc. Int. Conf. Cloud Comput. Serv. Sci., 2020,
pp. 312–319.

[24] S. Ristov, S. Pedratscher, J. Wallnoefer, and T. Fahringer, “DAF:
Dependency-aware FaaSifier for node.js monolithic applications,” IEEE
Softw., vol. 38, no. 1, pp. 48–53, Jan./Feb. 2021.

[25] G. Zheng and Y. Peng, “Globalflow: A cross-region orchestration ser-
vice for serverless computing services,” in Proc. IEEE CLOUD, 2019,
pp. 508–510.

[26] M. Yu, T. Cao, W. Wang, and R. Chen, “Restructuring server-
less computing with data-centric function orchestration,” 2021,
arXiv:2109.13492.

[27] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling Quality-of-Service in serverless computing,” in Proc. 11th
ACM Symp. Cloud Comput., 2020, pp. 311–327.

[28] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proc. 11th ACM Symp. Cloud Comput., 2020,
pp. 1–15.

[29] J. Kijak, P. Martyna, M. Pawlik, B. Balis, and M. Malawski, “Challenges
for scheduling scientific workflows on cloud functions,” in Proc. IEEE
11th Int. Conf. Cloud Comput. (CLOUD), 2018, pp. 460–467.

[30] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid
cloud scheduling for cost-efficient execution of serverless applications,”
in Proc. Int. Conf. Cloud Comput. (CLOUD), 2020, pp. 609–618.

[31] M. A. Mukwevho and T. Celik, “Toward a smart cloud: A review
of fault-tolerance methods in cloud systems,” IEEE Trans. Services
Comput., vol. 14, no. 2, pp. 589–605, Mar./Apr. 2021.

[32] S. Ristov, T. Fahringer, D. Peer, T.-P. Pham, M. Gusev, and
C. Mas-Machuca, “Resilient techniques against disruptions of volatile
cloud resources,” in Guide to Disaster-Resilient Communication
Networks. Cham, Switzerland: Springer Nature Switzerland AG, 2020,
pp. 379–400.

[33] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, and W. Voorsluys,
“On the efficacy, efficiency and emergent behavior of task replication in
large distributed systems,” Parallel Comput., vol. 33, no. 3, pp. 213–234,
Apr. 2007.

[34] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of prece-
dence task graphs on heterogeneous platforms,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., 2008, pp. 1–8.

[35] P. E. Ammann and J. C. Knight, “Data diversity: An approach to soft-
ware fault tolerance,” IEEE Trans. Comput., vol. 37, no. 4, pp. 418–425,
Apr. 1988.

[36] J. Ejarque, M. Bertran, J. Á. Cid-Fuentes, J. Conejero, and R. M. Badia,
“Managing failures in task-based parallel workflows in distributed com-
puting environments,” in Proc. Eur. Conf. Parallel Process., 2020,
pp. 411–425.

[37] S. Ristov, R. Mathá, and R. Prodan, “Analysing the performance insta-
bility correlation with various workflow and cloud parameters,” in Proc.
Euromicro Int. Conf. PDP, 2017, pp. 446–453.

[38] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. USENIX Annu. Techn.
Conf., Boston, MA, USA, 2018, pp. 133–145.

[39] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and
P. García-López, “On the FaaS track: Building stateful distributed appli-
cations with serverless architectures,” in Proc. 20th Int. Middlew. Conf.,
Davis, CA, USA, 2019, pp. 41–54.

[40] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev,
“Predicting the costs of serverless workflows,” in Proc. Int. Conf.
Perform. Eng., 2020, pp. 265–276.

[41] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik,
P. Roca-Llaberia, and A. Arjona, “Toward multicloud access trans-
parency in serverless computing,” IEEE Softw., vol. 38, no. 1, pp. 68–74,
Jan./Feb. 2021.

[42] D. Barcelona-Pons and P. García-López, “Benchmarking parallelism in
FaaS platforms,” Future Gener. Comput. Syst., vol. 124, pp. 268–284,
Nov. 2021.

[43] H. Casanova et al., “Developing accurate and scalable simulators of
production workflow management systems with Wrench,” Fut. Gener.
Comput. Syst., vol. 112, pp. 162–175, Nov. 2020.

[44] L. R. de Carvalho and A. P. F. de Araujo, “Performance com-
parison of terraform and cloudify as multicloud orchestrators,” in
Proc. Int. Symp. Clust. Cloud Internet Comput. (CCGRID), 2020,
pp. 380–389.

[45] R. Cordingly et al., “The serverless application analytics framework:
Enabling design trade-off evaluation for serverless software,” in Proc.
Int. Workshop Serverless Comput. (WoSC), 2020, pp. 67–72.

Sasko Ristov received the Ph.D. degree in computer
science from Ss. Cyril and Methodius University,
Skopje, North Macedonia, where he was an
Assistant Professor from 2013 to 2017. He is a
Postdoctoral University Assistant with the University
of Innsbruck, Austria. His research interests include
performance modeling and optimization of dis-
tributed systems, in particular workflow applications
and serverless computing.

Dragi Kimovski received the doctoral degree from
TU Sofia, Bulgaria, in 2013. He is a Tenure
Track Postdoctoral Researcher with the Institute of
Information Technology, University of Klagenfurt,
Austria. He was an Assistant Professor with
University for Information Science and Technology,
Ohrid, North Macedonia. His research interests
include distributed systems and multiobjective
optimization.

Thomas Fahringer (Member, IEEE) received
the Ph.D. degree from the Vienna University of
Technology in 1993. He has been a Full Professor
of Computer Science with the Institute of Computer
Science, University of Innsbruck, Austria, since
2003. His main research interests include software
architectures, programming paradigms, compiler
technology, performance analysis, and prediction for
parallel and distributed systems. He is a member of
the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

