
1

Demystifying Content-blockers: Measuring their
Impact on Performance and Quality of Experience

Ismael Castell-Uroz, Rubén Sanz-Garcı́a, Josep Solé-Pareta, and Pere Barlet-Ros

Abstract—With the evolution of the online advertisement and
tracking ecosystem, content-blockers have become the reference
tool for improving the security, privacy and browsing experience
when surfing the Internet. It is also commonly believed that
using content-blockers to stop unsolicited content decreases the
time needed for loading websites. In this work, we perform a
large-scale study on the actual improvements of using content-
blockers in terms of performance and quality of experience. For
measuring it, we analyze the page size and loading times of the
100K most popular websites, as well as the most relevant QoE
metrics, such as the Speed Index, Time to Interactive or the
Cumulative Layout Shift, for the subset of the top 10K of them.
Our experiments show that using content-blockers results in
small improvements in terms of performance. However, contrary
to popular belief, this has a negligible impact in terms of loading
time and quality of experience. Moreover, in the case of small
and lightweight websites, the overhead introduced by content-
blockers can even result in decreased performance. Finally, we
evaluate the improvement in terms of QoE based on the Mean
Opinion Score (MOS) and find that two of the three studied
content-blockers present an overall decrease between 3% and
5% instead of the expected improvement.

Index Terms—Content-filtering, adblock, advertisement, web
tracking, performance, page size, loading time, QoE, Speed Index

I. INTRODUCTION

THE use of content-filtering tools has seen an exponential
increase since the initial development of AdBlock Plus

[1] in 2005; one of the most popular and widely used adblock-
ers. It was one of the first attempts to improve user’s privacy
and browsing performance against the most prevalent problem
surfing the web at the time; the increasing amount of intrusive
and malicious advertisements spreading over the Internet.

With time, the Internet has grown and some alternatives
often more specific (e.g. JavaScript, Flash or third-party block-
ers) appeared to address the same problem. Unfortunately,
such tools usually affect the usability of websites, making
some of them even inaccessible. For that reason, general
content-blockers have become the de facto solution to deal
with advertising and user tracking practices.

As shown in [2], one of the main motivations to use content-
filtering systems is to improve the browsing experience. Al-
most one third of the users that install a blocking system do
it to increase the browsing performance. Blocking advertise-
ments and tracking systems are believed to significantly reduce
the bandwidth used, improving the website loading time and,
thus, the overall Quality of Experience (QoE).

I. Castell-Uroz, R. Sanz-Garcı́a, J. Solé-Pareta and P. Barlet-Ros are
with the Broadband Communications Research Center of the Universitat
Politècnica de Catalunya, Barcelona, Spain (e-mail: ismael.castell@upc.edu).

In this paper, we present a comprehensive study of the
advertisement and tracking ecosystem with special emphasis
on the performance and QoE improvements resulting from
using content-blockers when surfing the Internet. Some pre-
vious works have analyzed and compared the effectiveness
of existing content-blockers in terms of blocking accuracy
[3]–[6]. However, very few of them [7], [8] have tried to
analyze their impact in terms of browsing performance. To
the best of our knowledge, this is the first work to evaluate
the actual performance and QoE improvements of different
content-blockers with a large and diverse set of websites.

In particular, we measure the loading time and page size
when visiting the top 100K sites according to the Alexa list
[9]. We also revise the most relevant QoE metrics, such as
the Speed Index, Cumulative Layout Shift or Time to Inter-
active for the subset of 10K top most popular websites. We
compare three different blocking approaches; advertisement
blocking, tracker blocking and generic content blocking. For
this purpose, we developed ORM [10], an open-source highly
parallel network measurement system that loads every website
using one of the most relevant content-blockers and compares
their performance.

Regarding performance, we found that, although we can
observe some improvements in terms of effective page size,
the results do not directly translate to gains in loading time.
Moreover, in some cases, there could even be a decrease in
performance, especially in small and lightweight websites.
Similarly, our results show that using content-blockers can
slightly increase the overall browsing quality of experience,
but for fast loading websites the extra layer introduced to
preprocess and clean the website can introduce some delay
to visualize the website content. The measurement system
and methodology proposed in this paper can also be useful
for network and service administrators to evaluate the web
performance observed by their users.

This paper is an extension of the work presented at [11].
The new contributions of this paper include:

• An extensive study of the impact of content-blockers on
the perceived Quality of Experience (QoE) according to
multiple indicators, such as the Speed Index and the Mean
Opinion Score.

• A detailed analysis of the actual page size reduction
with respect to the number of resources blocked by each
content-blocker.

• Extended evidence that confirms that improvements on
the overall performance when using content-blockers do
not always translate to increased Quality of Experience.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/TNSM.2022.3179267



2

• The implementation of a new content-blocker plugin
(Deep Tracking Blocker) inspired by the findings of this
work, and its comparison with the other studied plugins.1

The rest of the paper is organized as follows. Section II pro-
vides the necessary background while Section III presents the
related work. Sections IV and V present and analyze the results
in terms of performance and quality of experience respectively.
Section VI discusses the reasons behind the performance
variations found in this work and proposes alternatives to
improve the results. Lastly, Section VII concludes the paper.

II. BACKGROUND

Advertisements have been used as a way to pay for online
expenses as well as for getting benefits from online resources
since the foundation of the Internet. At first, the advertisement
ecosystem was very simple and owners tried to add some
advertisements to monetize each site. Soon, the difficulty to
attract user attention became relevant within advertisers [13].
To be able to stand out in such an environment, companies
started to modify their advertisements with sounds and vivid
colors, using pop-ups and other intrusive methods to reach
their users. Lohtia et al. [14] studied the impact of those
methods on advertisement performance and user perception.
Such an advertisement environment became a nuisance for
some of the users, being the main motivation for the creation
of the first adblockers, a browser content-filtering plugin that
tries to block all the advertisement being shown in a website.

With the evolution of the Internet and the languages used
to develop it, companies started to use profiling mechanisms
(e.g. HTTP cookies) over their users to perform targeted
advertisement campaigns and to support their services. These
primal web tracking techniques were more or less harmless
and very simple to avoid. Nowadays companies use much
more complex techniques (e.g. fingerprints, supercookies),
collecting data not only from their own sites but from other
apparently non-related websites (third-party trackers). This
permits to extremely refine the information collected about
the opinions and preferences of their users, and raises serious
privacy concerns. Consequently, in the past few years many
countries have created new regulations in order to improve the
privacy of their citizens. Some of those regulations, such as the
European GDPR [15], force websites to obtain the explicit user
content to collect their personal data. However, it is extremely
difficult to ensure online privacy as many collection systems
are hidden and transparent to the user. In [16] Bujlow et al.
show a summary of the different mechanisms that can be used
to track users and correlate their information.

To improve their privacy users started to use the so-called
tracking blockers. These plugins try to do the same than
adblockers do with advertisements but with the tracking sys-
tems included in websites. Usually both of them, adblockers
and tracking blockers, use custom databases or filter lists to
distinguish between safe and non-safe content. Two of the
most important filter lists are EasyList [17] and EasyPrivacy
[18], each one of them dedicated to block advertisements and

1The new plugin can be freely downloaded from the Chrome Web Store.
The source code is publicly available at [12].

tracking methods respectively. These lists are maintained by
the community and used by some of the most popular content-
filtering extensions on the market.

Since advertisement blocking and tracking blocking are
very similar, adblockers started to introduce at some level the
possibility to also block web tracking mechanisms. Note that
many online publishers have become part of the acceptable ads
program [19], which allows them to avoid being blocked by
some of the adblockers if their advertisements follow specific
guidelines that ensure them to be less intrusive.

Recently, a new type of content-filtering is gaining traction;
the generic content blocker. This blocker category tries
to intercept not only advertisements and trackers, but other
unneeded resources or security threats that could be detected
in the website loading process, like for instance Cross-Site
Scripting (XSS).

III. RELATED WORK

Krishnamurthy et al. [3] was one of the first to study the
impact of adblockers and other privacy protection mechanisms
in web browsing. The study included measurements of the
impact on page functionality and quality when using such
protection mechanisms. In [5] Wills et al. makes a comparison
between a set of adblockers and tracker-blockers, studying
the success rate of their methods to block the content of
different third-party trackers. Traverso et al. [7] study the
behave of seven different content-filtering plugins within a
set of 100 specific websites classified in different popular
categories. Studies both, the tracker blocking success rate and
the performance gains. Mazel et al. [4] compares 14 different
tracking protection measures, including content-filtering plu-
gins as well as other approaches like javascript blockers or
machine-learning based blockers. The comparison is not only
done for blocked content but on the differences between the
discovered content and their impact in website usability.

In [8], Newman et al. explore the quantity of resources
blocked by AdBlock Plus and relate them with an improve-
ment in site loading latency, but at the expense of an increase
of the Above-the-Fold (AtF) latency (time to load only the
visible elements of the website). To evaluate the consequences
of their findings they conduct an experiment on Amazon
Turk. They find that users prefer a short AtF instead shorter
total loading latency. On the other hand, Zach et al. in [20]
demonstrate how the presence of advertisements could not
only impact the quality of experience of the browsing session
itself, but also the quality of experience of the browsed
services such as for instance on-demand video services.

Pujol et al. [21] studied the usage of adblockers in a
European ISP and found that 22% of the most active users
used an adblocker. Malloy et al. [22] measured the percentage
of adblockers users in the U.S. and inferred that about 18%
was using it. The constantly increasing adoption rate and loss
of revenues made online publishers to start using different
techniques to try to bypass adblockers. In [23] Iqbal et al.
studied the anti-adblocking ecosystem and found it to be
continuously increasing.

In [24] Lerner et al. studied the prevalence of tracking
methods used for both, targeted advertising as well as other



3

purposes, over the Internet. They also studied it’s increase over
time using the Wayback Machine. They found that almost 70%
of websites use some type of tracker, enforcing the use of
privacy protections like trackers blockers.

Shiller et al. [25] tried to measure the impact of advertise-
ment blocking on the quality of content created, and revenues
of online publishers.

Butkiewicz et al. performs in [26] a series of experiments
to understand the complexity of the current website ecosys-
tem. Although the research does not have direct relation to
content-blockers, they explore several terms very related to
this research like resources loaded, number of different origins
between them, the page sizes or the website loading times.

From the user’s perspective there are different reasons to
use a content-filtering plugin. Mathur et al. [2] studied the
different content-filtering group adoption (adblocker, tracker
blocker or general content blocker) as well as the different and
common motivations to use all of them. They found adblockers
to be the most prevalent blocker system (51.2%), with general
content blocker next (20.5%) and tracker blocker in the last
position (8.4%). The primary reason to use an adblocker or a
general content blocker (the two most adopted solutions) was
to improve the user experience (85-89%), and between the
most common given motivations was speedup loading times
with a 33.1% of acceptance. Other reasons were to improve
privacy (mainly by means of tracker blockers) and only a small
percentage used blockers to improve security.

In this paper, we analyze whether there is an actual improve-
ment in browsing performance when using content-filtering
tools, as one third of the plugin users seem to think. To the
best of our knowledge, there are only two previous works
that tried to address similar questions [7], [8]. Traverso et al.
explored in [7] the protection and performance improvement
by means of the Time-to-First-Paint (TTFP) using AdBlock
Plus with a population of only 100 websites (most of them
belonging to the same country). In [8], Newman et al. used
Amazon Mechanical Turk [27] to study the relationship be-
tween loading time and quality of experience with a set of
1000 users, who analyzed a sample of 10 pages each from an
overall population of 965 web pages.

In contrast, our analysis is based on measurements of more
than 20 different indicators within a population of 100K
websites, using a diverse set of content-blockers focused
on different purposes. Moreover, we measure both, the real
network performance improvement as well as the quality of
experience associated with this improvement.

IV. BROWSING PERFORMANCE

A. Methodology and evaluation

To explore the real browsing performance gain introduced
by content-filtering plugins we will explore the principal
parameters that can represent an increase in performance;
effective page size and page loading time. To be able to gen-
eralize our results we have to accomplish several conditions.

1) Test population: The number of websites to browse has
to be big enough to be able to extrapolate the results to

a bigger population, and the selected websites should be
representative enough of an usual browsing session.

2) Browsing experience: The website has to be loaded with
each content-filtering plugin exactly as it would be done
if accessed by a real user. This will avoid websites to
detect automation scripts that would possibly make them
not to load all the resources.

3) Loading interval restrictions: The same website loading
process using different content-filtering plugins should be
performed in a small time window to avoid whenever
possible different temporal conditions (e.g. rush hours,
periodic maintenance, etc).

4) Experiments repetition: The number of repetitions
should allow us to discard possible non-reliable values,
especially in loading time experiments, where external
conditions can change from one execution to another.

5) Browsing completion: We have to measure all the re-
sources being loaded, even third-party ones or resources
loaded dynamically and not included in the website code.

1) Test population: For the test population we decided to
use the top 100K most popular websites according to the Alexa
list [9]. Scraping the most popular websites give us a good
approximation of what a real user would access. Alexa’s list
is part of the Amazon ecosystem and has been used in several
publications in the past (e.g. [3], [28]). Note that we only
examine the homepages of each one of the websites included
in the list but none of the links available within them.

2) Browsing Experience: We developed ORM [10], our
own highly parallelized system making use of Selenium [29]
for the automation process. This allows us to run real browsers
such as Mozilla Firefox or Google Chrome that will present
identical results to those a user would normally get. This also
permits us to customize all the experiments using browser
settings and network headers. Selenium has been used in the
past for automation of research experiments in several different
topics (e.g. [28], [30]).

The experiments are done crawling the 100K websites using
one plugin from each group presented in Section II; AdBlock
Plus (version 3.5.2) as an adblocker, Ghostery (version 8.4)
as a tracker blocker and uBlock Origin (version 1.19.6) as a
generic content blocker. Each one of them uses their own fil-
tering engine based on JavaScript regular expressions, caching
as well as serialization of their filter internal representation
to match filters with URLs. Moreover, the three of them use
the same filter list format, which is compatible with the most
popular filter lists EasyList [17] and EasyPrivacy [18]. All of
them have versions available for the most common Internet
browsers like Google Chrome or Mozilla Firefox. A summary
of the differences between the plugins is shown in Table I.

AdBlock Plus [1] is by far the most popular adblocker in
the market. It can block both, advertisements and tracking sys-
tems, using EasyList and EasyPrivacy, although EasyPrivacy
is disabled by default. AdBlock Plus is a supporter of the
acceptable ads program [19], allowing advertisements if they
follow specific guidelines.

Ghostery [31] was initially developed as a tracker blocker,
but evolved into a combination of adblocker and tracker
blocker. Unlike AdBlock Plus, Ghostery uses its own main-



4

TABLE I
CONTENT-FILTERING PLUGINS COMPARISON

AdBlock Plus Ghostery uBlock Origin
Ads blocking Yes Yes Yes
Allow some ads Yes Yes No
Track blocking Not by default Yes Yes
EasyList Yes Unknown Yes
EasyPrivacy Available Unknown Yes
Others No Private Database Additional lists

tained filter list, not publicly available, to decide whether to
block a content or not. It also has its own monetizing program
different from the acceptable ads program. Instead permitting
some advertisements to pass through, Ghostery blocks all the
original advertisements but introduces some of their own non-
intrusive advertisements.

Lastly, uBlock Origin [32] is one of the most used generic
content-blockers in the web. Its functionality is very similar
to AdBlock Plus, and can block advertisements (EasyList) as
well as tracking systems (EasyPrivacy). It includes by default
many other additional filter lists (e.g: regional or uBlock’s
own filter lists) to block other nuisances, such as resource
abuse or unneeded cosmetic elements. Unlike AdBlock Plus,
uBlock Origin does not permit any kind of advertisement and
blocks also other privacy threats like Cross Site Scripting
(XSS) loaded resources.

We decided to use Chromium (version 76.0.3809.100), the
open-source version of Google Chrome, as the baseline to
compare all the observed information. We tested as well other
alternatives also based on the Chromium font code such as
Microsoft Edge to discover possible performance differences.
However, as they use the same internal systems (e.g. Blink
or V8 JavaScript engines) our tests presented only minimal
differences (0.36% variance in performance and less than 90ms
for QoE parameters in average). Firefox, which uses a different
engine, was also tested although we also found performance
to be almost equivalent. However, Firefox does not provide
an easy way to parse all the resources being loaded by a
website, forcing us to develop our own DOM parser to search
for embedded resources. Thus, we opted for Chromium as
it is a good representation of most available browsers and
it permits us to easily get information about all the network
communications being performed as well as to load the needed
plugins in an straightforward way.

Regarding the plugins, we decided to use the default settings
for all of them, as usually users do not change them after
installation. Note that in AdBlock Plus the acceptable ads
program list is enabled by default and we leave it this
way. The only modification introduced is adding EasyPrivacy
subscription to AdBlock Plus. We have two main reasons for
those decisions. First, we want to test the three plugins in equal
conditions, blocking both advertisements and web tracking
mechanisms. Secondly, as observed in [21], AdBlock Plus
users usually activate EasyPrivacy list even if it is disabled
by default, but do not disable the acceptable ads program.

All the experiments where executed in a server operating an
Ubuntu 16.04 LTS over an Intel Xeon E5-2697 (18 cores, 36
threads) and 32GB of memory. The network connection used

pertains to a high speed academic network from Spain. We
found memory to be the limiting factor as the average CPU
and network usage was consistently below 50%.

3) Loading interval restrictions: Specially for loading time
experiments we have to assure that the measures are taken for
all the plugins in a short period of time, to avoid changing
network conditions. Our developed system opens the same
website with 4 different browsers in parallel, three of them
loading the corresponding plugin and the last one with a
vanilla browser.

4) Experiments repetition: Due to the dynamic nature of
the Internet, where many content is selected in real-time to
customize the browsing experience, we can not force websites
to load always the same content. Consequently, there would
always be websites presenting differences between the Vanilla
and the plugin-enabled versions. To minimize the effect that
this could have on the results, we focus on the statistical differ-
ences working with the highest possible volume of measures,
and their average values. This allows us to find trends as well
as to isolate special cases.

Our page size experiments compute the effective page size,
including the size of all the files loaded by the website. To
this end, it is enough to scrap the resources being loaded by
the browser once for each of the content-filtering plugins, and
once more using a vanilla. This gives us enough information
to compare the size improvement using each of the plugins.

For the loading time experiments the same website is
opened in parallel by the four browsers 5 times consecutively,
having a timeout setting of 30 seconds, usually bigger enough
to load all the resources given the network characteristics.
Between each repetition the browsing cache as well as the
cookies are deleted to obtain a clear browsing experience.

On top of that, if one of the browsers is unable to get 5
measures of the same website (e.g. network issues, hardware
issues, server miss-configurations, server performance issues),
all the measures are discarded, as it is not possible to compare
them reliably. To avoid interference from external network
circumstances we have discarded noisy samples where the
5 taken measures differed significantly in their request time.
To this end we used the interquartile range measure. This
permitted us to discard non-reliable samples (0.66%) due to
excessive changes in network conditions during the measure-
ments. This methodology makes the system robust against
the dynamic nature of the website. If the included dynamic
content always slows down the loading process it is already
considered in our measurements. On the contrary, if there are
only punctual issues, it will be discarded by the interquartile
range deviation. We have computed the average for the rest
of the 5 observations to obtain an approximation of the
loading latency of each website. With this system, from the
initial population of 100K websites we ended up scrapping
successfully a total of 80.974 websites. All the measures were
taken in the period May-July of 2019. The resulting dataset is
publicly available at [33].

5) Browsing completion: Nowadays most websites include
script files that load resources dynamically. Moreover, almost
all of them are obfuscated or minifyed; a process that tries to
reduce the size of the script files and improve the loading



5

TABLE II
PERFORMANCE TIMING API

Grouping Event Stage
startTime
unloadEventStart
unloadEventEnd

Prompt for unload

redirectStart
redirectEnd Redirect

fetchStart AppCache
domainLookupStart
domainLookupEnd DNS

connectStart
secureConnectionStart
connectEnd

TCP

requestStart
responseStart Request

responseEnd Response
domInteractive
domContentLoadedEventStart
domContentLoadedEventEndR

eq
ue

st
tim

e

domComplete

Processing

loadEventStart

To
ta

l
lo

ad
in

g
tim

e

loadEventEnd Load

time by removing white-spaces, break-lines and shortening
the names of the variables. This prevents to get a list of
the resources being downloaded exploring the code in the
traditional way. To solve it we make use of Google’s DevTools
Protocol to get access to all the resources included inside the
network communications executed by the browser. We do it by
enabling the logging capabilities of the browser and extracting
the information directly from the on-memory network logs in
real time.

On the other hand, privacy policies commented in Section II
force websites to present banners to obtain the consent of the
user prior to collecting personal information. This can have
an impact in our measurements as tracking content should
be avoided (according to privacy regulations) until obtaining
the user consent. However, a recent study [34] concludes that
about 70% to 80% of websites do not modify their tracking
behavior based on those privacy banners. Thus, the impact in
our experiments should be limited to only a small subset of
websites. On the other hand, another study has shown [35]
that websites content greatly differs between the homepage
and the internal sites. However, the same research [35] found
that homepages are prone to contain more web tracking than
internal websites. Thus, we expect the highest performance
gain obtained by using a content-blocker to be obtained in the
website homepage.

As for the loading time metrics, we use the Performance
Timing API [36], defined by the W3C and supported by the
majority of the current browsers, to extract the information
of all the loading events each website produces. In Table II
it is shown the events produced by the Performance Timing
API in execution order when a website loads. Using the time
difference between those events we can compute different
measures. The total loading time collects all the process
including the time to unload the current website as well as
the time spent in redirections. As we only want to account the
time difference between loading the website with and without

Fig. 1. Page size distribution (CDF): All the content-blockers present
slight improvements in page size due to the resource blocked prior to being
downloaded.

Fig. 2. Page size gain: More than 60% of websites present similar size gains
thanks to content-blockers. AdBlock Plus and Ghostery present overhead for
almost 20% of them while in uBlock Origin is only present in 10%.

a content-filtering plugin, we will be focusing our experiments
on the request time, between the requestStart event and the
domComplete event. The former is executed just before start-
ing any resource request, while the latter is generated when
the Document.readyState becomes complete. This is equivalent
to actively inspecting the JavaScript window.onLoad call, and
ensures that all the content, including scripts, have finished
loading. We purposely avoid accounting undesired variability
like the time spent unloading the previous website, process
mainly dependent on the computer CPU speed and memory.

B. Page size comparison

In this section, we analyze the website loading performance,
when using different content-filtering tools, in terms of the
effective page size once loaded all its resources. This includes
not only the resources loaded by the website itself, but also the
dynamic content loaded from third-party domains called inside
it. Intuitively, a vanilla browser will load all the resources
included in the website, while a browser with a content-blocker
will only load those that are not being blocked. Note that many
websites include dynamic content that can differ each time the
website is loaded. Moreover, some content embedded in the
website can only be filtered once already downloaded, not
incurring in size savings.

Fig. 1 shows the cumulative distribution function (CDF)
comparing the effective page size needed for loading the top
100K most popular websites. At first sight, we can see the



6

Fig. 3. Size improvement/Page size: Positive Y axis presents the average improvement for the subset of websites inside the given interval that actually
presents an improvement. On the contrary, Negative Y axis presents the average overhead for the subset of websites presenting an overhead. Positive values
include almost 85% of the collected samples.

Fig. 4. Resource improvement / size improvement: Depicts the resource improvement between the vanilla browser and each plugin over the website size
improvement. Quadrants B and C contain most of the samples (90%) and are the expected results. Both negative values or both positive values demonstrate
that reducing the number of elements improves the page total size. Quadrants A and D are counter-intuitive as they break that relation. Carefully examining
the data we found them to be the result of the inherent dynamic nature of the Internet, where some elements vary even in consecutive runs.

minimal difference between the three content-blockers. All of
them present almost the same distribution, resulting in a small
size improvement over the vanilla browser (10% to 20%).

Fig. 2 plots the absolute page size improvement, computed
as the difference in megabytes with the original size of the
website and all its resources. AdBlock Plus and Ghostery
follow almost the same distribution, while uBlock Origin
shows a slight improvement compared to the other tools. Note
that not all websites benefit from using a content-blocker.
There are between 10% and 20% of websites where the
performance decreases when using it.

To explore these results further, we analyzed the relationship
between the effective size gains and the total size in Fig. 3. As
websites smaller than 4 megabytes represent more than 80%
of the total population (Fig. 1), the page size is depicted in
logarithmic scale. Positive values correspond to the average
improvement obtained by the subset of websites where the
use of a content-blocker results in size savings. For instance,
the first interval corresponding to websites of only a few
kilobytes, shows an average improvement of 60% for the
subset of websites that have a page size improvement. On
the contrary, negative values represent the average overhead
for those websites where the use of a content-blocker results

in an increase of the total size of the website. Note that, as
shown in Fig. 2, the percentage of websites that benefit from
using a content-blocker (80%-90%) is much larger than those
where it introduces an overhead (10%-20%). Consequently,
the number of instances with negative values is much smaller
than the instances with positive values. This is also reflected
as bigger interval errors present within the negative averages.

Fig. 3 shows a clear relationship between total page size and
size improvement. This is not unexpected because every major
advertisement engine imposes some policies defining not only
the type of advertisements, but also limiting the placement
and number of advertisements visible per site. Thus, for usual
websites using only one or two of those engines there is an
upper bound to the total size to be used for advertisements.
This upper bound is comparatively larger for small websites
than for larger websites, where the size improvement obtained
blocking the ads will result in lower size improvements.

Fig. 4 analyzes the resource improvement (number of
elements present in the vanilla that are not present in the
plugin-enabled browser), and relates them to the website size
improvement. Negative Y values indicate websites with a
higher number of elements using the plugin than using the
vanilla. The results are divided using the coordinate axes



7

TABLE III
BLOCKED RESOURCES / SIZE IMPROVEMENT DISTRIBUTION

Quadrant AdBlock Plus Ghostery uBlock Origin
A 3.81% 6.21% 3.45%
B 84.73 81.62% 86.27%
C 3.52% 4.4% 2.63%
D 0.17% 0.15% 0.08%

Origin (0, 0) 7.76% 7.6% 7.56%

TABLE IV
ANOVA: SIZE DIFFERENCE CORRELATED WITH RESOURCE TYPE

Source value Sum of squares Degree of freedom F-ratio (%) P-value(>F)
C(resource type) 2.44x105 11.0 748.118931 0.0
Residual 1.82x106 61284

in four quadrants named from A to D in the graph. Table
III summarizes the percentage of websites included in each
quadrant for all the plugins. The results are very similar for
the three content-blockers compared.

Most observations (≈84%) are situated in quadrant B, with
positive values for both axes. This is the expected behavior,
as it indicates a positive relationship between the number
of blocked resources and website size improvements. Sur-
prisingly, this relationship is not linear, and blocking more
resources does not necessarily result in more size savings.

The figure also shows a small percentage of websites (≈3%)
in quadrant C, the opposite case. The page size overhead
is small and exploring a sample we found it to be mostly
related to the dynamic loading process of the website. As
commented before each time a website loads, the content
varies slightly including new information depending on the
third-party trackers being loaded. It is not rare that the same
website loaded by the vanilla browser and a browser including
a plugin presents some minor differences.

For the remaining two quadrants, D with only few observa-
tions (≈0.13%) is very intuitive. It would be very uncommon
to have effective size gains if the number of resources in-
creases. Unexpectedly, the number of observations in quadrant

Fig. 5. Average content blocked: Almost 80% of the website size gain comes
from blocking JavaScript resources. Size reduction thanks to image blocking
is limited, as most blocked images are very small pictures used for browser
fingerprinting.

Fig. 6. Request time (CDF): AdBlock Plus presents a loading time almost
equal to the vanilla browser. On the other hand, Ghostery and uBlock Origin
show some gain margins on the total Page Loading Time.

A is not negligible in some cases. Quadrant A depicts websites
that load less resources but are bigger in the plugin-enabled
browser than in the vanilla. To understand this counter-intuitive
behavior, an ANOVA test was applied to determine the signif-
icance of the resource type and the difference in size within
the websites pertaining to Quadrant A. The ANOVA results
are provided in Table IV. Since the P-value is less than 0.05,
the file type has a statistically significant effect on the size
difference at the 95% confidence level. To discover the most
relevant resource type between the 11 differentiated categories
we also performed a Tukey Test to make pairwise comparisons
between the means of each group while controlling for the
total error rate. The results (Appendix A) show that image
files are the main responsible for the increase in website size.
We manually inspected a randomized sample of those image
files to discover possible differences in the treatment given
by the website once discovered a content-blocker. We did not
find any evidence of the content being customized for plugin-
enabled browsers. Once more, the difference in size was due to
the dynamic content of the website, presenting slightly bigger
advertisement images in comparison to the vanilla browser.

Fig. 5 presents the average size of blocked resources classi-
fied by type. uBlock Origin presents a slightly better blocking
performance than Ghostery and AdBlock Plus. This difference
is aligned with previous results, and it is explained by the extra
contents being blocked by a generic content blocker. The size
savings due to image files is small because most of them are
tiny non-visible images dedicated to fingerprinting. This result
is in par with the results found at [26].

C. Loading time comparison

Another metric that has an important role on the browsing
performance is the time needed to load a website. If introduc-
ing a content-filtering plugin represents an important decrease
in loading time, users can benefit not only from the privacy
and security benefits brought by such plugin, but also from
increased browsing speeds.

The loading time distribution resulting from our population
of 100K websites is shown in Fig. 6. Approximately 90%
of the websites have a loading time lower than 5 seconds,
being also this range the one that benefits more from using



8

TABLE V
LIGHTHOUSE MOST IMPORTANT QUALITY OF EXPERIENCE METRICS

Metric Description

Performance Overall QoE performance score: (0.25 x (LCP + TBT) + 0.15 x (SI + FCP + TTI) + 0.5 x CLS)

SI (Speed Index) Measures how quickly content is visually displayed during page load.

FCP (First Contentful Paint) Measures how long it takes the browser to render the first piece of DOM content after a user navigates to the
page.

LCP (Largest Contentful Paint) Reports the render time of the largest image or text block visible within the viewport, relative to when
the page first started loading.

FMP (First Meaningful Paint) Measures when the primary content of a page is visible to the user. The raw score is the time in seconds
between the user initiating the page load and the page rendering the primary above-the-fold content.

CLS (Cumulative Layout Shift) Measures the sum total of all individual layout shift scores for every unexpected layout shift that occurs
during the entire lifespan of the page.

FCP (First CPU Idle) Measures how long it takes a page to become minimally interactive.

TTI (Time to Interactive) Measures how long it takes a page to become fully interactive.

TBT (Total Blocking Time) Measures the total amount of time that a page is blocked from responding to user input, such as mouse clicks,
screen taps, or keyboard presses.

Fig. 7. Loading time improvement: Ghostery and uBlock Origin present
similar results, improving the loading time in more than half of the websites
and decreasing it on about 20% of them. AdBlock Plus only improves about
30% and on the contrary it introduces an overhead for almost half of them.

a content-blocker. Nevertheless, as in the case of page size,
the difference is very small, with only 174 milliseconds of
average gain. Note that the curve presented by AdBlock Plus
is almost equal to the one of the vanilla browser.

Fig. 7 plots the CDF with the loading time improvement
in seconds for each of the three content-filtering plugins.
Unlike in the page size experiments, we can clearly see a
difference between the three of them. Ghostery and uBlock
Origin present an improvement in almost 50% of the websites,
and a loading time increase in a small percentage. In contrast,
AdBlock Plus improves the loading time in only about 30%
of the websites, but degrades it in almost 50% of them.

To study this performance penalty, we computed the average
improvement as a function of the total loading time of the
website. Fig. 8 shows the results for each content-blocker. In
the first column (less than 1 second), we can see that both
Ghostery (-7%) and AdBlock Plus (-13%) introduce a decrease
of performance. In the case of AdBlock Plus, this overhead
is still present in the range between 1 and 2 seconds. Even
uBlock Origin, while not suffering this performance penalty,
experiments only a small improvement in the 1 second interval.

Considering the percentage of websites that load faster
than 2 seconds (Fig. 6), we can observe that using one
of the two firsts content-filtering plugins, increases loading
time in more than half of the explored websites. This fact
initially contradicts the usual assumption that using a content-
filtering plugin improves the performance of the browsing
session. Overall, thanks to slow loading websites, AdBlock
Plus presents an average improvement of 53 milliseconds,
while Ghostery and uBlock Origin have an average loading
time improvement of 207 and 263 milliseconds, respectively.

Most content-blockers work comparing each URL loaded
by the website to a list of patterns included in the black lists
used to discard them. These lists can contain thousands or even
hundred of thousands of different rules. Even very optimized
algorithms inherently introduce an overhead to check in real
time the resources being acquired by the browser. Thus, their
usage will only represent an improvement in loading time if
the time reduction gained by blocking some resources is higher
than the time spent by the plugin checking all of them. Our
results show that for very fast loading websites the overhead
introduced by the plugin itself is not negligible.

V. QUALITY OF EXPERIENCE

To verify if our findings about browsing performance di-
rectly translate to the actual quality of experience perceived
by the user, in this section we look at the most important QoE
parameters available when using content-blockers.

A. Methodology

The methodology we followed to perform the QoE ex-
periments is mostly the same as presented in Section IV-A.
Browsing experience, loading interval restrictions, experiments
repetition and browsing completion requirements remains ex-
actly the same, except the loading timeout that we increased
from 30 to 60 seconds. We also repeat the same set of plugins.
However, taking multiple QoE measures for a website may
take a few minutes, and doing so for multiple plugins and 5
times for each website greatly increases the time needed to



9

Fig. 8. Improvement distribution: Each interval represents the average page loading time improvement for the subset of websites with a total loading time
inside the interval. For very fast loading websites the improvement is almost negligible or even negative.

Fig. 9. Lighthouse performance score: Overall QoE score computed by
Lighthouse. The best performer plugin is Ghostery, followed by AdBlock
Plus and in the last position uBlock Origin, both of them very close.

perform the measurements. Thus, in this section we limit the
test population to the top 10K most popular websites. To col-
lect the time events instead of using W3C defined Performance
Timing API we make use of Google’s Lighthouse [37].

Lighthouse is a module designed by Google to compute
QoE metrics over a given website. It is available as a plugin
for the most popular browsers, but for Google’s Chromium,
our selected browser, it is already available as part of the
Developer Tools. Table V presents a subset of the most
important metrics computed by Lighthouse with a description
of each of them. In order to run Lighthouse inside ORM, our
own developed collection tool, we modified it to open the
browser with a debug port, load the corresponding content-
blocker plugin, and pass the debug port to Lighthouse, which
is in charge of loading the required website inside a new tab
and computing the metrics.

B. Results

Fig. 9 shows the overall quality of experience score com-
puted by Lighthouse. In version 6, the Lighthouse version
used in this work, this performance responds to the formula
presented at Table V. As shown in the figure, the plugin that
results in the greatest improvement in terms of quality of
experience is Ghostery, with AdBlock Plus and uBlock Origin

TABLE VI
LIGHTHOUSE QUALITY OF EXPERIENCE METRICS AVERAGE

Vanilla AdBlock
Plus Ghostery uBlock

Origin
Performance 0.7728 0.7982 0.8076 0.7989
Speed Index 0.5842 0.6414 0.6614 0.6443
FCP 0.6437 0.6798 0.7065 0.6718
LCP 0.5163 0.5693 0.5868 0.5777
FMP 0.5967 0.6357 0.6513 0.6318
CLS 0.8739 0.8856 0.8774 0.8844
TTI 0.9444 0.9534 0.9572 0.9491
FCI (ms) 321,00 314,30 298,25 331,09
DOM Size 1512,47 1492,16 1485,69 1482,26
Redirects 592,61 553,80 523,48 558,64
RTT 27,90 39,4858 33,2413 44,6951
Max. RTT 167,04 115,6420 103,6021 121,4503
Throughput (Mb) 27,357 30,178 25,276 33,651
Tasks over 500ms 0,2924 0,2829 0,2680 0,2691
Resource Average 142,3857 97,3174 87,7849 86,4070

in second and third place, respectively. The difference between
these last two plugins in most points is very small. However,
the results seem to indicate that there is a performance
improvement equally present in all the revised websites. This
initially contradicts our findings in Section IV where we found
a subset of websites that present an overhead in the page
loading time that can impact the QoE. To focus the lens on fast
websites we decided to repeat our performance measurements
study present in Fig. 8 using the Speed Index instead of the
page loading time. Results are depicted in Fig. 10.

All the websites are split in subsets of 1 second depending
on the time needed to show all the visual elements inside
the viewport. Then, for each subset of websites the average
improvement is computed and assigned as the interval value.
As in Section IV, the first interval, containing websites with a
total Speed Index of less than 1 second, shows a negligible or
even negative improvement, representing an overhead for very
fast loading websites. As expected, for the rest of the intervals
there is an improvement over the vanilla browser, increasing
proportionally to the time needed to load the portion of the
website loaded inside the viewport. Nevertheless, more than
80% of the websites are included inside the first 5-second
intervals, presenting an overall improvement lower than 20%.

Table VI presents the average of all the collected metrics
classified per content-blocker for the 10K inspected websites.



10

Fig. 10. Lighthouse Speed Index improvement: Each interval value corresponds to the average improvement of the Speed Index for the subset of websites on
the vanilla browser with an initial Speed Index inside that interval. The firsts interval presents negligible or negative improvements for all the content-blockers.

The best result for each category is highlighted in grey color.
Note that all the metrics are collected by the browser and not
directly from the network link. Thus, the browser will only
account for the traffic being loaded by itself, and not the real
link status.

In average, all the performance related metrics show an
overall improvement for all the plugins in comparison to the
vanilla browser. Moreover, as already seen, Ghostery stays on
top on almost all of them. On the other hand, all the content-
blockers decrease the number of files loaded by the website,
working as expected. Between all of them the tool blocking
the highest number of resources is uBlock Origin. This is
not unexpected because among all the analyzed plugins it is
the most strict one, using numerous black lists in order to
detect not only web trackers and advertisements, but also other
nuisances between the files (e.g. Cross Site Scripting).

C. Quantifying the improvement

Our results show that content-blockers can help to increase
the performance and quality of experience perceived by the
user in many cases, but this improvement is almost always
very small and even negative in some cases. However, deter-
mining if those small differences are perceptible to the user
is very difficult. For very fast loading websites introducing
an overhead can be irrelevant if the user does not perceive it.
Similarly, slow loading websites may be too slow, even using
content-blockers, to avoid user frustration.

To better understand the noticeable improvement we com-
puted the Mean Opinion Score (MOS) model over the Speed
Index obtained results, following the proposal at [38]. MOS
is a standard defined by the ITU (ITU-T G.1030 [39]) to
estimate end-to-end performance in IP networks. It defines the
quality of experience as a value between 1 and 5, being 1 the
worst possible value and 5 the best experience. It is based on
the WQL hypothesis (the relation between the waiting time
and the QoE follows a logarithmic linear scale), and it was
originally applied to the page loading time (PLT). However,
recent advances in the area of QoE research have found that
correlating it with QoE measures is more appropriate than
PLT. In particular, the study performed by Hoßfeld et al. in
[38] found that applying it to the Speed Index (SI) leads to

Fig. 11. QoE Mean Opinion Score: QoE modeling defined at ITU-T G.1030
[39] applied over the Speed Index. Ghostery presents an slight QoE increase
over the vanilla. AdBlock Plus as well as uBlock Origin present both an
overall decrease of QoE.

a very good approximation of the actual MOS values. The
SI-driven QoE MOS is formulated as:

SQWQL = −a · ln(SI) + b (1)

Fig. 11 shows the CDF distribution for the 10K collected
websites. Surprisingly, the MOS values for AdBlock Plus and
uBlock Origin present worse results than for the vanilla, letting
Ghostery as the only plugin with a noticeable performance
increase. This difference between the QoE obtained metrics
and the MOS is not directly observable in the previously
obtained figures, where the global impression is an overall
QoE improvement. Nevertheless, as expected, the difference
is small (between 3% to 5% of websites). These results
confirm our previous findings that using plugins to improve the
browsing performance has only a relatively small impact on
the overall experience, and depending on the selected plugin
it can even deteriorate the perceived QoE on some websites.

VI. DISCUSSION AND POSSIBLE IMPROVEMENTS

In this work we found that, under certain circumstances,
the overhead introduced by a content-blocker can decrease
the overall quality of experience perceived by the user. The
main reason of this overhead relies in the number of resources



11

TABLE VII
DEEP TRACKING BLOCKER QOE RESULTS

Speed Index FCP LCP FMP CLS TTI

0.6383 0.7200 0.5963 0.6738 0.8515 0.9638

loaded by the website. Content-blockers check in real time
every resource URL in order to block them if they are present
inside a black list, and this extra computation adds a small
delay. In fact, paradoxically for completely privacy-friendly
websites, where no resource has to be blocked, we will always
experience a reduction in performance if we use a content-
blocker to protect us against the other websites that use
tracking resources.

Given that the problem is inherent to the use of pattern
matching algorithms, a possible improvement would consist
of using machine learning to reduce this overhead. Following
this idea, we implemented a new browser plugin called Deep
Tracking Blocker (DTB) that is based on a Deep Learning
model proposed in [40]. This approach was shown to obtain
a detection accuracy similar to traditional blacklists (97%
precision), while moving the bulk of the pattern matching cost
to an offline training phase. DTB is an open-source project [41]
and it is already available in the Firefox [42] and Chrome [43]
plugin markets. In order to evaluate the performance of the
new plugin, we repeated the QoE measurements in Section V
but using now DTB. Table VII shows a summary of the results
obtained with the same set of 10K websites. Our results show
that DTB results in an increase of performance between 2%
and 15% for most of the QoE parameters analyzed in Table VI.
We attribute the small performance improvement to the limited
support current browsers provide to run neural networks within
a browser extension. Nevertheless, even if the improvement is
modest, the use of Deep Learning brings also other advantages
compared to the use of traditional pattern matching, such as
the generalization to other tracking URLs not included in the
blacklists. Improving the implementation of DTB as a browser
extension is part of our future work.

VII. CONCLUSIONS

In this work, we presented the results of a comprehensive
measurement study that analyzes the actual performance gains
of using content-blockers in terms of Page Size, Page Loading
Time, and other Quality of Experience metrics, such as Speed
Index or Time to Interactive. Contrary to common belief, our
results show that the actual improvements in terms of effective
page size are small, while speed ups in page loading times and
Speed Index are almost negligible.

Regarding the relative performance among the analyzed
tools, we observed slightly better results in both, page size and
loading time, for uBlock Origin compared to AdBlock Plus and
Ghostery. However, those results do not directly translate to
the QoE parameters, where Ghostery performs slightly better
than the other content-blockers.

We also quantified the total fraction of websites where a user
could expect a noticeable difference in terms of performance

and QoE to be only around 3-5% when using a content-
blocker. Only Ghostery presented an increase on the QoE
perceived by the user, while AdBlock Plus and uBlock Origin
introduced a small penalty in a subset of websites. Based
on these results, we can conclude that the use of content-
blockers for performance reasons can only be beneficial for
slow connections with limited bandwidth, where page size
gains of about 10% can make a difference. This could be of
special importance on itinerant devices where the volume of
data downloaded can incur additional charges. On the contrary,
for normal connections where the throughput is not a barrier,
content-blockers present at best a very small performance and
quality of experience improvement, but in many cases may
result in a performance overhead.

The data set collected for this study has been made publicly
available at [10].

VIII. ACKNOWLEDGMENTS

This publication is part of the Spanish I+D+i project
TRAINER-A (ref. PID2020-118011GB-C21), funded by
MCIN/ AEI/10.13039/501100011033.

REFERENCES

[1] AdBlock Plus, “Adblock Plus.” https://adblockplus.org/en/.
[2] A. Mathur, J. Vitak, A. Narayanan, and M. Chetty, “Characterizing

the Use of Browser-Based Blocking Extensions To Prevent Online
Tracking,” in Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), vol. Fourteenth Symposium on Usable Privacy and
Security (SOUPS 2018), pp. 103–116, USENIX Association, 2018.

[3] B. Krishnamurthy, D. Malandrino, and C. E. Wills, “Measuring privacy
loss and the impact of privacy protection in web browsing,” in Proceed-
ings of the 3rd symposium on Usable privacy and security, SOUPS ’07,
(Pittsburgh, Pennsylvania, USA), pp. 52–63, Association for Computing
Machinery, July 2007.

[4] J. Mazel, R. Garnier, and K. Fukuda, “A comparison of web privacy
protection techniques,” Computer Communications, vol. 144, pp. 162–
174, Aug. 2019.

[5] C. E. Wills and D. C. Uzunoglu, “What Ad Blockers Are (and Are Not)
Doing,” in 2016 Fourth IEEE Workshop on Hot Topics in Web Systems
and Technologies (HotWeb), pp. 72–77, Oct. 2016.

[6] A. Gervais, A. Filios, V. Lenders, and S. Capkun, “Quantifying Web
Adblocker Privacy,” in Computer Security – ESORICS 2017 (S. N.
Foley, D. Gollmann, and E. Snekkenes, eds.), Lecture Notes in Computer
Science, (Cham), pp. 21–42, Springer International Publishing, 2017.

[7] S. Traverso, M. Trevisan, L. Giannantoni, M. Mellia, and H. Metwalley,
“Benchmark and comparison of tracker-blockers: Should you trust
them?,” in 2017 Network Traffic Measurement and Analysis Conference
(TMA), pp. 1–9, June 2017.

[8] J. Newman and F. E. Bustamante, “The Value of First Impressions,” in
Passive and Active Measurement (D. Choffnes and M. Barcellos, eds.),
Lecture Notes in Computer Science, (Cham), pp. 273–285, Springer
International Publishing, 2019.

[9] K. Cooper, “Alexa: Most popular website list.” https://www.alexa.com/.
[10] “CBA-UPC/ORM,” May 2021. https://github.com/CBA-UPC/ORM.
[11] I. Castell-Uroz, J. Solé-Pareta, and P. Barlet-Ros, “Demystifying

Content-blockers: A Large-scale Study of Actual Performance Gains,”
in 2020 16th International Conference on Network and Service Man-
agement (CNSM), pp. 1–7, Nov. 2020.

[12] R. S.-G. Ismael Castell-Uroz and P. Barlet-Ros, “Deep tracking blocker
github,” May 2022. https://github.com/CBA-UPC/DTB.

[13] S. Krishnamurthy, “Deciphering the Internet Advertising Puzzle,”
SSRN Scholarly Paper ID 651842, Social Science Research Network,
Rochester, NY, Jan. 2005.

[14] R. Lothia, N. Donthu, and E. K. Hershberger, “The Impact Of Content
And Design Elements On Banner Advertising Click-Through Rates,”
Journal of Advertising Research, vol. 43, pp. 410–418, Dec. 2003.

[15] “General data protection regulation,” Dec. 2021. https://gdpr.eu/.



12

[16] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A
Survey on Web Tracking: Mechanisms, Implications, and Defenses,”
Proceedings of the IEEE, vol. 105, pp. 1476–1510, Aug. 2017.

[17] “EasyList.” https://easylist.to/.
[18] “EasyPrivacy.” https://easylist.to/easylist/easyprivacy.txt.
[19] Acceptable Ads, “Acceptable Ads.” https://acceptableads.com/.
[20] O. Zach, M. Slanina, and M. Seufert, “Investigating the impact of

advertisement banners and clips on video qoe,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
pp. 1618–1623, 2018.

[21] E. Pujol, O. Hohlfeld, and A. Feldmann, “Annoyed Users: Ads and Ad-
Block Usage in the Wild,” in Proceedings of the 2015 Internet Measure-
ment Conference, IMC ’15, (Tokyo, Japan), pp. 93–106, Association for
Computing Machinery, Oct. 2015.

[22] M. Malloy, M. McNamara, A. Cahn, and P. Barford, “Ad Blockers:
Global Prevalence and Impact,” in Proceedings of the 2016 Internet
Measurement Conference, IMC ’16, (Santa Monica, California, USA),
pp. 119–125, Association for Computing Machinery, Nov. 2016.

[23] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: retrospective mea-
surement and analysis of anti-adblock filter lists,” in Proceedings of
the 2017 Internet Measurement Conference, IMC ’17, (London, United
Kingdom), pp. 171–183, Association for Computing Machinery, Nov.
2017.

[24] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet Jones
and the Raiders of the Lost Trackers: An Archaeological Study of
Web Tracking from 1996 to 2016,” in 25th USENIX Security Sympo-
sium (USENIX Security 16), vol. 25th USENIX Security Symposium
(USENIX Security 16), USENIX Association, 2016.

[25] B. Shiller, J. Waldfogel, and J. Ryan, “The effect of ad blocking on
website traffic and quality,” The RAND Journal of Economics, vol. 49,
no. 1, pp. 43–63, 2018.

[26] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding website
complexity: measurements, metrics, and implications,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference, IMC ’11, (Berlin, Germany), pp. 313–328, Association for
Computing Machinery, Nov. 2011.

[27] Amazon Turk, “Amazon Mechanical Turk.” https://www.mturk.com/.
[28] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site

Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, (Vi-
enna, Austria), pp. 1388–1401, Association for Computing Machinery,
Oct. 2016.

[29] Jason Huggins, “SeleniumHQ Browser Automation.”
https://www.selenium.dev/.

[30] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishna-
murthy, “Towards Seamless Tracking-Free Web: Improved Detection of
Trackers via One-class Learning,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, pp. 79–99, Jan. 2017.

[31] Ghostery, “Ghostery Makes the Web Cleaner, Faster and Safer!.”
https://www.ghostery.com/.

[32] R. Hill, “uBlock Origin,” Feb. 2020. https://github.com/gorhill/uBlock.
[33] ORM, “Online resource mapper,” Feb. 2020. https://github.com/CBA-

UPC/ORM.
[34] M. Basart, “Online privacy: Analyzing the use of cookies

in web pages,” Dec. 2021. https://github.com/CBA-
UPC/ORM/blob/codesets/publications/Online privacy - Analyzing
the use of cookies in web pages.pdf.

[35] W. Aqeel, B. Chandrasekaran, A. Feldmann, and B. M. Maggs, “On
landing and internal web pages: The strange case of jekyll and hyde
in web performance measurement,” in Proceedings of the ACM Internet
Measurement Conference, IMC ’20, (New York, NY, USA), p. 680–695,
Association for Computing Machinery, 2020.

[36] W3C, “Navigation timing.” https://www.w3.org/TR/navigation-timing-
2/.

[37] Google Inc., “Lighthouse | Tools for Web Developers.”
https://developers.google.com/web/tools/lighthouse?hl=es.

[38] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed index: Relating the
industrial standard for user perceived web performance to web qoe,”
in 2018 Tenth International Conference on Quality of Multimedia
Experience (QoMEX), pp. 1–6, 2018.

[39] “Itu-t g.1030,” Dec. 2021. https://www.itu.int/rec/T-REC-G.1030-
201402-I/en.

[40] I. Castell-Uroz, T. Poissonnier, P. Manneback, and P. Barlet-Ros, “Url-
based web tracking detection using deep learning,” in 2020 16th In-
ternational Conference on Network and Service Management (CNSM),
pp. 1–5, 2020.

[41] “CBA-UPC/DTB,” Apr. 2021. https://github.com/CBA-UPC/DTB.

[42] “Deep Tracking Blocker (Firefox).” https://addons.mozilla.org/en-
US/firefox/addon/deep-tracking-blocker/.

[43] “Deep Tracking Blocker (Chrome).”
https://chrome.google.com/webstore/detail/deep-tracking-
blocker/jjhinlfobgkmbbplbaaegglolichbfol.

Ismael Castell-Uroz (ismael.castell@upc.edu) is a
Ph.D. student at the Computer Architecture Depart-
ment of the Universitat Politècnica de Catalunya
(UPC), Barcelona, Spain, where he received the
B.Sc. degree in Computer Science in 2008 and the
M.Sc. degree in Computer Architecture, Networks
and Systems in 2010. He has several years of ex-
perience in network and system administration and
currently holds a Projects Scholarship at UPC. His
expertise and research interest are in computer net-
works, especially in the field of network monitoring,

anomaly detection, internet privacy and web tracking.

Rubén Sanz-Garcı́a (ruben.sanz.garcia @estudi-
antat.upc.edu) received the B.Sc. degree in Com-
puter Science in 2021 at the Universitat Politècnica
de Catalunya (UPC), Barcelona, Spain. He did and
Erasmus during 2020 at the Faculty of Science and
Engineering in the University of Groningen(UG),
Groningen, Netherlands. He is currently working as
a back-end developer at Floorfy and his research
and interest are in web tracking, internet privacy and
cybersecurity. He was the main developer of the new
content-blocker plugin called Deep Tracking Blocker

created by the UPC-Advanced Broadband Communication Center.

Josep Solé Pareta (pareta@ac.upc.edu) joined the
Computer Architecture Department of Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain,
where he is currently Full Professor. He received
the M.Sc. degree in telecommunications engineering
and the Ph.D. degree in computer science from UPC
in 1984 and 1991, respectively. He did Postdoctoral
studies at Georgia Institute of Technology, Atlanta,
GA, in 1993 and 1994. He is co-founder of the
UPC-Advanced Broadband Communication Center,
and his research interests are in nanonetworking

communications, traffic monitoring and analysis and high-speed and optical
networking, with emphasis on traffic engineering, traffic characterization,
MAC protocols, and QoS provisioning.

Pere Barlet-Ros (pere.barlet@upc.edu) is currently
an Associate Professor with the Computer Archi-
tecture Department of the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain, and Scientific
Director at the Barcelona Neural Networking Cen-
ter (BNN-UPC). He received the M.Sc. and Ph.D.
degrees in Computer Science from UPC, in 2003
and 2008, respectively. From 2013 to 2018, he was
Co-founder and Chairman of the machine learning
startup Talaia Networks. His research has focused
on the development of novel machine learning tech-

nologies for network management and optimization, traffic classification and
network security, which have been integrated in several open-source and
commercial products, including Talaia, Auvik TrafficInsights, Intel CoMo and
SMARTxAC.



13

APPENDIX A
MULTIPLE COMPARISON OF MEANS - TUKEY HSD,

FWER=0.05

group1 group2 meandiff p-adj lower upper reject
Document EventSource 0.1086 0.9 -0.2441 0.4613 False
Document Fetch 0.0526 0.9 -0.3001 0.4053 False
Document Font -0.2769 0.2996 -0.6296 0.0758 False
Document Image -7.3018 0.001 -7.6545 -6.9491 True
Document Manifest 0.1077 0.9 -0.245 0.4604 False
Document Media -0.4103 0.0079 -0.7631 -0.0576 True
Document Other 0.0622 0.9 -0.2905 0.4149 False
Document Script -1.2581 0.001 -1.6108 -0.9054 True
Document Stylesheet -0.1589 0.9 -0.5116 0.1938 False
Document TextTrack 0.1086 0.9 -0.2441 0.4613 False
Document XHR -0.6577 0.001 -1.0105 -0.305 True

EventSource Fetch -0.056 0.9 -0.4087 0.2967 False
EventSource Font -0.3855 0.0184 -0.7382 -0.0328 True
EventSource Image -7.4104 0.001 -7.7631 -7.0577 True
EventSource Manifest -0.0009 0.9 -0.3536 0.3519 False
EventSource Media -0.5189 0.001 -0.8716 -0.1662 True
EventSource Other -0.0464 0.9 -0.3991 0.3063 False
EventSource Script -1.3666 0.001 -1.7194 -1.0139 True
EventSource Stylesheet -0.2675 0.355 -0.6202 0.0853 False
EventSource TextTrack 0.0 0.9 -0.3527 0.3527 False
EventSource XHR -0.7663 0.001 -1.119 -0.4136 True

Fetch Font -0.3295 0.0936 -0.6822 0.0232 False
Fetch Image -7.3544 0.001 -7.7071 -7.0017 True
Fetch Manifest 0.0551 0.9 -0.2976 0.4079 False
Fetch Media -0.4629 0.0011 -0.8156 -0.1102 True
Fetch Other 0.0096 0.9 -0.3431 0.3623 False
Fetch Script -1.3106 0.001 -1.6634 -0.9579 True
Fetch Stylesheet -0.2115 0.6937 -0.5642 0.1413 False
Fetch TextTrack 0.056 0.9 -0.2967 0.4087 False
Fetch XHR -0.7103 0.001 -1.063 -0.3576 True
Font Image -7.0249 0.001 -7.3776 -6.6722 True
Font Manifest 0.3846 0.0189 0.0319 0.7374 True
Font Media -0.1334 0.9 -0.4861 0.2193 False
Font Other 0.3391 0.0734 -0.0136 0.6918 False
Font Script -0.9811 0.001 -1.3339 -0.6284 True
Font Stylesheet 0.118 0.9 -0.2347 0.4708 False
Font TextTrack 0.3855 0.0184 0.0328 0.7382 True
Font XHR -0.3808 0.0214 -0.7335 -0.0281 True

Image Manifest 7.4095 0.001 7.0568 7.7622 True
Image Media 6.8915 0.001 6.5388 7.2442 True
Image Other 7.364 0.001 7.0113 7.7167 True
Image Script 6.0437 0.001 5.691 6.3965 True
Image Stylesheet 7.1429 0.001 6.7902 7.4956 True
Image TextTrack 7.4104 0.001 7.0577 7.7631 True
Image XHR 6.6441 0.001 6.2913 6.9968 True

Manifest Media -0.5181 0.001 -0.8708 -0.1653 True
Manifest Other -0.0455 0.9 -0.3983 0.3072 False
Manifest Script -1.3658 0.001 -1.7185 -1.0131 True
Manifest Stylesheet -0.2666 0.3604 -0.6193 0.0861 False
Manifest TextTrack 0.0009 0.9 -0.3519 0.3536 False
Manifest XHR -0.7655 0.001 -1.1182 -0.4127 True

Media Other 0.4725 0.001 0.1198 0.8252 True
Media Script -0.8477 0.001 -1.2004 -0.495 True
Media Stylesheet 0.2515 0.4585 -0.1013 0.6042 False
Media TextTrack 0.5189 0.001 0.1662 0.8716 True
Media XHR -0.2474 0.4838 -0.6001 0.1053 False
Other Script -1.3202 0.001 -1.673 -0.9675 True
Other Stylesheet -0.2211 0.6379 -0.5738 0.1317 False
Other TextTrack 0.0464 0.9 -0.3063 0.3991 False
Other XHR -0.7199 0.001 -1.0726 -0.3672 True
Script Stylesheet 1.0992 0.001 0.7465 1.4519 True
Script TextTrack 1.3666 0.001 1.0139 1.7194 True
Script XHR 0.6003 0.001 0.2476 0.953 True

Stylesheet TextTrack 0.2675 0.355 -0.0853 0.6202 False
Stylesheet XHR -0.4989 0.001 -0.8516 -0.1461 True
TextTrack XHR -0.7663 0.001 -1.119 -0.4136 True


