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Abstract—With the increasing demand for digitalization and
participation in Industry 4.0, new challenges have emerged
concerning the market of digital services to compensate for
the lack of processing, computation, and other resources within
Industrial Internet of Things (IIoTs). At the same time, the
complexity of interplay among stakeholders has grown in size,
granularity, and variation of trust. In this paper, we consider
an IIoT resource market with heterogeneous buyers such as
manufacturer owners. The buyers interact with the resource
supplier dynamically with specific resource demands. This work
introduces a broker between the supplier and the buyers,
equipped with Distributed Ledger Technologies (DLT) providing
a service for market security and trustworthiness. We first
model the DLT-assisted IIoT market analytically to determine
an offline solution and understand the selfish interactions among
different entities (buyers, supplier, broker). Considering the non-
cooperative heterogeneous buyers in the dynamic market, we then
follow an independent learners framework to determine an online
solution. In particular, the decision-making procedures of buyers
are modeled as a Partially Observable Markov Decision Process
which is solved using independent Q-learning. We evaluate
both the offline and online solutions with analytical simulations,
and the results show that the proposed approaches successfully
maximize players’ satisfaction. The results further demonstrate
that independent Q-learners achieve equilibrium in a dynamic
market even without the availability of complete information and
communication, and reach a better solution compared to that of
centralized Q-learning.

Index Terms—DLT, Dynamic Pricing, IIoT marketplace, Inde-
pendent Learning, POMDP

I. INTRODUCTION

THe Industry 4.0 revolution has been widely accepted over
the last decade. With the development of sensors, ma-

chine learning algorithms, and network technologies, the num-
ber of companies that are interested in digital transformation
has grown drastically1. Industrial Internet of Things (IIoTs),
as the foundation of Industrial 4.0, aids the digitalization
and advances smarter manufacturing methods. However, IIoT
technology alone does not provide all the necessary systems to
enable the full Industry 4.0 that also relies upon business inno-
vation. Indeed, work by market economists [1] reveals a com-
plex intertwined nature of platform ecosystems that form the
overall Industry 4.0. These platforms include: end users, such
as automotive manufacturers or property management systems;
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infrastructure providers for communications, networks, cloud
and edge computing; data prediction and monitoring systems;
digital financial services; and, brokers and agents. This paper
focuses on new technology that provides trustworthy brokers
that provide the bridge between the infrastructure providers
and end users through digital financial services.

An IIoT end service provider, for example AWS IoT [2],
presents easy-to-use smart manufacturing applications to a
factory owner, however, the end service providers or the fac-
tory perhaps do not own all the computation and connectivity
resources to facilitate the deployment of IIoT applications.
Consequently, infrastructure providers supply resources such
as Internet connectivity and computational resources (e.g.
Siemens Industrial Edge [3]) for processes like data analytics
and storage. Thus, the end service provider composes an IIoT
service by purchasing a set of resources from the infrastructure
provider(s), which enables faster deployment and scaling of
IIoT applications. As the technology develops, a new business
model that allows inter-operation among different stakeholders
is required. Thus, an IIoT ecosystem needs a marketplace,
to automatically match the resource requirements of the end
services with the resources of the infrastructure providers.
The recent work by [1] show that brokers that mediate this
marketplace between the entities are an important part of the
whole ecosystem, as is common in most business sectors that
rarely sell direct to the end-user. However, this marketplace
has not yet been automated or standardised across the entities
and the central contribution of this paper is to provide a secure
and fair solution.

The infrastructure providers and the IIoT end services
require a secure marketplace environment to trade with each
other without revealing crucial business intelligence, such as
transaction details, resource requirements, and especially the
final price. This provides a level playing field as is one of
the founding principles for an online platform for delivering a
digital market as proposed by the EU [4]. A central part of this
marketplace is that infrastructure providers and the IIoT end
services need to fairly build a contract with each other, which
means that either side of the marketplace has no prejudice
(e.g., no matter if they are startups or monopoly) but only fo-
cuses on the nature of the marketplace (i.e., building a contract
upon the relationship of supply and demand). After a contract
is formed, the transactions require a fast and automatic method
to be verified, which enables real-time deployment of IIoT
end services. Last but not least, the entities in the marketplace
desire stable trading and trustworthy relationships with one
another. While an automated marketplace does not currently
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exist for IIoT, Riasanow et al. show how brokers are an integral
part of business ecosystems and give examples of brokers that
exist in the Financial Sector [1] that would form a technology
solution for IIoT if a system such as proposed in this paper
were to exist.

Thus, the central contribution of this paper addresses a
scenario where there is an infrastructure provider that supplies
different types of resource combinations, i.e., a combination
of the computing resource and network management to satisfy
different resource requirements from different end services.
We consider there are a number of end service providers (buy-
ers) that provide a range of services, e.g., artificial intelligence,
digital twining, industrial robotics, etc. Due to the sensitive
data possibly shared amongst a number of the stakeholders,
security issues in Industry 4.0 draw our attention. In this
paper, we propose distributed ledger technology (DLT) [5] as a
Service (DLTaaS) as a broker to promote the resource demand
by providing a secure marketplace for the transactions between
the buyers and the supplier. DLT is the generic term of a
distributed database managed by multiple parties. Blockchain
[6] is a type of DLT where the transactions are recorded in
a block and each block is immutably interconnected by a
hash function. DLT is one of the revolutionary technologies
in Industry 4.0, which can improve the security, transparency,
and privacy during data exchange and resource trading. The
security of the system relies upon the inherent security within
the DLT, but also requires security support, for example by
deploying an IoT security solution such as SerIoT [7]. We
adopt Hashgraph [8] in this paper as the main DLT instance.

Hashgraph is a new data structure, compared to Blockchain,
and is based on a Directed Acyclic Graph (DAG). Hashgraph
is particularly appealing because it is designed for fast micro
transaction processing in IoT applications. Hashgraph reduces
the resource requirement of the consensus mechanism by us-
ing an asynchronous Byzantine consensus mechanism instead
of Proof-of-Work and Practical Byzantine Fault Tolerance
(PBFT) [9]. The proposed scenario forms a typical supply
chain within the economic sphere. To simplify the terminology,
hereafter we will use the terms supplier, broker, and buyers to
refer to the infrastructure provider, DLT service, and the end
service providers in Fig. 1, respectively.

The entities in the supply chain are all self-interested, which
means they all want to maximize their profit. The supplier
and the broker exert marketing efforts to promote the sales
that results in higher profit for the infrastructure providers.
Meanwhile end-users benefit from increased consumer choice
leading to competitive pricing advantages [4]. The broker
benefits by either taking a small commission for sales, or
through advertising in larger direct to consumer markets. The
marketing effort of a supplier could be the advertising and
reaction speed; whereas, the marketing effort of a broker could
be the number of CPU cycles in operating the consensus mech-
anism. However, the marketing efforts of the supplier and the
broker are hidden from each other, which leads to information
asymmetry. Typically, contract theory [10] is adopted to solve
such a problem. When the buyers joins the marketplace, they
may estimate the resource demand according to the reputation
of the resource/service (obtained by an online review and

annual report). Since the supplier and the broker are only
capable of generating limited resources, the buyers would
propose the optimal price according to their resource demand
to successfully obtain the resource. This leads to a competitive
environment among the buyers. They would hide their optimal
unit price from other buyers to maximize their profit. This
renders centralized learning approaches inappropriate for such
marketplaces.

Based on the information asymmetries, i.e., between the
supplier and the broker, and among the buyers, we first study
the problem considering a static scenario which allows for
deploying the offline analytical approach presented in Section
V. This helps us understand the interactions between the differ-
ent entities. Then, in Section VI, we estimate the reputation
and cast an online approach based on Partially Observable
Markov Processes (POMDP). We adopt the independent learn-
ing agents and use the light-weight Q-learning algorithm to
determine the optimal policy of the buyers, i.e., the optimal
price of the services in the dynamic IIoT marketplace. We did
not adopt a centralized Q-learning framework or approaches
in between centralized and independent Q-learning [11], [12]
because both have high computational complexity. Further,
the competitive nature of the studied problem, where buyers
hide their optimal price from the others, means that the above
approaches cannot be used. The main contributions of this
paper are summarized as follows:

1) We propose and model a DLT assisted IIoT marketplace.
We investigate the DLTaaS analytically and define the
marketing effort of DLT as the security effort. The
dynamic service trading market enables fast deployment
of IIoT amongst a broader set of stakeholders, which
additionally aids digitalization and smart manufacturing
solutions to factories without fundamental computation
and communication resources.

2) We analyze the interactions between different stakehold-
ers in the presence of information asymmetry, i.e., the
supplier and the broker hide their marketing efforts, and
the buyers do not share the marketing demand and the
unit price with other buyers.

3) We model the supply chain as a POMDP and adopt an
independent Q-learning approach where agents represent
the buyers. A POMDP makes it possible to determine
efficient buyers’ policies in the challenging dynamic
IoT marketplace and hence helps all entities in the
marketplace to reach their maximum satisfaction without
requiring communication or coordination overheads. Q-
learning assisted trading automation empowers a healthy
degree of rivalry between the buyers and the supplier.

In the following, we first review related works in Section
II. Then, in Section III, we introduce the architecture of
the marketplace and the consensus mechanism of Hashgraph.
Next, we provide the considered system model in Section IV.
We, then, propose the analytical model in Section V; following
with the online approach of the problem through Q-learning in
VI and VI-B. Our solution is evaluated extensively in Section
VII to get an understanding of the influence of the various
system parameters to system’s performance. Finally, we draw



3

Fig. 1. Architecture of the DLT assisted IIoT marketplace

conclusions in Section VIII.

II. RELATED WORK

This section presents related works that consider
blockchain/DLT assisted IoT marketplaces (since the topic of
IIoT marketplaces is limited) and their pricing strategies as a
whole. Reinforcement learning has become popular in solving
resource allocation/pricing problems in a DLT assisted IoT
market. Asheralieva et al. [13] adopted blockchain as an IoT
data management solution to overcome limited scalability,
single point failure, and lack of transparency. This paper used
hierarchical deep learning to perform distributed dynamic
resource management and a pricing strategy between the
mobile edge computing servers and the blockchain peers.
The work in [14] resolved a similar problem to [13] by
using an asynchronous advantage actor-critic (A3C) deep
reinforcement learning algorithm, which resulted in extra
communication cost between the actor and the critic. Yao
et al. [15] studied the resource trading problem between
the cloud provider and the miners in a blockchain-based
industrial Internet of Things. That paper utilized a multi-
agent reinforcement learning algorithm to achieve the Nash
Equilibrium.

It is typical to price the resources and services in IoT
following game theoretic approaches [16]. In [17], [18], a two-
stage Stackelberg game was proposed to determine the optimal
price between the consumers and owners in the DLT assisted
IoT market. Hu. et al. [19] present a Blockchain-based reward
mechanism for mobile crowdsensing (MCS). It suggested a
three-stage Stackelberg game to facilitate the reward scheme
among the monthly-pay, instant-pay participant, and the task
initiator. Due to the selfishness of the players in the market,
they may try to hide information to obtain a higher payoff
while interacting with others, this is termed a moral hazard.
The works in [20], [21] used contract-theoretic pricing strate-
gies to tackle the moral hazard between the IoT users and the
blockchain.

To summarize, [13]–[15] studied the possibility of utilizing
reinforcement learning to solve the resource allocation and
pricing problem. but these solutions had several limitations.
First, deep reinforcement learning requires a longer training

time compared to Q-learning, which renders it inappropriate
for dynamic IoT marketplaces as are studied here. This is
because retraining will happen frequently. Second, multi-
agent reinforcement learning and actor-critic approaches re-
quire additional communication costs and impose unnecessary
delays (or may result in training with outdated information).
Third, although DLT is computation-intensive and consumes
resources in the IoT market, it also provides valuable security
services to the IoT market, which others can purchase. For
approaches based on game theory [17]–[21], it is challenging
for them to capture the market dynamics when the number
of participants increases. They need to recalculate whenever
there is a new demand from each participant. In addition,
the participant cannot have complete information about the
market.

Differing from existing approaches, in this paper:
1) we propose an online approach based on Q-learning with

independent learners, which reduces the training time
compared to centralized learning and deep reinforcement
learning approaches;

2) we follow an independent learner approach to avoid
communication between the buyers. This helps to pre-
serve the private information and reduce the communi-
cation cost. Further, the proposed algorithm captures the
market dynamics and provides a fast response to them.

3) we employ the Hashgraph based consensus mechanism
and consider the computation cost of the transaction ver-
ification, which enables micropayment in IIoT scenarios.

4) the DLT becomes a resource that the end services want
to purchase to assist trading security.

The works that study architecture and resource optimiza-
tions of blockchain/DLT assisted IoT [9], [22]–[25] are not
directly applicable to solve the problems considered in this
paper.

III. ARCHITECTURE OF THE MARKETPLACE

Here, we present the proposed architecture of the DLT as-
sisted IIoT market (Fig. 1) and define the roles and interactions
of the entities, i.e., buyers, supplier, and the broker. We focus
on the costs required to promote sales, namely the marketing
effort of the supplier and the broker. We, then, introduce the
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broker who operates a Hashgraph-based consensus mechanism
to coordinate the supplier and the buyer while providing
the necessary security requirements of the marketplace. The
broker should be a third party (besides the resource provider
and end services provider) to guarantee the fairness of the
market. This third party can be governmental agencies or
profitable institutes. The revenue will be shared between the
supplier and the broker while operating the marketplace, since
they both contribute valuable resources and services.

A. Players in the marketplace

The supplier has a number of resource combinations to
sell which can be: computation resources, communication
resources, and other management resources. To enable fast
resource allocation in IIoT applications, we assume the sup-
plier hosts edge computing resources to support the buyers’
service demand, as shown in Fig. 1. According to the buyers’
demand, the corresponding resource will be allocated.

The broker (i.e., DLTaaS provider) is placed between the
supplier and the buyers in the supply chain. It is not only me-
diating interactions between the two, but also it provides a fair
and secure service to both the supplier and the buyers through
a hashgraph-based consensus mechanism. In order to operate
the consensus mechanism, the broker requires computation
resources. In this paper, we assume the edge computing can
provide the required resources to the blockchain peers operated
by the broker. In the real scenario, the computing resources
can be edge, fog, and cloud computing. The supplier and the
broker form a contract of the revenue share ratio according to
the sales of the resource, security service, and their marketing
efforts. As the DLT mediates between the supplier and the
buyers, it obtains information from both these parties.

The buyers make decisions on the amount and combination
of infrastructure resource to buy and the unit price according to
resource’s reputation. Resource reputation is positively related
to the demand quantity, as is formally defined later in Sec-
tion IV-C. As expected the buyers are more satisfied when they
can estimate the reputation accurately. It is possible to obtain
the resource reputation through professional product review
or historical sales record [26]. However, the information is
difficult to rely on, due to such factors as: lack of information
transparency and biased or even falsified information. More-
over it is not only hard to acquire the resource reputation, but
also the buyers need to share the limited resource and service
with other buyers, which adds a further level of difficulty in
the buyers’ decision-making process.

We assume that the buyers and the supplier have legitimate
authenticated identities before entering the marketplace, for
example through a policy-based framework as proposed by
the SerIoT architecture [7], [27].

B. Consensus mechanism of Hashgraph

In the proposed work, the consensus mechanism is used to
not only verify the identities of the stakeholders, but also the
transactions they generate during trading.

Hashgraph adopts the gossip about gossip protocol [8] to
form a DAG. After the DAG is formed, every full node

runs traditional Byzantine Fault Tolerance locally, which is
termed virtual voting. A full node has the complete history
of the hashgraph and, thus, has the full voting informa-
tion. Therefore, it can perform virtual voting without further
communication. Thus, virtual voting only costs a little local
computation and communication resources compared to the
PBFT consensus mechanism [28].

Fig. 3 (i) shows four full nodes, namely Alice, Bob, Carlo,
and David. Bob creates an event that has the structure shown in
Fig. 2. Then, Bob signs and sends it randomly to a node, David
in this case. David inspects the event, and creates a new event
with the transactions Bob does not know. David then signs the
event with its signature, and sends the new event randomly, in
this case, to Bob. This gossip about gossip protocol goes on
indefinitely creating the DAG. Following this protocol, soon
all the full nodes will have a copy of the Hashgraph, which
allows them to run the consensus mechanism locally.

Fig. 2. Event structure of Hashgraph: including timestamp,
hash of two parents, and the transactions.

To verify the transactions, the full nodes conduct virtual
voting. The first event in each round is called a witness. If
the witness in round x+ 1 sees the witness in round x, then
it votes “yes”. For example, in Fig. 3 (ii), B2 is seen by
witnesses in round 3, i.e., A3, B3, C3, and D3 vote “yes”
through the orange dashed line. The vote goes on until all the
witnesses in round x + 1 finish voting. Since the full nodes
have a copy of the whole Hashgraph, the voting procedure is
actually performed locally without any communication cost.
The votes are counted by witnesses in round x+2. Witnesses
count the vote, only if it strong sees, i.e., there are different
paths across a supermajority of population (more than two
thirds of the population). For example, in Fig. 3 (iii), there are
only witnesses B4 and D4 till now. B4 counts the vote “yes”
of A3 through the red and blue dashed line, which goes across
Alice, Bob, and David (i.e., satisfies supermajority). When the
witness from x+2 round collects “yes” from a supermajority,
then we say the witness from x round is famous, which means
B2 is famous. Note that there is a coin round every ten rounds
of voting to make sure the election would finally end. At the
end, the events are ordered according to the votes, as shown
in Fig. 3 (iv).

C. Security benefits of the architecture

While the motivation for an online marketplace is high-
lighted in the Introduction (with more depth given in such
texts as [4]) the security of such a marketplace is essential.
Additionally, a central part of the marketplace is to provide
fairness which is a central tenet that is widely agreed [4].
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(i) Hashgraph (ii) Famous witeness and vote (iii) Count vote (iv) Order

Fig. 3. Consensus mechanism of Hashgraph [8] representing nodes Alice, Bob, Carlo and David and their associated events
(A2, A3, B2 etc.).

Thus, it is vital that entities involved in the marketplace can
inspect the information, in particular reputation information,
to ensure that it is accurate and transparent. Thus, a DLT
is the natural choice as it provides immutability of the data
such that entities can inspect it to ensure that fairness has
been applied in the past, and thus have confidence that it will
be applied in the future. This gives incentives for the broker
to act fairly as failure to do so will be seen in the ledger.
The general security of DLT has been widely covered in the
literature and will not be further covered here, see the many
sources on this topic in a review paper such as [29], [30]. The
choice of Hashgraph [31] has some security advantages over
some other DLT solutions, for example its use of asynchronous
Byzantine fault tolerance means that no single entity (or small
group of entities) can act maliciously, additionally it provides
Byzantine fault tolerance in its strongest sense. For example,
blockchain does not provide Byzantine fault tolerance as
it instead provides a probabilistic approach to consensus,
whereas Hashgraph provides strong guarantees of consensus
knowledge in all nodes. However, while Hashgraph provides
some strong motivations for security, in this paper the strongest
motivation for Hashgraph is that it uses a Byzantine consensus
mechanism that is highly efficient compared to proof-of-work
consensus which is so inefficient it is damaging to the planet’s
ecosystem [32].

IV. SYSTEM MODEL

We model the marketplace as a system of: suppliers (infras-
tructure providers), brokers (DLTaaS) and buyers (end service
providers). The supplier offers to the buyers, via the broker,
a selection of resources. The supplier also agrees with the
broker on a revenue share ratio ϕ. The supplier makes effort
es to promote the sales of resources with a cost function
denoted as Cs(es). The broker also promotes the sales of
resources on behalf of the suppliers and aims to provide
fairness across different suppliers and buyers. This is achieved
through execution of a consensus service. We denote the
broker’s effort as eb with a cost function Cb(eb). There is a
group of buyers i ∈M = {1, ...,M} in the IoT marketplace.

Before joining the market, the buyers observe the market and
gather information aiming to estimate the resource reputation
θ. Then, buyer i proposes a unit price pi according to the
market demand di, which is related to the resource reputation.
Furthermore, each of the players has a utility function that
reflects their satisfaction. Next, we model the utilities and the
social welfare (collective utility value) in an IoT marketplace.
The most important notations are summarized in Table I.

A. The supplier’s utility

Before trading starts, the supplier needs to agree a fair
revenue sharing ratio ϕ with the broker, which incentives the
latter to make an effort to promote the sale of resources.
We denote the income of the supplier as Is. The net profit
of the supplier is therefore the income minus the promotion
cost of the supplier and the revenue share paid to the broker,
formulated as:

Us = (1− ϕ)Is − Cs(es), (1)

where the marketing effort is an integer variable related to
the particular resource combination type that the supplier is
providing to the buyer. Note that, the utility function represents
the satisfaction level of the supplier and needs to be positive.

B. The broker’s utility

In Hashgraph, the gossip about gossip protocol is deployed
for transaction dissemination. We assume that each full node
randomly selects another full node to transmit a new trans-
action to. During the transmission, the new transaction is
forwarded from the source to the destination without other
information exchange. For this new transaction to be known
by all the N full nodes, it should be transmitted at least
N − 1 times. We define µ as the probability of a full node
being famous (who has the voting rights) and voting for this
transaction. The full node creates, signs, and sends the event.
Then, the next full node who receives it will inspect and create
a new event (along with the transactions it has), sign, and send
to another node. We denote the CPU per event inspection,
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creation, signing, and send as δ, κ, ξ, and υ, respectively. We
define the cost of one event creation as

eb = ⌈δ + κ+ ξ + υ⌉ (2)

Due to the fact the edge nodes running DLT have limited
computational resource to provide in the IoT marketplace
(i.e., there may be other tasks running on the servers), we
assume there are only limited security and fairness levels the
broker can make. Thus, we round up the marketing effort of
the broker. In Hashgraph, voting, counting, and ordering run
locally in the famous full nodes. We denote the cost function
of the broker in two parts: the new transaction dissemination
cost, and the voting and ordering cost. Thus, we have the CPU
requirement for one transaction as

Cb(eb) = (N − 1)eb + µNeb
2
, (3)

where (N − 1)eb is the transaction dissemination cost among
N − 1 full nodes and µNeb

2 represents the higher voting and
ordering cost. In this paper, we are aware that the voting and
ordering cost is related to the dissemination cost due to the
tasks running on the same machine. Thus, we assume that
the voting and ordering cost is a quadratic function of the
dissemination cost, which is similar to the way cost is defined
in [19]. We should note that other formulations are possible
but they do not change the process of the derivations below.

The broker provides additional value to the infrastructure
resource, i.e., providing a secure marketplace, and in return the
broker takes a revenue share from the supplier. We define the
utility of broker including the income of selling the resource
Is and the effort cost as

U b = ϕIs − Cb(eb). (4)

C. The buyers’ utility

Buyer i’s demand is promoted by the efforts of the supplier
and the broker. At the same time, the demand is also related
to buyer i’s estimated reputation of the resource, θi. Thus, we
can define the demand of the buyer i as

di = θi + αies + βieb (5)

where αi and βi are positive perception parameters of the
marketing efforts es and eb, respectively. Note that, the sup-
plier and broker can only supply the IoT marketplace with
limited resource D. We denote the unit price of the resource
combination as pi. The buyer i’s utility function is given by

U i = ηθi − pidi (6)

where the income of buyer relates to the resource reputation.
η > 0 is the preference of the resource reputation, i.e., the
bigger is the preference factor, the more the buyer prefers this
resource. The buyer aims to purchase more high reputation
resource than low reputation resource, i.e., good quality of
the resource leads to satisfaction. Since there is only limited
resource provided by the supplier and the broker, the buyers’
resource demands satisfies

M∑
i=1

di ≤ D (7)

D. Social welfare in IIoT marketplace

In the IoT marketplace, the joint satisfaction of the entities
is an important factor, namely the sum of the utilities of the
supplier, broker, and the buyers.

Usw = Us + U b +

M∑
i=1

U i (8)

In this work, all the entities are rational, which means the
utility functions need to satisfy: Us ≥ 0, U b ≥ 0, and U i ≥
0, i ∈M.

According to the IoT marketplace, we discover that the ac-
curacy of the estimated resource reputation affects the market
demand of the buyer. Furthermore, it affects the marketing
efforts of the supplier and the broker. In this paper, we
first propose an offline approach in Section V. The proposed
analytical approach assumes the resource reputation is constant
over time which allows the problem to be cast as a linear
optimization problem. Then, we take one step further for the
time varying scenario and model the problem as a POMDP.
We solve it using Q-learning, which allows us to remove the
assumptions made in the analytical approach in Section VI-B
as well as to provide an online algorithm that allows us to
deal with the more realistic case where the resource reputation
varies with time.

TABLE I. Descriptions and notation
Description Notation

A group of buyers i ∈M = {1, ...,M}
Resource demand d

Marketing effort of supplier es

Number of full nodes in DLT N

Marketing effort of broker eb

Probability of being famous µ
Revenue sharing ratio ϕ

Reputation of the resource θi

Unit price of the resource pi

Weighting of broker’s effort αi

Weighting of supplier’s effort βi

Weighting of buyer’s income η
State space S = {s0, s1, ...sI}

Observable state space O = {o0, ..., oI}
Action space A = {a0, ..., aJ}

Probability of observing oi at state si P (oi|si)
Transition probability of state si P (si+1|si)

Immediate reward of state i action j rij
Discount factor γ
Learning rate α
Greedy factor ϵ

V. ANALYTICAL PROBLEM FORMULATION

As analyzed in the last section, we can intuitively formulate
the studied problem into an optimization problem. Note that,
in the objective function there are a mixture of integer param-
eters (e.g., marketing efforts) and continuous variables thus
the optimization problem is a mixed-integer linear program
(MILP). To simplify the problem and clearly show how the
efforts would affect the solution of the problem, we first
assume the resource reputation is constant and then relax the
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integer constraint (marketing efforts). In this section, we use
the subscripts is or ia to represent the information symmetric
and asymmetric cases, respectively. We discuss the information
symmetric scenario first in Section V-A, where the broker
and the supplier know each other’s marketing effort, which
is an ideal scenario. In addition, we explore an information
asymmetric scenario, where the supplier and the broker hide
each other’s marketing efforts in Section V-B.

A. Information symmetry

We first assume that the supplier and the broker know each
other’s marketing effort which, in other words, corresponds
to an information symmetric scenario. In this scenario, we
say the problem is ideal and will reach the optimal utility
and marketing effort without extra cost compared to the
moral hazard scenario we consider later. According to the
proposed supply chain, we apply backward induction to solve
the optimisation problem. First, we assume the unit price pi

of buyer i is given to solve the supplier optimization problem.
Then, we consider the optimization problem of the buyers.
The objective of this problem is to maximize the utility of the
supplier. We cast the optimization problem as follows

max
ϕis, e

s
is, e

b
is

(1− ϕis)

M∑
i=0

piisd
i
is − esis

2 (9a)

s.t.

ϕis

M∑
i=0

piisd
i
is − [(N − 1)ebis + µNebis

2
] ≥ 0 (IR) (9b)

where the income of the supplier is the product of the unit
price of resource pis and the resource demand diis. The income
of the broker considers the revenue sharing ratio with the
supplier. The constraint in (9b) is the Individual Rationality
(IR) constraint of the broker. We can obtain the revenue share
ratio ϕ when IR is equal to zero

ϕis =

M∑
i=0

1

piisd
i
is

[(N − 1)ebis + µNebis
2
] (10)

Then, we first substitute (10) into (9a), and obtain

max
esis,e

b
is

Us
is =

M∑
i=0

piisd
i
is − [(N − 1)ebis + µNebis

2
]− esis

2 (11)

We then substitute the market demand in (11) considering the
market demand as defined in (5). In order to calculate the
optimal efforts, we set both the partial derivatives of the utility
function with respect to esis and ebis in (11) to zero as follows:

∂Us
is

∂esis
=

M∑
i=0

piisα
i − 2esis = 0

∂Us
is

∂ebis
=

M∑
i=0

piisβ
i − [(N − 1) + 2µNebis] = 0 (12)

Then, we obtain the optimal efforts of the supplier and
broker, respectively, as

esis
∗ =

1

2

M∑
i=0

piisα
i

ebis
∗
=

1

2µN
[

M∑
i=0

piisβ
i − (N − 1)] (13)

In the information symmetric scenario, the supplier chooses
the effort to maximize its utility and the total utility of the
supply chain. Here, the contract, namely the revenue sharing
ratio can be directly constructed according to the effort of the
broker as is in (10), in which case the revenue sharing ratio can
compensate the cost of the broker. We now solve the buyers’
optimization problem. According to (13), the marketing efforts
are related with the unit price of all the buyers. Hence, we
analyze the payoff of the buyers as a whole.

max
piis

M∑
i=1

U i
is =

M∑
i=1

[ηθi − piisd
i
is] (14a)

s.t.
M∑
i=1

di ≤ D (14b)

We substitute the optimal marketing efforts esis
∗ and ebis

∗ from
(13) into (14a) and obtain the derivative of unit price pi.

piis
∗
=

βi(N − 1)− 2θiµN

2µNαi2 + 2βi2
(15)

B. Information asymmetry

The information symmetric case assumes sharing of market-
ing effort, which is unlikely in practice. The result of hiding
the real marketing efforts causes the information between the
supplier and the broker to be asymmetric, e.g., corresponds
to a moral hazard scenario. The main issue with the moral
hazard is that both the supplier and the broker cannot exert
optimal marketing efforts according to each other’s behavior.
Following the solution structure proposed in Section V-A, we
cast the optimization problem of the supplier as

max
ϕia, e

s
ia

Us
ia = (1− ϕia)

M∑
i=0

piiad
i
ia − esia

2 (16a)

s.t.

ϕia

M∑
i=0

piiad
i
ia − [(N − 1)ebia + µNebia

2
] ≥ 0 (16b)

where the optimization variables for the supplier are esia and
ϕia. The utility of the broker is positive given the revenue
sharing ratio ϕ from the supplier. The maximization problem
solved by the broker is

max
ebia

U b
ia = ϕia

M∑
i=0

piiad
i
ia − [(N − 1)ebia + µNebia

2
] (17)

where ebia > 0 and U b
ia > 0. In (16a) and (17), the supplier

and the broker aim to maximize their utilities individually
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due to the moral hazard. We consider this as a two stage
problem: in the first stage the supplier designs a contract (i.e.,
revenue sharing ratio) with the broker including its own effort
to maximize the utility in (16a); in the second stage the broker
takes the contract from the supplier and exerts its own effort
to maximize the utility in (17). To solve this problem, the
supplier and the broker’s marketing efforts are obtained by
the partial derivatives of (16a) and (17), respectively as shown
below

∂Us
ia

∂esia
= (1− ϕia)

M∑
i=1

piiaαi − 2esia = 0 (18)

∂U b
ia

∂ebia
= ϕia

M∑
i=1

piiaβi − [(N − 1) + 2µNebia] = 0 (19)

According to (18) and (19), ϕia can be represented by

ϕia =

M∑
i=1

αi[(N − 1) + 2µNebia]

αi[(N − 1) + 2µNebia] + 2βiesia
(20)

Recalling that (N − 1) + 2µNebia = Cb′(ebia) and 2esia =
Cs′(esia) then, (20) relates the revenue share ratio with the
marking efforts of the supplier and the broker. (20) requires the
supplier and the broker to choose their market efforts so that
the ratio of the broker’s marginal cost to the total of marginal
cost is equal to the revenue sharing ratio. Then, the supplier
chooses the optimal revenue sharing ratio by conducting the
partial derivative of ϕia in equation (16a) as shown below

∂Us
ia

∂ϕia
= −

M∑
i=1

piiad
i
ia + (1− ϕia)

M∑
i=1

piiad
i
ia

′
= 0

ϕia = 1−
M∑
i=1

θi + αiesia + βiebia
∂ebia
∂ϕia

(21)

Due to broker’s marketing effort being related with the revenue
sharing ratio, we have ebia to be a function of ϕia. We can solve
∂ebia
∂ϕia

=
∑M

i=1 pi
iaβ

i

2µN according to (19) and obtain the revenue
sharing ratio

ϕia =

M∑
i=1

1

2A
[A− piiaθ

i − piiaα
iesia +B] (22)

where A =
∑M

i=1 βi2pi
ia

2

2µN , B =
∑M

i=1 pi
iaβ

i

2µN (N − 1). From (20),
we know that in the IA scenario, the supplier can only design
the contract according to its own effort. Finally, we substitute
the optimal effort of broker from (19) and the revenue sharing
ratio (20) into the utility function of the supplier in (16a) to
obtain the optimal value of the supplier’s effort

esia
∗ =

1

2
(1− ϕia)

M∑
i=1

piiaα
i

ebia
∗
=

1

2µN
[ϕia

M∑
i=1

piiaβ
i − (N − 1)] (23)

The cost functions of the supplier and the broker are increasing
and convex functions, as defined earlier, so we find that the
first derivatives of the cost function are Cs′, Cb′ > 0 and the

second derivatives are Cs′′, Cb′′ ≥ 0. We now solve the buyer
i’s optimization problem following the method in V-A

max
pi
ia

U i
ia = ηθi − piiad

i (24)

We substitute the optimal marketing efforts esia
∗ and ebia

∗

from (23) into (24) and obtain the derivative of unit price piia.

piia
∗
=

βi(N − 1)

2µNαi2(1− ϕia) + 2ϕβi2
(25)

Lemma 1. When 0 < ϕ < 1, we have esia
∗ < esis

∗ and
ebia

∗
< ebis

∗
, if and only if Cs′, Cb′ > 0 and Cs′′, Cb′′ ≥ 0.

Proof. This lemma is a direct application of (13) and (23).

As this is the information asymmetric scenario, first, the
efforts are smaller than that in the information symmetry
scenario; second, the revenue sharing ratio is related to both
the efforts of the supplier and the broker. The supplier designs
a contract to encourage the broker to make more effort. Hence,
we can interpret the difference between supplier’s efforts in
IS and IA as the Information acquisition Cost (IC). We define
the information acquisition cost as a function IC(·). We can
obtain the IC of the supplier IC(esis

∗−esia
∗), which is related

to the the effort perception parameters α and β from buyer
M . Similarly, the IC of buyer i is IC(|piis

∗ − psia
∗|), which

is related to the performance parameters of the DLT and the
revenue share ratio from the supplier. However, the revenue
share ratio is often a business secret, which leads to buyers’
IC(∞).

In the analytical solutions, we first assume the resource
reputation θ is known, however, the resource reputation is
never transparent to the buyer, which leads to the resource
demand fluctuating with the resource reputation. Second,
the marketplace is dynamic, namely in each trading period
the buyers’ demand and the marketing efforts influence the
marketplace, which results to uncertainty in the next trading
period. Third, the buyers are heterogeneous with varying
demands, perceptions, and bidding strategies (e.g., risk averse
and risk seeking). Additionally, for each trading period, we
need to re-calculate a new strategy, which makes this offline
approach suffer from high latency. This necessitates the design
of an online approach with independent learning agents which
we present in the following section.

VI. POMDP WITH INDEPENDENT LEARNERS

The learning approach aims to capture the supply and
demand relationship dynamics of the proposed DLT-assisted
IoT resource market, which allows us to find the equilibrium
of the unit resource price and the resource quantity. Hence, we
deploy independent Q-learning agents that run a reinforcement
learning algorithm to decide the optimal actions considering
the market dynamics. The independent learning agents, that
represent the buyers, are empowered by the edge computing
resource. The agents can observe partial information of the
IoT marketplace. The buyers analyze the resource reputation
of the supplier and the service reputation of the broker and then
independently update their belief of the value of the resource.
According to this belief, the buyers would decide the optimal
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Fig. 4. Decision process following POMDP framework.

unit price. To employ reinforcement learning, we first model
the above procedure as a Markov Decision Process (MDP).

In Fig. 4, we illustrate the flow diagram of the decision-
making process of two independent agents that interact with
the DLT-assisted market. We model the marketplace as a
POMDP due to the information asymmetries in the market.
The POMDP aims at modeling the optimal actions of buyers,
and unlike the previous case is appropriate for a non-static
scenario. Next, we present the state, action, immediate reward,
and transition probability of the considered POMDP.

A. Modeling the POMDP

In the DLT marketplace, the state of the MDP, S ∈ S,
comprises the state of the market SM and the state of each
agent Si, i ∈ {1, ...,M}. Agent i could only observe the state
of the market and the state of itself, but not other agent’s state,
which leads to partial observation of environment. We define
the finite state space as

S = Si
×1≤i≤M × SM (26)

where the state of buyer i, Si, is the resource demand di and
the state of the market, SM , is the income of the broker and
the supplier, i.e., Iib and Iis. Each agent obtains the income
information from the supplier and the broker’s annual report.
Hence, the observation state of agent i is oi = {Iib, Iis} ∈
O, where O is the set of all observations. The agent aims
to anticipate the resource’s reputation, the marketing efforts,
which is defined as belief state b(S).

At each buyer, there is located an independent agent who
learns from the DLT market and makes the price choice for the
market demand in order to optimise the payoff of the buyer.
According to the current observations and the market demand,
agent i takes an action of the unit price from a set of actions
Ai = {ai1, ..., aiJ}, aij ∈ Ai. Every buyer has independent
action set. We then define the action space A = {A1, ..., AM},
where Ai ∈ A is the action set of buyer i.

The transitions from one state to another are determined
by the transition probability p(St+1|St,At), which determines

the transition to a state at time slot t + 1 given the state and
action at time slot t. Each agent takes an action according to
the current state individually. The joint action of the agents
influences the next state of the DLT market. This means
that the joint action of the unit price affects the marketing
efforts of the broker and the supplier, which in turn affects
the total resource quantity in the market. In the description
of the POMDP below, we drop the time index for the sake of
simplicity of representation. In order to calculate the transition
probability according to agent i’s belief state b(Si) we follow
the procedure below. Let us first define the observation prob-
ability as P (oi|si), which is the probability of observing oi

while being in the state si. The agent updates the belief state
individually as the learning procedure continues as follows

b′(S′) ∝ P (o|S′)
∑
S∈S

P (S′|A,S)b(S) (27)

where the probability to be in new belief state b′(S′) is
proportional to the product of the probability of observing o
while being at state S′ and the sum of probabilities of all the
states and actions A that the lead to the new state S′. Finally,
we can define the transition probability of the POMDP as

P (b′|A, b) =
∑
o∈O

P (b′|o,A, b)
∑
S′∈S

P (o|S′)
∑
S∈S

P (S′|S,A)b(S)

(28)
The transition probability matrix (matrix containing the tran-
sition probability for all possible state-action combinations) is
difficult to calculate due to the size of the action and state
space. To address this problem, we adopt Q-learning [33],
which does not require calculation of this matrix.

In the POMDP with decentralised agents, agent i defines
and evaluates its policy, i.e., the state-action pair, via individual
immediate reward ri. It is obvious that the definition of the
immediate reward is a critical component of the POMDP. The
immediate reward of an agent aims to promote the buyer’s
satisfaction. If there is utility gain, then the reward is the same
as the utility gain. Otherwise, the immediate reward is −1 as
a penalty.

Now, we can define the POMDP as the tuple
(S,A, P, ri,O, Poi), where S is a finite state space, A
is a finite action space, P is the transition probability from
current state to the next state, O is a finite observation space,
and Poi is the observation probability of current state.

B. Q-learning in POMDP with independent learners
In this work, we solve the POMDP problem following the

tabular Q-learning approach. Once the Q-table is computed,
the optimal action (the one maximizing the reward when
being in a state) is determined by checking the Q-table.
For decentralised agents, each agent interacts with the DLT
market based on individual observation, and updates its own
Q-table according to the reward function. It is essential to
calculate the long-term expected reward in Q-learning to
ensure convergence. To solve the POMDP based on the beliefs
MDP framework, we first define the immediate belief reward
of belief i and action j for agent i as ρ(bi, aij) as follows

ρ(bi, aij) =
∑
S∈S

b(S)R(S, aij) (29)
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where R(S, aij) is the reward at state S taking action aij . Then,
according to the Bellman equation [34], we compute the belief
value Vt(b

i) at time t for agent i under strategy policy π(aij |bi)
as

Vt(b
i) = max

ai
j∈Ai

[ρ(bi, aij) + γ
∑
oi∈O

p(oi|bii, aij)Vt−1(b
i′)] (30)

where γ ∈ (0, 1) is the discount factor and ρ is the immediate
reward. The discount rate γ represents the importance of the
future reward compared to the immediate reward. When γ is
close to 1, the agents become farsighted; While when γ is
close to 0, the agents act in a myopic way. From the belief
value, we can obtain the policy

πij = argmax
ai
j∈Ai

[ρ(bi, aij) + γ
∑
oi∈O

p(oi|bi, aij)Vt−1(b
i′)] (31)

Each agent aims to maximize the accumulated long-term
reward. Instead of belief state value Vt(b

i), we use the Q-
value function in the following Q-learning, which provides
richer information since the Q-value is a tuple of belief state
and action, compared to the belief state value which contains
only belief information. Thus, we can obtain the Q-value as
following

Q(bi, aij) = E[

∞∑
τ=0

γτρ(bi, aij)] (32)

Furthermore, we can obtain the optimal policy π∗ as follows

π∗ = argmax
ai
j∈Ai

E[

∞∑
τ=0

γτ
∑
S∈S

b(S)R
(
S, π(bi)

)
] (33)

where π(bi) corresponds to the action taken when in belief
state bi. We then update the Q-value as shown below

Q(bi, aij)← (1−α)Q(bi, aij)+α[ρ(bi, aij)+ max
ai′∈Ai

Q(bi
′
, ai

′
)]

(34)
where α ≥ 0 is the learning rate. The learning rate indicates
the rate that new knowledge is acquired by visiting a new
state. As previously discussed, the key to solving this problem
is to determine a finite belief space that is not too big to be
calculated and not too small to be accurate. To compensate
for the infinite belief state, we use a fixed history window to
approximate beliefs with a finite-history of observations as in
[35]. Note that the choice of a fixed history window affects the
size of the Q-table (complexity) and the quality of the solution.
However, its thorough investigation is out of the scope of this
paper.

C. Algorithm and its complexity

In the proposed work, we have defined the action space as
the unit price of the buyers. The size of the action space of
agent i is |Ai|. To simplify the problem and make it feasible
to be solved following tabular Q-learning, let us first consider
the utility of the buyer i, recall function where we dropped
the time-dependence index (6)

U i = ηθi − pdi > 0 (35)

Then, we obtain the upper bound of resource demand as

pi <
ηθi

di
(36)

which means that buyer i’s action, namely price pi, is bounded
by the reputation and the demand. For the observed state,
we note that there exists the minimum and the maximum
perceptible production reputation θmin and θmax, respectively,
which leads to the price’s upper bound as pi < ηθmax

dmin
.

The minimum demand dmin is reached if the perceptible
production reputation stays minimum, and additionally neither
the supplier or the broker makes marketing effort. Hence, we
obtain the action space of buyer i as Ai ∈ [0, ηθmax

θmin
]

For a given resource demand, we can obtain the range of
the marketing efforts by keeping the utility functions of the
supplier and the broker positive. We substitute the maximum
price for the given resource demand di, pi = η θmax

di in (1) and
(4), then we obtain the ranges of the marketing efforts, es ∈
[0, x(ϕ, η, θmax)] and eb ∈ [0, y(ϕ,N, µ, η, θmax)], where x(·)
and y(·) are functions of the maximum solutions. Hence, the
state space of buyer i is Si ∈ [θmin, θmax+αiesmax+βiebmax].

Similarly, for the state space of the DLT market, we have
the supplier’s income and the broker’s income as observation
states. We can descale the state space according to Section
V and constrain the income space as Is = [Ismin, ..., I

s
max]

and Ib = [Ibmin, ..., I
b
max]. As we mentioned in Section V, the

income is shared between the supplier and broker according
to revenue sharing ratio ϕ. Furthermore, the income of broker
can be represent by Ib = ϕIs. As a result, we can reduce the
state space by replacing Ib. Thus, the size of states space is
(|Is||di|).

In our framework, the Q-learning algorithm updates a
single state-action pair of the Q-table per decision interval
according to the received immediate reward. The computation
complexity is determined by the size of the Q-table, which is
|S| · |Ai| = (|Is||di|) · (|pi|). Further, the action selection and
learning update complexities are equal to O(|A|) = O(|pi|)
[36]. Additionally, as the convergence of the Q-learning is
well-understood in [33], we will not repeat the proof of
convergence in this paper. We now summarize the Q-learning
algorithm with the belief state of the MDP in Algorithm 1.
Additionally, we have introduced the information acquisition
cost in Section V, where the buyers’ IC is the difference
between the optimal unit price of IS and IA. We also point out
that since the revenue share ratio is a business secret, which
leads to IC(∞) for the buyers. In the online approach, with
independent learners who assist the buyers in the decision-
making process, the information for decision-making is only
related to the income of the supplier and the broker (published
in the annual report). The information acquisition cost of the
learners is IC(Iib, Iis) when interacting with one supplier and
one broker, which is considerably smaller than the analytical
solution. When there are multiple suppliers and brokers in the
market, the information acquisition cost is bounded by the
number of supplier and brokers.

Note the two conditions in Algorithm 1: if “Q did not con-
verge” is evaluated by comparing the performance observed
in the last 10, 100, 500 episodes to see if the Q-values are
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Algorithm 1: Q-learning with belief state MDP
Data: Initiation: greedy factor ϵ, learning rate α, discount

factor γ
Data: Initiation: actions space A, belief space B, and

Q-table Q
while Q did not converge do

Select state b arbitrarily;
while b is not terminal do

Select action a with ϵ-greedy exploitation;
r ← R(b, a);
bnext ← T (b, a);
Update Q-value:
Q(b, a)← (1− α)Q(b, a) + α(r + γQ(b,a

′));
b← bnext;

Return Q table;

similar. The termination of the current belief state depends on
whether the corresponding action choice leads to a positive
reward.

VII. EVALUATION

In this section, we evaluate the proposed solution with
respect to the achieved social welfare for various marketing
efforts and pricing. We have chosen not to carry out a security
analysis as this is out of the scope of this work. The security
of blockchain solutions has been widely discussed for example
by Saad et al. [30].

The evaluation starts with the simulation result of the con-
tract design between the supplier and the broker for the case
the buyer does not know the resource reputation. Subsequently,
we evaluate the contract design with the learning agent by
utilizing the Q-learning method. The simulation parameters
are as indicated in Table II unless otherwise stated. Based on
the complexity in Section VI-C, the computation demand for
each learning agent is (|Is||di|) · (|pi|) and the information
acquisition cost is IC(Iib, Iis). The reward for the learner i is
based on the utility function of the buyer i in (6).

TABLE II. Simulation settings of the analytical approach
Description Setting

Number of full nodes in DLT N = 10

Probability of being famous µ = 0.5

Reputation of the resource θ = 1

Weighting of broker’s effort α′ = 2.5

Weighting of supplier’s effort β′ = 15

Weighting of buyer’s income η = 15

A. Simulation of IoT marketplace in analytical approach

In this subsection, we evaluate both the information sym-
metric (IS) scenario, where the supplier designs the contract
with the broker by considering its effort directly, and the
information asymmetric (IA) scenario, i.e., “moral hazard”.
By designing a contract, we aim to maximize the joint satis-
faction of the supplier, broker, and the buyer. To evaluate the
joint satisfaction, we adopt social welfare in (8) as the joint
satisfaction of the supply chain.

Fig. 5. Weights of supplier’s effort α with respect to the social
welfare and the supplier’s effort es

1) Weighting of supplier’s effort with respect to the social
welfare: First, we investigate the influence of the weights αi

and βi to the social welfare, which reflect the importance
of the marketing efforts. In the simulation, we assume that
there is only one buyer in the market. Hence, the superscript
of α and β are dropped. As we know, the weights not
only relate to the efforts, but also the resource demand d.
Fig. 5 illustrates both the effort of supplier and the joint
satisfaction/social welfare for IS and IA scenarios. While
the weights of the supplier’s effort becomes more and more
important in the supply chain, i.e., α increases, so does the
joint satisfaction. This is due to the fact the supplier’s effort
significantly influences the market demand, which leads to
higher satisfaction of the suppler, i.e., the supplier’s utility.
This also leads to an increase in the social welfare. The same
conclusions can also apply to the weights of the broker’s effort
β.

2) Marketing efforts with respect to the resource price:
We then aim to study the relationship between the efforts
in the IS scenario and the IA scenario. By comparing (13)
and (23) in Section V, we conclude that the efforts in the
IS scenario are only related to the price of the resource and
the efforts in the IA scenario are related to both the price
and the revenue sharing ratio. Thus, in Fig. 6, we set the
resource price to be in the range of 10 to 20 units. Fig. 6
demonstrates that the efforts increase with respect to the price.
The reason is that when the price increases, the market demand
decreases, which stimulates the supplier and broker to make
more marketing effort to promote the sales. Moreover, the
efforts of IS surpasses the efforts of IA as is justified through
Lemma 1. This is expected as the supplier cannot observe the
effort of the broker to design the revenue sharing ratio.

3) Effort of supplier with respect to the social welfare
and the revenue sharing ratio: In Fig. 7, we investigate
the influence of the satisfaction, i.e., social welfare, and the
revenue sharing factor with respect to the supplier’s effort. In
this simulation, we set the supplier’s effort to be in the range
of 0 to 40. As we can observe from Fig. 7, the social welfare
of IS exceeds that of IA. This is because in IS, the supplier
designs the contract (i.e, the revenue sharing ratio) by binding
the utility of broker to maximize its utility. The contract of
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Fig. 6. Supplier’s effort es and broker’s effort eb with respect
to the resource price p

Fig. 7. Supplier’s effort es with respect to the social welfare
and the revenue sharing ratio ϕ

IS only compensates the cost of the broker. However, in IA
the supplier can only design the contract by its own effort
and thus motivate the broker to provide more effort. Thus, the
incentive model of the IA scenario leads to a satisfaction level
lower than the IS scenario. We also explore how the supplier’s
effort affects the revenue sharing ratio. As is shown in (10) and
(22), when the supplier provides increased effort, it shares less
revenue with the broker, which leads to a decreasing revenue
sharing ratio.

4) Broker’s effort with respect to the social welfare and
the revenue sharing ratio: Additionally, we investigate the
broker’s effort with respect to the social welfare and the
revenue sharing ratio. In Fig. 8, first we can observe that
the joint satisfaction (i.e., social welfare) becomes optimal
when the broker changes its effort. The dotted line indicates
the relationship with the revenue sharing ratio when the joint
satisfaction is at the optimal point. The blacked dotted line has
two intersections with the revenues sharing ratio ϕ of the IA
first, and then IS, which indicates the ϕ of IA is bigger than
IS. This also demonstrates that an additional incentive for the
broker is needed.

5) Resource reputation respect to the social welfare and
the revenue sharing ratio: In Figs. 6, 7, and 8, we simply
fix the reputation of the resource and only focus on the
necessity of contract design between the supplier and the

Fig. 8. Broker’s effort eb with respect to the social welfare
and the revenue sharing ratio ϕ

Fig. 9. Resource reputation θ with respect to the social welfare
and the revenue sharing ratio ϕ

broker. Differently, Fig. 9 shows that the higher resource
reputation θ leads to higher joint satisfaction. The reason
behind this behavior is that the resource demand of the buyer
depends on the reputation of the resource, supplier’s marketing
effort, and the broker’s marketing effort. The resource demand
is related to the income of the supplier and the broker directly.
We should note that in this subsection of the IoT marketplace,
where we do not have a learning agent, we boldly assume that
the buyer perfectly predicts the resource reputation, which is
unlikely to happen in practice. As a consequence, we use the
reputation directly for contract design. On the other hand, if
we can estimate the resource reputation accurately, the contract
design is more efficient in real-life scenarios. To facilitate this
point, in the following section, we adopt Q-learning to estimate
the resource reputation in the more realistic cases where there
are dynamics in the market.

B. Simulation of IoT marketplace with independent learning
agents

In this section, we evaluate the proposed Q-learning algo-
rithm in Section VI-B. The evaluation was performed using a
complete custom implementation of the Q-learning of Algo-
rithm 1 using Python 3.8. We have reduced the state and action
space as shown in the previous section prior to applying the
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Fig. 10. Performance of q-learning

Q-learning algorithm. To optimize the Q-learning algorithm,
we dynamically adjust the learning rate α as following

α =
k

k + v(bi, aj)
(log(v + 1) + 1) (37)

where k > 0 is offset value and v(bi, aj) is the visiting times
of the state-action bundle. While the visiting times increase,
the learning rate will reduce. We have tune the discount factor
and the greedy factor, namely γ = 0.5 and ϵ = 0.95. We set
the history window as 10.

1) Performance of the decentralized approach: We first
examine the convergence speed of each independent learn-
ing agent with different perceptions of the marketplace, i.e.,
different weights of the marketing efforts (α and β) and
resource value (η). Fig. 10 illustrates that the independent
agents require limited training to converge. The resource’s
importance perception η dominates the average reward of the
agents, where the more important agent values the resource,
the higher the average reward it would obtain eventually.
However, the perception of the marketing efforts has minor
influences on the average reward.

2) Optimal policy evaluation: In Fig. 11, we evaluate the
best policy that is obtained by the trained model. We deploy
three independent agents in the marketplace. This marketplace
has a limited market capacity, i.e., the supplier and the broker
can only provide a limited resource to the buyers. We first train
the model for 30,000 iterations and extract the best action of
a certain state, i.e., the best policy. Then, we randomly select
a state and execute the best policy 14,000 times. In Fig. 11,
we consider the derived Q-table every 100 iterations up to
30,000. The figure illustrates that while the iterations increase,
the buyer’s payoff reaches an equilibrium, which means that
the proposed algorithm can eventually converge.

We observe that the buyer’s payoff decreases with the
iterations. This shows the buyers’ act more and more con-
servatively, but the action stabilizes in resource bidding due
to the limited market capability, which allows the buyers to
achieve higher payoff in the market.

3) Scalability of the decentralized approach: Fig. 12
demonstrates the scalability of the decentralized approach with
a different number of independent agents. We examine the
achieved social welfare. We first observe that in all cases

Fig. 11. Policy evaluation with respect to the buyer’s payoff

Fig. 12. Scalability of the decentralized approach with mul-
tiple learning agents

the social welfare converges, which shows good scalability
of the algorithm. Then, we notice that with one or two
learning agents in the marketplace, the social welfare is
low. However, with more agents in the market, higher social
welfare is achieved. This happens as more buyers lead to more
competitiveness of the marketplace, which is essential for a
healthy market. Finally, for a marketplace with fixed capacity,
there exists an optimal number of buyers. In this setting, three
buyers reach higher social welfare compared to six buyers due
to limited resource supply.

4) Centralized and Decentralized approaches: Last but not
least, we compare the performance of the centralized and
decentralized approach in Fig. 13. The centralized approach
considers one agent that represents all the entities in the
marketplace. The centralized agent aims to decide the optimal
price on behalf of the buyers by maximizing the utility of
the supplier and the broker. However, the independent agents
only consider the optimal price with respect to their utility
functions. We consider two agents in each approach.

First, Fig. 13 shows that the decentralized approach achieves
higher social welfare than the centralized approach, which
proves competitiveness of buyers lead to higher social welfare,
namely a healthy marketplace. Second, we notice that during
training, the decentralized approach converges faster than the
centralized one (see the black dashed lines: the left black
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Fig. 13. Centralized approach and decentralized approach with
two agents

dashed line is for the decentralized approach and the one on
the right is for the centralized approach). We also note that
the social welfare for the decentralized approach decreases
while the centralized approach increases, but both saturate
around 7000 iterations. This echos the fact of conservative be-
haviour to maximize the payoff in the decentralized approach.
However, the centralized approach coordinates the buyers’
strategies in favor of the supplier and the broker. Further, this
behavior of the centralized approach is in accordance with
what was noticed in [11], [12] where it was shown that the
centralized approaches fail on relatively simple cooperative
multi-agent reinforcement problems, as some states are not
explored sufficiently because this leads to a worse team
reward in the short term. Finally, both approaches reach social
welfare equilibrium in between the ideal scenario (information
symmetry) and the worst scenario (information asymmetry).
We should emphasize that the Q-learning is essentially using
information gained during transactions to estimate the missing
information.

VIII. CONCLUSION

In this paper, we have proposed a mechanism to achieve
dynamic service trading in an IIoT market through a DLT. We
first analysed an offline approach by considering the problem
in both the information symmetric and asymmetric scenarios.
Then, an online approach, based on independent learners
equipped with Q-learning, has been modeled and solved for
marketplaces with dynamic changes. Both approaches show
that the joint satisfaction of the supplier, the broker, and the
buyer can reach an equilibrium. The important outcome is that
the independent learners can approach the joint satisfaction of
the information symmetric case even though they are operating
within the information asymmetric case. Consequently, this
work has shown that the automation of the decision-making
of entities in a DLT-assisted IIoT marketplace is possible and
that it can be achieved efficiently using the proposed algorithm.
Furthermore, through the use of the Byzantine consensus of
Hashgraph, the proposed approach is highly efficient compared
to DLTs that use proof of work based consensus.
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