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Abstract—With the advent of 6G and its mission-critical and
tactile Internet applications running in a virtualized environment
on the same physical infrastructure, even the shortest service
disruptions have severe consequences for thousands of users.
Therefore, the network hypervisors, which enable such virtu-
alization, should tolerate failures or be able to adapt to sudden
traffic fluctuations instantaneously, i.e., should be well-prepared
for such unpredictable environmental changes. In this paper, we
propose a latency-aware dual hypervisor placement and con-
trol path design method, which protects against single-link and
hypervisor failures and is ready for unknown future changes. We
prove that finding the minimum number of hypervisors is not
only NP-hard, but also hard to approximate. We propose optimal
and heuristic algorithms to solve the problem. We conduct thor-
ough simulations to demonstrate the efficiency of our method on
real-world optical topologies, and show that with an appropri-
ately selected representative set of possible future requests, we
are not only able to approach the maximum possible acceptance
ratio but also able to mitigate the need of frequent hypervisor
migrations for most realistic latency constraints.

Index Terms—Software defined networks, virtual networks,
resilient hypervisor placement, intelligent algorithms.
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I. INTRODUCTION

FUTURE 6G applications demand a flexible and adaptable
control plane design providing low-latency [1]–[3]. Such

applications range from electronic health, tele-presence and
holographic communications, industrial automation towards
smart environments with augmented or virtual reality. In such
cyber-physical applications, 6G networks are expected to be
integrated as a mission-critical component. This requires 6G
networks to go even beyond the reliability and resilience
as provided by 5G ultra-reliable low-latency communica-
tions [4]–[6]. Additionally, it is envisioned that applications
can run isolated on one physical infrastructure using the con-
cept of end-to-end network slicing. Hence, slicing the 6G core
network is an integral part of future networks [7]. In order to
realize such slicing and virtual control, a virtualization layer
is needed. This virtualization layer is realized by so-called
network hypervisors [8].

In a nutshell, the network hypervisors sit between the
Software-Defined Network (SDN) switch and the tenant
(application) controllers. They intercept and modify control
plane messages in order to abstract the physical topology
and isolate controllers of different tenants. The tenant con-
trollers can only operate on their respective slice – virtual
SDN (vSDN) – of the physical network. As a result, the SDN
control path extends and spans over the application controller,
the virtualization layer, and the assigned slice of the network.

In order to meet the stringent demands of the applications,
the virtualization layer itself needs to be reliable and also to
be able to adapt to sudden (load) changes in the environ-
ment [9]. Distributed control and virtualization layers have
become the default approach. However, distributed designs
introduce the question of how many hypervisor instances
are needed and where to place them. Existing solutions to
design and dimension such layers cover a wide range of
optimizations w.r.t. to latency, e.g., minimizing latency [10],
providing Quality of Service (QoS) guarantees [11], balanc-
ing the load in the virtualization layer [12] or optimizing for
resilience [13].

Dynamic load scenarios are addressed by migrating hyper-
visor instances to other locations or assigning switches to
other hypervisor instances [12], [14]. This re-active approach
is no longer suited given the anticipated tight delay constraints
of future 6G applications. Also optimization of hypervisor
placements with respect to resilience currently only cov-
ers single link failures but leaves out failures of hypervisor
instances [13].
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In this paper we present a dual hypervisor placement and
a switch-to-hypervisor assignment method. The protection-
based approach creates two control paths via different hyper-
visor instances for each slice to control the vSDNs in
the network. The algorithm leverages knowledge from past
requests – where available – and optimizes against a represen-
tative set of future demands. Thereby, it generates a prepared
placement that alleviates the need for reconfigurations, such as
migrations of hypervisor instances, in case of sudden demand
changes or failures. Our particular contributions are as follows:

• We introduce a dual hypervisor placement problem with
edge-disjoint control paths to protect against single link
and hypervisor failures.

• In our latency-aware design both paths meet the latency
requirement of the vSDN request, thus, enable hypervisor
migration without any QoS degradation.

• We minimize the number of hypervisors [13] while
maximizing preparedness, i.e., leaving enough reaction
possibilities open to unknown failures and vSDN requests
with the application of representative request sets.

• We prove that minimizing the number of hypervisors is
NP-hard and hard to approximate, and propose a heuristic
and an Integer Linear Program (ILP) to solve it.

The rest of the paper is organized as follows. Section II
summarizes the related work on resilient control plane design.
We formulate our latency-aware resilient hypervisor place-
ment problem in Section III. We prove that approximating
the optimal number of hypervisors is as hard as set cover in
Section IV, and propose a data structure which is leveraged
in our greedy heuristic and ILP formulation. Given the above
hypervisor number, Section V introduces an optimal method
for maximizing acceptance ratio of a given request set, and
discusses the generation of representative sets to prepare the
initial hypervisor placement for future changes. Finally, we
present the experimental results in Section VI and conclude
the paper in Section VII.

II. RELATED WORK

A. Self-Stabilizing Distributed In-Band Control Plane

In [18], the authors argue that in order to provide high avail-
ability for connections in SDN, the control plane must be dis-
tributed. Furthermore, despite data and control packets arrive
at the same port, in-band control is desired in these networks
to leverage the network’s high path diversity instead of operat-
ing and maintaining a dedicated expensive (and sparse) control
network. In the introduced self-stabilizing control plane, auto-
matic topology discovery and management of controllers is
possible in a distributed manner. Furthermore, it provides a
switch-to-controller assignment and quickly establishes in-
band control paths between the control- and data-plane and
between the distributed controller instances, even after adding
or removing controllers or after edge failures. Renaissance [19]
deals with the design of a reliable in-band and distributed
control plane which tolerates concurrent controller, link and
communication failures. The proposed algorithms ensure that
every switch is managed by an operational controller all the

time, moreover, the switch can be reached within a bounded
communication delay after a bounded number of failures.

In vSDNs, the control paths from each switch to the virtual
controller must traverse a network hypervisor instance, which
besides abstraction of physical network resources provides the
isolation of both data- and control plane traffic of different ten-
ants. In [8], different software- and hardware-based hypervisor
implementation were enumerated, and presented a high vari-
ety of possible distributed vSDN control plane architectures,
e.g., flexible control plane virtualization techniques [20] or
using multi-controller switches [15]. In [13], resilient (edge-
disjoint) in-band control paths were designed between the
virtual switches and the virtual controller, traversing the sin-
gle hypervisor instance responsible for the given switch. In
our control plane operation, we build on the above concepts,
which enable a distributed resilient in-band control plane.

B. Network Preparedness: Maximizing Future Options

Preparedness for unseen challenges in the future is a desired
property in communication networks and has been thoroughly
investigated in the literature [21]–[25]. Preparedness could
range from being resilient against edge- or node-failures (i.e.,
being fault-tolerant [13], [18], [19]), through timely response
to disaster alerts [14] to adaptation to changing traffic pat-
terns [23], [26]. Although the proposed solutions to these
problems significantly differ, they share the same design prin-
ciple: 1) prepare a computationally tractable model of future
challenges, and 2) propose a metric which can measure how
well-prepared the network is against them.

Traditional optimization methods rely on finely-tuned objec-
tive functions which are carefully tailored to the actual
parameters of the problem, and owing to the huge number of
options cannot incorporate all future possibilities in a tractable
manner. Robust and stochastic optimization [21] make a step
towards resolving this issue, and already can handle some sort
of uncertainty in the input parameters or provide a solution
without exact knowledge of the (future) inputs. Similarly to
optimization, machine learning, e.g., reinforcement learning
algorithms still require an external reward system and often a
specific training set on which the algorithm can rely on [27].

In [25], an information-theoretic tool-set, called empow-
erment was proposed, where no external reward system is
provided for the agent – relies only on its own observations –,
which distinguishes it from machine learning and traditional
optimization problems. In a discrete setting, the metric returns
the number of different states (its logarithm to be precise) the
network can adapt to in response to challenges, which was
later applied to reconfigurable networks [28]. Future freedom
of action can be modeled as a physical force as well which
tries to maximize the entropy of the system [22], and was
applied to several use cases.

In networking, minimum interference routing shows a huge
resemblance with this principle, as through appropriately
selected link weights it keeps bottleneck resources open as
long as possible [23], i.e., it maximizes future acceptable
requests without explicitly being told to do so. A less power-
ful version of this approach was applied to resilient hypervisor
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TABLE I
COMPARISON OF HYPERVISOR PLACEMENT METHODS

placement in vSDNs [13]. Without the knowledge of such
intrinsic motivation which drives the network towards max-
imum future options, the proposed solution leaves multiple
placements available from which the network was able to
select in a self-driving manner. In this paper, we significantly
improve this model with the application of representative
request sets.

C. Hypervisor Placement Problem

Similarly to other placement problems (e.g., SDN controller
placement [29]), finding appropriate hypervisor locations boils
down to the mathematical task of facility location [30].
However, in the Hypervisor Placement Problem (HPP), addi-
tional requirements and constraints must be considered. We
summarize the main directions in Table I.

Several works [10], [15], [31] investigate the static ver-
sion of the HPP. Here, all virtual networks – set of virtual
switches and their controllers – are given as input to the place-
ment algorithm. The task is to find a hypervisor placement
which minimizes the maximum or average latency both for
all control paths and per individual virtual network. Note that,
these formulations are not appropriate for dynamically arriving
(future, thus unknown) vSDN requests, nor can they handle
failures in the network. Furthermore, owing to the fact that
all requests are considered in their ILP at the same time, it
has an excessive running time, thus, it is not applicable for
frequently changing and/or thousands of vSDN requests [13].
In [11], the latency requirement of 5G and future 6G network
were considered in the controller and hypervisor placement
problem, and the proposed multi-objective optimization algo-
rithm was able to minimize the propagation latency of network
function demands and improve QoS. Dobrijevic et al. [17] pro-
vide an availability analysis of the static HPP under node and
link failures. They consider placements without protection and
three protection-based versions. Their placement, however, is
solely based on the betweenness centrality of the possible loca-
tions and does not provide any guarantees regarding latency or
load.

In contrast, [12], [16], [27] introduce a reactive approach
called Dynamic Hypervisor Placement Problem (DHPP): the
hypervisor placement as well as the switch to hypervisor
assignments are redesigned in order to balance load and react
to fluctuating demands. However, adaptation is only consid-
ered in reactive manner. Chen et al. [16] propose an ILP to

minimize control path latency and take the migration overhead
of hypervisors into account. Their approach lowers the migra-
tion cost. Amjad et al. [12] specifically focus on load balancing
within a distributed network virtualization layer. The DHPP is
also considered in the context of resilience: the embedding of
virtual networks and control planes might be redesigned in
reaction to disaster alerts [14]. The authors propose two mod-
els in [14], where 1) the hypervisor-to-switch assignment is
fixed but the hypervisor instance can be migrated to a safe
location, and 2) the hypervisor locations are fixed but the
switches can be reassigned to different hypervisor instances.
However, the temporal disruption of the control path and the
transient behavior of the network during migration of the (sin-
gle) hypervisor instance responsible for a given switch are not
considered in these works [14], [27].

None of the aforementioned works maximizes the reaction
possibilities of the network pro-actively through an intelligent
algorithm design or adds backup hypervisors to lower the
severity of disruptions due to migrations. Such an approach
will be discussed in this paper. A first step was made towards
a well-prepared control plane in [13] where the authors
investigated the Resilient Hypervisor Placement Problem pro-
viding pre-allocated link-disjoint switch-to-hypervisor and
hypervisor-to-controller control paths between the physical
switch, virtual controller and the corresponding hypervisor
instance(s), respectively. Although there are multiple hyper-
visor locations with a running hypervisor instance [13], the
proposed architecture does not consider any backup hyper-
visors and each switch is controlled by a single hypervisor
instance only.

III. PROBLEM FORMULATION

We argue that a pro-active design of backup SDN con-
trol paths and hypervisors is necessary if we desire to meet
the strict recovery time requirements declared in the Service
Level Agreement (SLA) of the vSDN requests [13], [32]–[36].
Similarly to previous approaches on control plane design we
do not consider edge capacities in our formulations [15],
[29]–[31], [37], i.e., control paths of different switches can
be calculated as independent sub-problems. Therefore, in our
intelligent problem formulation, we focus on the number and
location of hypervisor instances shared by multiple switches
and vSDNs.
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TABLE II
NOTATION FOR THE PHYSICAL SDN NETWORK G

A. Physical SDN Network Model

The network topology is modeled as a graph G(V, E) with
nodes (locations) v ∈ V connected by undirected edges e ∈ E .
Each location might host a physical SDN switch S ⊆ V
(usually S = V), while potential hypervisor and controller
locations are given in the sets H ⊆ V and C ⊆ V , respec-
tively. The latency l(e) of an edge e is computed from the
geographical distance between the two network nodes that
are connected via edge e (i.e., the capacity of the edge is
not considered in our control plane design), which is used
for evaluating the latency of end-to-end network paths. The
set P(s , t) contains simple paths between network nodes s
and t. The i-th simple path in P(s , t) is denoted as pi (s , t).
When the end nodes of the path are irrelevant or clear from
the context, we will simply use pi . The total latency of path
pi (s , t) is d(pi (s , t)) =

∑
e∈pi (s,t) l(e). Table II summarizes

the notations used for the physical SDN network.

B. Virtual SDN Requests

Our focus in this paper is resilient control plane design.
Therefore, we assume that the data plane (virtual SDN nodes
and virtual links) is already given and embedded to a set of
physical SDN nodes by an arbitrary embedding algorithm.
Accordingly, a vSDN request r ∈ R is defined by the set of
SDN nodes Vr ⊆ V . In contrast to [10], [15], [31] where the
tenant’s requested topology is considered as part of the input
of the joint control- and data-plane design, this set contains
the virtual switches of the tenant’s request, as well as possibly
some additional (intermediate) physical nodes as the results of
virtual (data-plane) edge embeddings spanning multiple phys-
ical hops. Hence, without loss of generality, we assume that
Vr is a connected subgraph of the network. Furthermore, each
request has a given latency constraint Lr declared in the SLA
which all control paths have to satisfy. Table III summarizes
the notation for the vSDN requests R.

C. Resilient Virtual Control Plane

In Figure 1, we present the considered control plane archi-
tecture in this paper. In order to satisfy the SLA, all nodes

TABLE III
NOTATION FOR THE VIRTUAL SDN (VSDN) REQUESTS R

Fig. 1. Edge-disjoint control paths p1(v
r , h1, c

r ) and p2(v
r , h2, c

r )
between the switch virtual controller traversing the corresponding hypervisors.

in vr ∈ Vr have to be controlled by the request’s vir-
tual controller1 cr within the specified latency, i.e., ∀vr ∈
Vr : d(p(vr , cr )) ≤ Lr . Furthermore, in a control plane
resilient against single edge failures and prepared for hyper-
visor migration, all vSDN nodes vr ∈ Vr of a request r have
to be connected to their corresponding controller location cr

through edge-disjoint paths (both paths satisfying the latency
constraint) traversing hypervisor instances Hvr = {h1, h2},
where h1 and h2 denotes the two (primary and backup)
hypervisor assigned to vr , respectively. Note that, a backup
hypervisor for a given switch can be a primary for another
one and vice versa, which significantly lowers the overhead
of our solution.

Opposed to [15], [31], the controller location cr is not spec-
ified in advance, i.e., not part of the input vSDN request r. It
can be chosen from the set C to satisfy the latency requirement
of the vSDN request2 depending on the switch to hyper-
visor assignment, which improves latency [10] and enables
self-driving operation [13]. For a fair comparison of dif-
ferent design methods, we will assume in this paper that
∀r ∈ R : Lr = L, where L is the maximum global control
path latency constraint for each request.

D. Latency-Aware Resilient Hypervisor Placement Problem

Without controllers (without vSDN requests) the resilient
hypervisor placement problem is essentially a modified facil-
ity location problem on the physical network topology where
each customer must be served by two facilities that reach them

1In this paper we assume that an embedded vSDN request is operated by
a single virtual controller. However, our model can be easily extended to
multiple controllers per request in the future.

2Without loss of generality, we assume that C is the same set of controller
locations for all vSDN requests.
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on disjoint paths. In our case, the hypervisors can be viewed
as facilities and the physical switches as customers. In [30],
the authors considered two special cases of the “cover-by-
pairs” optimization problem that arise when facilities need to
be placed so that each customer is served by two facilities with
reaching them on two disjoint paths. We will shortly present
the definitions of the pathwise-disjoint problem [30] and mod-
ify them to our resilient hypervisor placement problem by
extending them with latency constraints and possible controller
locations as follows.

In [30], a strongly connected graph G(V, E) is given,
together with sets S ⊆ H ⊆ V , where S is the set of cus-
tomer (switch) locations and H is the set of potential facility
(hypervisor) locations. For each pair (s , h), s ∈ S and h ∈ H
set P(s , h) contains simple (and also shortest in [30]) paths
from s to h in G, which is nonempty by the strong connectivity
assumption.

Definition 1: Suppose s ∈ S is a customer location and
{h1, h2} is a pair of potential facility locations in H\{s}. We
say that pair {h1, h2} covers s in a pathwise-disjoint fashion
if there exist paths p1 ∈ P(s , h1) and p2 ∈ P(s , h2) that are
edge-disjoint.

Next, we can generalize this definition from a single
customer to all s ∈ S in network G.

Definition 2: A subset H′ ⊆ H is called a pathwise-
disjoint cover for S if (1) ∀s ∈ S\H′ there is a pair
{h1, h2} ⊆ H′\{s} such that {h1, h2} cover s in a pathwise-
disjoint fashion, or (2) ∀s ∈ H′ the facility at s covers
itself.

In order to extend the above facility location definitions
of [30] and apply them to our hypervisor placement problem,
we drop the S ⊆ H requirement, i.e., S and H can be arbitrary
subsets of V . Moreover, we assume that edge lengths l(e)
on G(V, E), possible controller locations c ∈ C and latency
requirement L are given. Let P(s , h, c) denote the set of (not
necessary simple) paths from s to c traversing node h satisfiing
the latency requirement L, i.e., ∀p ∈ P(s , h, c) : d(p) ≤ L.

Definition 3: Suppose s ∈ S is a switch location and
{h1, h2} is a pair of potential hypervisor locations in H\{s}.
We say that pair {h1, h2} can control s in a latency-aware
pathwise-disjoint fashion if there exists c ∈ C for which
paths p1 ∈ P(s , h1, c) and p2 ∈ P(s , h2, c) are edge-disjoint.

Next, we can generalize this definition from a single switch
to all s ∈ S in network G.

Definition 4: A subset H′ ⊆ H is called a latency-aware
pathwise-disjoint control cover for S if (1) ∀s ∈ S\H′ there
is a pair {h1, h2} ⊆ H′\{s} such that {h1, h2} can control s
in a latency-aware pathwise-disjoint fashion, or (2) ∀s ∈ H′

the hypervisor at s can control that switch.
Note that, the latter condition does not harm the resilience

of our approach even if s is assigned only to a single hyper-
visor, as there is no physical edge between the two which can
fail. Moreover, the unavailability of that location disrupts both
the switch and the hypervisor. However, we need to handle
the lack of backup hypervisor for these switches when the
hypervisor should be migrated to a new location.

Finally, we define the main problem investigated in this
paper. Our goal is to provide the required level of resilience at

minimal operational cost, which is ultimately the goal of the
provider. Fewer hypervisors are cheaper to deploy and oper-
ate, and that is the main goal in addition to meeting the SLA
requirements.

Problem 1 [Latency-Aware Resilient Hypervisor Placement
Problem (LHPP)]: Given G(V, E), sets S ⊆ V,H ⊆ V, C ⊆ V
and maximum global control path latency L, find a latency-
aware pathwise-disjoint control cover H′ ⊆ H for S where
the number of hypervisors |H′| is minimal.

The result of an (optimization) algorithm for Problem 1
is the set of selected hypervisor locations H′ ⊆ H and the
primary and backup switch-to-hypervisor assignment of the
switches ∀s ∈ S\H′ : Hs = {h1, h2} ⊆ H′.

E. Preparedness of Different Hypervisor Placements

Our goal in this paper is to find a hypervisor placement
and switch-to-hypervisor assignment which is well-prepared
for future vSDN requests. By “preparedness” we mean that our
initial placement is capable of serving a variety of requests, but
is also prepared to being migrated in response to serve dynam-
ically arriving vSDN requests. The required control-plane
reconfiguration can be initiated periodically in a self-driving
manner by the network to adapt to day-night or hourly load
shifts. Note that in these control-plane reconfigurations, only
the hypervisors are relocated, while the controllers and vSDNs
remain in the same place.

In addition, the network can continuously monitor its own
performance by calculating the gap between the current and
optimal hypervisor locations calculated for the current vSDN
requests. If the gap between the current and the optimal solu-
tion is larger than a certain threshold (e.g., 5%), the network
should initiate reconfiguration and hypervisor migration imme-
diately, or at the end of a certain period if slotted operation
is assumed. In the latter case, the time slots and thus the
frequency of hypervisor migrations can be adapted to the
dynamics of the network either by the network operator or
by the network itself in a self-driving manner.

Another important aspect of dynamic network management
is the hypervisor migration process itself, which is crucial for
providing a certain QoS. Our proposed architecture in Figure 1
with two redundant hypervisor instances provides great flex-
ibility in the reconfiguration process compared to approaches
using a single hypervisor per switch [12], [14], [16], [27]:
during migration one of the instances can be fixed while
the second instance is moved (transferring the primary role
between the two instances if necessary). After state synchro-
nization with the new instance it can be promoted as primary
hypervisor and the old instance can be migrated if necessary.
However, a thorough analysis of different strategies is out of
the scope of the paper.

IV. LATENCY-AWARE RESILIENT HYPERVISOR

PLACEMENT ALGORITHMS

In this section, we investigate the computational complex-
ity and propose different solution possibilities for our resilient
control plane design problem. In Section IV-A, we prove that
the LHPP formulated in Problem 1 is not only NP-hard but
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also as hard to approximate as set cover. We introduce an effi-
cient representation of hypervisor locations which can provide
latency-aware pathwise-disjoint control covers and discuss
the computational cost of path and set pre-computations in
Section IV-B. Section IV-C contains our algorithmic solution
for the problem using greedy set cover. Finally, Section IV-D
provides our ILP formulation for LHPP to minimize the
number of hypervisors in the latency-aware pathwise-disjoint
control cover for dynamically arriving vSDN requests.

A. Computational Complextiy and Approximability of LHPP

It was shown that pathwise-disjoint facility location [30]
and set cover by pairs [38] are not only NP-hard but also are
at least as hard to approximate as Set Cover (SC). Therefore,
they cannot be approximated within (1− ε) ln n for any ε > 0
unless P = NP [39]. We will prove the same inapproximability
result for LHPP as well.

Theorem 1: LHPP is NP-hard and at least as hard to
approximate as SC.

Proof: In a nutshell, we prove the theorem by converting an
arbitrary instance of SC into an equivalent instance of LHPP
in polynomial-time whose optimal solution differs from the
optimal solution of the SC instance by 1. Thus, any approxi-
mation factor for our problem would imply a same factor for
SC as well.

Given an arbitrary instance of SC which consists of a ground
set S = {s1, . . . , sn} and a collection U = {U1, . . . ,Um}
of subsets of S, for which without loss of generality S =
∪U∈UU . In the transformed instance of LHPP, the graph
G′(V ′, E ′) has the following nodes in V ′:

1) switch nodes si ∈ S for i = 1, . . . ,n ,
2) auxiliary nodes x0 and xi for i = 1, . . . ,n ,
3) a single controller location C = {c0},
4) and potential hypervisor locations hj for each Uj ∈ U

and h0 which doesn’t correspond to any member of U ,
resulting in H = ∪j {hj }, j = 0, . . . ,m .

We add the following undirected edges to E ′ in the trans-
formed graph, with latency ∀e ∈ E ′ : l(e) = 1:

1) edges connecting switches and auxiliary nodes: {si , x0}
and {si , xi}, for i = 1, . . . ,n ,

2) edges connecting auxiliary nodes and hypervisor loca-
tions: {x0, h0} and {xi , hj } if si ∈ Uj , for i = 1, . . . ,n ,
j = 0, . . . ,m ,

3) edges connecting the controller location with hypervisor
locations: {c0, hj }, for j = 0, . . . ,m .

We set the global latency constraint L = 4. The con-
structed graph3 is given in Figure 2. For all switch si there
is a path p1(si , x0, h0, c0) with d(p1) = 3 to c0 through x0
and h0. Furthermore, ∀i , j : si ∈ Uj there are further paths
p2(si , xi , hj , c0) through xi with d(p2) = 3. All the other
paths from si to c0 through an arbitrary h node have a latency
d(p) ≥ 5. Consequently, setting the latency constraint of the
LHPP to L = 4 will eliminate those longer paths, leaving p1
and one of the p2 paths as the only edge-disjoint path-pair

3Note that, a similar transformation was given for the pathwise facility
location problem in [30]. However, it is not directly applicable for LHPP.

Fig. 2. Polynomial-time transformation of an arbitrary set cover instance
into a corresponding instance of LHPP. In the example red and green edges
represent that s1, s2 ∈ U1 and s2, sn ∈ Um , respectively.

which can provide a latency-aware pathwise-disjoint control
cover for any si ∈ S in the above LHPP instance.

In order to conclude our proof, we have to demonstrate that
the optimal solution of the above LHPP instance is exactly
one more than the optimal solution for the SC instance.

(SC ⇒ LHPP): Assume that U∗ is a feasible solution to
SC. In this case, one can see that {h0} ∪ {hj : Uj ∈ U∗} is a
feasible solution for LHPP, as each si ∈ S is connected to c0
through h0 and hj such that si ∈ Uj . Note that, such hj exists
because U∗ is a cover for S . Owing to the polynomial-time
construction Hsi = {h0, hj } can control si in a latency-aware
pathwise-disjoint fashion. Hence, the LHPP solution has one
more hypervisors (i.e., h0) than the number of sets in the SC
instance.

(SC ⇐ LHPP): Assume that H′ ⊆ H is a feasible solution
for our constructed LHPP instance. For each switch node si ∈
S , there is at least one hypervisor in H′ that does not equal to
h0, thus it can reach c0 through hj ∈ H′ − {h0}. Hence, the
correspdonding Uj sets for hj ∈ H′−{h0} provides a set cover
for S . Again, the LHPP solution has one more hypervisor than
the number of sets in the SC instance.

Therefore, LHPP and SC have solution at the same time
which differs by one, which proves the NP-hardness of
Problem 1. Furthermore, a polynomial-time algorithm with
any approximation guarantee for LHPP would yield one for
SC as well, which proves the second part of our claim.

B. Representing Latency-Aware Pathwise-Disjoint Covers

We introduce a representation of the control architecture
shown in Figure 1 without the a priori knowledge of the
vSDN request set. We store the possible locations satisfying
Definition 3 from which the feasible hypervisor placements
for every physical switch s ∈ S in the network can be effi-
ciently queried. Hence, we define quartets (c, h1, h2, s), where
c ∈ C, h1, h2 ∈ H, and s ∈ S , which represent that the
maximum global latency constraint L is met by controller
location c ∈ C with edge-disjoint paths p1 ∈ P(s , h1, c)
and p2 ∈ P(s , h2, c). We define Q as the set of all quar-
tets that have a disjoint control path-pair satisfying the latency
requirement, formally:

Q = {(c, h1, h2, s)|∃p1 ∈ P(s , h1, c), p2 ∈ P(s , h2, c) :

p1, p2 are edge-disjoint, and d(p1) ≤ L, d(p2) ≤ L}.
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One can observe that the quartets in Q corresponding to
s contain all possible controller and hypervisor locations for
that node which satisfy the latency constraint L. Note that,
Q contains (s , s , s , s) for each s ∈ H and possibly other
quartets satisfying Definition 3 for s ∈ S where h1 �= h2.
However, important to note that in practice P(s , t) contains
only a predefined number of P simple paths for each (s, t)
pair; thus, the concatenation of path in P(s , h) and P(h, c)
to P(s , h,c) will contain a limited number of paths as well.
Therefore, if path number P is not carefully selected and not
large enough, it is possible that Q will not contain all feasible
quartets. Please refer to Section VI-A for further analysis of
this question.

The projections of Q to different dimensions can be effi-
ciently leveraged in the algorithms proposed for LHPP. For
example, if we select s and fix the hypervisor pair h1, h2 ∈ H,
then we can obtain from Q all possible controller locations for
s for that primary and backup hypervisor pair. Owing to its
importance in our LHPP algorithms, we define set T from
the projection of Q which represent that {h1, h2} ∈ H is a
primary and backup hypervisor pair for s ∈ S which possi-
bly can provide latency-aware pathwise-disjoint cover for a
(unknown) vSDN request in the future, formally:

T = {(h1, h2, s)|∃c ∈ C : (c, h1, h2, s) ∈ Q}.
As a result, T contains all hypervisor pairs which can cover

∀s ∈ S in a latency-aware pathwise-disjoint fashion with an
appropriately selected controller location, denoted as T (s) for
a specific switch s.

Lemma 1: Pre-calculating sets T and Q require
O(|V|6 · P4) steps, where P = maxi ,j |P(vi , vj )|.

Proof: In order to construct sets P(s , hi , c), as a first step we
find the P-shortest simple paths P(vi , vj ) (if exist) between all
node-pairs in the network topology in O(|V|3 ·P) steps [40].
Next, we need to check each path-combination from p1 ∈
P(s , hi ) and p2 ∈ P(hi , c) whether their concatenation satisfy
the global latency requirement L or not, which can be done in
one step for each P2 path-pair since their latency is already
given by the path generation algorithm. If d(p1)+ d(p2) ≤ L
we add the resulting (possibly non-simple) p(s , hi , c) path to
P(s , hi , c). As a result, |P(s , hi , c)| ≤ P2.

Calculating Q = {(c, h1, h2, s)} requires to check at
most |C| · |H|2 · |S| times whether p1 ∈ P(s , h1, c) and
p2 ∈ P(s , h2, c) is edge-disjoint or not, which can be done in
linear-time in the number of edges |E| ≤ |V|2. As there are
at most P2 ·P2 number of p1, p2 path-pairs and at most |V|4
quartets (c, h1, h2, s) in Q, the total complexity of the quartet
generation is O(|V|6 · P4).

Generating T and T (s) from Q can be done even by
a naive implementation by checking all O(|V|4) elements
of Q. Therefore, the overall complexity of the pre-processing
is dominated by the Q generation, resulting in an overall
complexity of O(|V|6 · P4).

Although an expensive process (please, refer to Table VI
for concrete values), we need to make the above pre-
calculation only once for the physical topology, as owing to
the high-priority of control plane traffic edge latency values
are not influenced by traffic fluctuations of the data plane.

Algorithm 1: Greedy Heuristic Algorithm for LHPP
Input:
∀s ∈ S : T (s) = {(h1, h2)} - set of feasible hypervisor
pairs for s;
Output: H′ - hypervisor locations;
∀s ∈ S : Hs = {h1, h2} - switch-to-hypervisor
assignment;

1 Initialize H′: = ∅;
// Phase 1: Perform greedy set cover

2 while ∃s ∈ S not covered by H′ do
3 Find h∗ ∈ H\H′ for which H′ ∪ h∗ covers most

uncovered switches according to sets ∀i : T (si );
4 Add h∗ to hypervisors H′: = H′ ∪ h∗;

// Phase 2: Post-processing
5 for h ∈ H′ do
6 if H′\{h} is a cover for S then
7 H′: = H′\{h};

// Phase 3: Switch-to-hypervisor
assignment

8 Select Hs = {h1, h2} ∈ H′ for every switch s ∈ S\H′

where (h1, h2) ∈ T (s);

Furthermore, in the simulations in Section VI we set P to a
small fix constant (i.e., P = 16), therefore the pre-computation
time is mainly affected by the number of nodes – O(|V|6) –
in the network.

C. Greedy Heuristic Approach

Owing to the high computational complexity of Problem 1,
in this section we propose a greedy heuristic for LHPP, sum-
marized in Algorithm 1. The algorithm takes the pre-calculated
T (s) sets as input, and returns the set of hypervisors H′ and
switch-to-hypervisor assignment ∀s ∈ S : Hs = {h1, h2} that
cover S in a latency-aware pathwise-disjoint fashion.

In Phase 1 initially, the cover H′ is an empty set, and in
Step 2, we perform a greedy set cover [41] as long as H′

does not cover all s ∈ S (or no solution exists): find h∗ ∈
H\H′ such that H′∪{h∗} provides a latency-aware pathwise-
disjoint control cover for most s ∈ S which did not have
one previously, formally �hi , hj ∈ H′ : (hi , hj ) ∈ T (s) but
∃hi ∈ H′ : (hi , h∗) ∈ T (s). Hypervisor locations at switches
s ∈ H ∩ S will cover at least one switch – i.e., {(s , s)} ∈
T (s) – if selected. If there are multiple h∗ locations with the
maximum number of newly covered switches, then we select
one of them randomly. As we add a new hypervisor in each
step, the algorithm will terminate in at most |H| iterations.
In Phase 2 we adopt the post-processing phase of the greedy
algorithm from [30] in Step 5 to check whether we can remove
some locations from H′ while maintaining the latency-aware
pathwise-disjoint control cover for every switch. As proposed
in [30], we run Algorithm 1 400 times and then one solution
is randomly selected from the ones with minimal |H′|. Finally,
in Phase 3 we assign a hypervisor pair for every switch s ∈
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S\H′, and if multiple options available we choose the one
with minimal average switch-to-hypervisor latency.

Lemma 2: The time-complexity of Algorithm 1 is
O(|S| · |H|3).

Proof: One can observe that we have at most |H| iterations
in Step 2 of Phase 1 (each element of H is added to H′). In
each iteration we have to calculate the number of newly cov-
ered switches by every hypervisor location h ∈ H\H′, which
requires to check the T (si ) sets for each uncovered switch
(∀si ∈ S : |T (si )| ≤ |H|2), resulting in |S| · |H|2 opera-
tions per iteration and O(|S| · |H|3) complexity for Phase 1
altogether. Post-processing in Phase 2 requires to check the
same sets and properties as in Phase 1; thus, it has the
same number of operations in worst case. Finally, selecting
hypervisor pairs from T (s) for every s ∈ S\H′ in Phase 3
requires O(|S| · |H|2) time. Therefore, Algorithm 1 runs in
polynomial-time O(|S| · |H|3).

Assuming that both |H| and |S| is in the order of |V|,
Lemma 2 gives O(|V|4) complexity. In this setting the
greedy heuristic proposed for the pathwise facility location
problem [30] requires at least O(|V|3) steps (no latency con-
straint considered), while the hypervisor placement with set
cover [13] takes O(|V |2(|E | + |V | log2 |V |)) steps (only
single-link failure resilience ensured), thus, we pay a linear
complexity increase for a latency-aware resilient placement in
worst case even with the usage of the pre-calculated T (s)
sets. However, in practice the |T (s)| � |V|2 set sizes are
small for reasonable global latency constraints L, resulting
in an efficient algorithm. We also note that greedy set cover
approximates the optimal number of sets within a factor of
∑|V|

i=1 1/i ≤ ln |V|+ 1 for the general unweighted case [41],
[42], where |V| refers to the maximum size of any set.
Although this approximation factor was successfully trans-
formed for hypervisor placement with greedy set cover in [13],
owing to the non-monotonicity of uncovered sets according to
the T (s) values in Step 2 the factor is not transferable for
Algorithm 1.

D. Integer Linear Program for LHPP

In order to find the minimum number of hypervisors k in
a latency-aware pathwise disjoint cover, in this section, we
present a mixed integer linear program for LHPP denoted as
ILPk . The required parameters and binary decision variables
are summarized in Table IV.

The variable wh determines whether a hypervisor is located
at the network node h ∈ H. Note that, after having solved
the model, the variables wh specify the optimal set H∗ of
hypervisor nodes, specifically, H∗ = {h ∈ H : wh = 1}. The
variable xh,s is set to one if switch s ∈ S is controlled by
the hypervisor instance placed at node h ∈ H. Similarly, the
variable yh1,h2,s is set to one if switch s ∈ S is controlled by
the hypervisor instances placed at nodes h1, h2 ∈ H (including
variables ys,s,s ). Our objective is to minimize the number of
hypervisors:

min
∑

h∈H
wh , (1)

subject to the following constraints.

TABLE IV
NOTATIONS OF THE ILP FORMULATIONS

1) Hypervisor Activation Constraints: Eq. (2) ensures that
only active hypervisors can control switches:

xh,s ≤ wh ∀s ∈ S, ∀h ∈ H, (2)

while Eq. (3) says that hypervisors without controlled switches
are inactive:

wh ≤
∑

s∈S
xh,s ∀h ∈ H. (3)

2) Resilient Control Constraints: Each switch is controlled
by a pair of hypervisors, except when there is a hypervisor
at the switch’s location when it controls itself (Case (2) in
Definition 4):

xs,s +
∑

h∈H
xh,s = 2 ∀s ∈ S. (4)

3) Valid Hypervisor-Pair Constraints: The hypervisor pair
{h1, h2} controls switch s if and only if both of them are
controlling it, formulated in Eq. (5)-(7):

yh1,h2,s ≤ xh1,s∀h1, h2 ∈ H, ∀s ∈ S, (5)

yh1,h2,s ≤ xh2,s∀h1, h2 ∈ H, ∀s ∈ S, (6)

xh1,s + xh2,s − 1 ≤ yh1,h2,s ∀h1, h2 ∈ H, ∀s ∈ S. (7)

The hypervisor pairs which can control s in a latency-aware
pathwise-disjoint fashion can be obtained from T in Eq. (8):

∑

(h1,h2,s)∈T (s)

yh1,h2,s = 1 ∀s ∈ S. (8)

The above formulation gives a set of hypervisors H∗ which
has a minimum size k = |H∗|. We will use this k num-
ber in Section V as the input hypervisor number for the
full-knowledge algorithms to demonstrate the cost of our intel-
ligent algorithm design which does not have any a priori
knowledge about the vSDN requests.

V. OPTIMAL HYPERVISOR PLACEMENT WITH

MAXIMUM ACCEPTANCE RATIO

In this section, we introduce an algorithm that pro-
vides the optimal locations of k hypervisors (obtained from
Section IV-D, running the ILPk algorithm) to maximize the
number of accepted requests from a given vSDN request
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set R. We formulate the static LHPP problem in Section V-A,
while Section V-B introduces our ILP formulation (denoted
as ILPa ). We argue that the presented formulation is multi-
purpose depending on the input set R. On the one hand, if
set R contains all currently embedded and future (arriving in
the next time step) requests in the network, then the ILP has
full knowledge to present the optimal hypervisor placement
and gives us an optimal acceptance ratio we can use for com-
parisons. On the other hand, R can be a representative set
of vSDN requests we expect – but has no exact knowledge
about – in the future, which can be used either in LHPP for
an initial hypervisor placement or in the static algorithm for
planning hypervisor migrations. The usage and generation of
representative sets will be discussed in Section V-C.

A. Static LHPP Problem Formulation

Similarly to other approaches [10], [15], [31] with full
knowledge about the vSDN request set R, our objective in
the static problem formulation is to provide the resilient con-
trol architecture presented in Figure 1 (i.e., disjoint control
path-pair satisfying the latency requirement traversing different
hypervisor instances) to as many vSDN requests as possible,
i.e., maximize the number of accepted requests. Using the pre-
calculated Q set, a request r ∈ R is acceptable for a given
hypervisor placement if

∃c ∈ C : ∀vr ∈ Vr (c, h1, h2, v
r ) ∈ Q,

where {h1, h2} is the hypervisor pair controlling vr . We define
acceptance ratio as the fraction of acceptable requests in the
request set:

a =

∑
r∈R ar

|R| , (9)

which will be used as the main performance metric. Therefore,
the static LHPP problem can be formulated as follows:

Problem 2 [Static Latency-Aware Resilient Hypervisor
Placement Problem (SHPP)]: Given G(V, E), sets S ⊆
V,H ⊆ V, C ⊆ V , maximum global control path latency L and
vSDN request set R, find a latency-aware pathwise-disjoint
control cover H′ ⊆ H for S with k hypervisors where the
acceptance ratio of R is maximal.

B. Integer Linear Program for SHPP

Here, we present the mixed integer linear program of SHPP
for a given request set R. Note that in the experimental results
for comparison, this ILP is used in two manners:

• If we know exactly all the current and future requests,
the results are denoted as OPT.

• If we do not have exact information about the arriving
requests, and we prepare our network for the current
request set or for some representative set. The results are
denoted as ILPa .

Table IV specifies the parameters and the binary decision
variables used in the formulation.

Similarly as in the ILPk , variable wh determines whether
a hypervisor is located at the network node h ∈ H or
not. Note that, after having solved the model, the variables

wh specify the set H∗ of hypervisor nodes, specifically,
H∗ = {h ∈ H : wh = 1}. The variable xh,s is set to one if
switch s ∈ S is controlled by the hypervisor instance placed
at node h ∈ H. Similarly, the variable yh1,h2,s is set to one if
switch s ∈ S is controlled by the hypervisor instances placed
at nodes h1, h2 ∈ H. Additionally to LHPP, in the SHPP ILP
we need to add ∀r ∈ R request specific varaibles as well.
The variable ar is set to one if r ∈ R is acceptable, while
ar ,c indicates whether c ∈ C can control every vSDN node
vr ∈ Vr . The variable zc,s is set to one if c ∈ C can control
switch s ∈ S through a given hypervisor-pair. Finally, k rep-
resents the number of hypervisors which has to be used in the
solution.

Our objective is to maximize the number of acceptable
requests (or equivalently acceptance ratio) for R:

max
∑

r∈R
ar , (10)

subject to the following constraints.
In order to obtain the resilient control architecture presented

in Figure 1, we need the constraint groups 1)-3) from
Section IV-D. Additionally, we need the following constraints
for SHPP:

4) Hypervisor Number: There should be exactly k hyper-
visors in the solution:

∑

h∈H
wh = k . (11)

5) Controller Competency Contraint: We obtain from
quartets Q the possible hypervisor pairs {h1, h2} that allow c
to control s:

yh1,h2,s ≤ zc,s ∀(c, h1, h2, s) ∈ Q. (12)

If none of the hypervisor-pairs provide a latency-aware
pathwise-disjoint control cover for the switch s, then the
controller location c is not appropriate for s:

zc,s ≤
∑

(c,h1,h2,s)∈Q
yh1,h2,s ∀s ∈ S, ∀c ∈ C. (13)

6) Request Acceptability Contraints: A request can be
accepted with a given controller location if it can control all
switches in the request:

ar ,c ≤ zc,s ∀s ∈ Sr , ∀c ∈ C, ∀r ∈ R, (14)
∑

s∈Sr

zc,s − |Sr |+ 1 ≤ ar ,c ∀c ∈ C, ∀r ∈ R. (15)

The request is acceptable if there is a controller that can control
all of its switches:

ar ,c ≤ ar ∀c ∈ C, ∀r ∈ R, (16)

while the request is not acceptable if there is no such
controller:

ar ≤
∑

c∈C
ar ,c ∀r ∈ R. (17)

We primarily use the above formulation to calculate an
optimal solution (i.e., with maximum acceptance ratio) for a
certain request set R. Note that, owing to its high complexity,
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TABLE V
NETWORK CHARACTERISTICS (|V |, |E |, γ – AVERAGE NODE DEGREE)

the possible huge number of requests in R, and the frequent
usage in each time step, this static algorithm has little practical
relevance in a dynamically changing environment. Thus, we
only use it as an optimal value to demonstrate the efficiency
of our intelligent LHPP algorithms. However, in Section V-C,
we show that the same ILP formulation can be used in LHPP
to distinguish the quality of different hypervisor placements
using a representative request set Rrep , obtained either purely
from graph metrics or historical data where available.

C. Representative Request Set Generation

It is obvious that if an empty set is used as the representa-
tive set, i.e., Rrep = ∅, the ILP for SHPP (denoted as ILPa )
is the same as the ILP for LHPP (denoted as ILPk ) and the
solution is one of the many possible latency-aware hypervisor
placements. These possible solutions can provide very differ-
ent acceptance ratios for the possible request sets: some of
them are generally dysfunctional placements and have low
acceptance ratio for most request sets and high for only a few,
while some of them are generally good placements and have
high acceptance ratio for most request sets and low for only a
few cases. The representative request set aims to separate the
wheat from the chaff: it filters out the dysfunctional hypervisor
placements from the possible solutions, leaving mainly “good”
hypervisor placements as possible solutions. In this way, Rrep

helps us prepare our hypervisor placement for the future.
Since the future requests are unspecified, it is impossible

to construct a representative request set that perfectly resem-
bles them. If the representative set is not selective enough
(too small, contains mostly easily acceptable or unaccept-
able requests), it cannot filter out the “inferior” hypervisor
placements. On the other hand, if the representative set is not
broad/universal enough (i.e., it contains mostly alike requests),
it will favor some hypervisor placements that are not necessar-
ily good overall. Note that ILPa gets most of its information
from the acceptable requests in Rrep ; thus, an overall good
representative set should contain mostly acceptable requests,
but not too easily acceptable ones. We will show that with
a carefully selected small representative request set (≈0.1%
of all possible vSDN requests), the optimal solution can be
approached with a significantly lower runtime, presented in
Section VI.

VI. EXPERIMENTAL RESULTS

In this section, we provide a comprehensive study of
the different aspects of our solutions. In particular, first, in
Section VI-A we analyze the preprocessing steps and the
quartets. In Section VI-B we present the request generation

TABLE VI
RUNTIME OF SHORTEST PATH PRE-CALCULATION, Q GENERATION AND

NUMBER OF QUARTETS |Q| IN THE 25-NODE ITALY NETWORK (L = 1.0)

methods utilized for the experimental results, meanwhile in
Section VI-C the guidelines for the representative set genera-
tion are discussed. Finally, in Section VI-D the preparedness
analysis is presented.

The investigated real-life optical backbone networks are
given in Table V. The Janos-US, COST 266, and Germany
network topologies are obtained from [43], and the link lengths
are defined as the distances between nodes assuming that the
node locations (given with latitude and longitude coordinates)
are known for each node. For Italy [44], the links are defined
as a series of points (starting with the source and ending with
the target node) with straight lines between them. Therefore,
the link length is defined as the summed length of the straight
lines of the link assuming that longitude and latitude coordi-
nates are known for each point. In our experiments, without
loss of generality, we investigate the most general version of
Problem 1 where S = H = C = V . The global latency require-
ment is given as a ratio to the diameter of the network, i.e.,
L = 0.5 means that the latency requirement is 0.5 times the
diameter of the network.

We conduct our simulations on a virtual machine with 8
cores (Intel Xeon E5-2630 v3 @ 2.4GHz) and 32GB of RAM
running Ubuntu 18.04.1 LTS with kernel 4.15.0-151-generic.
The simulation environment and the algorithms are imple-
mented in Python 3.8.2. The ILP instances are created with
the Gurobi Python Interface (gurobipy) and solved with the
Gurobi solver (version 9.1.2) [45].

A. Preprocessing Analysis

This subsection investigates the complexity of the prepro-
cessing steps and provides an analysis of the quartets. In the
preprocessing phase, we calculate the P -shortest simple paths
between each node-pair and generate Q and T . We showed in
Lemma 1 that the pre-calculation times depend on the network
topology and the P parameter. Similarly, the number of quar-
tets (|Q|) depends on the network topology, the P parameter,
and the global latency requirement L. If P is too low, some
of the possible quartets cannot be found, resulting in lower
performance. If P is too high, the pre-calculation times are
unnecessarily high. Table VI presents the runtimes of the path
calculation and quartet generation for several P values. The
size of Q varies only little for P ≥ 16 but the runtime of the
preprocessing grows significantly. According to these results,
we select P = 16 for further investigations since it provides a
great balance between runtime and accuracy.
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Fig. 3. Number of quartets at different global latency requirements in the
analysed networks.

Figure 3 shows the number of quartets for all the investi-
gated networks subject to the global latency requirement. At
low L values, there are only a few thousand of quartets, but
their number increases drastically with L even reaching 106 in
case of the Germany network. Note that while the Germany
network has twice more nodes and edges than the Janos-US
network it has nearly 10 times more quartets.

B. vSDN Request Generation

The vSDN requests are connected subgraphs in our network
(cf. Section III-B). Therefore, to generate requests, we use the
Simple method from [46] to enumerate all connected induced
subgraphs of size n. It has a complexity of O(n2 × δmax )
where δmax is the maximal node degree in the graph. The
authors provide an implementation of their algorithms in
Python that we use in our framework.

Let Rn and R≤n denote the set of all connected induced
subgraphs of size n and ≤n in the network, respectively.
Therefore, R≤n =

⋃n
i=2Rn . It is apparent that set R≤|V|

contains all possible subgraphs of the network while set R2

contains all adjacent node pairs. Figure 4 presents the number
of subgraphs according to the size of the subgraphs for the
Italy and Janos-US networks.

The Rn sets are used for benchmarking purposes as it helps
to estimate the performance of the hypervisor placement on
requests with a given size, which are selected from R|Vr |,
where |Vr | is the fixed size of the requests. The R≤n sets
represent real-life-like requests with given maximal size, and
they are used to generate the representative set for ILPa in
our evaluations. In this method, a given number of subgraphs
are selected from R≤|Vr |max

where |Vr |max is the maximal
request size. The vSDN request count is an upper bound for
the number of generated subgraphs since in some cases it is
greater than the number of possible subgraphs.

C. Representative Request Set Generation

In this subsection, we study the effect of the representative
request set (denoted as Rrep ) generation on the acceptance
ratio of ILPa , which corresponds to the preparedness of the
hypervisor placement. For demonstration purposes, we present
the results of the Italy network, but the trends and the take-
away message is general to all the topologies studied. In our
simulations, Rrep is sampled from R≤n , where the maximal
request size n varies between 2 and |V|/2 and the number of

Fig. 4. The number of possible subgraphs of size n in the Italy and Janos-US
networks.

TABLE VII
AVERAGE ACCEPTANCE RATIO OF THE ILPa WITH DIFFERENT Rrep

PARAMETERS IN THE ITALY NETWORK (AVERAGES BASED ON 10
INDEPENDENT RUN)

requests varies between 2 and 200. For each representative set
parameter combination, a preparedness analysis is performed
with the same settings as in Section VI-D. Table VII contains
the results for given representative set parameters.

To compare the different parameter combinations, the aver-
age acceptance ratio is calculated over all 10 runs and vSDN
request sizes ranging from 2 to |V|/2. As expected, when Rrep

contains easily acceptable requests, e.g., |Vr |max = 2, ILPa

achieves lower acceptance ratio. Similarly, from a small rep-
resentative set (|Rrep | ≤ 10) less information can be obtained
by ILPa resulting in a lower acceptance ratio again. According
to the simulations, ILPa makes the most out of challenging
representative sets (|Rrep | ≥ 50 and |Vr |max ≥ 4) achieving
acceptance ratios consistently over 0.62, above these bound-
aries no parameter combination seems superior to the others.
The same tendencies can be observed in the other networks.
Since we assume that no specific knowledge is available about
the future requests and corresponding vSDN embeddings, we
use |R| = 100 and |Vr |max =

|V|
4 in our simulations.

D. Preparedness Analysis

In this subsection, we evaluate the hypervisor placement
methods on the presented network topologies (Table V) in a
static scenario. The analysis focuses on the number of hyper-
visors used, hypervisor usage probability, and acceptance ratio
of the requests. The evaluation settings are summarized in
Table VIII. For each setting, the hypervisor placement and
the evaluation are repeated 10 times with different seeds. Each
evaluation consists of multiple vSDN request sets with specific
request sizes (from 2 to |V|), each containing 100 requests if
possible. Note that the hypervisor placements are evaluated on
the same request sets in the corresponding runs (e.g., 1st run).
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TABLE VIII
EVALUATION SETTINGS IN THE PREPAREDNESS ANALYSIS

Fig. 5. The number of active hypervisors subject to the global latency
requirement L in the Italy network.

The hypervisor placement methods of the LHPP, i.e.,
Algorithm 1 and ILPk , are calculated solely based on the
network topology, the path count parameter P, and the global
latency requirement L. They do not take into account any
knowledge about the possible requests, and their goal is to
find a placement with a minimal number of hypervisors. On
the other hand, ILPa uses a representative request set Rrep to
obtain a more suitable placement than ILPk generated accord-
ing to the findings in Section VI-C. Additionally, to assess how
close our placement methods are to the theoretical maximum
in terms of acceptance ratio, OPT is used to find the hypervisor
placement with the highest acceptance ratio for each evaluated
request set. Note that while the other placements are calculated
once in each run and evaluated for many request sets (with dif-
ferent request sizes) OPT is calculated for each request set in
each run resulting in the theoretical maximum acceptance ratio
for each request set that may not be reachable in practice.

Algorithm 1 and ILPk are the two methods that try to find
a placement with a minimal number of hypervisors. Figure 5
presents the results for the Italy network which show that both
algorithms deliver the same minimal number of hypervisors
in each case. Clearly, at lower L values, more hypervisors are
required to resiliently control the switches, while at higher
L values, less is sufficient. For example, at L = 0.4, eight
hypervisors must be used in the Italy network, but at L = 0.6,
four are sufficient.

Despite the consensus on the number of hypervisors, the
algorithms differ in the hypervisor locations. To illustrate this,
Figure 6 presents the usage frequency of hypervisor loca-
tions. It aggregates results from all configurations listed in
Table VIII. The methods optimizing for maximum acceptance
ratio, i.e., ILPa and OPT agree mostly with Algorithm 1

Fig. 6. Probability of the used hypervisor locations of the placement methods
in the Italy network based on the 10 simulation runs.

and ILPk on the hypervisor locations apart from some minor
differences. Not surprisingly, the most frequent hypervisor
locations are all central nodes in the network (e.g., nodes 0, 20,
23, and 24 of the Italy network are in Central-Italy). Although
the hypervisor usage of Algorithm 1 and ILPk seems not too
distinct from the hypervisor usage of ILPa and OPT, the minor
differences significantly impact the acceptance ratio.

Figure 7 shows the average acceptance ratio of the hypervi-
sor placement methods for several vSDN request sizes at three
global latency requirements. Next to each L value the number
of active hypervisors is also displayed. In Figure 7(a), the low
L is very strict and leaves little room for hypervisor placement
optimization thus only the small vSDN requests (|Vr | ≤ 5)
have an acceptance ratio over 50%. In Figure 7(b), L is
large enough to enable higher acceptance ratios. Note that the
occasional significant gap (such as in Figure 7(b)) between
Algorithm 1 and ILPk is due to the ability of Algorithm 1 to
randomly select a solution from many (i.e., 400) in the end,
while ILPk returns the first feasible solution, which usually
performs poorly according to the simulations. At L = 0.6, it
is possible to accept every request with a carefully selected
hypervisor placement which is exactly what ILPa does. The
large gap between the acceptance ratios of Figure 7(b) and 7(c)
is caused by the relaxation of the latency requirement (from 0.5
to 0.6) and the decrease of active hypervisors (from 6 to 4).

One can observe that ILPa with the proposed representa-
tive set generation outperforms both Algorithm 1 and ILPk ,
and finds the placement with the best acceptance ratio among
the three approaches, always close to the optimal. Figure 8
presents the acceptance ratio of the hypervisor placement
methods subject to the vSDN request size for all four networks
with L = 0.6. The results of each network show the impressive
benefits of the representative request set as ILPa consistently
performs much better than Algorithm 1 and ILPk . In the case
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Fig. 7. Comparison about the acceptance ratio of the hypervisor placement methods in the Italy network subject to the vSDN request size (|Vr |) for given
latency requirement L (averages based on 10 independent runs). After each L value the number of active hypervisors (k) is displayed.

Fig. 8. Comparison about the acceptance ratio of the hypervisor placement methods in the investigated networks subject to the vSDN request size (|Vr |)
for latency requirement L = 0.6 (averages based on 10 independent runs). After each network name the number of active hypervisors (k) is displayed.

of the Italy and COST 266 networks (Figure 8(a) and 8(c)),
ILPa is able to find the optimal solution, while in the case of
the Janos-US and Germany networks, it finds a solution that is
very close to the optimal one. On the COST 266 network with
L = 0.6 (Figure 8(c)), ILPk performs surprisingly well, much
better than Algorithm 1. In this case, the acceptance ratio of
the first feasible solution is much better than the average of the
random ones. In summary, we can state that the representative
requests enable us to reliably obtain a hypervisor placement
close to the optimal in terms of acceptance ratio.

VII. CONCLUSION

In this paper we introduced a novel latency-aware control
plane design with primary/backup hypervisors and edge-
disjoint control paths to protect against single-link and hyper-
visor failures. Based on this design, the latency-aware resilient
hypervisor placement problem was formulated. We proved that
minimizing the number of hypervisors is NP-hard and hard to
approximate, and proposed a polynomial-time algorithm based
on greedy set cover and an integer linear programming model.
Our simulation results show that our algorithm approaches the
optimal solution in terms of hypervisor number. Furthermore,
we extended the previous problem formulation by adding a
request set for which the hypervisor placement providing the

highest acceptance ratio must be determined. We presented an
integer linear programming formulation for this problem and
argued that it can be used not only to find the optimal place-
ment for a certain request set but also to obtain a hypervisor
placement prepared for the future by utilizing a representative
request set. For evaluation of the three hypervisor placement
methods, we have investigated the impact of the hypervi-
sor placement on the vSDN request acceptance ratio. Our
results show that the representative set significantly improves
the hypervisor placement and helps to obtain close-to-optimal
acceptance ratio in every scenario.

As a future work, we will analyse our proposed placement
methods in a dynamic scenario, where the network needs to
migrate hypervisors in order to meet the SLA requirements of
the currently active vSDNs and maximize the acceptance ratio
of the newly arrived requests.
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