
2492 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Medley: A Membership Service for IoT Networks
Rui Yang , Jiangran Wang , Jiyu Hu , Shichu Zhu, Yifei Li, and Indranil Gupta , Senior Member, IEEE

Abstract—Efficient and correct operation of an IoT network
requires the presence of a failure detector and membership pro-
tocol amongst the IoT nodes. This paper presents a new failure
detector for IoT settings wherein nodes are connected via a
wireless ad-hoc network. Our failure detector, named Medley,
is fully decentralized, allows IoT nodes to maintain a local
membership list of other alive nodes, detects failures quickly
(and updates the membership list), and incurs low communica-
tion overhead. We adapt a failure detector originally proposed
for datacenters (SWIM), for the IoT environment. This adap-
tation is non-trivial. In Medley each node picks a medley of
ping targets in a randomized and skewed manner, preferring
nearer nodes. We also provide optimizations to achieve time-
bounded detection, as well as to reduce tail detection times. Via
analysis, simulation, and Raspberry Pi deployments, we show
that Medley can simultaneously optimize detection time and
communication traffic.

Index Terms—Failure detection, Internet of Things,
membership.

I. INTRODUCTION

THE IoT market is expected to reach 500 Billion dollars
in size by 2022 [1]. For instance, during just the second

quarter of 2018, Amazon Echo + Dot sold 3.6 million units,
while Google Home + Mini sales were 3.1 million units [2].
IoT deployments in smart buildings, smart homes, smart hospi-
tals, smart forests, battlefield scenarios, etc., are proliferating.
While today’s deployments in smart homes are typically a
few tens of devices, tomorrow’s vision, in smart buildings and
cities, is for hundreds or thousands of devices communicating
with each other.

Such large IoT deployments are in essence distributed
systems of devices. As such, there is a need to provide

Manuscript received 19 November 2021; revised 19 May 2022 and 26 July
2022; accepted 27 July 2022. Date of publication 4 August 2022; date of
current version 12 October 2022. This work was supported in part by each
of the following: NSF CNS 1908888, a gift from Capital One gift, and a gift
from Microsoft. The associate editor coordinating the review of this article
and approving it for publication was M. Tornatore. (Corresponding author:
Rui Yang.)

Rui Yang and Indranil Gupta are with the Department of Computer Science,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
ry2@illinois.edu; indy@illinois.edu).

Jiangran Wang is with the Department of Electrical and Computer
Engineering, University of Illinois–Chamapign, Urbana, IL 61801 USA
(e-mail: jw22@illinois.edu).

Jiyu Hu was with the University of Illinois at Urbana–Champaign,
Urbana, IL 61801 USA. He is now with the School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
jiyuh@andrew.cmu.edu).

Shichu Zhu was with the University of Illinois at Urbana–Champaign,
Urbana, IL 61801 USA. He is now with the Department of Cloud, Google
Inc., Mountain View, CA 94043 USA (e-mail: shichuzhu@gmail.com).

Yifei Li was with the University of Illinois at Urbana–Champaign,
Urbana, IL 61801 USA. He is now with the Department of Cloud
Infrastructure, Confluent Inc., Mountain View, CA 94041 USA (e-mail:
liyifei.leo@gmail.com).

Digital Object Identifier 10.1109/TNSM.2022.3196268

familiar abstractions and a similar substrate of distributed
group operations as those which exist in Internet-based dis-
tributed systems like datacenters, peer-to-peer systems, clouds,
etc. In other words, a distributed group communication sub-
strate is required for IoT settings, atop which management
functions and distributed programs can then be built. This is
critical in order to build large-scale IoT deployments that are
truly autonomous, self-healing, and self-sufficient.

One of the first problems that such a substrate needs to solve
is detecting failures (we consider only fail-stop failures in this
paper).1 At large scale, failures are the norm rather than the
exception. When a device fails, other affected devices need to
know about it and take appropriately corrective action, and in
some cases inform the human user. This is a very common
way of building Internet-based and datacenter-based distributed
systems. In the IoT environment, examples of corrective actions
after failure include (but are not limited to): backup actions to
ensure user needs are met (e.g., maintain sufficient lighting in
an area), re-initiating and re-replicating device schedules that
were stored on failed devices (e.g., timed schedules), informing
the upper management layer, informing the user, etc.

Existing techniques in IoT literature detect failures either
centralized or semi-centralized [3], [4], [5], [6]. These typ-
ically provide a central clearinghouse where information is
maintained about currently-alive nodes. Yet, they require
access to a cloud or a cloudlet, but this is not always feasi-
ble. For instance, IoT deployments may span remote scenarios
(e.g., battlefields, forests, etc.), and in some cases sending data
to the cloud may be prohibited by laws (e.g., GDPR [7] or
HIPAA [8] laws for data from smart hospitals). Additionally,
if the centralized service becomes inaccessible (e.g., to due to
failures or message losses), the IoT devices no longer have
access to the failure detection and membership service.

In this paper, we present Medley, which is the first fully-
decentralized membership service for IoT distributed systems
running over a wireless ad-hoc network. The Medley mem-
bership service maintains at each IoT node, a dynamic mem-
bership list containing a list of currently alive nodes in the
system. The membership service’s critical goal is to detect
device failures (crashes) and update membership lists at non-
faulty nodes—this is the responsibility of the failure detector
component, which is the focus of this paper. Like other
practical membership systems [9], Medley is also weakly-
consistent membership service: membership changes (failures,
joins, leaves) propagate eventually. We measure how quickly
they propagate, and how much bandwidth they consume.

Maintaining full membership lists at devices does not use
excessive memory. For instance, even with up to 5K devices

1Malicious/Byzantine failures are outside our scope.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1485-0463
https://orcid.org/0000-0001-6579-0232
https://orcid.org/0000-0003-1899-9062
https://orcid.org/0000-0002-9372-5937

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2493

(sufficient for a multi-storey building), if each membership
entry is 20 B (16 B for IPv6 address + 4 B for sequence
number), this entails 100 KB of memory for the membership
list. For Raspberry Pis with 2 GB of memory, the membership
list would occupy only 0.005% of node memory.

Classical distributed systems literature builds a wide swath
of distributed algorithms over a full membership list (at each
node). Examples include multicast, coordination, leader elec-
tion, mutual exclusion, virtual synchrony etc. [10]. Essentially,
full membership offers maximal flexibility in designing arbi-
trary distributed algorithms on top of it. It also helps make
analysis tractable. For IoT networks, Medley opens the door
for similar algorithms to be built on top of it. For instance, to
build a multicast tree, one algorithm could choose only nearby
nodes, or alternatively a mix of near and far nodes. Both can
be built atop a full membership algorithm.

Failure detector protocols for Internet-based distributed
systems fall into two categories: heartbeat-based (or
lease-based), and ping-based. Heartbeat-based protocols
[11], [12], [13] have each node send periodic heartbeats to
one or more other monitor nodes; when a node ni dies, its
heartbeats stop, the monitors time out, and detect the node ni
as failed. Ping-based protocols [9], [14] have each node peri-
odically ping randomly-selected target nodes from the system.
Analysis in [14] has shown that compared to heartbeat proto-
cols, ping-based protocols are faster at detecting failures and
impose less network traffic, and can completely detect failures.

We thus adopt a ping-based approach for our IoT failure
detection protocol Medley. The key challenge for Medley is
that existing ping-based protocols [9], [15] select ping targets
uniformly at random across the system. Randomized selection
is attractive due to its fast detection, congestion avoidance and
load balancing. Yet in a wireless ad-hoc IoT network, uniform
random selection leads to large volumes of network traffic that
span major portions of the IoT network.

Medley solves this by proposing a new spatial ping-target
selection strategy which prefers nearer nodes but also has some
probability of pinging farther nodes. Compared to fully ran-
domized pinging, always picking nearby nodes as ping targets
localizes and reduces network traffic. But this always-local
selection leads to high detection times due to lowered random-
ness of pinging. It also causes non-detection of failures when
multiple simultaneous failures occur (e.g., failures caused by a
circuit breaker tripping), because all nearby pingers of a failed
node have also failed.

Medley attempts to gain the advantages of both approaches
by using a hybrid of the uniform-random and the always-local
target selection. It utilizes a mix (medley) of nearer and farther
ping targets. A key question we answer both analytically and
empirically is: What is the best way to mix these targets?
We also present two optimizations to reduce tail latency of
detection time.

The contributions of this paper are:
1) A new fully-decentralized failure detector protocol,

named Medley, for wireless ad-hoc IoT networks.
2) Mathematical analysis of the key parameter (exponent)

in spatial pinging, in order to optimize detection time as
well as communication traffic.

3) An optimization to provide time-bounded detection of
failures in Medley.

4) Two optimizations to reduce tail detection times.
5) Evaluation of Medley via simulations in Java (matching

deployment) and NS-3 (for link layer fidelity).
6) Implementation of Medley for Raspberry Pi, and subse-

quent deployment experiments.
7) Compared to classical techniques (SWIM), Medley pro-

vides comparable failure detection times, lowers band-
width by 37.8% (given a detection time), and has false
positive rates of 2% under 20% packet drop rates. We
cut tail detection time up to 47.2%.

II. BACKGROUND

System Model: We consider the fail-stop model: once a node
crashes it executes no further instructions or operations. Fail-
recovery models can be seen as a special case (with nodes
rejoining under a new id or incarnation number). Byzantine
failures [16] are beyond our current scope (but represent an
interesting future direction).

The network is asynchronous, and messages may be delayed
or dropped. Multiple nodes may fail simultaneously. Nodes are
allowed to join and voluntarily leave the system. We use N to
denote the number of nodes in the system.

Each node maintains a membership list consisting of entries
for all other nodes in the system–our membership protocol’s
goal is to delete entries for failed/departed nodes soon after
their failure departure, and to add entries for joining nodes
soon after they join. Our protocol makes no assumptions
about clock synchronization, but our analysis assumes (for
tractability) that clock speeds are similar.

Failure Detector Properties: Failure detectors have three
desirable properties. The two desirable correctness proper-
ties are called [17] Completeness and Accuracy. Completeness
requires that every failure is detected by at least one non-faulty
node. Accuracy means that no failure detections are about
healthy nodes, i.e., there are no false positives. In their seminal
paper [17] Chandra and Toueg proved that it is impossible to
design a failure detector for asynchronous networks, to satisfy
both completeness and accuracy. Due to the need to perform
corrective recovery actions after a failure, today’s failures nav-
igate this impossibility by always guaranteeing completeness,
while attempting to maximize accuracy (i.e., minimize false
positive rate).

Besides the above two properties, failure detectors also aim
to minimize detection time, i.e., time between failure and first
non-faulty node discovering this failure. Finally, scalability
and load balancing are often goals of failure detectors.

SWIM Failure Detector: Our Medley system is adapted from
the failure detector and dissemination component of the SWIM
protocol [9], [14]. SWIM is popular and various versions of it
are today widely deployed in datacenters and in open-source
software, including at Uber [18], and HashiCorp’s Serf [19]
and Consul [20].

We next describe the base SWIM protocol to set the context
for Medley. The SWIM membership protocol handles fail-
ure detection and dissemination separately. The former detects

2494 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 1. One pinging round at Mi , reproduced from SWIM [9], [14].

failures, while the latter multicasts to the system information
about node joins, leaves, and detected failures.

Fig. 1 (from [9], [14]) depicts the SWIM failure detector.
Each node Mi periodically runs the following protocol every T
time units. T is fixed at all nodes but nodes run their periods
asynchronously from each other. Each period consists of a
direct pinging phase and an optional indirect pinging phase.

At the start of a period, Mi picks a member from its mem-
bership list, uniformly at random, and sends it a ping message.
Any node Mj receiving a ping responds immediately with an
ack. If Mi receives the ack within a small timeout t (based
on message RTT), then Mi is satisfied and does nothing else
in this period. Otherwise, Mi picks k other nodes (denoted
as indirect pingers), also at random, and sends each of them
a ping-req(Mj) message which requests each of them to
ping Mj . If any of these k nodes hears back an ack from
Mj , they pass on the ack back to Mi . If Mi receives at least
one such ack before the end of the period, it is satisfied and
does nothing else in this period. Otherwise, i.e., if Mi hears
no acks, then it marks Mj as failed at the end of this period.
Pings and acks carry unique identifiers to avoid confusion with
other rounds and pingers.

Indirect pinging essentially gives a “second chance” to
pinged nodes that might have been congested or slow during
the initial ping. It also avoids potential network congestion on
the direct Mi −Mj network path. Both of these reduce false
positive rates.

Analysis in [14] shows that even without the indirect
pinging, failures are detected within O(1) protocol periods
on expectation. In addition, the SWIM protocol guarantees
eventual detection of all failures (eventual completeness).

SWIM Dissemination Component: SWIM nodes continu-
ously piggyback the information about node join/leave/failure
atop the messages they send out, namely ping, ack, and indirect
ping request for quick dissemination. In addition, a receiv-
ing node records new information in the message and reacts
accordingly.

This “infection-style” dissemination provides a gossip-like
behavior for all membership information. Analysis [14] shows

that in a system with N nodes, information spreads with high
probability to all nodes within O(log(N)) time periods.

Using a Membership List in IoT: Full membership has
long been used as a building block in Internet-wide dis-
tributed systems for building reliable and fast protocols [12],
from leader election and multicast trees to consensus. Medley
enables the same class of protocols to be designed over IoT
networks, without the need to rely on any kind of central-
ization. These protocols are already used in IoT networks
for spreading commands and for coordination. Medley allows
these protocols to work in scenarios without access to clouds
(e.g., battlefield, environmental observation systems), or where
low latency operations are needed (e.g., smart farms), or where
centralization is infeasible (e.g., with data privacy constraints
such as hospitals). The fundamental tradeoff that Medley
enables is to impose a low background bandwidth in maintain-
ing these membership lists, so that these other protocols, on
top of membership, can be run quickly and with minimal mes-
sage exchange. Centralized and “cluster”-based approaches
can incur delay in communication or on-demand cluster selec-
tion. For instance, a 1 RTT leader election protocol with
(N − 1) messages can be designed atop Medley’s full member-
ship lists–each node selects the lowest ID (for instance) node
in its membership list, and the leader multicasts an “I am the
leader” message to all. We believe this is the right direction for
IoT deployments—Medley begets simpler probabilistic proto-
cols without corner cases, thus making it easier to deploy,
debug, measure, and optimize IoT applications.

III. MEDLEY: DESIGN AND ANALYSIS

A. Spatial Pinging

We target settings where IoT devices are connected via a
wireless ad-hoc network. In such scenarios, the SWIM fail-
ure detector described in Section II is inefficient because it
picks ping targets uniformly at random. This spreads pings
and acks across far distances in the ad-hoc network. Far pings
and acks require more routing hops, incurring higher commu-
nication overhead on intermediate nodes, longer latency, and
create congestion and packet losses.

Thus, we propose in Medley a way to replace the ran-
domized target selection in SWIM with a skewed randomized
mechanism which takes distance to target into account. We
call this as spatial target selection.

Spatial Target Selection: In Medley, a node chooses to ping
a given target with probability proportional to 1

rm , where r is
the distance to the target and m is a fixed exponent.

An example is shown in Fig. 2. Mi has in its member-
ship list nodes Mp , Mq , and Mr at distances d, 2d, and 4d
respectively. In a period of the SWIM protocol at Mi , it has
the highest probability (∝ 1

dm) of pinging Mp . Similarly, the
probabilities for pinging Mq ,Mr are respectively ∝ 1

(2d)m
,

and ∝ 1
(4d)m

. Using appropriate normalization constants, we
depict two points in the space of m. If m = 1, then the respec-
tive ping probabilities to Mp ,Mq ,Mr are 0.57, 0.28, and 0.15.
However, increasing the exponent m to 2 localizes pings more–
the changed ping probabilities are respectively 0.75, 0.2, and

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2495

Fig. 2. Example of ping target selection in Medley.

0.05. Mp with probability 0.75 will be pinged even more
frequently.

The above calculations indicate that higher values of m
localize ping-ack traffic more and incur lower communication
overhead. At the same time, more localized pinging reduces
the randomness of pinging and thus increases the detection
time. We wish to find “good” values for m that optimize both
network traffic and detection time. We do so in Section III-B.

We point out that Spatial Pinging (Medley) is a generaliza-
tion of SWIM. When m = 0, spatial pinging degenerates to
SWIM with uniform target selection. m =∞ means that each
member uniformly pings to its closest neighbours.

Other Components: Just like SWIM, Medley disseminates
information by piggybacking atop pings, acks, and indirect
pings (Section II, “SWIM Dissemination Component”). This is
a gossip style of dissemination and is also used to disseminate
node join/leave information. When a new node joins, it: i) bor-
rows the membership list from any of its 1-hop neighbors,
and ii) starts piggybacking its information atop the dissemi-
nation component, and thus becomes included in other nodes’
membership lists.

Medley is able to seamlessly borrow optimizations from
SWIM. One such important optimization is suspicion, which
allows mistakenly-detected alive nodes a second chance to dis-
prove their false detection. Here a detected node is not marked
as failed but instead is suspected and this suspicion gossiped
to other nodes (via pings and acks). If another node success-
fully pings the suspected node via normal pinging, before the
suspicion times out, the suspected node rejuvenates in mem-
bership lists and is not deleted from membership lists. More
details can be found in the SWIM paper [9].

B. Analysis

We analyze Medley’s spatial pinging under certain idealized
assumptions. For tractability, we assume that: i) the N nodes
are uniformly spread with a density of D, and ii) a pinging
node picks targets only up to a distance of R away.

First, to minimize detection time we wish to maximize
the expected number of pings a given node receives dur-
ing a pinging period. We denote this expected number as
E[Pings received per period] or EP(m), where:

EP(m) =

(∫ R

0

1

rm
D(2πr) · dr

)
· 1

πR2D

=

(∫ R

0

1

rm−1
· dr
)
· 2

R2
(1)

In the first line of the equation, the integral term contains the
probability of being picked as a ping target(1

rm), multiplied
by the number of nodes in an annulus at radius r (D(2πr) ·
dr). The term beyond parentheses is a normalizing constant to
ensure that when m = 0, which is the uniform default SWIM,
Equation (1) comes to an expected 1 received ping.

Second (along with maximizing ping probability), we simul-
taneously wish to minimize communication cost C(m) incurred
by pings received at a given node. A message transits over
multiple hops in the underlying ad-hoc network. Assuming a
fixed size for messages, C(m) is proportional to the number of
hops incurred by the message. Again for tractability, we calcu-
late a message’s cost as proportional to the distance between
its sender and receiver (as this is correlated with hop count).
We obtain:

C (m) =

(∫ R

0

1

rm
D(2πr) · r · dr

)

=

(∫ R

0

1

rm−2
· dr
)
· (2πD) (2)

This is obtained by multiplying the expected number of pings
in the annulus of radius r (similar to Equation (1)), by the
communication cost incurred by the multi-hop network, which
is proportional to the target distance r.

In order to simultaneously minimize C(m)) and maximize
EP(m), we define our optimization function that we wish to
maximize as: Ratio(m) =

EP(m)
C (m)

.
Theorem 1: Medley’s spatial pinging: (i) provides com-

pleteness, and (ii) optimizes Ratio(m) at the following values
of exponent m:

1) If the ratio of deployment area dimension to inter-node
distance is high, then m =∞ is optimal;

2) If the ratio of deployment area dimension to inter-node
distance is low, then m = 3 is optimal.

Proof: First, to prove completeness, consider a failure of
node Mj . We observe that with at least one non-faulty node
Mi in the system, Mi has a non-zero probability of pinging
Mj during any protocol period subsequennt to Mj ’s failure.
Because of the (biased) randomness of picking ping targets,
Mi is guaranteed to eventually pick Mj as a ping target in a
future period. Mj will be unresponsive (because it is failed),
and thus Mi will mark Mj as failed.

2496 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE I
RATIO OF EXPECTED NUMBER OF PINGS (NEED TO MAXIMIZE) TO

COMMUNICATION (NEED TO MINIMIZE). HERE x = R
d . CONSTANTS

ELIDED

Second we find the optimal value of m. Explanding the
expected ping count EP(m) gives us:

EP(m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R2−m

2−m
· 2

R2
m < 2

log

(
R

d

)
· 2

R2
m = 2(

1

dm−2
− 1

Rm−2

)
· 1

m − 2
· 2

R2
m > 2

(3)

where d represents the distance to the nearest node (for a
2-dimensional deployment, d ∝ 1√

D
).

Similarly, for communication cost C(m):

C (m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R3−m

2−m
· (2πD) when m < 3

log

(
R

d

)

· (2πD) when m = 3
(

1

dm−3
− 1

Rm−3

)

· 1

m − 3
when m > 3

(4)

Table I shows the variation of Ratio(m) =
EP(m)
C (m)

as m is
increased (second column). To make comparisons tractable,
the third column shows the normalized value Ratio(∞)

Ratio(m)
. We

wish to minimize this value (in order to maximize Ratio(m)).
From the table, we can eliminate some possibilities for

optimizing Ratio(m):
1) m = 0 can be ignored as Ratio(m = 1) is higher than

Ratio(m = 0),
2) m = 2 can be ignored as x

log(x)
has a minimum of e

(> 1),
3) m = 1 can be ignored as Ratio(3)

Ratio(1)
= x

2 log(x)
has a

minimum at e
2 > 1.

Therefore, the choice for optimizing Ratio(m) boils down
to either m = 3 or m =∞. Next we observe that:

1) If R � d (in particular R
d > e � 2.718 or log(Rd) > 1,

then m =∞ is optimal. In other words, if the dimension

of the IoT installation area is much larger than inter-
node distances, local pinging is optimal.

2) If R
d < e � 2.718, m = 3 is optimal.In other words, for

small installation areas (e.g., a room or a floor, where R
is small), or areas of low node density (where inter-node
distance d is high), Medley with m = 3 is optimal.

Theorem 2: In an area with symmetric pinging (e.g., large
deployment, or 3 dimensional area), when Medley is config-
ured to have each node send 1 ping per period, 2 it achieves
an O(1) expected time for failure detection, while imposing
an O(1) message load.

Proof: Consider a system of N nodes M1,M2, . . .MN .
Without loss of generality, let M1 be the node failing. Denote
as PPm (i) the probability of Mi pinging M1 in a given period,
according to the normalized spatial ping distribution and m.
Because each Medley node sends 1 ping per period, by sym-
metry, a node M1 will also receive an expected 1 ping per
period. This means that

∑N
k=2 PPm (k) = 1, for all values of

spatial exponent m we may choose.
Now the probability that at least one of the nodes

M2, . . .MN picks Mi as ping target in a protocol period
(and thus detects its failure) is FP(m) = 1 − ∏N

k=2(1 −
PPm(k)). Because the product of terms with a fixed sum
(
∏N

k=2(1−PPm (k))) is maximized when all terms (PPm(k))
are identical, we have for all m, FP(m) ≥ FP(m = 0).

When m = 0 (the default uniform SWIM), each of the nodes
M2, . . .MN pings Mi per period with identical probability

1
N−1 . Thus, FP(0) = 1−(1− 1

N−1)
N−1 � 1−e−1 for large

N. This is equivalent to tossing a coin with heads probability
(1− e−1) per period. Thus: i) the expected detection time at
m = 0 is O(1

1−e−1) periods, which is O(1); and ii) the time
for the failure to be detected with high probability (w.h.p.)
(1− 1

N) is log(1
1−e−1)

(N) periods.

Since FP(m) ≥ FP(0), the expected detection time and
w.h.p. detection time for spatial pinging are both ≤ the
corresponding values for m = 0.

IV. TIME-BOUNDED FAILURE DETECTION

Theorem 1 was able to prove that detection is eventual. In
practice this could still mean particularly long detection times
in IoT scenarios. Consider a node Mi that is “far” from most
other nodes. Because ping probabilities to Mi are low, when
Mi fails, the biased target selection choices imply that it may
be an arbitrarily (and indeterminately) long time for the first
non-faulty node to pick Mi as ping target.

We now present an optimization that preserves the biased
randomness of the Medley’s spatial pinging from Section III,
but is additionally able to specify an absolute time bound on
how long a failed node takes to be detected.

A. Design of Time-Bounded Medley

The key idea is to ping via a round-robin mechanism which
is weighted by ping probability.

2Note that this is a different assumption from the analysis in Equation (3),
but is closer to our real implementation.

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2497

Algorithm 1 Time-Bounded Target Selection in a Super
Round From a Single Node Mi ’s View
Require: Runtime Probability List PMi

� Super round: Create initial bag BAGMi

1: for each pj in PMi
do

2: Put � pj
pmin
	 into BAGMi

3: end for
4: Create an empty set onePassTargets

5: � Start target selection
6: while BAGMi

is not all zeros do
7: � Initialize new Pass if needed
8: if onePassTargets is empty then
9: onePassTargets =

{Mj } for all j that Countj > 0 in BAGMi

10: end if
11: � One Period
12: Randomly pick one node in onePassTargets

as PING target
13: Remove Mj from onePassTargets
14: Reduce BAGMi

(Mj) by one
15: end while

Consider a member (node) Mi with membership listMLi ,
currently containing K entries (M1,M2, . . . ,MK). Mi also
maintains a runtime probability list PMi

= [p1, p2, p3 . . . pK],
where pj is the pinging probability of respective member Mj

from MLi .
The pj values in PMi

are calculated using the spatial ping
probabilities of Section III. The pseudocode for our approach
is shown in Algorithm 1. We explain below.

Let pmin = min{PMi
}, the lowest probability among all

non-faulty members inMLi . Now, denote Countj = � pj
pmin
	.

We create a initial bag list as:
BAGMi

= [Count1,Count2, . . .CountK] (Line 1 - 3).
The weighted round-robin pinging at node Mi creates a bag

Bi which consists of Countj instances of node Mj for each
Mj ∈ MLi . This can be thought of as a bag of balls, with
Countj balls of color Mj .

During each period, Mi picks one ball from this bag (with-
out replacement), and uses the corresponding member as ping
target for that period. The bag is created at the start of a super
round (which consists of multiple periods), and a super round
completes when the bag is empty. Thus, a super-round consists
of (ΣK

1 Countj) number of protocol periods.
Picking these balls (targets) uniformly at random from the

bag causes high variance in detection times. To reduce this, we
introduce the notion of passes. Algorithm 1 depicts how Mi

selects targets in a super round. At Mi , ping target selection is
done randomly but in multiple passes through the bag. Each
pass consists of multiple periods. In each pass at Mi , every
node Mj (in Mi ’s bag), which has at least one leftover instance
in the bag, is touched (removed, and pinged) only once. These
instances are removed in a random order (Line 8 - Line 13).

Suppose a particular pass contains r instances (thus consist-
ing of r protocol periods). Then during these r periods, Mi

Fig. 3. An example of time-bounded target selection in one super round
(seven time periods in total, four members in network, m = 1).

sequentially picks one instance as ping target based on the
order. When the final pass is done (and no instances are left
in the bag), all instances are put back in the bag, a new super
round is started, and the above process is repeated.

Note that the different super rounds may contain different
numbers of periods, as the membership list is continuously
changing (we discuss node joins and leaves in Section IV-C).

Fig. 3 shows an example of Algorithm 1 in action. There
are four active members in the network, aligned topologically
in a straight line. ‖MiMr‖ = ‖MrMq‖ = 1

2‖MqMp‖ = d
(as Fig. 3(a)). Thus, Mr ,Mq ,Mp are d, 2d and 4d away
from Mi respectively. When m = 1, PMi

= [1d ,
1
2d ,

1
4d],

pmin = 1
4d . Thus, BAGMi

= [4, 2, 1] respectively for Mr ,Mq

and Mp .
At the start of this super round, there are 1 + 2 + 4 = 7

instances in the bag at Mi . Fig. 3(b) shows that for our proto-
col Mi sequentially pings Mr ,Mp ,Mq in the first three time
periods. Then, Mp’s instance is no longer in this bag (only 3
for Mr , and 1 for Mq left), so in Pass 2 Mi pings Mq and
Mr in the next two time periods. Only 2 Mr instances are
left. Passes 3 and 4 each pick one Mr for one period each.
This concludes the super round for Mi , and new bag is created
again for the next super round based on the latest MLi .

B. Time Bound

The approach above preserves relative ping selection prob-
abilities because ping Counti ’s are normalized derivations of
ping probabilities pi . At the same time, this protocol provides
time-bounded completeness, as we prove now.

Theorem 3: In a system of N IoT nodes, consider a non-
faulty node Mi and a faulty node Mj in Mi ’s membership
list. Let α be the highest Countk in Mi ’s bag counts (i.e.,
BAGMi

). Then: Medley guarantees Mi detects Mj ’s failure
within a number of pinging periods that is upper-bounded by:

((N − 2) · α) + (N − 1)

Proof: The worst case occurs when: a) Mj has the lowest
count (=1) in Mi ’s membership list (bag), i.e., Mj is the far-
thest node from Mi , b) all other (N − 2) nodes in Mi ’s bag

2498 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

share the same Countk value of α; and in the execution run:
c) Mi creates a new bag, and the first node it pings is Mj ,
and d) this first ping succeeds but Mj fails right after.

From this point onwards: (i) Mi will spend the rest of this
super round by executing (N − 2) · α periods pinging nodes
other than Mj . At the start of the next super round, when
Mi creates a new bag, the first pass will pick every node
once, including Mj . Thus, the worst case occurs when Mj is
picked last at the end of this first pass (in this next bag). This
means: (ii) Mi will take another (N − 2) protocol periods to
get around to pinging Mj . Finally: (iii) one additional protocol
period is needed where Mi actually pings Mj .

Adding (i), (ii), and (iii), the worst-case detection time of
faulty node Mj at Mi is (in protocol periods):

((N − 2) · α) + (N − 1)

C. Node Joins and Removals

If a new node Mj is added to, or removed from, Mi ’s mem-
bership list just as the bag is about to be refilled, then all
the members’ ping probabilities (and thus Counts) are recal-
culated and normalized to reflect the changed membership.
Additionally, Medley also allows node joins and removals in
the midst of passes–the only rule required for correctness (to
preserve relative ping probabilities) is to normalize the ping
probability (and thus Counts) of the added/removed nodes
to match current super round progress, based on the leftover
nodes in the bag. When the bag becomes empty next, proba-
bilities (and thus Counts) of all other members are recalculated
and re-normalized anew.

V. MEDLEY-F: FEEDBACK-BASED TARGET SELECTION

Medley, as described so far, may have a long tail of detec-
tion time for a small subset of nodes. We define an unlucky
node ni as one whose neighbors have all their (respective)
neighbors much closer to themselves, while ni is relatively
far from each of its neighbors. When the exponent m is high
and pings stay local, unlucky nodes have fewer pingers. If an
unlucky node fails, its detection time will be longer than other
nodes. To reduce this tail, we explore a variant of Medley,
called Medley-F. Medley-F consists of competing approaches:
an active approach wherein a node actively realizes it is
unlucky, and a passive approach wherein other nodes realize
the unlucky node. In both cases, the modified Medley adjusts
the rate of pinging to the unlucky node—permanently for the
active approach and temporarily for the passive approach.

A. Active Feedback Strategy

In active-feedback, every node actively monitors itself and
reports its unluckiness to its 1-hop neighbors. These neighbors
adjust their pinging probability to the unlucky node.

1) Member Self Monitoring: Each node estimates, via
exponential averaging, the average interval of incoming
pings. Given a new measurement M of pinging interval,
Medley-F updates the estimate pinging interval I via expo-
nential averaging: I ← (1 − α) · I + α · M . We use

Algorithm 2 Probability Modification for a Single Node Mj

After Receiving UNLUCKY Reports of Mi

Require: Mj ’s Runtime Probability List PMj

1: � Get target probability for unlucky node Mi

2: Pabove = all pk in PMj
with pk > pMi

or k = Mi

3: ptarget = mean(Pabove)

4: � Migrate probability from high-prob nodes to Mi

5: Psponsor = all (pk - ptarget) in PMj
with pk > ptarget

6: for each pk in Psponsor do
7: pk − = (pk - ptarget) × ptarget−pMi

sum(Psponsor)
8: end for
9: pMi

= ptarget

α = 0.125 in our implementation. If the estimate I is above
ACTIVE_TIMEOUT, Mi considers itself as UNLUCKY and
reports to all its direct neighbors. We recommend setting
ACTIVE_TIMEOUT to be less than suspicion timeout (e.g.,
half of suspicion timeout), so that an unlucky node can report
its unluckiness and potentially update its aliveness to other
nodes in a timely manner.

2) Unlucky Handling: When a node Mj receives an
UNLUCKY report from a 1-hop neighbor Mi , Mj uses
Algorithm 2 to boost the pinging probability of Mi to reach the
average pinging rate for other non-unlucky (or lucky) nodes.

We describe Algorithm 2 via an example. Consider a node
M5 is maintaining pinging probabilities of [0.43, 0.3, 0.17,
0.1] for its four neighbors M1 - M4. Say M5 receives an
UNLUCKY report from M4 (p = 0.1). Following Lines 1 - 3,
the target (average) pinging probability from M5 to M4 will be
(0.43 + 0.3 + 0.17 + 0.1)/4 = 0.25. Because M1 and M2 have
above average probabilities, they become probability sponsors
(Line 5). The excess probability of 0.18 + 0.05 = 0.23 is pro-
vided to boost M4 from 0.1 to 0.25. Since 0.23 > 0.15, M1 and
M2 respectively and proportionally provide 0.18× 0.15

0.23 = 0.12

and 0.05 × 0.15
0.23 = 0.03. The final probability list at M5 is

[0.31, 0.27, 0.17, 0.25].
This approach boosts unlucky nodes and reduces pinging

only to nodes with already-high ping rates. This approach also
works with Section IV’s bag strategy–instances in the current
bag are updated immediately based on new probabilities.

B. Passive Feedback Strategy

The passive-feedback strategy is the reverse of active-
feedback, and uses neighbors to detect an unlucky node. In
passive-feedback, each node Mi actively maintains timestamp
information about the last contact from other members. Such
contact may be either through a direct contact where 1-hop
neighbor sends or forwards a message, or via an indirect
contact where a multi-hop member originates a message. To
reduce the message payload, we do not keep information for
intermediate routing path nodes. When selecting the next ping
target, Mi flips a coin with probability ppassive , and if it turns
up heads, Mi does a passive check. During a passive check,
Mi looks at its membership list and checks whether any node
has not contacted Mi in the last PASSIVE_TIMEOUT time

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2499

units. If any, Mi suspects it as unlucky and randomly selects
one of them as the next ping target. In our implementation we
set to a less aggressive ppassive = 0.1.

Under the bag strategy of Section IV, the above selection
does not remove any instance from the bag. We recommend
setting PASSIVE_TIMEOUT larger than tperiod × N , where
tperiod is the pinging interval and N is network size, so that
the ping target selection does not regress to uniform random
pinging.

In active-feedback, the unlucky members that a node gets
notified about are always 1-hop neighbors, while in passive-
feedback the reported unlucky nodes are often “far” members
whose information tends to stay local (at high m). While
pinging such far nodes involves more hop-to-hop communica-
tion, passive-feedback can: i) still save considerable bandwidth
compared to basic SWIM since the majority of ping targets
are still local, and ii) avoid extra messages to report unlucky
nodes that active-feedback needs.

VI. SYSTEM DESIGN

We now discuss practical considerations that were needed
in order to implement Medley in a real IoT network.

Distance Metric: The analysis in Section III-B is based on
physical distances. However, exact physical locations are hard
to calculate; furthermore, physical distance may not be pro-
portional to end to end (multi-hop) routing latency. As a result,
our Medley implementation replaces the use of physical dis-
tance in the ping-probability equations (Section IV) with the
metric of hop-distance. The hop-distance is the actual total
distance that a message travels between two nodes, i.e., sum
of distances of all intermediate hops. This can be measured
during bootup via messages between all 1-hop node pairs, e.g.,
by [21].

For instance, if the locations of nodes M1, M2 and M3 form
an isosceles right triangle with ‖M1M2‖ = ‖M2M3‖ = 1.
Suppose M1 pings M3 through M2: Medley considers the dis-
tance between M1 and M3 as ‖M1M2‖+‖M2M3‖ = 2 instead
of
√
2 which would have been the physical distance.

In our deployment experiments (Section VII), for compar-
ison, we also implemented two alternative distance metrics:
1) latency metric: actual end-to-end latency (which can vary
significantly over time, due to link characteristics), and 2) hop-
number metric: count of number of hops. Over multiple
experiments, we found that: a) Medley with latency met-
ric was comparable to hop-distance metric, and b) Medley
with hop-number metric behaves similar to hop-distance met-
ric under grid topology. Thus hereafter we only show results
using hop-distance metric, with a few differing results shown
using.

Other Medley Features: We clarify a few other features of
Medley. First, the spatial probabilities we just described are
for selecting not only ping targets, but also indirect pings.
(Section II). Second, the rejoin of a failed node is considered
as a new node. We denote the ID of each node with its IP
address and local timestamp when it joins the network. Two
IDs with the same IP but different join timestamps are con-
sidered as two incarnations. If Mi receives an active update

for Mj with ID (ipj , ts1) that is different from its local record
for Mj : (ipj , ts), Mi will consider the old incarnation as
failed and continue with the latest ID for Mj . In practice this
scenario occurs rarely as Medley dissemination times are fast.

VII. EXPERIMENTS

We perform both simulations and deployments using
Raspberry Pi devices. We present simulation results first in
Section VII-A, and then deployment results in Section VII-D.

A. Simulation Results

The theoretical analysis of Section III made simplifying
assumptions about uniformity and used physical distances. In
this section, we explore realistic node layouts and measure the
behavior and performance of our real Medley system.

There is a dearth of reliable simulators for IoT networks.
We wrote our first simulation using NS-3 (v3.27), to be able
to capture link layer effects [22]. However, NS-3 code cannot
be deployed directly on Raspberry Pis. Thus for this current
paper, we developed a second matching simulator, in Java,
that uses the same code as our Raspberry Pi deployment
but without NS3’s fine-grained link layer modeling. We veri-
fied that the Java simulator’s results match with both: 1) our
deployment at small scales, allowing us to use the simulator
to extrapolate deployment results; and 2) NS-3 results at small
scales. Hence we present only the Java simulation results.

We evaluated Medley and Medley-F in three topologies:
i) Random (nodes are randomly placed), ii) Grid (7x7 grid),
and iii) Cluster (there are 5 clusters with 7, 7, 9, 10, 16
nodes respectively where each cluster is bounded by a fixed
square area), each with 49 nodes deployed in 15m × 15m
area. The communication radius for each node is 4m. The ran-
dom and cluster topologies are newly generated (new seed)
for each trial run. The default number of members chosen
as indirect pinger was K = 3, and protocol period was 20
time units. The suspicion timeout, ACTIVE_TIMEOUT and
PASSIVE_TIMEOUT were set as 160, 80, and 400 time units
in the experiments respectively. Each data point reflects data
from 1000 independent runs. In every period, the probability
to apply passive-feedback is 10%. Unless otherwise specified,
Medley uses the hop-distance metric from Section VI.

1) Failure Detection and Dissemination Latency: We
define first detection time as the time gap between a failure
occurring and the first non-faulty node detecting this failure
(after suspicion timeout). Fig. 4 shows how exponent m affects
first detection time (averaged across 1000 runs), and square
root of standard deviation. Across the three topologies using
the hop-distance metric, Grid has the lowest detection time,
with Random next, and Cluster the worst. In Random and
Cluster topologies, there might be unlucky nodes (Section V).
When m is high, pings stay local, and unlucky nodes are
pinged less frequently, thus prolonging their detection times.
Comparably, Grid is more deterministic in assigning every
node at least a small set of neighbors at short distances, pro-
ducing more stable detection times. This result is different
from Section III-B’s analysis because: i) the node layout and

2500 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. First failure detection time under different m and for 3 topologies. All use hop-distance metric, except Random (hop-number) which uses the
hop-number metric.

Fig. 5. Differential first detection time (dfdt), stacked dissemination time (dsm). Various m and optimizations. Random topology. Hop-distance metric.

density assumptions are different, and ii) use of hop-distance
metric (Section VI) to calculate ping probabilities.

For Cluster and Random topologies, first detection time
stays low for m ≤ 3.5 and rises quicker when m ≥ 3.5. This
is due to that: i) a quick increase (with rising m) in initial
bag size increases the duration of a super round (Section IV),
and ii) unlucky node’s lower probability (fewer instances in
bag) to be as a ping target by any of its neighbours. When
m is low enough (below 3.5), the bag sizes are manageable
and nodes have sufficient pingers for fast failure detection.
Beyond m = 3.5, the bag size increases quickly, and thus super
round length. It takes much longer for a pinger to pick a failed
unlucky node, which could be as long as a super-round in the
worst case (Theorem 3). We also observe from Fig. 4 that
Medley using the hop-number metric in the Random topology
behaves similar to Grid topology, with relatively stable first
detection time. The reason is that each member has at least
one one-hop (shortest distance) neighbour as a pinger, making
unlucky nodes rarer than when using hop-distance metric.

Dissmination Latency and Active & Passive-feedback
Optimizations: We measure dissemination time, the time for
all nodes to know about a failure after the first detection. Fig. 5
stacks dissemination time atop detection time. For a fair com-
parison, instead of raw first detection time, in (only) this plot
we use differential first detection time (dfdt) = (first detec-
tion time) minus (minimum detection time). The (theoretical)
minimum detection time in our deployment is 180 time units:
a sum of detection timeout of 20 time units, and suspicion
timeout of 160 time units.

We find that active-feedback (only) is the most effec-
tive at reducing dfdt by up to 31.1%. Active and pas-
sive together reduce by 27.4% and passive-feedback-only by
11.5%. Combining both active and passive provides 54.6%
reduction in dissemination time (dsm), with passive-only at

Fig. 6. Failure detection time under simultaneous failures (Random
topology).

44.5% and active-only at 31.6%. Intuitively, active-feedback-
only offers the shortest and stablest first detection time even
under high m, since it helps each unlucky node get fre-
quent pings. For dissemination, intuitively, the combination
of active-feedback spreading locally and passive-feedback
spreading far away, is fastest. Overall, at m = 3, we recom-
mend combining active and passive, to reduce P95 dfdt by
31.2% and dsm by 47.2%.

Simultaneous Failures: We simultaneously fail 50% (ran-
domly chosen) nodes (24 out of 49) in the Random topology.
Fig. 6 shows the average first detection time. The lower and
higher error bars are respectively the earliest and latest time
any failure is detected, averaged across runs.

The average (raw) first detection time of Medley and its
variants rises gently as m and number of failures increase.
As m rises, a failed unlucky node waits longer to become a
ping target because pings stay local. Now, define the detection
gap as the percentage by which detection time is prolonged
under massive failure (50% nodes) vs. just a single failure
scenario. In base SWIM (at m = 0), the detection gap is only
12.3%–due to the uniform randomness, a failed node has a
high probability 1 − (4849)

24 � 39.0% of being pinged each

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2501

Fig. 7. Failure detection time under domain failures (Cluster topology).

Fig. 8. CDF of hop numbers that messages travel under different strategies
in Random topology.

round after failure. In Medley, the detection gap is 20.6%
due to localized pings and unlucky nodes’ higher detection
times. Applying active and passive feedback reduces the gap
to 15.8%. Note that Medley’s slightly longer detections come
with massive bandwidth savings, which will be shown later in
this section.

Domain Failure: Next, we explore the effect of massive
failures in an area (e.g., connected to a power breaker). 49
nodes are located in five clusters in the square area of interest.
Each run randomly fails a whole cluster.

From Fig. 7 (bars similar to Fig. 6) we observe that the
average first detection time stays low when m < 2, and as
expected it increases as m rises. The increase in detection time
with m is because of the ping localization under higher m,
implying that the typical way a detection proceeds at higher
m is from the edges of the failed cluster towards the cluster’s
middle. In comparison, lower values of m would detect nodes
near the middle of the failed cluster much quicker due to the
higher probability of far-away non-faulty pingers. Under high
m, both active and passive reduce detection time, with passive
more effective since it provides a higher chance to detect nodes
near the “middle” of the failed cluster.

Fig. 8 shows the CDF of the hop count of messages.
Point(x, y) means y% of messages travel fewer than x hops. As
expected, lower m (basic SWIM with uniform pinging) incurs
far more hops, while Medley localizes traffic. Active feedback
does not affect traffic much, since the ping probability mod-
ification occurs only among nodes with already-high pinging
probabilities, i.e., already close to pinger. Passive feedback
raises traffic as farther nodes are affected.

Since Medley’s goal is to minimize both communication
cost (messages sent, counting multiple hops) and detection
time, we measure the square root of their product in Fig. 9, for
Random topology. Each experimental run was identically long
at 300K time units, so trends would remain unchanged if we

Fig. 9. Average failure detection time × Communication cost, Square Root
(Random topology). Lower is better.

TABLE II
FALSE POSITIVE RATE UNDER DIFFERENT PACKET LOSS RATES (rloss)

AND EXPONENTS m

replaced communication cost, i.e., messages, with bandwidth
use, i.e., messages per second, or messages per second per hop.
Medley’s product cost (lower is better) falls quickly as m goes
from 0 to 3, and then slowly rises. At lower m, Medley pings
faraway nodes more frequently. Rising m increases detection
time (Fig. 4), yet the associated communication drop (due to
localization) is faster. At higher m, communication cost reduc-
tion slows down, and thus detection time increase dominates.
Compared to base SWIM (m = 0), Medley’s product cost is
35.2% lower.

With active-feedback, Medley-F’s product cost (under
m = 3) is 37.8% lower than base SWIM, as active-feedback
lowers communication cost effectively. Applying passive-
feedback, and active+passive, do not bring higher benefits,
since passive sends faraway pings. However, product cost is
still lowered by up to 30% and 31.2% respectively compared
to basic SWIM. At m > 3, in all feedback-based strategies,
communication reduction balances out detection time increase.

2) False Positive Rate: We measure the rate of false detec-
tions, which are non-faulty nodes mistakenly detected as failed
(this may occur due to slow nodes, dropped packets, etc.).
Because false detections are affected by link layer behaviors,
we use the high-fidelity NS3 simulator under 25 nodes. In
Table II, we drop a random fraction rloss of packets (on hops).
We measure false positive rate as the fraction of time, over the
entire run, that a false positive detection persists, i.e., fraction
of time that at least one non-faulty node is considered failed
by at least one other non-faulty node.

In Table II, higher packet loss rates imply higher false pos-
itive rates, as expected. We also observe that false positive
rate drops with increasing m (for a given packet loss rate).
This is because at lower m, pings and acks have to transit
more hops, thus increasing the chances that at least one of
the hops will drop the packet, and a non-faulty node will be
detected as failed due to a timeout. Further, at higher m, the
suspicion (Section III-A) arising from a failure detection has

2502 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 10. Differential first detection time (dfdt), and stacked median dissem-
ination time (mdsm), under different network sizes. For transparency, lower
plot shows % nodes that does not receive dissemination before simulation
ends.

Fig. 11. Failure detection under Mobility. Solid lines show Medley operating
with stale internal data structures after movement, while dotted lines (_fr)
represent Medley with fresh data structures after movement.

a higher chance of being resolved due to the more repetitive
and localized nature of pings.

B. Scalability

We evaluated the scalability of Medley and Medley-F up
to N = 2048 nodes under m = 3, Random topologies, and
in a square area, with fixed density of 0.22 node/sq meter.
Fig. 10 shows: a) dfdt: first detection time (same as Fig. 5), and
b) msdm: median dissemination time (stacked atop dfdt). At
large N, runs took long (e.g., N=2048 took 40 min per run, and
thus 5 days for the full experiment), and so we truncate these
experiments. While Medley is complete, for full transparency
of results we also show the incomplete dissemination (due to
experiment truncation) in the lower part of the plot. We plot
the median and also plot standard deviation bars. Each data
point in the plot is from 1000 runs, with the exception of 200
simulation runs at N = 2048.

We observe that: a) detection time is constant and insen-
sitive to system size, b) median dissemination time increases
logarithmically with system size (note the logarithmic x axis),
and c) both active and passive strategies reduce dissemina-
tion time, with passive being both faster and able to reduce
incomplete dissemination.

C. Performance Under Mobility

While Medley is intended for static topologies, we show that
it is tolerant to moderate amounts of mobility. The experiment
in Fig. 11 starts with 49 nodes in a random topology over a
15m × 15m area. Each run starts Medley in a new topology
and reaches a steady state. Then we instantly move a fraction

of the nodes in random directions by distances randomly uni-
formly chosen among [0, min(X meters, distance to edge of
square)] (X is the x axis value on the plots). With this move, we
do not update Medley’s internal topology-related data at any
nodes: distances, ping probabilities, etc., all remain stale from
the pre-move topology. However, routing tables are updated
post-move, as would be expected in a mobile network so that
packets can be routed correctly.

In Fig. 11, the solid lines show the post-move performance
of Medley, operating still with stale (pre-move) internal data
structures. Dotted lines show Medley with corrected post-move
internal data. Essentially, the gap between the solid and dot-
ted lines shows the effect of Medley continuing with stale data
structures. We observe that: a) at small mobility up to X = 4
meters, even with up to 40% of nodes moved, stale data does
not affect Medley performance; b) when few nodes move (10%
plot), larger mobility distances can be tolerated—the metric
rises by at most 7.1% at X = 16; c) when more nodes move
(40% plot), metric degradation is worse at 35% at X = 16.
Overall, we conclude that: 1) moderate mobility degrades
Medley performance only moderately, and 2) Medley contin-
ues offering low communication and detection times even if
its internal data (ping distances and hence ping probabilities)
remain stale.

D. Deployment Evaluation

We implemented a prototype of Medley in the Raspberry Pi
(RP) 4 [23] environment. Our Java implementation was around
3000 lines of code, under Raspbian 4.19. We deployed Medley
in a network of 16 IoT devices in our lab space. Figs. 12(a)
and 12(b) show a photograph and a map of one of our topolo-
gies. This random topology was in a 6m × 6m area (grid lines
only for reference purposes). Each device was a Raspberry Pi 4
model B, with 2GB LPDDR4 RAM and Broadcom BCM2711,
1.5 GHz quad-core Cortex-A72 CPU. While Medley works
modularly with any ad-hoc routing protocol, for concreteness
we use OLSR routing [24] due to its ease of configurabil-
ity for Pi4s, and popularity in discussion forum posts. Since
the signal strength of Pis were too strong to make multi-hop
routing with respect to the limited deployment area, we atten-
uated each Pi by both: a) consistently wrapping in aluminum
foil, and b) setting transmit power to 15 dBm, to force more
multi-hop transmissions. Red lines Fig. 12(b) is a screenshot of
routine paths. Prior to these experiments, we performed bench-
mark experiments to verify that this attenuation was stable and
consistent across Pis.

1) Failure Detection and Dissemination Latency: From
Fig. 13 we observe that failure detection time and dissemi-
nation time both increase as m becomes larger. (The plot used
32 data points per failure, with average and standard deviation
shown.) This is because disseminating failure information of
unlucky nodes (e.g., nodes 0, 9 in Fig. 12) takes a while since
spatial pinging (hence piggybacking of failure information)
stays largely local especially at high m. Similar to simulation
results, both active-feedback and passive-feedback produce
benefits for first detection time and dissemination time. From
the simulation (Section VII-A), we expected active-feedback to

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2503

Fig. 12. Topology of Raspberry Pi deployment.

Fig. 13. First failure detection time and dissemination time for Raspberry
Pi experiments.

work the best for first detection time and passive-feedback to
be effective on dissemination latency reduction. In the deploy-
ment, active-feedback and applying both strategies do act
as expected. However, at high m, passive-feedback performs
poorly on dissemination time, because benefits of multi-hop
dissemination do not emerge in our smaller deployment scales.
passive-feedback may only be more preferable at larger scales.

2) Bandwidth Cost Over Time: We denote links that lie
on more routing paths (of node pairs) as hotter links, and
those on fewer paths as colder links. For simplicity we used
a smaller topology and a fixed routing table with 7 Raspberry
Pi [22]. Fig. 14 plots real-time bandwidth on a hotter link and
a colder link. In each run a node fails at time 60 (a hotter
node or a colder node). Compared to m = 0, m = 3 con-
sumes lower bandwidth on average (61.8% less for hotter link,
and 52.9% less for colder link), but fluctuates inside a super
round.

Both far pings and local pings tend to go through hotter
links. Bandwidth cost is high right after new nodes join (time
5 to 10) and right after failures occur (time 60 to 70)—this
is due to increase in indirect pings. Larger exponent values
(m) mean that a failure will cause bandwidth to rise more
(3× at m = 3 and 1.5× at m = 0). Yet the peak bandwidth
consumption in Medley (m = 3) stays lower than base SWIM’s
(m = 0).

At high m bandwidth usage has a periodic behavior caused
by the cyclical nature of the super-round. Fig. 15 depicts the
bandwidth and FFT for a 600s run with no failures. We first
observe that the bag selection strategy does not affect aver-
age bandwidth. Second, the random selection from bag has
lower bandwidth fluctuation over time, while pass-based has
bigger amplitudes. This is because in the pass-based approach

Fig. 14. Bandwidth change timeline. Failures occur at t = 60. Using the
hop-number metric.

Fig. 15. Run-time bandwidth on random vs pass target selection under
Medley (m = 3). Top: Bandwidth. Bottom: Bandwidth’s FFT.

(Algorithm 1), the pings in the second half of each super-round
tend to focus on close neighbors (a small group of nodes which
have higher counts in the bag), leading to temporally unbal-
anced communication load on links. In comparison, selecting
from the bag targets at random (rather than via passes) has
less pronounced periodicity.

Although random strategy benefits from balanced band-
width, it has longer detection times: 2×((N−2)·α)+1 periods,
almost twice as pass-based (for high m). If the application
prefers reducing detection time than minimizing bandwidth,
the pass-based approach is preferable.

VIII. DISCUSSION

Partial Membership Lists: Medley maintains full member-
ship lists, useful for building a swath of distributed algorithms
(Section I). Nevertheless, full membership lists can be “pared”

2504 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

down to partial membership lists, without affecting proper-
ties, while reducing overhead. Two examples follow. Ex. 1: If
a multicast tree (built atop Medley) uses only nearby neigh-
bors, the partial membership list can maintain mostly nearby
neighbors. Ex. 2: It is well-known that uniformly-randomly-
selected partial membership lists give identical properties as a
full list, for gossip multicast applications [25]. For this case,
Medley’s partial membership lists could be built in one of
two ways: i) apply a uniform-random selection strategy to
pick the partial membership list, and use spatial pinging, or
ii) apply the spatial distribution to pick the partial member-
ship list, and use uniform-random pinging. In both cases [25]
would extend, meaning that gossip over Medley with partial
lists would behave identically as gossip over Medley with full
lists.

Topology Optimizations: An open direction is leveraging
knowledge of network topology. For instance, one could avoid
intersecting routes for pings, route pings/acks avoiding failure
domains, and avoid routine via failed nodes.

IX. RELATED WORK

Classical Failure Detection: Failure detection in data-
centers is well-studied. The earliest failure detectors send
periodic “I am alive” heartbeats [11] to all other or a subset of
nodes. Timeout on the next heartbeat leads to failure detection.
Heartbeats may be multicast or gossiped [12] or spread hierar-
chically [26]. As described earlier, SWIM [9] is the inverse of
heartbeating, relying on pinging, and has bandwidth provably
within a constant factor of optimal. FUSE [15] disseminates
failure information via applications, to reduce network costs.

Failure Detection in IoT Networks: Existing IoT failure
detection schemes largely focus on data anomalies and can be
used orthogonally with Medley. Sympathy [27] uses flooding
and aggregates distributed data at the sink, detecting failure
by finding insufficient flow of incoming data. Memento [28]
uses a tree for failure monitoring, limiting its scalability under
failures. Network-level delays and packet traces can be used
for failure detection [29], [30]. Yet, these are hard to analyze
mathematically. DICE [6] uses context (e.g., sensor corre-
lation, state transition probabilities) to identify anomalous
readings and their sensor nodes. All the above works can be
used orthogonally with Medley. Asim et al. [31] partitions the
network into cells, detects failures within cells, and multicasts
it across cells–this however assumes a homogeneous network.

X. CONCLUSION

We have presented design, analysis, and implementation of
Medley, a decentralized membership service for distributed
IoT systems running atop wireless ad-hoc networks. Our key
idea is a spatial failure detector, that prefers pinging nearby
nodes with an exponentially higher probability. Compared to
classical SWIM, Medley and its variants detects failures just
as quickly, while lowering the product of failure detection
time and communication cost by 37.8%, and incurring low
false positive rates around 2% even with 20% dropped pack-
ets. Active and passive feedback reduce tail detection time by

up to 31%, and dissemination time by up to 54%. Code is
available at: http://dprg.cs.uiuc.edu/downloads.php.

REFERENCES

[1] Internet of Things (IoT) Market by Software Solution (Real-
Time Streaming Analytics, Security Solution, Data Management,
Remote Monitoring, and Network Bandwidth Management), Service,
Platform, Application Area, and Region—Global Forecast to 2022,
MarketsandMarkets, New Delhi, India, 2018. [Online]. Available:
https://www.marketsandmarkets.com/PressReleases/iot-m2m.asp

[2] D. Watkins. “Global smart speaker shipments and revenue by model
and price band: Q2 2018.” 2018. [Online]. Available: https://tinyurl.com/
smart-speaker-revenue

[3] K. Kapitanova, E. Hoque, J. A. Stankovic, K. Whitehouse, and
S. H. Son, “Being smart about failures: Assessing repairs in smart
homes,” in Proc. ACM UbiComp, 2012, pp. 51–60.

[4] J. Ye, G. Stevenson, and S. Dobson, “Detecting abnormal events on
binary sensors in smart home environments,” Pervasive Mobile Comput.,
vol. 33, pp. 32–49, Dec. 2016.

[5] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thSense: A context-
aware sensor-based attack detector for smart devices,” in Proc. USENIX
Security, 2017, pp. 397–414.

[6] J. Choi et al., “Detecting and identifying faulty IoT devices in smart
home with context extraction,” in Proc. IEEE DSN, 2018, pp. 610–621.

[7] European Parliament, “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing directive 95/46,” Off. J.
Eur. Union, vol. 59, nos. 1–88, p. 294, 2016.

[8] “Health insurance portability and accountability act of 1996,” ASPE,
Chicago, IL, USA, Rep. 104-191, 1996.

[9] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-consistent
infection-style process group membership protocol,” in Proc. IEEE DSN,
2002, pp. 303–312.

[10] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” in Proc. ACM SOSP, 1987, pp. 123–138.

[11] M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: A timeout-free
failure detector for quiescent reliable communication,” in Proc. WDAG,
1997, pp. 126–140.

[12] R. Van Renesse, Y. Minsky, and M. Hayden, “A Gossip-style failure
detection service,” in Proc. Middleware, 2009, pp. 55–70.

[13] T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias,
and M. Snir, “SP2 system architecture,” IBM Syst. J., vol. 34, no. 2,
pp. 414–446, 1995.

[14] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, “On scalable and efficient
distributed failure detectors,” in Proc. ACM PODC, 2001, pp. 170–179.

[15] J. Dunagan, N. J. Harvey, M. B. Jones, D. Kostic, M. Theimer,
and A. Wolman, “FUSE: Lightweight guaranteed distributed failure
notification,” in Proc. USENIX OSDI, 2004, pp. 1–6.

[16] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The
real Byzantine generals,” in Proc. IEEE DASC, vol. 2, 2004, p. 6.

[17] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[18] L. Lozinski. “How Ringpop from Uber Engineering helps distribute
your application.” 2016. [Online]. Available: https://eng.uber.com/intro-
to-ringpop/

[19] Serf. “Serf by HashiCorp: Decentralized cluster membership, failure
detection, and orchestration.” 2014. [Online]. Available: https://www.
serf.io/

[20] Consul. “Consul by HashiCorp: A distributed service mesh to connect,
secure, and configure services across any runtime platform and public
or private cloud.” 2014. [Online]. Available: https://www.consul.io/

[21] U. Bischoff, M. Strohbach, M. Hazas, and G. Kortuem, “Constraint-
based distance estimation in ad-hoc wireless sensor networks,” in Proc.
EWSN, 2006, pp. 54–68. [Online]. Available: https://doi.org/10.1007/
11669463_7

[22] R. Yang, S. Zhu, Y. Li, and I. Gupta, “Medley: A novel distributed failure
detector for IoT networks,” in Proc. Middleware, 2019, pp. 319–331.

[23] “Raspberry Pi 4 model B.” 2016. [Online]. Available: https://www.
raspberrypi.com/products/raspberry-pi-4-model-b/

[24] OLSR.ORG. “Optimized link state routing protocol.” [Online].
Available: https://tinyurl.com/olsrd-wiki

[25] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer mem-
bership management for Gossip-based protocols,” IEEE Trans. Comput.,
vol. 52, no. 2, pp. 139–149, Feb. 2003.

YANG et al.: Medley: A MEMBERSHIP SERVICE FOR IoT NETWORKS 2505

[26] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh, “Efficient epidemic-style
protocols for reliable and scalable multicast,” in Proc. IEEE SRDS, 2002,
pp. 180–189.

[27] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proc. ACM SenSys,
2005, pp. 255–267.

[28] S. Rost and H. Balakrishnan, “Memento: A health monitoring system
for wireless sensor networks,” in Proc. IEEE SECON, vol. 2, 2006,
pp. 575–584.

[29] B. Chen, G. Peterson, G. Mainland, and M. Welsh, “Livenet: Using
passive monitoring to reconstruct sensor network dynamics,” in Proc.
DCOSS, 2008, pp. 79–98.

[30] R. N. Duche and N. P. Sarwade, “Sensor node failure detection based on
round trip delay and paths in WSNs,” IEEE Sensors J., vol. 14, no. 2,
pp. 455–464, Feb. 2014.

[31] M. Asim, H. Mokhtar, and M. Merabti, “A fault management archi-
tecture for wireless sensor network,” in Proc. IEEE IWCMC, 2008,
pp. 779–785.

Rui Yang is currently pursuing the Ph.D.
degree with the Department of Computer Science,
University of Illinois Urbana–Champaign, working
with Prof. I. Gupta. She is interested in reliability
and resource scheduling for distributed system in
general. Her recent work studied the responsiveness-
correctness-cost tradeoffs for both system-facing
and user-facing substrates in the Internet of Things
scenarios.

Jiangran Wang received the bachelor’s degree in
computer engineering from the University of Illinois
Urbana–Champaign, in 2021, where he is currently
pursuing the M.S. degree in electrical and com-
puter engineering. His research focus on distributed
systems, primarily on the Internet of Things and
failure detection algorithms.

Jiyu Hu received the bachelor’s degree in com-
puter engineering from the University of Illinois
Urbana–Champaign, in 2021. He is currently pur-
suing the Master of Computational Data Science
degree with the School of Computer Science,
Carnegie Mellon University. His research focus was
distributed systems, primarily on IoT and edge com-
puting. His area of interest remains in data-intensive
systems.

Shichu Zhu received the M.S. degree in computer
science and atmospheric science from the University
of Illinois Urbana–Champaign, in 2019. He is cur-
rently working with Google Cambridge on Cloud
Networking. He has research experience in dis-
tributed systems, databases and HCI, as well as the
microphysics of cirrus clouds.

Yifei Li received the Master of Science degree in
computer engineering from the University of Illinois
Urbana–Champaign, in 2019. He currently works
with Confluent Inc., which is a leading force in event
streaming platforms. He primarily works on inter-
cluster data replication and cloud services. His prior
research focus in distributed systems was around
databases and the Internet of Things.

Indranil Gupta (Senior Member, IEEE) received
the B.Tech. degree from IIT Chennai, in 1998 and
the Ph.D. degree from Cornell, in 2004. He is a
Professor of Computer Science with the University
of Illinois Urbana–Champaign. He leads the DPRG
Research Group that works on large-scale distributed
systems. He has also worked with Google, IBM
Research, and Microsoft Research. He is an ACM
Distinguished Scientist.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

