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Abstract—Service-level mobile traffic data enables research
studies and innovative applications with a potential to shape
future service-oriented communication systems and beyond.
However, real-world datasets reporting measurements at the
individual service level are hard to access as such data is deemed
commercially sensitive by operators. APPSHOT is a model for
generating synthetic high-fidelity city-scale snapshots of service
level mobile traffic. It can operate in any geographical region and
relies solely on easily available spatial context information such
as population density, thus allowing the generation of new and
open traffic datasets for the research community. The design of
APPSHOT is informed by an original characterization of service-
level mobile traffic data. APPSHOT is a novel conditional GAN
design instantiated by a convolutional neural network genera-
tor and two discriminators. The model features several other
innovative mechanisms including multi-channel and overlapping
patch based generation to address the unique challenges involved
in generating mobile service traffic snapshots. Experiments with
ground-truth data collected by a major European operator in
multiple metropolitan areas show that APPSHOT can produce
realistic network loads at the service level for areas where it
has no prior traffic knowledge, and that such data can reliably
support service-oriented networking studies.

Index Terms—Mobile network traffic data, mobile services,
synthetic data generation, deep generative models, generative
adversarial networks, mobile traffic analysis, mobile network
resource management, network slicing.

I. INTRODUCTION

Large-scale data about the demands generated by individual
mobile services is a key enabler for research and innovation
in networking and beyond, leveraging advances in artificial
intelligence (AI) and machine learning (ML). Indeed, 5G has
determined a shift towards a flexible and shared network archi-
tecture that can effectively support a diverse array of services
as virtualized instances or network slices [1]. In this paper,
the service-level data consists of the traffic produced by 10
top popular mobile application, namely WhatsApp, Facebook,
Snapshot, Instagram, YouTube, Google Play, Netflix, Twitter,
iTunes, Apple Store, which make up 95% of the total mobile
traffic in major European cities [2]. Here, service-level mobile
traffic data is paramount to steer the development of slicing
mechanisms and to assess their efficiency in terms of resource
sharing [3], [4]. Equally, such data is crucial in planning and
configuration of edge computing and storage infrastructure to
optimize latency for certain services and benefit others by
computation offloading to the edge cloud [5], [6]. Furthermore,
service-level traffic data is key to other service oriented studies

within networking, including the design of traffic classification
techniques [7] and energy efficiency optimization [8], and
beyond, such as for data plan analysis [9], [10] or to reveal
links between apps consumption and urbanization levels or
socioeconomic status [11], [12].

Despite the importance and breadth of these potential use
cases, service-level mobile traffic data in practice is rarely
accessible to researchers, as this data is seen as commercially
sensitive by mobile operators. In fact, it is way harder to access
service-level data compared to aggregate mobile traffic data
(e.g., [13]). The aggregate traffic data here refers to the spatial
distribution (map) of total traffic volume across a given region
(e.g., city) for a given period (e.g., hour, day) as illustrated
in the top map in Fig. 1. Our focus is on such data but at
the granularity of individual mobile services (e.g., YouTube,
FaceBook) instead of just total traffic volume [2], [11]. In other
words, for each location (pixel) on the map, in our case we
have a vector of traffic volumes with each element of the vector
corresponding to a different mobile service. The few groups
who do have access to such data are limited by restrictive
NDAs on the data use and distribution. In this paper, we seek to
overcome this data access barrier through a synthetic mobile
service traffic data generation model. Specifically, we aim to
design a model that takes in publicly available contextual
attributes (e.g., population and land use distribution) for a
geographical region (e.g., a city) as input, and generates the
snapshot of traffic for different services in that region for a
given time period. By relying solely on publicly available
context data, such a model can enable researchers to generate
service-level mobile traffic data for regions of interest to them
and use it to drive studies that require such data.

Designing a data synthesis model that can generate high-
fidelity service-level mobile traffic snapshots and generalizes
well to new regions is challenging due to a number of reasons.
First, the publicly available context data for a target region
may not fully determine the mobile services traffic for that
region and in general cannot capture the stochasticity inherent
to mobile traffic. Second, mobile traffic is known to have com-
plex spatiotemporal correlations both overall and at service
level [14], [15], which need to be captured by the model.
Third, locations and times with high traffic intensity (which
we refer to as hotspots in this paper) are particularly important
for downstream use cases on research management and beyond
(e.g., [9]), and need to be faithfully modeled. Fourth, the
model should correctly capture correlations between traffic
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for different services and their relative contribution to overall
traffic. Finally, the model should be flexible in accommodating
the fact that the target regions for traffic generation may differ
widely in their geographical dimensions as well as contextual
attributes and traffic characteristics.

As a key contribution of this paper, we propose APP-
SHOT, a conditional deep generative model that addresses
the aforementioned challenges to synthesize city-scale1 and
service-level mobile traffic snapshots. APPSHOT builds upon
and substantially extends CartaGenie, a previous model we
proposed for generating snapshots of aggregate city-scale mo-
bile traffic [16]. Similarly to CartaGenie, APPSHOT leverages
generative adversarial networks (GANs) and convolutional
neural networks (CNNs) towards high-fidelity traffic data gen-
eration capturing spatial correlations for the given time. More
specifically, it is a conditional model that takes contextual
attributes for a target city as multi-channel image input to
control the output traffic data from the model to match with
that city while capturing stochasticity in traffic data.

APPSHOT significantly extends CartaGenie in multiple
ways (§V) for generation of service-level mobile traffic snap-
shots. First, it faithfully models correlations among services
and their relative proportions (with respect to overall traffic)
via joint generation of traffic for all services as different
channels of an image and using adversarial training with
two discriminators. Moreover, it operates at a smaller ‘patch’
level to allow generating service snapshots for regions of
different dimensions. Finally, APPSHOT employs overlapping
patch based learning with slide-by-1-pixel method to ensure
correct modeling of hotspots, better generalization to new
cities and absence of artefacts when sewing up patches into a
city-scale traffic map. Overall, these enhancements allow pro-
ducing dependable service-level traffic snapshots that cannot
be synthesized via the original CartaGenie.

To train and test APPSHOT, we use an operator-provided
mobile traffic dataset, spanning the ten most significant mobile
services for ten cities in a major European country, and we
augment it with corresponding context data from public
sources (§III). Our evaluation results (§VII) considering five
different fidelity metrics show that APPSHOT generalizes
to unseen cities and yields service-level traffic snapshots
for different peak periods that are significantly superior to
a range of baseline approaches, including CartaGenie. We
additionally evaluate APPSHOT through a representative use
case (§VIII) on resource sharing efficiency with network
slicing [3] and show that it provides similar results to those
obtained with real (ground-truth) traffic data.

In summary, our key contributions are as follows:
(i) We propose a novel conditional deep generative

model, APPSHOT, which to the best of our knowledge
is the first method for synthesizing dependable city-scale
and service-level mobile traffic data in the literature (dis-
cussed in §II). Upon publication of this work, we will
make a synthetic service-level mobile traffic dataset gener-

1For convenience, we use the terms ‘city’ and ‘region’ interchangeably, but
our model can be applied to any sized region bigger/smaller than a city.

ated using APPSHOT available to the research community at
https://github.com/netsys-edinburgh/AppShot/.

(ii) We present a novel analysis of service-level mobile
traffic data across multiple cities and derive insights that
inform our design of APPSHOT (§IV).

(iii) Using an operator provided multi-city and multi-service
mobile traffic measurement dataset, we show that APPSHOT
synthesizes realistic service-level traffic snapshots solely using
contextual input, outperforms all baseline approaches, and
effectively generalizes to cities not seen during training. We
also demonstrate the utility of APPSHOT for downstream
applications through a use case.

The remainder of this paper is structured as follows. The
next section discusses related work from the networking and
computer vision domains. In §III, we elaborate on the mobile
traffic and context data relevant to our work. Then in §IV,
we conduct an analysis of the aforementioned data, including
service-level traffic characteristics and correlation between
traffic and context. The proposed generative model APPSHOT
is described in detail in §V. §VI introduces the methods we
use to evaluate the proposed APPSHOT, including the metrics
and baselines. Evaluation results are presented and discussed
in §VII, followed by the use of APPSHOT for a downstream
service-level traffic dependent application in §VIII. Finally,
§IX concludes the paper.

II. RELATED WORK

Traditional network traffic generation focuses on creating
different packet-level workloads. There are a number of tools
that exist for this purpose (e.g., iPerf, MGEN, Ostinato)
and are also embedded in popular network simulators (e.g.,
ns-3). Some of these tools like D-ITG [17], [18] support
modeling different applications through parameterized prob-
ability distributions for packet sizes, their inter-arrival times,
etc. This form of traffic generation does not have a spatial
dimension. In contrast, our focus is on generating snapshots
of application/service level mobile traffic volumes (aggregated
across multiple users and flows) at different locations of a
target region (e.g., a city).

We are unaware of any prior work for generation of service-
level mobile network traffic data. The few related works that
exist in the mobile networking context [16], [19]–[21] focus
on overall traffic across all services. Di Francesco et al. [19]
propose an approach for assembling a cellular dataset for a
given region by integrating multiple sources of data, including
census data for population distribution, base station locations
and estimation of data demand per subscriber. For the data
demand, they simply model this as a probability distribution
based on operator provided data on overall mobile traffic
across all services and then sample from it. We consider this
approach as a baseline in our evaluations and highlight its
limitations in handling traffic correlations. In another mobile
traffic related work, Bo et al. [20] target generation of mobile
traffic patterns for a region focusing on hotspots through
geotagged Twitter data for that region. Here again, only total
traffic volume across all services is considered and not at
the individual service level like we do. Moreover, access to
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Twitter data is no more easier than accessing mobile traffic
data whereas we base our generation on context data for the
target region that can be easily obtained from public sources.

SpectraGAN [21] and CartaGenie [16] are recent proposals
that can be viewed as the state of the art on mobile traffic
data generation. As in our work, SpectraGAN and CartaGenie
take a conditional deep generative modeling approach but
focus on generation of spatial or spatiotemporal data for total
traffic volumes in a city. We target a different and orthogonal
dimension, i.e., on the individual service level contributions
that make up the total traffic. As we show in our comparative
evaluation, applying SpectraGAN or CartaGenie for our pur-
pose yields poor quality generation due to its inability to model
inter-service correlations and their relation to total traffic.
DoppelGANger [22] is another broadly related work that
employs deep generative modeling in the networking context
but solely focuses on network time-series data generation with
no spatial dimension.

As we represent city-scale mobile traffic snapshots as im-
ages, their generation at service level can be viewed as a
multi-channel image generation problem. Furthermore, since
we aim at conditional generation using contextual attributes as
a multi-channel image input, image translation works from the
computer vision domain are particularly relevant. Pix2Pix [23]
is a representative prior work on conditional image translation.
When applied to our problem setting, this work has several
key limitations as we show in our evaluation: (i) it does not
take particular care to capture correlations among channels
(services in our problem); (ii) it fails to model variation in the
data from using just dropout for stochasticity; (iii) it can also
result in undesirable edge effects and artefacts when generating
traffic maps for arbitrary sized regions. These limitations
also apply to other related works from the computer vision
literature (e.g., Style-GAN [24], Cycle-GAN [25]), which are
essentially rooted in the fact that they do not cater to the unique
requirements of mobile service traffic map generation. The
works from the transportation domain, exemplified by Traffic-
GAN [26], for road vehicle traffic generation are also broadly
related. However, these works do not differentiate between
different vehicle types (individual mobile services in our case)
and also make a strong assumption of knowing correlations
among traffic on different roads for the target region, which
is unrealistic.

Besides generation of multi-service mobile traffic maps,
our work also includes an analysis of mobile network
traffic across different services and cities. This part is novel
compared to prior service-oriented mobile traffic analysis
works (e.g., [2], [11]) by focusing on the key characteristics
that need to be kept in mind when generating service-level
mobile traffic data. In particular, unlike [11], we analyze the
correlation between traffic of different mobile services as
well as with a wide range of contextual attributes beyond
urbanization. Compared to [2], we study the similarities and
differences in mobile traffic across cities, with a focus on peak
periods, traffic stochasticity, hotspot density and distribution.

III. MOBILE TRAFFIC AND CONTEXT DATA

For the purpose of modeling, analysis and evaluation in
this work, we make use of a real-world mobile traffic dataset
collected in the production network of a major mobile network
operator in Europe. We also gather data for a variety of
contextual attributes for the target regions from public sources.

Mobile Traffic Data. Our traffic dataset spans 10 major
cities in a European country (referred henceforth as CITY
1-CITY 10), where it covers the mobile demands of the
whole subscriber base of the operator, amounting to around
30% of the local user population. This data was obtained by
monitoring individual IP data flow sessions in the operator’s
network over the General Packet Radio Service (GPRS) Tun-
neling Protocol User plane (GTP-U). To infer the services
corresponding to the traffic flows, the operator employs a
combination of proprietary and commercial traffic classifica-
tion tools on top of Deep Packet Inspection (DPI) probes,
which allows identifying a very wide range of mobile services
with a high degree of accuracy [11]. Note that the data was
aggregated geographically (per antenna sector) and temporally
by the operator, so as to make the data non-personal and to
preserve user privacy; all operations were carried out within
the operator premises, under control of the local Data Privacy
Officer (DPO), and in compliance with applicable regulations,
according to GDPR (General Data Protection Regulation)
regulations [27]. The data was aggregated over all users in
space and time in secure servers at the operators’ premises,
and we only accessed de-personalized aggregates.

Each city is represented in the data as a regular grid
tesselation over space with each grid cell (i.e. pixel) covering
250 × 250 m2. Unsurprisingly, different cities have different
geographical sizes in terms of number of pixels in each dimen-
sion, and range from 33×33 to 97×123 pixels. Traffic data per
pixel consists of overall mobile traffic volume for each service
across uplink and downlink directions in bits/s, over time. The
dataset covers a continuous period of 6 weeks. In this dataset,
we consider the top 10 popular services that contribute to more
than 80% of the total traffic volume, namely: YouTube (YT),
Instagram (INS), SnapChat (SC), WhatsApp (WA), Netflix
(NF), Apple Store (AS), iTunes, Facebook (FB), Twitter (TW),
and Google Play (GP). As such, the effective total mobile
traffic in our study is the sum of traffic due to these top-10
services.

Context Data. Our conditional generation model takes
advantage of contextual attributes to produce credible synthetic
traffic. We gather a wide range of context data from easily
accessible public sources, so that the method is applicable as
widely as possible. All attributes for each city are mapped to
the corresponding regular grid tessellation used to represent
mobile traffic data, examples under each attribute are illus-
trated in Figure 1. In all, we consider 27 different contextual
attributes, as outlined below.

Population. The number of inhabitants residing in each grid
cell, as reported in the relevant national census.

Land Use. The different uses of the land within each
grid cell, obtained from the Copernicus Urban Atlas repos-
itory [28]. We only retain land use types that exhibit non-
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negligible correlation with mobile traffic (as per Spearman’s
correlation coefficient (SCC) [29]). Ultimately, 12 land use
attributes are considered, listed in Table I.

Points of Interest (PoIs). The number of landmarks of a
specific class within each grid cell, extracted from the Open-
StreetMap (OSM) repository [30]. We use a similar correlation
analysis with traffic as above, and retain the 14 significant PoI
categories (Table I).

Contextual Attribute Avg. SCC

Population 0.639
Continuous Urban 0.220
High Dense Urban 0.180

Medium Dense Urban 0.128
Low Dense Urban 0.254

Very-Low Dense Urban 0.102
Isolated Structures 0.051

Green Urban 0.325
Industrial/Commercial 0.252

Air/Sea Ports 0.321
Leisure Facilities 0.322

Barren Lands 0.067
Sea 0.072

Tourism 0.135
Cafe 0.002

Parking 0.2110
Restaurant 0.1797
Post/Police 0.118

Traffic Signal 0.430
Office 0.343

Public Transport 0.080
Shop -0.018

Primary Roads -0.074
Secondary Roads -0.009

Motorways 0.254
Railway Stations 0.371

Tram Stops 0.158

TABLE I: List of contextual
attributes considered.
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Fig. 1: Spatial distribution of
total traffic in CITY 1 and 3
selected context attributes.
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Fig. 2: Illustration of inherent variation in traffic at each
location over time, considering CITY 1 as an example.

IV. ANALYSIS OF MOBILE TRAFFIC CHARACTERISTICS
ACROSS SERVICES AND CITIES

In order to better inform the design of our generator, we
first investigate the properties of mobile network traffic at the
service level, across a number of different dimensions.

Relationship between Context and Traffic. We start by
investigating how the traffic across the 10 target services
relates to contextual information. A first important observation
concerns the inherent stochasticity of mobile traffic: Figure 2b
shows the distribution of total traffic observed over time at
four different pixels in CITY 1, whose locations are shown in
Figure 2a, and the traffic is normalized by the maximum pixel
scale traffic (maximum value of traffic map over all dates) as

displayed in the X-axis of Figure 2b. Note that mobile traffic
can exhibit substantial variation at a location even though the
corresponding context remains the same: this is, e.g., the case
of the population density illustrated in Figure 2a. In addition,
the correlation between mobile traffic and contextual attributes
for any given region is non-trivial. This is as exemplified in
Figure 1, where three sample contextual attributes do not show
any obvious visual correlation with the mobile traffic.

Takeaway message. The generation process must capture
the stochastic nature of mobile traffic, by correctly modeling
the relationship between static context information and spatial
traffic demand at different time periods. Also, the lack of
simple correlations between individual contexts and traffic
indicates that a naive univariate statistical model based on any
one attribute is not an effective generator, thus motivate the
more complex multivariate designs we consider.

Correlations with Service Level Traffic. The above analy-
sis considers aggregate traffic. As we are interested in service-
level generation, we now examine the dependence of the
demand for individual services on the various contextual
attributes. Figure 3 shows correlation between the traffic snap-
shots of different services and the contextual attributes in three
cities. We observe that, for a given city, the correlation between
different services and any single attribute is close – each
column generally has a similar color, but the service-context
correlation varies across attributes (columns). This hints that
the spatial distribution of traffic is consistent across services in
a same city. A more detailed analysis of cross-service traffic
similarity further corroborates this observation: in Figure 4,
we use structural similarity (SSIM) [31] measure to compute
the spatial similarity between the spatial demand of pairs of
services, for different daily peak hours in the morning, midday
and evening. Note that SSIM is a classical image fidelity
metric, which allows comparing individual pixels between
a pair of images (here traffic maps of a pair of services)
while also accounting for the differences in the whole spatial
construct across the compared images. As shown in the plots,
the spatial variations between different services stay relatively
consistent at all times. Yet, not all service-level demand pairs
display the same level of similarity, as SSIM between different
service pairs ranges from 0.55 to 0.95 for any given time
period.

Takeaway message. The diverse correlations among ser-
vices indicate that naive transformations (e.g., scaling) are
insufficient to generate traffic snapshots for one service from
the snapshots of a different service. However, more complex
transformations may still take advantage of the significant but
varying degree of similarity among the traffic of individual
services. This suggests a model design that natively performs
a joint synthesis of all per-service snapshots.

Traffic Characteristics in Different Cities. Figure 3 also
suggests that the relationship between service-level traffic
and contextual attributes is different across different cities.
The heterogeneity among cities also appears in terms of
average daily traffic volume, depicted separately for weekdays
and weekends in Figure 5. Population, city size, and user
preference, all contribute to such heterogeneity. For instance,
CITY 1 has significantly higher traffic volume, about six to
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Fig. 3: Correlation between the traffic of mobile services and contextual attributes in three different cities.
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Fig. 4: Pairwise similarity between traffic snapshots of differ-
ent mobile services (as per SSIM) in CITY 3.
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twenty times that of other cities. The traffic generation model
must be able to capture such traffic heterogeneity across
different regions. We also notice that traffic demand during
weekdays is around 20% higher than weekends for all cities.
Our evaluations therefore highlight weekday traffic generation
but relative performance results across different methods are
similar for weekends.

In contrast, Figure 6 shows that such differences do not
emerge at the level of aggregate normalized daily traffic, which
is very consistent across all cities. Specifically, we identify the
same three peak hours for all cities: in the morning (8-9am),
around midday (12-1pm), and early in the evening (5-6pm).

Takeaway message. Generalizing the traffic generation task
across cities is a significant challenge, as context-traffic cor-
relations are highly diverse between cities. So the model must
be designed so as to facilitate such generalization, which
shall also be a key element of the performance assessment.
Also, in our evaluation we will focus on the three peak
hours identified above, as they are consistent across cities and
especially important for, e.g., network planning or network
resource management purposes.

Per Service Traffic Proportions. Mobile services generate
highly diverse amount of traffic, even for the top-10 services
in our analysis, as shown in Figure 7. This figure also illustrate
how service demand contributions to total traffic vary in time.

Takeaway message. The generation shall capture the diverse
and time-varying demands of individual services and how they

0 20 40 60 80 100
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 Peak

Evening
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FB
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Fig. 7: Per-service traffic proportions at different peak hours
across all cities.WA: WhatsApp, FB: Facebook, SC: Snapchat,
INS: Instagram, YT: YouTube, GP: Google Play, NF: Netflix,
TW: Twitter, AS: Apple Store, IT: iTunes.

(a) Morning Peak (b) Midday Peak (c) Evening Peak

Fig. 8: Hotspots (dots) in CITY 1 at different times.

compose, again heterogeneously over time, into total traffic.
Traffic Hotspots. Locations with high traffic activity, which

we refer to as ‘traffic hotspots’ are especially important for
many downstream applications based on mobile traffic data.
We identify traffic hotspots in a city for a given time period
following the approach taken previously in [32]. A traffic
hotspot has to meet two requirements: (1) the traffic volume
of a hotspot pixel should be higher than a threshold (High
Traffic Volume); and (2) should not be lower than neighboring
pixels (Non-Negative Gradient). We find that the position and
number of hotspots so detected vary over time even within a
city, as shown in Figure 8. Also, the hotspot density varies
widely across cities, as shown in Figure 9; interestingly, the
relationship between the hotspot and population density is not
obvious, as shown by the rankings of cities based on these
two metrics.

Takeaway message. A dependable traffic generation model
shall correctly synthesize city-specific and time-varying
service-level traffic hotspots. This is challenging, as correla-
tions with context (e.g., population) are complex.

V. APPSHOT

Based on the insights from §IV, the generation of high-
quality multi-service traffic snapshots faces the following
major challenges: 1) synthesizing high-fidelity traffic snap-
shot from context input with significant statistical variation;
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Fig. 9: Cities ranked by hotspot and population density.

2) preserving correlations among multiple services, both in
terms of structural similarity and percentage contribution to
total traffic; 3) allowing traffic generation for target cities of
arbitrary spatial sizes; and 4) accommodating diverse traffic
characteristics and context data ranges across cities.

With APPSHOT, we tackle challenges 1) and 2) by designing
a tailored conditional deep generative model (§V-C), and solve
challenges 3) and 4) via customized data processing and
training methods (§V-B) and hyper-parameter tuning.

A. Problem Statement

Let χ = {X1, X2, · · · , XN} be a real-world mobile
network traffic dataset that contains sets of observations of
mobile traffic, such that each set is collected in a different
geographical region, i.e., city. The data for each city n ∈
{1, · · · , N}, includes observations over a given span of time
Tn, hence Xn = {xn

1 , · · · , xn
Tn}. The observation at each

time slot is composed of traffic due to S different services,
i.e., xn

t = {xn
t,1, · · · , xn

t,S}. For time slot t ∈ 1, · · · , Tn

and service s ∈ 1, · · · , S, we represent the mobile traffic
observation xn

t,s ∈ ℜHn×Wn

as a single channel image, whose
pixels map to the spatial units over which network traffic is
recorded. Then, each pixel value corresponds to the network
traffic value recorded for service s at a specific geographic
location; and, Hn ×Wn are the height and width of the city
n’s dimensions in pixels, respectively; the dimensions may
differ between cities.

In addition, each observation xn
t,s is associated with a set

of K conditions, i.e., publicly available contextual attributes
that may explain the volume of traffic generated by mobile
users (e.g., as Figure 1 illustrates, population distribution in
the region, land use characteristics, presence of points of
interest, etc.). We denote the set of conditions for each city as
its context, and represent it as the set Cn = {cn1 , · · · , cnK}.
For each condition k ∈ {1, · · · ,K} in city n, we have
cnk ∈ ℜHn×Wn

, and thus Cn ∈ ℜK×Hn×Wn

, which is
a multi-channel image with one channel per attribute. Note
that the static, spatial contextual attributes alone are typically
insufficient to fully explain the corresponding network traffic,
as illustrated earlier in Figure 2b.

Our goal is to synthesize network traffic data fm
t,s ∈

ℜHm×Wm

for an unseen region m at a particular time t and
given context Cm in a way that the synthetic fm

t,s samples
exhibit similar data characteristics to the real training data χ
and are compatible with the provided C.

B. Patch based Learning Methods

In order to optimize the learning process, the mobile traffic
data and contextual attributes need to be carefully formatted,
as presented next.

1) Patching and Formatting: To create the training samples,
we divide the Hn×Wn traffic map xn

t,s of each city n and ser-
vice s in time slot t into smaller patches xn,l

t,s , l ∈ {1, · · · , L},
where L is the total number of patches. This formatting has
two advantages. Firstly, cities vary in their geographical span
and so their traffic maps have varied dimensions, hindering the
design of a single model that can handle different sized cities:
here, employing fixed smaller sized traffic patches allows using
the same generator model architecture regardless of the city
dimensions considered for training or generation. Secondly, it
allows using diverse traffic patches from different snapshots
together to enable a more efficient training via stochastic
gradient optimization. Moreover, different local sub-regions of
a same city can have similar relationship between the context
and traffic. So training at the patch level can be seen as a form
of weight-sharing – a type of regularization technique – to let
the model learn the actual casual relationship between context
and traffic instead of memorizing the mapping.

The output synthetic traffic generated at the patch level
(denoted as fm,l

t,s ) can be of a high quality for each individual
patch but may leave artefacts at the boundary of patches
when sewing the patch level outputs to a city-level traffic
map. To overcome this issue, we associate with each traffic
patch xn,l

t,s a trimmed context patch cn,lk (identical across all
attributes) that includes a margin around the traffic patch (see
Figure 10a). This is considering that only a portion of the
city-wide context that is in the geographical vicinity of the
traffic patch stays relevant to the learning process. Crucially,
the additional margin ensures that the border pixels of a traffic
patch xn,l

t,s have sufficient context during the learning process.
Clearly, the number of context patches is the same as that of
traffic patches, and we denote by cn,lk the complete context
patch corresponding to xn,l

t,s .
As an additional measure towards artefact-free synthetic

traffic maps, we consider overlapping traffic patches as shown
in Figure 10c and slide across them by 1 pixel each time during
training and generation. Compared to the straightforward ‘no
overlap’ case illustrated in Figure 10b, each pixel in the output
traffic map benefits from being part of multiple traffic patches.
This not only helps with avoiding edge effects but also serves
as a data augmentation method. For example, with a city map
of 20 × 20 and traffic patch size of 10× 10 with dimensions
in pixels for both, no overlap case yields just 4 patches.
Overlapping case, on the other hand, results in 121 patches2

for the same example. More effective data for training aids in
capturing key spatial traffic features at high fidelity but also
helps with better generalization across diverse cities.

2) Normalization: Given that different services may have
vastly different traffic volumes, the training and generation
for services with relatively lower volume can become an issue

2We get 121 patches for this example by considering traffic patches with
their top-left most pixel falling at each of the pixels in the [1, 1] to [11, 11]
square region.
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Traffic
Context

(a) Patch of context and traffic map
Slide by 1 Patch each time

(b) No overlap

Slide by 1 Pixel each time

(c) Overlap

Fig. 10: (a) Traffic patch and corresponding context patch;
(b) non-overlapping and (c) overlapping traffic patch cases.

if not handled properly, especially in a multi-channel CNN
model where the weights involved in the generation of distinct
services are broadly shared. To guard against this issue, we
employ service-level traffic normalization as a pre-processing
step. Specifically, we normalize the traffic values, xs, of each
service s by dividing them with xs,max, i.e., the global per-pixel
maximum traffic volume value observed for s. This results in
traffic values for each service to independently fall between
0 and 1. As part of this normalization step, we also add a
small ϵ value to handle cases where no traffic is recorded for
a service. The above normalization step can be easily reversed
during post-processing on the output synthetic traffic map via
a rescaling step.

C. Detailed Model Design

1) Generator: The generator in APPSHOT is responsible
for generating traffic map of all services, each represented as
a different channel in the multi-channel image output.

The generator, denoted as Gθ with θ representing the
weights of the neural network, is a conditional latent variable
model instantiated by a CNN based architecture. Formally,
we use the latent variable z to model stochasticity and
unobserved conditions, then the probability of observing an
actual mobile traffic x given conditions c is modeled as
pθ(x|c) = ∫ pθ(x|c, z)p(z)dz, where θ represents the pa-
rameters of the conditional probability. Figure 11 shows a
schematic of the generator’s neural network architecture in
APPSHOT. An important remark is that context c is spatial,
whereas z is non-spatial. The non-spatial input z in APPSHOT
is processed via a specialized FiLM conditioning layer [33],
which effectively creates two convolutional entry branches
in the initial stages of the generator network. This design
avoids the risks of a naive conditioning on the latent variable

c >����������@ 

dropout conv  2x2
+BN & ReLU

σ�K�Ŀ�

z >���@ 

reshape

>���������@ 

conv  1x1

Ŀ�>���������@ 

Ǒ�>���������@ 

conv  1x1
+ softplus

>�����������@ 

FiLM layer

conv  1x1
+BN & ReLU

>�����������@ 

K�>�����������@ 

conv  1x1
+BN & ReLU

>�����������@ 

conv  1x1
+BN & sigmoid

conv  1x1
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V�>����������@ >����������@ 

Fig. 11: Schematic of APPSHOT generator architecture, la-
beled with input and output at each layer.

z (e.g., simply concatenating it with c) that can lead to the
network completely ignoring stochasticity. Instead, the FiLM
ensures that the latent variable is duly accounted for in the
generation process. The result of the separate convolutional
branches are then merged via an affine transformation into a
hidden representation whose spatial dimension is same as the
output traffic map. This representation is then processed by
stacked convolution layers with size-1 kernels to produce the
final sample s.

In Figure 11, we label the dimensions of input/output at
each layer using the format of [channels, sizex, sizey]. For
example, the c[27, 12, 12] on the input side means the context
input is a multi-channel image with 12 × 12 dimensions and
27 channels; each channel here represents a particular con-
dition (i.e., contextual attribute). To reduce over-fitting to the
conditions, we add a channel-wise dropout layer to the input
conditions (with a dropout rate of 0.02). The first convolutional
layer has a kernel size of Nc −Nx +1. Here Nx refers to the
dimension of the output traffic patch size (empirically set to
10) whereas Nc is the context patch dimension (empirically
set to 12 to provide the best average output quality Nx = 10).
The rest of convolutions are of size 1. As per the number of
channels: Nc → 8F → 4F → 2F → F → 1, where the base
number of features F are 64. For the FiLM layer process, the
latent variable z is a Nz dimensional noise vector with Nz set
to 16F . All intermediate activations are ReLU [34], following
a batch normalization (BN) layer [35]; the final activation is
Sigmoid. For σ from the FiLM layer, we use the softplus
activation, F (x) = log(1 + exp(x)), to ensure it is positive.

2) Training: To learn θ, we train the model by opti-
mize the loss function, as elaborated below. The generator
is trained in an adversarial manner with two discriminators
to reflect correlation among services and their contribution
to total traffic. For this purpose, we define a conditional
probability distribution pD based on real data (ground truth
traffic) and corresponding context for cities 1 to N in the
training data (i.e., {(x1, C1), ..., (xN , CN )}). We then find
the model weights θ∗ that minimize a divergence criterion
between the data distribution pD and the model pθ. Specifi-
cally, following standard GAN formulations [24], we train the
model by minimizing the Jensen-Shannon (JS) divergence, i.e.,
θ∗ = argminθ JS[pD||pθ]. One of the discriminators called
individual quality discriminator (D1) is designed to evaluate
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the overall fidelity of the multi-service traffic map. For this
discriminator, the adversarial loss is defined as:

LD1

JS(pD,pθ
) = EpD [logD1(x, c)] +Epθ

[log(1−D1(x̃, c))].

where the x̃ is the synthetic traffic map of x.
Unlike conventional works on image generation that treat

different channels independently, we need to capture the cor-
relation between different channels. We also need to minimize
the divergence between the sum of output channels and real
total traffic at the pixel level. By training each channel to target
generation of synthetic traffic map for a different service does
not ensure the correct sum of all traffic maps from different
channels, so providing extra regularization is helpful in our
case. To constrain the sum of traffic from different services
and encourage the model to learn the correct composition of
total traffic, we introduce a second discriminator called sum
quality discriminator (D2) with its adversarial loss defined
as:

LD2

JS(pD,pθ
) = EpD [logD2(

∑S
s=1 xs, c)] +Epθ

[log(1−D2(
∑S

s=1 x̃s, c))],

where S is the total number of services under consideration,
xs refers to the traffic map of service s within S. x̃s means
the synthetic traffic corresponds to ground truth xs.

Training solely with adversarial training as described above
is insufficient, which generally leads to higher training in-
stability and lower fidelity output. So in APPSHOT, besides
adversarial training, we make the training process more stable
and controllable by adding the L1 loss. Specifically, we use
the L1 norm of the synthetic multi-channel traffic map (with
respect to its real counterpart) as part of the loss function. L1
loss function is shown to be empirically effective in prior work
(e.g., [36]).

As the overall loss function of the generator, we take the
sum of the above two adversarial losses and the weighted
supervised learning loss (L1 norm):

L = LD1

JS(pD, pθ) + LD2

JS(pD, pθ) + λEc{||Ex∼pD [x],Ex∼pθ
[x̃]||1}.

This final loss L is used to update the discriminators and
generator in turn. Here λ is a tuneable parameter to adjust
the weight of L1 loss; we set λ = 0.5 by default in our tests.

VI. EVALUATION METHODOLOGY

We now present the various fidelity metrics and multiple
baseline approaches considered for APPSHOT evaluation.

A. Fidelity Metrics

Weighted Error (WErr). This metric quantifies the com-
position of a synthesized multi-service mobile traffic dataset
relative to the corresponding real (ground-truth) data. Suppose
in a real dataset made up of traffic from multiple services, the
actual percentage of traffic due to a service s among S services
with respect to total traffic is rs and its traffic volume is ts.
If the traffic volume of the same service in the corresponding
synthetically generated dataset is t̃s, then the Weighted Error
(WErr) is defined as:

WErr =
S∑

s=1

rs
|ts − t̃s|

ts
.

In other words, it is the relative estimation error in traffic vol-
ume per service weighted by each service’s actual percentage,
averaged over all services. Smaller WErr means more accurate
service composition in the synthetic dataset.

Normalized EMD (NEMD). Earth Mover’s Distance
(EMD), also known as Wasserstein Distance [37], is a distance
function defined between two probability distributions over a
given metric space (e.g., 1D, 2D). It has been used in similar
settings as ours, e.g., to assess the quality of GAN models [38],
or to compare two spatial distributions [39].

For our particular purpose of comparing real and synthetic
service-level traffic maps, EMD is sufficient when we focus
on a particular city. But that is not true for comparison over a
set of cities due to their widely different sizes. To address this
issue, we normalize the EMD between real and synthetic maps
by the EMD between real map and uniform (2D) distribution.
Let us denote the uniform traffic map as ϕ, the real map in
simplex space as µ, and the synthetic map in simplex as v;
then, the normalized EMD (NEMD) is defined as:

NEMD =
EMD(µ, v)

EMD(µ, ϕ)
,

where EMD(a, b) is the EMD between 2D distributions a
and b. It is worth noting that with EMD, the images will be
converted to simplex space, and thus the information of the
original data range is lost. This calls for use of complementary
metrics such as those outlined next.

SSIM and PSNR. We also consider Structural Similarity In-
dex Metric (SSIM) and Peak Signal-To-Noise Ratio (PSNR) –
the two commonly used image quality assessment metrics [40]
– to respectively evaluate the structural and pixel-level fidelity.

Hotspot Histogram EMD (HEMD). As noted earlier,
hotspots are a key spatial feature of interest with mobile
traffic data. To quantify the extent to which different methods
faithfully capture this feature, we use the EMD between 1D
distribution (histogram) of hotspots in synthetic and real data.

Besides the above quantitative fidelity metrics, we also
consider qualitative measures including traffic histograms at
city and pixel level as well as for number of hotspots to
visualize the quality of the synthesized data with different
methods, especially to gauge their ability to model underlying
data variations (stochasticity).

B. Baselines

We consider a wide range of baseline methods to compar-
atively evaluate APPSHOT in terms of the metrics above.

CNN based Regression. A simple-minded approach for our
multi-service traffic map generation task is to train a deep
neural network (DNN) that takes conditions c as input and
predicts a multi-channel image output x. Given the spatial
nature of the output, CNN based regression is a good choice.
This approach clearly fails to model stochasticity, a key char-
acteristic of mobile traffic data. We implement this baseline via
CNN on U-net architecture [36], and perform patch learning
with non-overlapping fixed size patches with patch dimensions
same as in APPSHOT.
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APPSHOT Data CartaGenie SpectraGAN Pix2Pix CNN FDaS
Morning Midday Evening All Peaks Morning Morning Morning Morning Morning

WErr ↓ 17.93% 19.09% 18.98% 15.10% 24.85% 17.74% 38.81% 42.07% 63.67%
NEMD ↓ 0.35 0.36 0.35 0.23 0.44 0.57 0.52 0.58 0.99
SSIM ↑ 0.84 0.86 0.86 0.96 0.85 0.79 0.78 0.76 0.44
PSNR ↑ 34.88 32.61 32.47 39.24 36.15 35.01 34.07 34.88 29.33
HEMD ↓ 2.09 1.99 2.24 0.6 3.90 2.93 4.31 5.79 9.20

TABLE II: Fidelity performance of APPSHOT at different peak periods (left) and of baselines for morning peak period (right).

Pix2Pix [23]. This model has been successfully used for
image transformation tasks in computer vision. It is both con-
ditional and stochastic like conditional GANs, but makes use
of a tailored DNN architecture for image-to-image translation.
Pix2Pix has several limitations compared to our APPSHOT
approach, as discussed earlier in §II. In our implementation
of this baseline, we perform non-overlapping patch based
learning as above.

Fit Distribution and Sample (FDaS) [19]. As discussed
in §II, a prior approach for mobile traffic data generation
essentially involves fitting an empirical distribution to model
the traffic data using maximum likelihood estimation of pa-
rameters and then sampling it afterwards to generate synthetic
traffic [19]. While only total traffic demand across all services
is considered in [19], we apply their approach separately
for each service to allow comparison. Like in [19], we find
log-normal distribution best fits the data but with different
parameters across distributions, as expected. This approach
has the inherent limitation of not being able to capture traffic
correlations in space or time.

CartaGenie [16] and SpectraGAN [21]. These are the state
of the art mobile traffic data generation methods that also
employ conditional deep generative modeling as in APPSHOT.
They, however, target generation of spatial snapshot or spa-
tiotemporal data for total traffic, as with the FDaS baseline
above. To apply them to the multi-service traffic generation
case studied in this paper and have them as baselines, we
train and use multiple separate instances of CartaGenie and
SpectraGAN models, one per each service.

Data. In addition to the above baselines, we also consider an
ideal case for reference, which we refer to as “Data”. Metrics
for this case are computed by splitting the real dataset (with
30 weekdays) into two distinct subsets (15 weekdays each
part), and comparing these subsets of real data against each
other. This captures the variability of the dataset within itself,
which is a proxy for the ‘upper bound’ fidelity performance a
synthetic data generation model like APPSHOT can achieve.

VII. RESULTS

A. Fidelity and Generalization

Throughout this section, we consider a leave-one-city-out
evaluation. Specifically, each of the 10 cities in our dataset
is taken as a test city in turn while using the data for the
remaining 9 cities as the training set. This type of evaluation
lets us assess the ability of APPSHOT and various baselines
to generalize to unseen cities as well as their ability to handle
different sized cities and their differences in traffic/context

data value ranges. Following the earlier analysis in §IV, our
evaluations focus on weekdays and morning/midday/evening
peak hours. For brevity, we mainly show results for the
morning peak hour period, unless otherwise specified; but
similar conclusions apply for other periods.

Correlation between services. As shown in §IV, traffic for
different services exhibit strong mutual correlations. So it is
important for the generated traffic data to preserve this feature.
To assess APPSHOT on this aspect, for each test city in the
dataset, we compute the average of SSIM between traffic
snapshots of every pair of services in the real ground-truth
data, and similarly in the data synthesized with APPSHOT.
We then compute the absolute error in the average pairwise
SSIM computed over synthetic data with respect to that on real
data. Results shown in in Figure 12a indicate that APPSHOT
yields a small error, within 14% of the real data on average.

Composition of different services for different cities. Besides
maintaining inherent correlations between traffic for different
services, it is also important to ensure that their proportions
relative to total traffic are preserved in the synthesized data.
Figure 12b shows the error on this measure with APPSHOT
relative to real data for different services with each test city.
We observe that APPSHOT yields a low error within 20% of
real in most cases. WhatsApp case is the only exception but
this is an artefact due to traffic for this service making up a
very small percentage (0.5%) so small absolute errors appear
as big relative errors.
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Fig. 12: APPSHOT service-level performance across cities.

Performance relative to baselines. The results of the com-
parative evaluation for the morning peak hour period are
summarized in Table II. We observe that APPSHOT, in the
comparison with the baseline methods (CartaGenie, Spectra-
GAN, Pix2Pix, CNN and FDaS), yields the best performance
on two of the metrics (NEMD and HEMD) while being close
to the best result on the other three metrics. Overall, APPSHOT
provides the performance closest to the ideal ‘Data’ reference
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across all metrics. Among the baselines, FDaS is clearly the
worst performer on all metrics, showing the limitations of
this approach in handling correlations in traffic and ensuring
fidelity of the service-level snapshots.

Two other baselines – Pix2Pix and CNN based regression
– have somewhat similar performance on all metrics, but
considerably worse on most metrics relative to APPSHOT. This
highlights their inability to accurately capture the spatial dis-
tribution of traffic relative to ground truth, which particularly
harms the way certain key characteristics in the generated data
(e.g., the position and number of hotspots). This is particularly
reflected in the HEMD performance which is more than double
(twice as worse) than APPSHOT. Since Pix2Pix is marginally
better than CNN based regression on all metrics, we only
consider the former in the rest of our evaluations.

SpectraGAN exhibits slightly better performance than APP-
SHOT with respect to two metrics (WErr and PSNR) but
substantially worse on the remaining three metrics. CartaGe-
nie is similar in that it does slightly better than APPSHOT
with respect to SSIM and PSNR but has substantially worse
performance on the other three metrics. Broadly speaking,
this overall relatively poor performance of SpectraGAN and
CartaGenie compared to APPSHOT can be attributed to their
inability to exploit inter-service correlations due to indepen-
dent generation of per-service traffic and insufficient measures
to correctly model hotspots (reflected in their significantly
worse performance in terms of HEMD).

The shortcomings of these two baselines with respect to
APPSHOT are apparent in the visualizations of synthetic traffic
maps they generate as shown in Figure 13. We see that
CartaGenie and SpectraGAN respectively yield unacceptable
synthetic traffic maps for Instagram and YouTube for CITY 1,
the most challenging target city given its vastly bigger size,
population density, traffic volume and hotspots compared to
other cities in our dataset (see §IV). In §VII-B, we will fur-
ther explore the performance of CartaGenie and SpectraGAN
relative to APPSHOT. In Figure 13, also note that Pix2Pix fails
to provide meaningful traffic maps for any service and exhibits
severe artefacts, consistent with its poor performance in terms
of quantitative fidelity metrics as seen above.

Performance at different peak periods. We now consider
how well APPSHOT generates service level traffic snapshots
at different peak periods. Results for different fidelity metrics
averaged across all test cities are summarized in the left panel
of Table II. We observe that APPSHOT provides consistent
performance for all periods close to the ideal ‘Data’ reference,
with WErr under 20% and near-ideal results for SSIM and
PSNR.

Capturing statistical variations. It is important for a
synthetic mobile traffic data generation model to model
inherent stochasticity in such data. This reflects the model’s
ability to learn traffic distributions conditioned on the
contextual input, rather than simply outputting a deterministic
transformation (as CNN based regression would do). We
examine this aspect considering histograms of city-level and
pixel-level total traffic volume across all test cities, and the
number of hotspots. Results shown in Figure 14 for APPSHOT
clearly demonstrate that it achieves this intended goal. Note
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Fig. 13: Synthetic traffic maps for select services in CITY
1 generated with different methods compared against the
ground truth traffic maps corresponding to those services.
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Fig. 14: Statistical features of APPSHOT-generated data.

that we include pixel-level histograms for only two arbitrarily
selected test cities for brevity.

B. Detailed Comparisons with CartaGenie and SpectraGAN

1) CartaGenie: Earlier in this section, we have already
highlighted the benefit of APPSHOT as a whole relative to
the alternative of using multiple separate per-service instan-
tiations of the CartaGenie model. Here we dissect APPSHOT
to examine the benefit due to some of its underlying design
choices and contrast with those underlying CartaGenie.

In Table III, the ‘L1+D1+D2’ represents the APPSHOT
design, using adversarial training with two discriminators as
well as use of overlapping patches and sliding across them
one pixel at a time (see Figure 10c). The ‘No Overlap’ case
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togram for APPSHOT.
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Fig. 16: Per-hour NEMD his-
togram for SpectraGAN.

is different from ‘L1+D1+D2’ in that the former uses non-
overlapping patch based training (see Figure 10b) as in the
CartaGenie design. Clearly, non-overlapping patches worsens
performance on all metrics, significantly so for several of the
metrics (WErr, NEMD and HEMD).

The other two alternative designs – ‘L1 Only’ and ‘L1+D1’
– shown in Table III use overlapping patches as in APPSHOT
but differ in their loss functions. Here ‘L1 Only’ represents the
case where only L1 loss is used for the loss function as done
in CartaGenie. We see that doing so results in overall worse
performance compared to APPSHOT (i.e., ‘L1+D1+D2’). In
particular, using L1 loss alone is clearly insufficient to ac-
curately model traffic composition (as measured by WErr)
and capturing hotspot distribution (HEMD). Addition of a
discriminator (via adversarial training as in GAN), shown
as L1+D1, helps on both fronts. Yet another discriminator
(L1+D1+D2) to ensure correct traffic composition, as we do
in APPSHOT, provides the best performance overall.

No Overlap L1 Only L1+D1 L1+D1+D2

WErr ↓ 32.04% 34.68% 22.68% 17.93%
NEMD ↓ 0.47 0.33 0.36 0.35
SSIM ↑ 0.79 0.81 0.85 0.84
PSNR ↑ 32.6 37.3 35.2 34.88
HEMD ↓ 3.70 5.59 2.19 2.09

TABLE III: APPSHOT design (shown under L1+D1+D2 in
the table) compared against alternative design choices. The
‘No Overlap’ and ‘L1 Only’ represent the design choices
underlying the CartaGenie model.

2) SpectraGAN: Different from other baselines, Spectra-
GAN is designed to capture the spatiotemporal features of
mobile traffic. We extend SpectraGAN to service-level gener-
ation by training it on each service independently. To evaluate
APPSHOT in the time domain and show that it generalizes to
different periods, we train APPSHOT to generate service level
snapshots for each hour of the day (i.e., the same granularity
as SpectraGAN) separately, and obtain synthetic service-level
traffic over time by stitching the hourly snapshots. Specifically,
we train 24 models with APPSHOT that correspond to different
hours of a day. The time series of city-scale total traffic of
YouTube after stitching is illustrated in Figure 17.

Spatial-domain performance. The histogram of per-hour
NEMD over a period of 3 weeks is shown in Figure 15
and Figure 16 for APPSHOT and SpectraGAN, respectively;
there we consider total traffic and the four popular services.
APPSHOT yields consistently good performance for individual
services as well as for total traffic. SpectraGAN, on the other
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Fig. 17: City scale total traffic time series of YouTube in CITY
1, normalized by the maximum hourly traffic.

hand, performs significantly worse for some services, and is
unstable over time. These results are in line with worse spatial
fidelity (in terms of NEMD and SSIM) seen previously with
SpectraGAN in Table II. A key reason for this is its inability
to exploit inter-service correlations, unlike APPSHOT.

Time domain performance. We employ the L1 distance
of autocorrelation between synthetic and real data (AC-L1),
also considered in previous work [21], [22], to comparatively
evaluate the temporal fidelity of the synthetic data between
SpectraGAN and APPSHOT. Specifically, we compute this
metric by taking the average value of L1 norm between
the corresponding points of the auto-correlations of real and
synthetic time-series data, at the pixel level. Lower values thus
imply better performance.

Instagram Snapchat Facebook YouTube Total (10)

APPSHOT 47.3 60.1 69.8 46.8 62.0
SpectraGAN 75.6 94.6 75.9 71.2 65.3

TABLE IV: Time domain performance comparison be-
tween APPSHOT and SpectraGAN in terms of AC-L1

(lower is better).

Table IV shows results comparing the performance APP-
SHOT with SpectraGAN in terms of median AC-L1, consid-
ering the top four popular services and total traffic of all
ten services available. While the two methods achieve sim-
ilar performance for total traffic, APPSHOT has substantially
better performance at the individual service level. Figure 17
highlights the particular case of YouTube traffic by way of
explaining these performance differences. In Figure 17, we
observe that SpectraGAN tends to largely overestimate the
actual traffic relative to ground truth, especially during idle
periods (e.g., in hours 180 or 335), while APPSHOT correctly
models such situations.

C. Benefit from Other Design Choices and Parameter Tuning

We now present further results supporting design choices in
APPSHOT, and discuss the tuning of its key hyper-parameters.

Noise Input Effect with FiLM Layer. As discussed in §V-C,
naive conditioning on the noise input to the generator by
simply concatenating it with (spatial) context input can cause
the model to ignore the noise input altogether and prevent it
from modeling stochasticity in the data. We avoid this issue
by using FiLM layer [33] to provide the noise input separately
through it. The benefit from this choice is highlighted by
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Fig. 18: Statistical features of APPSHOT-generated data with-
out the FiLM layer.

comparing the results in Figure 14 with that of Figure 18
where in the latter case APPSHOT uses naive conditioning on
noise input without the FiLM layer.

Hyper-parameters. We have determined the best settings for
various hyper-parameters empirically. These resulted in the use
of 12×12 as input context patch size (for 10×10 output traffic
patch size) and 3 × 3 kernel size at the first convolutional
layer. Among the various hyper-parameters of the APPSHOT
neural network model, through experiments and analysis, we
find that the kernel size of initial convolutional layers in
APPSHOT plays a critical role in determining the fidelity of
output synthetic traffic maps (as illustrated in Table V and
Figure 19). We choose 3× 3 kernel size as the setting for the
first convolutional layer that generally works well.

VIII. RADIO NETWORK SLICING USE CASE

As part of our performance evaluation, we assess the utility
of APPSHOT through a downstream application use case
of multi-service mobile traffic data. Specifically, we employ
synthetic data generated by APPSHOT to effectively feed a
recent model for the estimation of the multiplexing efficiency
with radio network slicing [3]. The actual size of each pixel
in our dataset is 250× 250m2, which is close to the coverage
range of a small cell. We thus assume that the radio network is
composed of small cells each matching one pixel. We further
assume that each service is associated with an individual slice,
i.e., a dedicated and customized set of network resources
and functions that allows achieving strong quality of service
(QoS) guarantees to the service providers. The need to isolate
resources to each slice (i.e., service) is at the root of a reduced
multiplexing efficiency: resources need to be allocated for
each slice, and cannot be multiplexed as in legacy networks
that cannot provide strong QoS [3]. In our case, the sliced
resources are at the radio access level (e.g., spectrum or
baseband processing resources), hence must accommodate the
per-service traffic generated in each pixel separately.

Formally, suppose there are N cells in the target region, and
let us denote by ri,s(p, t) the minimal resource to serve the

traffic demand of slice (i.e., service) s in cell i for a fraction of
time p over a reconfiguration period t. The value of ri,s(p, t)
can be derived from multi-service mobile traffic data generated
with APPSHOT and using the model in [3]. The (minimum)
amount of resources needed to serve the overall traffic in
absence of slicing (i.e., when multiplexing across services is
possible) is Ri(p, t). Then the network slicing efficiency is:

E(p) =

∑T
t=1

∑N
i=1 Ri(p, t)∑T

t=1

∑N
i=1

∑S
s=1 ri,s(p, t)

.

We compute the accuracy of estimating multiplexing effi-
ciency with APPSHOT-generated data relative to using real
data. We consider low and high coverage cases, respectively
corresponding to covering 95% and 99% of demand in each
reconfiguration period, i.e., p = {0.95, 0.99}. In other words,
more than 95% or 99% of the demand must be accommodated
in each slice during a reconfiguration period. We consider a
wide range of reconfiguration periods from 2h to 36h. As seen
from the results in Table VI, the APPSHOT-generated data
only introduces about 5% error in estimating the multiplex-
ing efficiency compared with the real traffic data for short
reconfiguration periods. The estimation error with APPSHOT
data slightly increases with increasing reconfiguration period
as well as lowered coverage probability but it always is within
10% relative to using real data.

2h 4h 8h 12h 16h 20h 24h 36h

95% Coverage 4.7% 4.6% 5.6% 4.9% 5.5% 5.5% 8.1% 8.4%
99% Coverage 4.7% 4.6% 5.5% 4.9% 5.4% 5.5% 6.0% 6.8%

TABLE VI: Error in multiplexing efficiency estimation with
APPSHOT-generated data for different coverage probabilities
and reconfiguration periods.

IX. CONCLUSIONS

We have presented APPSHOT, a novel conditional deep
generative model for synthesizing high-fidelity multi-service
network traffic data that needs only publicly available context
information of target regions. We have used real-world service-
level mobile traffic data for multiple cities for our evaluation
and show that APPSHOT not only outperforms a range of
baseline approaches in terms of fidelity and also generalizes
well to unseen regions. Our patch-based learning approach
and corresponding operations have proved to be effective in
generating traffic for cities with different sizes. Also, data aug-
mentation with overlapping patches significantly enhances the
performance with respect to handling traffic hotspots and di-
verse traffic ranges. The APPSHOT neural network architecture
and the service level constraints it incorporates significantly
enhance the accuracy of service compositions in synthetic
traffic, while preserving a strong structural correlation between
services. Furthermore, APPSHOT is shown to capture realistic
statistical variations on both city-wide traffic demand and
structural characteristics (e.g., number of hotspots). Finally,
we have demonstrated the utility of APPSHOT-generated data
through a use case on radio network slicing.
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Kernel Size CITY 1 CITY 2 CITY 3 CITY 4 CITY 5 CITY 6 CITY 7 CITY 8 CITY 9 CITY 10 Average

1 0.32 0.52 0.41 0.34 0.46 0.45 0.40 0.44 0.36 0.28 0.38
2 0.31 0.47 0.42 0.37 0.45 0.50 0.34 0.38 0.35 0.33 0.39
3 0.27 0.40 0.40 0.35 0.38 0.41 0.35 0.38 0.36 0.26 0.35
6 0.30 0.53 0.55 0.43 0.49 0.47 0.55 0.53 0.35 0.26 0.44
11 0.45 0.54 0.44 0.37 0.51 0.46 0.54 0.44 0.35 0.25 0.44

TABLE V: APPSHOT performance in terms of NEMD with different kernel sizes for the first convolutional layer.

(a) K=1 (b) K=2 (c) K=3 (d) K=6 (e) K=11

Fig. 19: APPSHOT-generated traffic maps for Instagram
in CITY 1 with different kernel sizes (K) for the first
convolutional layer.
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