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Abstract—The next radio access network (RAN) generation,
open RAN (O-RAN), aims to enable more flexibility and
openness, including efficient service slicing, and to lower
the operational costs in 5G and beyond wireless networks.
Nevertheless, strictly satisfying quality-of-service requirements
while establishing priorities and promoting balance between
the significantly heterogeneous services remains a key research
problem. In this paper, we use network slicing to study
the service-aware baseband resource allocation and virtual
network function (VNF) activation in O-RAN systems. The
limited fronthaul capacity and end-to-end delay constraints
are simultaneously considered. Optimizing baseband resources
includes O-RAN radio unit (O-RU), physical resource block
(PRB) assignment, and power allocation. The main problem
is a mixed-integer non-linear programming problem that is
non-trivial to solve. Consequently, we break it down into
two different steps and propose an iterative algorithm that
finds a near-optimal solution. In the first step, we reformulate
and simplify the problem to find the power allocation, PRB
assignment, and the number of VNFs. In the second step,
the O-RU association is resolved. The proposed method is
validated via simulations, which achieve a higher data rate
and lower end-to-end delay than existing methods.

Index Terms—open radio access network (O-RAN), virtual
network function (VNF), network slicing, knapsack problem,
greedy algorithm, Karush-Kuhn-Tucker (KKT) Conditions.

I. INTRODUCTION

Network slicing is a key technology in 5G wireless
systems. Specifically, it isolates network resources into
slices, e.g., via core slicing and/or radio access network
(RAN) slicing, for serving various services [1]–[3].

There are three main service classes in 5G, namely
enhanced mobile broadband (eMBB), ultra-reliable low
latency communications (URLLC), and massive machine-
to-machine communications (mMTC). Each service is as-
signed to a network slice depending on its corresponding
quality of service (QoS) requirements. For instance, the
eMBB service demands high capacity and throughput, e.g.,
8K video streaming and immersive gaming. Meanwhile,
the URLLC service provides ultra-reliable and low-latency
connectivity, e.g., for autonomous vehicles, Tactile Inter-
net, and remote surgeries. Finally, mMTC services require
connectivity for a large number of Internet of Things (IoT)
devices that transmit small payloads [4]–[6].

A. Motivation
The optimal resource allocation in 5G systems is crucial

for reducing costs and improving the performance experi-
enced by the user equipments (UEs). These systems face
significant challenges, including interference alignment,

limited capacity of the fronthaul links, energy restrictions
on virtual machines (VMs), etc. [2], [7], [8].

Many studies have investigated resource allocation in
cloud RAN (C-RAN) by considering a single service’s
power, data rate, and delay limitations. Unfortunately, the
existing radio access networks (RANs) currently lack ade-
quate flexibility and openness to handle these simultaneous
service demands. Hence, a new RAN paradigm, called open
RAN (O-RAN) architecture, has emerged. Therefore, O-
RAN can simultaneously support multiple services at a
lower cost by being flexible, layered, and modular. One of
the fundamental problems lies in balancing services with
different QoS, resource requirements, and priorities in O-
RAN architecture [1], [9]–[11].

The purpose of this paper is to design a system in the O-
RAN architecture to support the three types of 5G services,
namely, eMBB, URLLC, and mMTC via network slicing
and resource allocation.

B. Main Contributions
This paper studies the resource utilization of a downlink

O-RAN system to develop an isolated network slicing
outline for the three 5G services. We use mathematical
methods to decompose and convexify the problem and solve
it using hierarchical algorithms. The main contributions of
this paper are summarized as follows:

• We examine the problem of baseband resource al-
location, such as power, physical resource blocks
(PRBs), O-RUs, and activating VNFs, to maximize the
weighted throughput of the O-RAN architecture. The
three types of 5G service classes, i.e., eMBB, URLLC,
and mMTC, together with their corresponding QoS
requirements and service priorities, are considered.

• We propose a two-step resource management algo-
rithm for solving the optimization problem. In the first
step, we reformulate and simplify the problem so as
to find an upper and lower bound for the number
of activated VNFs. Moreover, we use the Lagrangian
function and Karush-Kuhn-Tucker (KKT) conditions
to obtain the optimal power and PRB allocation. In
the second step, the problem of O-RU association is
converted to a multiple knapsack problem and solved
by a greedy algorithm.

• We analyze the complexity of the proposed algorithms
and demonstrate their convergence. Additionally, we
analyze the feasibility region of the problem and
introduce a fast algorithm to check it numerically.
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TABLE I: List of Acronyms

Acronym Definition
VNF virtual network function
VM virtual machine
RAN radio access network
O-RAN open RAN
vRAN virtual RAN
CRAN cloud RAN
RRH radio remote head
BBU baseband unit
QoS quality of service
MIMO multiple input multiple output
PRB physical resource block
eMBB enhanced mobile broadBand
URLLC ultra-reliable low latency communication
mMTC massive machine-to-machine communications
O-RU O-RAN radio unit
O-DU O-RAN distributed unit
O-CU O-RAN central unit
UPF user plane function
UE user equipment
SINR signal-to-noise-plus-interference ratio
CAPEX capital expenditures
OPEX operating expenses
KKT Karush-Kuhn-Tucker

• We show via numerical results that the proposed al-
gorithm outperforms two baseline schemes in terms of
achievable data rate and mean total delay. Remarkably,
the proposed algorithm performs close to the optimal
solution in low-interference conditions.

C. Organization
This paper is organized as follows. Relevant literature

related to our work is discussed in Section II, while
Section III briefly overviews the O-RAN architecture. The
system model and the problem formulation are described in
Section IV and Section V, respectively. The details of our
proposed resource management algorithm are introduced in
Section VI. In Section VII, numerical results are provided to
evaluate the performance of the proposed algorithm. Finally,
Section VIII concludes the paper. For clarity, Table I lists
the main acronyms used throughout the paper.

II. RELATED LITERATURE

The network slicing problem in multi-tenant cellular
networks has received significant attention recently, e.g.,
[7], [12], [13]. Two levels of dynamic network slicing in
heterogeneous C-RAN (H-CRAN) are examined in [7].
The higher level manages user acceptance control, RRH
association, and the allocation of BBU capacity. Meanwhile,
PRB and power are allocated at lower levels. In [14], RAN
slicing is considered for the fog RAN (F-RAN) system, and
executed using deep reinforcement learning. In [15], [16],
the implementation of RAN level slicing is discussed among
multiple mobile network operators with the specific physi-
cal network resources infrastructure. In [17], to provide 5G
slicing services, the authors present a framework called O-
RANFed that implements and optimizes federated learning
tasks in O-RAN devices. Moreover, The authors of [18]
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Fig. 1: Network sliced O-RAN system

propose a federated deep reinforcement learning algorithm
to achieve network slicing in O-RAN.

Recent research has focused on multiplexing eMBB and
URLLC services within a RAN. In [2], the sum rate of
the eMBB, and URLLC, is optimized by ensuring that
each user’s traffic load demand is met and the slice iso-
lation is guaranteed, thus promoting an amicable service
coexistence. In [19], a RAN slicing is considered in a
coordinated multipoint system to guarantee the QoS re-
quirements of eMBB and URLLC services. Moreover, [20]
investigates the minimization of the system’s power for
the RAN slicing of eMBB and URLLC downlink services
using non-orthogonal multiple access techniques. In [5],
the problem of resource allocation for the coexistence of
eMBB and URLLC services is formulated and solved by
deep reinforcement learning.

In [8], [21], VMs activation and beamforming allocation
are discussed in C-RAN systems. Paper [8] minimizes
energy cost with system delay, fronthaul capacity, and
rate constraints. To guarantee UE delays, M/M/1 queueing
theory is used for transmission and processing delays. In
[22], [23], the problem of joint virtual computing resource
allocation with beamforming is formulated. Also, the asso-
ciation of RRH to the UE is considered and solved using
innovative methods.

In [24], [25], the problem of joint power allocation
and RRH association in a H-CRAN system is considered
to maximize the energy efficiency. Finally, in [26], the
optimum power is obtained in the massive MIMO aided C-
RAN system, and the problem of RRH to BBU and RRH
to UE association is formulated and solved.

III. BACKGROUND

O-RAN is an appropriate alternative to the next genera-
tion of radio access networks due to its flexibility, openness,
low operational costs, and intelligence.

O-RAN was developed to jointly benefit from the advan-
tages of virtual RAN (vRAN) and cloud RAN (C-RAN).
By virtualizing RANs, operators can improve flexibility,
reduce CAPEX and OPEX, and add new capabilities to their
networks more quickly. The C-RAN architecture divides the
RAN into two major parts: the radio remote head (RRH)
and the baseband unit (BBU). Several distributed RRHs
can be connected to a centralized BBU, called BBU-pool
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[27]. Unlike C-RAN, O-RAN separates RAN into three
different units, namely Radio Unit (O-RU), Distributed Unit
(O-DU), and Central Unit (O-CU). Mostly non-real-time
baseband processing occurs in the O-CU layer, while real-
time baseband processing occurs in the O-DU layer.

In the O-RAN architecture, the PHY is divided into
low and high PHY, unlike C-RAN. As shown in Fig. 1,
O-RU is a logical node that contains RF and low PHY.
The former transmits or receives radio signals, while the
latter includes digital beamforming. Typically, the O-DU
constitutes a logical node with high PHY, MAC, and RLC.
It contains a subfunction of the eNodeB and is deployed
near the O-RU. Moreover, O-DU is connected to an O-RU
with an open fronthaul interface. In addition to supporting
the lower layers of the protocol stack, O-CU also provides
support for the higher layers.

The O-CU contains two parts: the O-CU user plane
(O-CU-UP) and the O-CU control plane (O-CU-CP). The
former hosts the packet data convergence protocol (PDCP)-
UP and the service data adaption protocol (SDAP), while
the latter hosts PDCP-CP and radio resource control (RRC).
O-DU and O-CU are connected via an open and well-
defined interface F1. Moreover, O-CU-UP is connected to
user plane function (UPF) via O-backhaul link.

The O-RAN architecture contains other principal logical
nodes called Orchestration and Automation, RAN Intelli-
gent Controller (RIC)- Near Real-Time, and O-Cloud. Or-
chestration and Automation include functions such as RIC
Non-Real-Time. RIC is responsible for machine learning
methods and making the system more intelligent.

key feature of the O- RAN architecture is that the
hardware is disaggregated from the software, leading to
network function virtualization (NFV). Additionally, each
component is implemented as a virtual network function
(VNF), the system function block in NFV, that can be
deployed on a virtual machine (VM) or container [28]. As
a result, as shown in Fig 1, O-RAN components, such as
UPF, O-CU, O-DU, and RIC-near real-time, are virtualized
and implemented as VNFs [9]–[11], [29]–[32].

IV. SYSTEM MODEL

We consider a downlink (DL) system, and an O-RAN
architecture using RAN slicing as depicted in Fig. 1. In this
section, we present the system and signal model, derive the
achievable data rates, power of O-RU, and the fronthaul
capacity of the O-RAN system. Moreover, we discuss the
mean delay and the power of VNFs.

A. System Model
Assume, there are three service types: eMBB, URLLC,

and mMTC, which support different applications. Ac-
cordingly, there are S1 slices for the first service type
(eMBB), S2 slices for the second service type (URLLC),
and S3 slices for the third service type (mMTC). There-
fore, there are S = S1 + S2 + S3 pre-allocated slices
serving these services. Moreover, each service request
s ∈ {1, . . . , S} is served by its corresponding slice. So
we have the set {1, 2, ..., S1} of eMBB service instances,

the set {1, 2, ..., S2} of URLLC service instances, and the
set {1, 2, ..., S3} of mMTC service instances. Each service
sj ∈ {1, 2, ..., Sj} consists of Usj requests from single-
antenna UEs requiring certain level of QoS. Notice that
j ∈ {1, 2, 3} indicates the service type. Based on the
application and QoS request, UE may be admitted and
allocated to the resources.

Each pre-allocated slice contains reserved VNFs for the
three logical nodes:

• MAC/RLC functions in the O-DU
• PDCP/SDAP functions in the O-CU-UP
• UPF which is a functional layer

Each slice s ∈ {1, 2, ..., S}, consists of Md
s VNFs for the

processing of O-DU, M c
s VNFs for the processing of O-CU-

UP, and Mu
s VNFs for the processing of UPF. The VNFs

of O-DU, O-CU-UP, and UPF are interconnected, which is
defined as the service function chain in the O-RAN system.
Also, each VNF instance runs on a VM that uses resources
from the data centers.

Assume there are K PRBs in this system. Suppose each
slice s consists of K̄s pre-allocated virtual resource blocks
that are mapped to PRBs. Therefore, we have

∑
s K̄s ≤

K. In addition, there are R multi-antenna O-RUs that are
shared between the slices. Specifically, the O-RU r ∈ R =
{1, 2, ..., R} has J antennas for transmitting and receiving
data. Moreover, all O-RUs have access to all PRBs.

B. Signal Model
Let yu(s,i) be the received signal of UE i in the sth

service such that

yu(s,i)=

R∑
r=1

Ks∑
k=1

hH k
r,u(s,i)g

r
u(s,i)e

k
r,u(s,i)xQ

k
r,u(s,i)+zu(s,i), (1)

where xQ
k
r,u(s,i) = xP

k
r,u(s,i) + qr, xP

k
r,u(s,i) =

wk
r,u(s,i)

√
pkr,u(s,i)xu(s,i), xu(s,i) depicts the transmitted

symbol vector, zu(s,i) ∼ CN (0, BN0) is the receive ad-
ditive Gaussian noise, and BN0 is the noise power in a
given bandwidth B. Here, xP denotes the precoded message
before compression, while xQ illustrates the precoded mes-
sage after compression.In addition, qr ∼ CN (0, σq

2IR)
indicates the quantization Gaussian noise which comes from
the signal compression in O-DU. Furthermore, gru(s,i) ∈
{0, 1} is a binary variable that illustrates whether O-RU r
serves the ith UE that is allocated to the sth slice or not.
Furthermore, pkr,u(s,i) represents the transmission power of
the O-RU r serve the ith UE in slice s and PRB k, while
hk
r,u(s,i) ∈ CJ corresponding channel vector. In addition,

wk
r,u(s,i) ∈ CJ depicts the associated transmit beamforming

vector. Therefore, the SINR of the ith UE served at slice s
on PRB k is given by

ρkr,u(s,i) =
pkr,u(s,i)|h

k H
r,u(s,i)w

k
r,u(s,i)|

2

BN0 + Ikr,u(s,i)
, (2)

A UE in an O-RU r using PRB k receives interference
from other O-RUs in the set R\r that are using the same
PRB k. Two types of interference occur between UEs in
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each slice: i) inter-slice interference between signals trans-
mitted over different slices, and ii) intra-slice interference
between signals transmitted over the same slice.

Network slicing techniques significantly reduce inter-
service (inter-slice) interference. One way to leverage a
two-time scale PRB scheduling is to isolate PRBs in slices
(in the first time scale) and schedule the PRBs to the UEs
of the slices (in the second time scale). Another method
consists of allocating part of the PRBs of eMBB services to
URLLC and mMTC [2], [5], [33]. In this paper, we assume
that the PRB scheduling is performed. Also, in Section
V-A, we briefly study the PRB scheduling between slices.
Since there are limited resources, inter-service interference
cannot be eliminated entirely. Nevertheless, isolating the
slices reduces inter-service interference considerably and
allows us to ignore it mathematically.

Back to (2), Ikr,u(s,i) is the sum of the power of interfering
signals and quantization noise, and can be represented as

Ikr,u(s,i) =

R∑
j=1

σq
2|hk

r,u(s,i)|2︸ ︷︷ ︸
(quantization noise)

+

Us∑
l=1
l ̸=i

eku(s,i)e
k
u(s,l)p

k
u(s,l)

R∑
r′=1
r′ ̸=r

|hk H
r′,u(s,i)w

k
r′,u(s,l)g

r′

u(s,l)|
2

︸ ︷︷ ︸
(intra-slice interference)

, (3)

where eku(s,i) is a binary variable that indicates whether
the kth PRB is allocated to the UE i in slice s, assigned
to rth O-RU, or not. Furthermore, there is no inter-slice
interference, only intra-slice interference, since slices are
assumed to be isolated.

Herein, we consider a zero forcing beamforming vector,
which minimizes the experienced intra-slice interference,
and is given by [34]

wk
r,u(s,i) = ĥk

r,u(s,i)(ĥ
k H
r,u(s,i)ĥ

k
r,u(s,i))

−1. (4)

where hk
r,u(s,i) is the channel estimate, which is as-

sumed imperfect. Mathematically, ĥr,u(s,i) = hr,u(s,i) +

∆hr,u(s,i), where ∆hr,u(s,i) ∼ N (0,ϕ2
r,u(s,i)) indicates

the estimating error vector with a Gaussian distribution and
ϕr,u(s,i) = diag(ϕr,u(s,i), . . . , ϕr,u(s,i)).

C. Achievable Data Rate
The achievable data rate for the ith UE request in the sth1

application of service type 1 (eMBB) can be written as

Ru(s1,i) =

R∑
r=1

Rr,u(s1,i)g
r
u(s1,i)

, (5)

where

Rr,u(s1,i) =

K∑
k=1

Rk
r,u(s1,i)

ekr,u(s1,i) (6)

is the achievable data rate of RU r to UE i in slice s1,
which depends on the achievable data rate per PRB, i.e.,

Rk
r,u(s1,i)

= B log2(1 + ρkr,u(s1,i)), (7)

Since the blocklength in URLLC and mMTC is finite,
the achievable data rate for the ith UE request in the
application of service type 2 (URLLC) and 3 (mMTC) is
not achieved from the Shannon capacity formula. Instead,
in a short packet transmission, the achievable data rate is
approximated as [2]

Ru(sj ,i) =

R∑
r=1

Rr
u(sj ,i)

gru(sj ,i), (8)

where
Rr,u(sj ,i) = Rk

r,u(sj ,i)
eku(sj ,i), (9)

is the achievable data rate of RU r to UE i in slice s1,
which depends on the achievable data rate per PRB, i.e.,

Rk
r,u(sj ,i)

= B log2(1 + ρkr,u(sj ,i) − ζku(sj ,i))e
k
u(sj ,i)

, (10)

where

ζku(sj ,i) = log2(e)Q
−1(ϵ)

√
Ck
u(sj ,i)

/Nk
u(sj ,i)

. (11)

Here, ϵ is the transmission error probability, Q−1 is the
inverse of the Q function, Ck

u(sj ,i)
= 1− 1

(1+ρk
u(sj,i)

)2
depicts

the channel dispersion of UE i at slice sj and PRB k, while
Nk

u(sj ,i)
represents the corresponding transmit blocklength.

Rr,u(sj ,i) is the achievable data rate that is transmitted by
O-RU r to UE i requesting service sj .

If we replace pku(s,l) and pku(n,l) in (3) by Pmax
s , an

upper bound Īkr,u(s,i) is obtained for Ikr,u(s,i). Therefore,
R̄u(s,i)

∀s, i is derived by using Īkr,u(s,i) instead of Ikr,u(s,i)
in (8) and (5).

D. Power of the O-RU and the Fronthaul Capacity

Let Pr denote the power of the transmitted signal from
the rth O-RU to all the UEs served by it. From (1), the
power of each O-RU r is obtained as follows,

Pr =

S∑
s=1

Ks∑
k=1

Us∑
i=1

|wk
r,u(s,i)|

2αk
r,u(s,i) + σ2

q , (12)

where αk
r,u(s,i) = pkr,u(s,i)g

r
u(s,i)e

k
r,u(s,i). Since we have

a fiber link between O-RU and O-DU, the rate of users
on the fronthual link between O-DU and the rth O-RU is
formulated as

Cr = log2

(
1 +

S∑
s=1

Ks∑
k=1

Us∑
i=1

|wk
r,u(s,i)|

2αk
r,u(s,i)/σ

2
q

)
= log2

(
Pr/σ

2
q

)
. (13)

E. Mean Delay
In this part, the end-to-end mean delay for each service is

obtained. The total delay (T tot), is the sum of the processing
delay (T proc), the transmission delay (T tr), and the total
propagation delay (T pro).

T tot = T proc + T tr + T pro, (14a)

T proc = TRU + TDU + TCU + TUPF, (14b)
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T tr = T fr,t + Tmid,t + T b,t, (14c)

T pro = T fr,p + Tmid,p + T b,p. (14d)

Mathematically, the total propagation delay (T pro) is the
sum of the propagation delay in the fronthaul link T fr,p,
the midhaul link Tmid,p, and the backhaul link T b,p. In each
link, the propagation delay is the time a signal to reach its
destination. It is obtained based on the length of the fiber
link and the capacity of the link (as T = L/c, where L
is the length of the link and c is the propagation speed
of the medium). Meanwhile, the total transmission delay
(T tr) is the sum of the transmission delay in the fronthaul
T fr,t, the midhaul Tmid,t, and the backhaul T b,t. In each
link, the transmission delay is the amount of time required
to push all the packets into the transmission medium, and
can formulated as T = α

R , where R is the data-rate of the
packet and α is the mean packet size. Notice that taking
the propagation and transmission delays into account in
the formulation is straightforward, but we have avoided
it for the sake of succinctness and simplicity. Therefore,
the propagation delay is fixed and does not affect the
optimization problem.

Next, we present a brief calculation of propagation delay.
Assume a distance between the O-RU and O-DU around
10 km, the distance between O-DU and O-CU around 80
km, not greater than the distance from O-CU to the network
around 200 km [35]. Then, assuming the fronthaul, midhaul
and backhaul are connected with fiber optics and c is the
speed of like, the propagation delay is about T pro = (10 +
80 + 200)× 103/(3× 108) < 1 ms.

The following is a brief calculation of the transmission
delay to show that its contribution to the total delay is
negligible and does not affect the optimization. In URLLC
and mMTC, the mean packet size may be between 20 to
32 bytes, while the minimum data rate is assumed to be
1 bps/Hz×BW (180 KHz). Thus, the transmission delay
from O-RU to O-DU is about T fr,t = 20×8

1×180×103 < 0.1ms,
and T fr,t ≈ Tmid,t ≈ T b,t. For eMBB, the packet size may
be 100 times larger and the delay does not exceed 0.6 ms.
Therefore, in the following, we assume that the total delay
is approximate to the processing delay (T tot ≈ T proc).

1) Processing Delay: Assume the packet arrival of UEs
follows a Poisson process with arrival rate λu(s,i) for the
ith UE of the sth service (or slice). Therefore, the mean
arrival data rate of the sth slice in the UPF layer is
αU
s =

∑Us

u=1 λu(s,i). Assume the mean arrival data rate
of the UPF layer for slice s (αU

s ) is approximately equal
to the mean arrival data rate of the O-CU-UP layer (αC

s )
and the O-DU (αD

s ), i.e., αs = αU
s ≈ αC

s ≈ αD
s . This

is because the amount of data transferred along the route
(regardless of frame changes) is constant. In fact, according
to Burke’s theorem, the mean arrival data rate of the second
and third layers, which are processed in the first layer, is
still Poisson with rate αs. It is assumed that there are load
balancers in each layer for each service to divide equally the
incoming traffic to VNFs. Suppose the baseband processing
of each VNF is modeled by an M/M/1 processing queue.
Each packet is processed by one of the VNFs of the

corresponding slice. Therefor, the mean delay for the sth

slice in the O-DU, the O-CU, and the UPF is modeled as
M/M/1 queue, and can be respectively [8], [22], [23],

TDU
s = 1/(µd

s − αs/M
d
s ), (15)

TCU
s = 1/(µc

s − αs/M
c
s ), (16)

TUPF
s = 1/(µu

s − αs/M
u
s ), (17)

where Md
s , M c

s and Mu
s represent the number of VNFs in

O-DU, O-CU-UP and UPF, respectively. Moreover, 1/µd
s ,

1/µc
s, and 1/µu

s are the mean service times of the O-DU,
O-CU, and the UPF layers, respectively. The arrival rate of
each VNF for each slice s is αs/M

i
s i ∈ {d, c, u}.

On the other hand, arrival data rate of wireless link for
each UE i of service s is λu(s,i), thus

∑Us

i=1 λu(s,i) = αs.
Moreover, the service time of transmission queue for UE
i requesting service s has an exponential distribution with
mean 1/Ru(s,i) and can be modeled as a M/M/1 queue [8],
[22], [23]. Therefore, the mean delay of the transmission
layer for UE i in slice s is

TRU
u(s,i) = 1/(Ru(s,i) − λu(s,i)). (18)

we assume T tot
u(s,i) ≈ T proc

u(s,i).

F. VNF Power
Assume the power consumption of each VNF in each

logical node (O-DU, O-CU, and UPF) in the slice s, is
represented by ϕds , ϕcs, and ϕus , respectively. Then, the
system’s total cost of energy of all the slices can be
represented as ϕtot =

∑S
s=1 ϕs,

A significant issue facing the industry is reducing energy
consumption. Data centers are one of the most energy-
consuming. As a result, restrictions are placed on data
centers’ energy, including VMs. So, one of our goals is
to limit the energy consumption of total VNFs that can be
run as VM on data centers. So, by applying a custom policy
on total power consumption, we can control data centers’
power consumption (ϕtot ≤ ϕmax).

V. PROBLEM STATEMENT

Suppose the slice s (which is assigned to service s) has
a priority factor δs (based on the priority of its hosting
service) where

∑S
s=1 δs = 1. The priority factor of each

slice is obtained according to the service level agreement
to promote a fairness in the system. This paper aims to
maximize the sum-rate of all UEs subject to QoS constraints
as follows

max
P ,E,M ,G

S∑
s=1

Us∑
i=1

δsR̄u(s,i)
(19a)

subject to Pr ≤ Pmax
r ∀r, (19b)

pkr,u(s,i) ≥ 0 ∀i, r, s, k, (19c)

pkr,u(s,i) ≤ Pmax
s ∀i, r, s, k, (19d)

R̄u(s,i)
≥ Rmin

s ∀s, (19e)

Cr ≤ Cmax
r ∀r, (19f)

T tot
u(s,i) ≤ Tmax

s ∀i, s, (19g)

µs ≥ αs/Ms ∀s, (19h)
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R̄u(s,i)
≥ λu(s,i)

∀i, s, (19i)

0 ≤Ms ≤Mmax
s ∀s, (19j)

ϕtot ≤ ϕmax, (19k)∑
∀r
gru(s,i) = 1 ∀s, i, (19l)

Ks∑
k=1

gru(s,i)e
k
r,u(s,i) ≥ 1 ∀s, i, r, (19m)

S∑
s=1

Us∑
i=1

gru(s,i)e
k
r,u(s,i) ≤ 1 ∀s, i, r, (19n)

gru(s,i) ∈ {0, 1} ∀s, i, (19o)

ekr,u(s,i) ∈ {0, 1} ∀s, i. (19p)

Here, R̄u(s,i)
is derived by using Īkr,u(s,i) instead of Ikr,u(s,i)

in (8) and (5). In addition, P = [pkr,u(s,i)], ∀s, i, r, k,
is the four-dimensional (4D) matrix of power for UEs,
E = [ekr,u(s,i)], ∀s, i, r, k indicates the binary 4D matrix
for the PRB association. Moreover, G = [gru(s,i)], ∀s, i, r
is a binary three dimensional (3D) matrix for the O-RU
association. Furthermore, M = [Md

s ,M
c
s ,M

u
s ], ∀s is a

matrix containing the number of VNFs in each layer of
slice. Notice that (19b), (19c) and (19d) limit the power of
each O-RU and UE. Also, (19e) constrains the rate of each
UE requesting each type of service, i.e., eMBB, mMTC,
and URLLC, to be greater than a threshold. Meanwhile,
(19f) and (19g) represent the limited fronthaul capacity
and the limited end-to-end delay of the received signal,
respectively. (19h) and (19i) are related to the stability of the
M/M/1 queue, (19j) restrictes the number of VNFs in each
slice due to the limited resources, while (19l) and (19m)
guarantee that the O-RU and PRB are associated with the
UE, respectively. Also, (19n) ensures that each PRB can
not be assigned to more than one UE associated with the
same O-RU, (19k) indicates that the fixed cost of energy
of VNFs in each slice does not exceed the threshold, while
(19o) and (19p) constrain E and G to be binary matrices.

A. PRB Scheduling
In this section, we provide a brief study on the problem

of PRB scheduling which can be completed in two steps
to eliminate the inter-slice interference and guarantee the
isolation of slices [36]. Firstly, we should assign the PRBs
to the slices. Secondly, we assign PRBs of slices to UEs,
find the optimal number of VNFs for each slice, allocate
power of UEs, and assign O-RU to UEs, which uses the
proposed Algorithm VI. Suppose, Rmin

s , and Rmax
s are the

minimum data rate and maximum data rate of each UE
in slice s, respectively. Firstly, we need to find the average
PRB number used by the UEs in each service. Since mMTC
and URLLC require usually short packet transmissions,
each UE in mMTC and URLLC requires 1 PRB. So if
slice s serves mMTC or URLLC services, with Us UEs,
it requires Ks = Us × 1 PRBs. For eMBB, assume the
average rate of each UE in slice s serving eMBB UEs is
R̄s = B log2(1 + ρ̄s), where, ρ̄s is the average SINR of
UEs in slice s. Therefore, the minimum number of PRBs
that slice s with Us UEs requires is Kmin

s = ⌈Us × R̄s

Rmax
s

⌉.

Moreover, the maximum number of PRB that the slice
s with Us UEs requires is Kmax

s = ⌈Us × R̄s

Rmin
s

⌉. Also,
Ks = (Kmin

s +Kmax
s )/2 is the average number of required

PRBs in slice s. We aim to obtain the number of PRBs
assigned to each slice s (K̄s) by solving

max
K̄s

S∑
s=1

δsKs ln(K̄s) (20a)

subject to
∑
s

K̄s ≤ K, (20b)

Kmin
s ≤ K̄s ≤ Kmax

s ∀s ∈ S1, (20c)
K̄s ≤ Ks ∀s ∈ S2, S3. (20d)

We use logarithms to assign PRBs to all slices to make
them equally fair, since proportional fairness is achieved
by maximizing the log utility function [36]. Equation (20b)
illustrates that the sum of PRBs of slices can not exceed
the maximum number of PRBs (K). Equation (20c) restricts
the number of PRBs of eMBB slices and (20d) limits the
number of the PRBs of URLLC and mMTC slices. By
relaxing K̄s, the objective function and constraints become
convex and can be solved using the Lagrangian function.

B. Slice Management
In this subsection, we will look at the life cycle of

network slicing on a practical level. The goal is to examine
slice management, which includes creating, managing, and
deleting slices. Network slices generally have four life cycle
stages [37]:

• Preparation phase: the operator plans to create a net-
work slice instance (NSI) by designing the its template,
onboarding users, and preparing the environment.
Also, the evaluation of requirements is performed in
this step.

• Commissioning phase: the NSI is created, and the
requirements are considered and allocated to the slice.

• Operation phase: the NSIs are activated, managed,
monitored (e.g., KPIs), modified, and deactivated. As
the slice enters the activated phase, it is ready to
support services, and as the slice exits the de-activated
phase, the slice is inactive, and communication ser-
vices are stopped.

• Decommissioning phase: an NSI that is decommis-
sioned no longer exists after this phase.

Since the requirements evaluation is considered in the
preparation phase, we need an algorithm to estimate the
UE traffic in the system at different times. Moreover, based
on this estimation, we need to evaluate resources, including
the optimal number of VNFs, PRB assignment of UEs
for each slice, and the total power requirements. In this
phase, we use our algorithm to calculate resources after
estimating the system’s traffic. As shown in Fig. 1, we
have three different slices for eMBB, URLLC, and mMTC.
The system must prepare VNFs for MAC/RLC functions
in O-DU, PDCP/SDAP functions in O-CU, UPF, SMF,
and AMF functionality layers for each slice. Moreover,
O-RU, high PHY in O-DU, and O-CU-CP are shared
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between slices. Thus, we do not require evaluating and
preparing for the share environments and platforms in the
network slicing cycles. Moreover, the estimation of PRB
and power is needed based on the proposed algorithm.
After evaluating, assessing, and preparing the resources and
environments for each slice, the commissioning phase is
started. In this phase, the slices are created based on the
previous phase estimation. These created slices are activated
in the operation phase, and the actual resources are assigned
based on the proposed algorithm. It is possible to modify the
slice’s resources even when the evaluation changes during
the operation phase. If we need to remove a slice or any
service not used in a zone, the unshared resources are
released in the decommissioning phase.

VI. PROPOSED ALGORITHM

In this section, we first apply some simplifications to the
system; Solving the problem (19) is complicated since this
is non-convex mixed-integer non-linear problem (MINLP)
with a binary variable and an integer variable. We applied
some simplifications and use an iterative heuristic algorithm
to solve the problem. We solve this problem in two levels,
iteratively, until it converges [25].

At the first level, the main purpose is to assign appro-
priate PRBs and power to the UEs. Furthermore, sufficient
activated VNFs are assigned to each slice. Hence, at this
level, we would like to obtain the variables P ,E, and M .
Despite the simplification of the problem (19), it is still
NP-hard and challenging to solve. Therefore, we relax the
variable E [7], [25] and reformulating the constraint (19g),
to turn them into a jointly-convex problem; Afterward, we
solve this problem using a conventional dual Lagrangian
method. In the second level, finding the optimal O-RU
association, G, is concerned with the fixed parameter of
power, PRB allocation, and the number of activated VNFs.
We repeat this procedure until the algorithm converges.

A. Sub-Problem 1
Suppose that G is fixed, we want to obtain P ,E and

M . Here, we first simplify and relax the parameters to
convexify the problem. As we mentioned before, by re-
placing pku(s,l) and pku(n,l) in (3) with Pmax

s , an upper bound
Īkr,u(s,i) is obtained for Ikr,u(s,i), and also the lower bound
ρ̄ku(s,i) is achieved for ρku(s,i). Moreover, the lower bound
R̄u(s,i)

,∀s,∀i for Ru(s,i)
is obtained by replacing Ikr,u(s,i)

with Īkr,u(s,i) in (8) and (5) and make these equations
become concave functions.

Suppose ρ̂kr,u(s,i)=P
max
s |hH k

r,u(s,i)w
k
r,u(s,i)g

r
u(s,i)|

2/(BN0).
We replace ρkr,u(s,i) with ρ̂kr,u(s,i) in (11), to convexify the
(8) for the URLLC and mMTC services that have the short
packet transmission. So, a lower bound for (8) is given
that is a concave function.

R̄r
u(sj ,i)

=B

Ksj∑
k=1

eku(sj ,i)(log2(1+ρ̄
k
u(s2,i)

)−ζ̂ku(sj ,i)), (21a)

R̄u(sj ,i)=

R∑
r=1

R̄r
u(sj ,i)

, (21b)

ζ̂ku(sj ,i)= log2(e)Q
−1(ϵ)

√
Ĉk
u(sj ,i)

/Nk
u(sj ,i)

, (21c)

Ĉk
u(sj ,i)

= 1− 1/(1 + ρ̂ku(sj ,i))
2. (21d)

Without loss of generality, assume that UPF, O-CU and O-
DU use the processors with the same processing capability.
We notice that it makes the formulation simpler. However,
loosing this assumption does not change the formulation
significantly and the problem can be solved in the same
manner. Therefore, we have µs = µu

s ≈ µc
s ≈ µd

s .
Moreover, as mentioned before, the mean arrival data rate
of the UPF layer for a service s (αU

s ) is equal to the mean
arrival data rate of the O-CU-UP layer (αC

s ) and O-DU
(αD

s ). So αs = αU
s ≈ αC

s ≈ αD
s . Again, this assumption

only simplifies the notations and loosing it does not make
the solution inefficient. These assumptions lead to having
the same processing power for each layer ϕus = ϕcs = ϕds .
As a result, we have Ms = Mu

s = M c
s = Md

s . Using
the above assumption, we have TDU

s = TCU
s = TUPF

s

and we have T proc
s = TRU

s + TDU
s + TCU

s + TUPF
s . So,

T proc
s = TRU

s + 3× TDU
s .

The problem (19) is mixed-integer nonlinear program-
ming with two integer variables, the PRB assignment, e,
and the number of VNFs in slice s, Ms, and by relaxing
the variables, the problem is also non-convex; therefore, this
problem is NP-hard. Solving the problem is not trivial. To
solve the problem by inspiring Stackelberg, we reformulate
the equation in (19g) to reduce one of the variables (i.e.,
Ms) that can be solved after obtaining the rate of UEs. We
notice that Ms is similar to the followers in Stackelberg
Competition, and power and PRB assignment are identical
to the leader. So, the new problem has two variables:
power and PRB assignment. This new problem is convex
by relaxing the binary variable, the PRB assignment, and
estimating the lower bounds (21). The objective function
and constraints of the problem are convex and can be solved
by the Lagrangian function. After obtaining the power of
UEs and PRB assignment, we can obtain the achievable rate
of each UE so we can find the optimal number of VNFs in
each slice (Ms).

In the following, we define a lemma to find the upper
and lower bounds for the optimal number of VNFs based
on the achievable rates. Afterward, we obtain the formula
to attain the optimal number of VNFs.

Lemma 1. The optimal number of VNFs
in each slice s can be achieved by the
Ms = max{Mu(s,i)|i ∈ 1, 2, ..., Us} ∀s. where,
Mu(s,i) =

αs(T
max
s Ru(s,i)−Tmax

s λu(s,i)−1)

(Tmax
s µs−3)(Ru(s,i)−λu(s,i))−µs

for each UE i

in slice s.

Proof. In problem (19), the constraint (19g) can be refor-
mulated as

Tmax
s ≥ 1

Ru(s,i) − λu(s,i)
+

3

µs − αs/Ms
, (22a)

Ms ≥
αs(T

max
s Ru(s,i) − Tmax

s λu(s,i) − 1)

(Tmax
s µs − 3)(Ru(s,i) − λu(s,i))− µs

. (22b)
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Also from equations in (19k), (19h) and (19j), we have

αs/µs ≤Ms ≤ min{Mmax, ϕmax/3ϕs}. (23)

We denote Ms = min{Mmax, ϕmax/3ϕs}. Thus, if we
restrict constraint (19g) to equality, constraint (19g) is still
valid. Also, we have the following inequality

αs/µs ≤ Mu(s,i) ≤ Ms, (24)

where Mu(s,i) =
αs(T

max
s Ru(s,i)−Tmax

s λu(s,i)−1)

(Tmax
s µs−3)(Ru(s,i)−λu(s,i))−µs

≥ 0 since
the numerator and the denominator both have the same
sign. In the numerator, according to (19i), Ru(s,i) −
λu(s,i) ≥ 0, and as we know that αs ≥ 0, we have
αs(Ru(s,i) − λu(s,i)) ≥ 0. If we assume that the (Ru(s,i) −
λu(s,i))T

max
s ≥ 1, the numerator will be positive. (Ru(s,i)−

λu(s,i))T
max
s ≥ 1 since the order of Tmax

s is about milli
second and the difference between achievable rate and
packet rate can be more than 1/Tmax

s . Therefore, to ensure
that this constraint will be valid, we restrict constraint
(19i) to Ru(s,i) ≥ λu(s,i) + 1/Tmax

s . So the numerator
will be positive. In the denominator, we can say that
(Tmax

s µs)(Ru(s,i) − λu(s,i)) − µs ≥ 0, since, µs ≥ 0 and
(Ru(s,i) −λu(s,i)) ≥ 1/Tmax

s as mentioned above. The left
side of the equation (24), leads to Ru(s,i) ≥ λu(s,i) that is
the constraint (19i). For the right side, by reformulating the
equation (24), we have a new constraint ∀i,∀s given by

Ru(s,i) ≥ λu(s,i) + 3/(Tmax
s µs − αsT

max
s /Ms − 3)+

+ 1/Tmax
s = ϖu(s,i). (25)

Thus, to obtain the optimal number of activated VNF in
each slice, we need to find the maximum of the Mu(s,i) in
each slice as Ms = max{Mu(s,i)|i ∈ 1, 2, ..., Us} ∀s.

Despite simplifying the problem in (19), it is still non-
convex and hard to solve. Therefore, the conventional
approach to solve the problem of the PRB and the power
allocation is to relax the variable E into continuous value
ekr,u(s,i) ∈ [0, 1] ∀s,∀i,∀r, ∀k [7], [25]. Furthermore, the
problem can be solved using the Lagrangian function and
iterative algorithm.

In order to transform (19) into a convex optimization
problem in standard form, it is required to change the
variable of equations (13) to Pr = σ2

qr × 2C
r

so the
constraint (19f) is changed to Pr ≤ σ2

qr × 2C
r
max . The

combination of equations (19b) and (19f) leads to the
following equation

Pr ≤ ζr = min{Pmax, σ
2
qr × 2C

r
max}. (26)

Moreover, the combination of equations in (19e), (19i) and
(25) leads to the following equation

R̄u(s,i)
≥ηu(s,i)

=max{Rmin
u(s,i)

, λu(s,i)
+

1

T s
max

, ϖu(s,i)}. (27)

Assume v, m, h, ξ, χ, q and κ are the matrix of La-
grangian multipliers that have non-zero positive elements.
The Lagrangian function is written as

L(P ,E;v,χ,h, ξ,κ,m) =

S∑
s=1

Us∑
i=1

δsR̄u(s,i)

+

S∑
s=1

Us∑
i=1

hu(s,i)
(R̄u(s,i)

− ηu(s,i)
)−

R∑
r=1

mr(Pr − ζr)

+

S∑
s=1

Us∑
i=1

K∑
k=1

R∑
r=1

(
κkr,u(s,i)p

k
r,u(s,i)−vkr,u(s,i)(e

k
r,u(s,i)−1)

+ ξkr,u(s,i)e
k
r,u(s,i) + qkr,u(s,i)(P

max
s − pkr,u(s,i))

)
+

R∑
r=1

S∑
s=1

Us∑
i=1

χr,u(s,i)

( Ks∑
k=1

ekr,u(s,i) − 1
)
. (28)

Lemma 2. The derivatives of the Lagrangian function (28)
with respect to the P and E give the KKT conditions to
obtain the optimal value of these two variables [7], [25].

Proof. Assume UE i in slice s, associated with O-RU r, is
allocated to PRB k (i.e., ekr,u(s,i) = 1). Therefore, we have
the following KKT condition

∂L
∂pkr,u(s,i)

=(δs+hu(s,i)
)Bk

r,u(s,i)+(skr,u(s,i)−Dk
r,u(s,i))=0,

(29)

where skr,u(s,i) = κkr,u(s,i) − qkr,u(s,i) and other parameters
are as follows

Dk
r,u(s,i)= mr|wk

r,u(s,i)|
2gru(s,i)e

k
r,u(s,i), (30a)

Bk
r,u(s,i)=B|hH k

r,u(s,i)w
k
r,u(s,i)|

2gru(s,i)e
k
r,u(s,i)S

k
r,u(s,i)/ln(2),

(30b)

Sk
r,u(s,i)= (|hH k

r,u(s,i)w
k
r,u(s,i)|

2kkr,u(s,i)+BN0+I
k
r,u(s,i))

−1.

(30c)

Also, kkr,u(s,i) = gru(s,i)e
k
r,u(s,i)p

k
r,u(s,i). Thus, from equation

(29), optimal power is obtained and power is allocated. We
denote jkr,u(s,i) = gru(s,i)e

k
r,u(s,i). The optimal power is as

follow.

pkr,u(s,i) =[
(δs + hu(s,i)

)Bjkr,u(s,i)

ln(2)(Dk
r,u(s,i)−skr,u(s,i))

−
BN0 + Ikr,u(s,i)

|hH k
r,u(s,i)w

k
r,u(s,i)|2j

k
r,u(s,i)

]+
.

(31)

Also [a]+ = max(0, a). In addition, PRB assignment can
be achieved from the derivatives of the Lagrangian function
(28) with respect to the E as follow.

∂L
∂ekr,u(s,i)

=R̄k
r,u(s,i)(δs+hu(s,i)

)−mr|wk
r,u(s,i)|

2pkr,u(s,i)g
r
u(s,i)

+ (ξkr,u(s,i) − vkr,u(s,i) + χr,u(s,i)) = 0. (32)

So, the optimal E is obtained using the KKT conditions,
which require solving

ekr,u(s,i)(F
k
r,u(s,i)−vkr,u(s,i)−mr|wk

r,u(s,i)|
2pkr,u(s,i)g

r
u(s,i))=0,

(33)

where Fk
r,u(s,i) = R̄k

r,u(s,i)(δs + hu(s,i)
) + (ξkr,u(s,i) +

χr,u(s,i)). Hence, from equation (32) and (33), PRB as-
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Algorithm 1 Greedy Algorithm for Assignment of O-RU
to UEs (GAA)

1: Set gru(s,i) = 0, Cr = tr, and Brem
u(s,i)

= R ∀s,∀i,∀r.
2: Sort slices according to their δs in descending order
3: for s← 1 to S do
4: for i← 1 to Us do
5: RU = 0
6: for r ← 1 to R do
7: Acquire Gr

u(s,i)
= R̄r

u(s,i)

8: end for
9: Obtain r∗ = argmaxr∈Brem

u(s,i)

Gr
u(s,i)

10: while RU == 0 do
11: if Cr∗ ≥ ψr∗,u(s,i) then
12: Set gr

∗
u(s,i) = 1

13: Set Cr∗ = Cr∗ − ψr∗,u(s,i)

14: Set RU = 1
15: else: Brem

u(s,i)
= Brem

u(s,i)
\ {r∗}

16: end if
17: end while
18: end for
19: end for

signment is performed as follows

ekr,u(s,i) =

{
1 u(s, i) = argmaxZk

r,u(s,i)∀r, k ∈ K, s ∈ S,

0 otherwise,
(34)

where Zk
r,u(s,i) = (Fk

r,u(s,i) − vkr,u(s,i) −
mr|wk

r,u(s,i)|
2pkr,u(s,i)g

r
u(s,i)).

Thus, the user in slice s that has the most considerable
value of Fk

r,u(s,i), should be allocated to PRB k. Since
just one PRB can be allocated to a UE between those
UEs (regardless of the services), that is associated to the
same O-RU. The number of UEs are N =

∑S
s=1

∑US

i=1 1.
Also, assume that the algorithm converges after Tconv
times. The complexity order of this problem is about
O(Tconv ×N×K).

B. Sub-Problem 2
After power allocation and PRB assignment, the remain-

ing problem is to assign O-RU to each UE in each service.
For this, assume P and E are fixed, so we want to find
G. Next, we introduce a greedy algorithm that assigns an
O-RU to each UE.

Greedy Algorithm Assignment (GAA): The following is
a reformulated version of the problem.

max
G

S∑
s=1

Us∑
i=1

R∑
r=1

δsg
r
u(s,i)R̄

r
u(s,k)

(35a)

subject to
S∑

s=1

Us∑
i=1

gru(s,i)ψr,u(s,i) ≤ tr ∀r, (35b)∑
r

gru(s,i) = 1 ∀s, i, (35c)

gru(s,i) ∈ {0, 1} ∀s, i, (35d)

where ψr,u(s,i) =
∑Ks

k=1 |wk
r,u(s,i)|

2pkr,u(s,i)e
k
r,u(s,i) and

tr = ζr − σr because of the equations (26) and (12).

Algorithm 2 Iterative algorithm for the baseband resource
allocation and VNF activation (IABV)

1: Set the maximum num. of iter. Imax, convergence condition
ϵ > 0

2: Assign Users to O-RU randomly (Initialize G)
3: for i← 1 to Imax do
4: Acquire P (i), E(i) and M (i) using Lagrangian function

and sub-gradient method based on (VI-A)
5: Update G(i) based on algorithm GAAOU (1) in (VI-B)
6: if the algorithm converged with the tolerence of ϵ then
7: Break
8: else: Continue the algorithm
9: end if

10: end for

Since we obtained (27) in (VI-A), we can ignore this
constraint in (35). The problem (35) is an NP-complete
0-1 multiple knapsack problem. We solve this problem
using the heuristic GAA Algorithm 1, which is a greedy
algorithm [7], [38]. Firstly, we set all the variables to zero
(gru(s,i) = 0, ∀s, i, r). Then we define the parameter
Brem

u(s,i)
. This parameter is used as a set of O-RUs that

can be assigned to the UE i in slice s, which initially
includes all the O-RUs (Brem

u(s,i)
= R,∀s, i ). Also we

introduce another parameter Cr = tr,∀r which is the
knapsack capacity of each O-RU. Next, we sort all the slices
based on their priority. Afterward, based on the sorting of
the UEs, we assign the O-RU that provides the highest
achievable data rate for each UE on the condition that the
value of the desired UE (ψr,u(s,i)) does not exceed the
knapsack capacity of each O-RU (Cr). If it exceeds the
capacity of the desired O-RU, we remove the specific O-
RU from the set of O-RUs that can be assigned to that UE
(Brem

u(s,i)
= Brem

u(s,i)
\{r∗}). Then, the O-RU with the highest

achievable data rate from the new set of O-RUs Brem
u(s,i)

is
selected. The complexity of sorting S slices based on their
priority is O(S log(S)). Depict N =

∑S
s=1

∑Us

i=1 1 as the
whole number of UEs in the system. The complexity order
of this algorithm is about O(S log(S)) +O(R×N).

C. Iterative Proposed Algorithm

In Sections (VI-A) and (VI-B), the details of solving each
sub-problem are depicted. Here, the iterative algorithm for
the whole problem is demonstrated. Firstly, we fixed G
to achieve P and E, using the Lagrangian method and
the KKT conditions. Afterward, G is updated using the
GAA algorithm. This process is repeated until it converges.
The whole algorithm (IABV method) is depicted as follows
(Algorithm 2).

1) Complexity Order: The number of UEs are N =∑S
s=1 US . Also, assume that the algorithm converges after

Tconv times. As we mentioned before, the complexity order
of the first sub-problem is about O(Tconv × N × K) and
the complexity order of the second sub-problem is about
O(S log(S)) + O(R ×N). So the complexity of the main
problem (19) is O(Tconv ×N×K × (S log(S) +RN)).

2) Convergence Analysis: Due to limited system re-
sources, we have limits on VNFs’ power, UE or O-RU
power, fronthaul capacity, etc. As a result, the objective
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Algorithm 3 Fast Algorithm (FA) to check convergence
1: Set count = 0
2: Set pkr,u(s,i) = 0, ekr,u(s,i) = 0 and gru(s,i) = 0 ∀r, k, s, i
3: for s← 1 to S do
4: for i← 1 to Us do
5: count = count +1
6: r∗ = argminr dr,u(s,i) ∀r
7: gr

∗
u(s,i) = 1

8: temp =mod(count, K)
9: if temp=0 then

10: eKr∗,u(s,i) = 1

11: Set pKr∗,u(s,i) = min{Pmax
s , Pmax

r /N}
12: else: etemp

r∗,u(s,i) = 1 ∀r
13: Set ptemp

r∗,u(s,i) = min{Pmax
s , Pmax

r /N}
14: end if
15: end for
16: end for

function, which is the aggregate throughput, cannot exceed
its optimal value and become infinite. Therefore, if the
aggregate throughput is infinite and increases without limit,
the resources must also be unlimited. Hence, the system has
an optimal solution: its maximum aggregate throughput in
the feasible region.

Consequently, we can guarantee the convergence of the
iterative algorithm if the objective function is the ascending
function concerning the number of iterations and has an
upper bound. Thus, it will converge to its optimum value if
it is a strictly ascending function and to its local optimum
if it is a non-monotonically ascending function.

Consider the aggregate throughput as T (P,E,G) =∑S
s=1

∑Us

i=1 δsR̄u(s,i)
. In the first step of the iteration i of

the algorithm 2 (IABV), we have T (Pi,Ei,Gi−1). In this
step, optimal power and PRB allocation are obtained for the
fixed O-RU association, so we have T (Pi,Ei,Gi−1) ≥
T (Pi−1,Ei−1,Gi−1). In the second step of the iteration
i, the optimal O-RU association is achieved to maxi-
mize the aggregate throughput. So we have this inequal-
ity T (Pi,Ei,Gi) ≥ T (Pi,Ei,Gi−1). As a result, we
have T (Pi,Ei,Gi) ≥ T (Pi−1,Ei−1,Gi−1). Hence, in
each step of the iteration, the aggregate throughput in-
creased. Note that T ∗(P∗,E∗,G∗) is the achieved aggre-
gate throughput for all the feasible resource allocation solu-
tions of {P,E,G}. So, T ∗(P∗,E∗,G∗) ≥ T (Pi,Ei,Gi)
and thus in each iteration, the aggregate throughput can not
be larger than the optimal solution.

In addition, if we assume that the interference is set to
be zero Ikr,u(s,i)

= 0, and we suppose that each UE has the
maximum power pkr,u(s,i)

= Pmax
s , and we consider that all

PRB is assigned to all UE ekr,u(s,i)
= 1∀s,∀i and each UE is

assigned to the nearest O-RU with the best channel quality.
So, the solution of this allocation, is the upper bound for
the aggregate throughput. Thus, we can guarantee the local
convergence of our iterative algorithm since the objective
function T is the ascending function concerning the number
of iterations and it has the upper bound which is not infinite.

In addition, to extend our solution to the global optimum,
we must prove that the algorithm monotonically increases in

83m 83m

125m

125m

125m

83m83m

125m
250m

166.6m

500m

500m

Fig. 2: O-RU placement in a cell

the non-optimal set of solutions and is Lipschitz monotone
contraction mapping. Here, we briefly discussed our algo-
rithm’s global convergence for a low interference system.

In the low interference system, the PRB and VNF
assignment is obtained straightforwardly, and the first
step for solving the problem is power allocation. Given
fixed O-RU association, we have T (Pi,Ei,Gi−1) >
T (Pi−1,Ei−1,Gi−1) (strictly increase). Notice that for
the power allocation problem, the objective function is
convex, and the convex functions are Lipschitz mono-
tone contractions. However, in the second step of the
algorithm, we can show as before that the algorithm is
increased, but we can not talk about monotonically in-
creases. Hence we have T (Pi,Ei,Gi) ≥ T (Pi,Ei,Gi−1).
Nevertheless, the objective function is still Lipschitz mono-
tone mapping. Accordingly, we have T (Pi,Ei,Gi) >
T (Pi−1,Ei−1,Gi−1). Therefore the objective function is
the strictly ascending function concerning the number of
iterations and has an upper bound. Consequently, the al-
gorithm converges to the global optimum solution in low
interference.

VII. NUMERICAL RESULTS

In this section, firstly, we describe the initial points and
the comparison algorithms. Then, we talk about the feasible
region of our system model. Afterward, we illustrate the
numerical results.

A. The initial Points and The Comparison Algorithms
In this part, numerical results for the main problem are

depicted to evaluate the performance of the algorithms using
the Monte-Carlo method. We consider three network slices
for eMBB, URLLC, and mMTC services. Assume we have
six 4-antenna O-RU (MISO) located in a place with a
diameter of 500 meters as shown in Fig. 2. In addition,
we consider the users placed randomly in this area.

Here, the channel vector from the O-RU r to the UE i
in service s is set as hk

r,u(s,i) = d−L
r,u(s,i)Ω

k
r,u(s,i), where

d−L
r,u(s,i) is the distance between the O-RU r and UE i

in service s and L = 3.8 is the path-loss exponent.Also,
Ωk

r,u(s,i) is the random variable that is generated by the
Rayleigh distribution and it is the Rayleigh fading channel
between the UE and O-RU. We consider 25 PRBs in
the network. The packet size for mMTC is equal to 20
bytes, and for URLLC is equal to 32 bytes [39]. The
maximum number of VNF for each slice is 25 and the
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TABLE II: Simulation Parameters

Parameter Value

noise power -174 dBm
bandwidth 180 KHz
maximum transmit power of each O-RU 40 dBm
maximum delay for eMBB 4 msec
maximum delay for URLLC 1 msec
maximum delay for mMTC 5 msec
maximum fronthaul capacity 46 bps
minimum data rate for eMBB 20 bps
minimum data rate for URLLC and mMTC 2 bps
maximum received power for mMTC 20 dBm
maximum received power for eMBB and URLLC 33 dBm

mean arrival data rate for the eMBB service is λ = 3Mbps
and for the mMTC service and the URLLC service is
λ = 0.2Mbps. Also, the quantization noise is assumed to be
10−13. Moreover, we set hu(s,i)

= ηu(s,i)
/200, mr = ζr/10

and qkr,u(s,i) = Pmax
s /100. The other parameters of these

simulations are depicted in Table II [39]–[42].

Finding a feasible initial value is almost tricky. We use a
fast method discussed in VII-B to overcome this challenge.
Two different methods are used to compare the performance
of the proposed method (IABV) and show the optimality of
our approach. The first one is a baseline scheme, which uses
random PRB allocation. Therefore, the allocation of PRB to
each UE is random when we have low interference, but in
figures with high interference, we randomly assign just one
RB to each UE. Also, the association of O-RU is carried
out based on distance. It means that each UE is assigned
to the nearest O-RU. The optimal power is obtained using
the CVX of Matlab, which uses the successive convex
approximation (SCA) method since the problem is convex.
After achieving power and other parameters, the achievable
rate will be obtained, and the optimal number of VNF is
achieved from Lemma (1). For the second one, we use the
idea of the fixed BBU capacity and dynamic resource allo-
cation (FBDR) algorithm proposed in [7] and named it the
dynamic resource allocation scheme (DR scheme). We have
services with different QoS in this work, similar to tenants
with different QoS introduced in [7]. Therefore, we can use
the DR scheme similar to the FBDR method adapted to
our conditions for comparison. Instead of BBU in C-RAN,
we have O-DU and O-CU in O-RAN. Since we do not
talk about O-DU and O-CU capacity, we use the dynamic
resource allocation scheme (DR scheme) algorithm and do
not consider BBU capacity. In the DR scheme, PRB and
power are dynamically allocated. The number of VNFs is
obtained from the simulation. The UEs are associated with
the O-RU based on the quality of their channels and the
channel distance instead of using the greedy algorithm 1
(GAA algorithm) for O-RU assignment. The figures in [7]
show that dynamic BBU capacity and dynamic resource
allocation (DBDR) perform better than FBDR for the same
priority area. Notice that our proposed algorithm performs
better than the DR scheme.

B. Feasible Region
Applying the correct initial point is crucial in making the

system feasible and convergent. Therefore, we investigated
the non-converging and converging simulation for models
with fixed initial parameters and UE random channel gains.
We experimentally found that in non-converged simulations,
there are UEs at the edge of the boundaries or far away from
the O-RU and have a weak channel gain. One solution is
to eliminate UEs who undermine system convergence. For
a large number of UEs with a fixed number of PRBs, the
probability of having an infeasible solution increases due
to a large number of UE interference. Another solution is
to remove the simulations in the Monte-Carlo that do not
converge using the fast algorithm (FA) to check the con-
vergence before the proposed algorithm (IABV). Therefore,
if more than half of the iterations have a feasible solution
for the initial condition, the simulation can be displayed
as a feasible model. If the conditions in (27), (26), (19d)
and (19c) are met in the fast algorithm (FA), the given
algorithm will converge. Assume, the number of UEs is
N =

∑S
s=1

∑Us

i=1 1, the number of PRBs is K, and the
distance between the rth O-RU to the UE i in slice s
is dr,u(s,i). The FA algorithm is represented in Algorithm
3. The complexity order of this algorithm is O(R × N)
which is remarkably lower than the complexity order of the
IABV method. In the FA algorithm, the O-RU association
is based on the distance of the UE to the O-RU. Each UE is
associated with the nearest O-RU. Also, the power of each
UE is set to be the minimum of the maximum power of each
UE and the maximum power of each O-RU divided by the
total number of UEs (min{Pmax

s , Pmax
r /N}). Moreover, the

allocation of PRBs to UEs is based on dividing the number
of UEs by the total number of PRBs.

C. Performance Results
In Fig. 3, the aggregate throughput is plotted versus the

number of UEs in each service for these three methods.
Suppose we have one service instance for each type of
service, so we have three various services in this figure.
Also, we have between 6 to 48 UEs in the system. Here, we
did not consider the priority. The figure presented that the
proposed method, IABV, is 18.6% higher throughput than
the baseline scheme. As the number of UEs increases in
each service, the aggregated throughput initially increases.
Still, due to the interference and the power constraint, it
will be saturated from 12 UEs in each service.

Fig. 4 depicts the number of activated VNFs for five
different mean service times of one URLLC service vs.
the mean arrival time for 12 UEs. This figure presents that
as the mean arrival rate increases, the number of activated
VNF increases. Moreover, the number of activated VNFs
decreases when the mean service rate increases.

In Fig. 5, the aggregate throughput is depicted vs. the
maximum power of UE for three different instances of
eMBB service using proposed method (IABV), DR scheme
and the baseline scheme. Here, we suppose that we have 12
UEs in each service. We assume that these three services
require 5bits/sec/Hz, 10bits/sec/Hz, and 15bits/sec/Hz. As
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Fig. 3 Aggr. throughput vs. number of UEs in each service Fig. 4 Number of VNFs in each service vs. arrival rate Fig. 5 Aggr. throughput for eMBB vs. maximum power

you can see in the figure, increasing the maximum power
increases the aggregate throughput. Moreover, the proposed
method (IABV), gives higher aggregate rates in compared
to the DR scheme and the baseline scheme.

Fig. 6 illustrates the mean total delay of a UE in a
URLLC service regarding the mean arrival rate of the UE
and the number of UEs in the service for the proposed
method (IABV). It is shown that the delay is an ascending
function of the mean arrival rate (when the mean service
time is fixed) and the number of UEs in the service.
Moreover, we can see that the mean delay of a URLLC
service does not reach the maximum threshold of the delay.

Fig. 7 is the same as Fig. 6 that presented the mean total
delay of a UE in a URLLC service regarding the mean
arrival rate of the UE for 20 UEs using three different
methods. As you can see, the proposed method (IABV)
outperforms the other scenarios.

Fig. 8, represents the aggregate throughput concerning
the number of UEs in each service and the maximum power
for three different mMTC service instances. Assume each
UE in each mMTC service instance requires 0.1 bits/sec/Hz
data rate and is not sensitive to the end-to-end delay. There
is no restriction on fronthaul link capacity and the number
of VNFs. The figure depicts that by increasing the number
of UEs in each instance of the service, or by increasing the
maximum power of each UE in each instance of mMTC
service, the aggregate throughput increases.

Assume we have two types of eMBB service instances. In
Fig. 9, the aggregate throughput (by considering the priority
factor δs) is depicted for two eMBB service instances. Here
we consider 4 UEs in each service. The Fig. 9 presented that
by increasing the priority factor for one service instance,
more resources are allocated to this service instance, and
the aggregate throughput of this service is increased and
vice versa. Also, we can realize from this figure that the
aggregate throughput has the most significant value at the
same priority.

In Fig. 10, the aggregate throughput is shown according
to the number of iteration (outer loop) of the proposed
algorithm (IABV) for different numbers of UEs for one ser-
vice. In this figure, the convergence of the IABV method is
illustrated. The minimum data rate for each UE is assumed
to be 2 Mbps. After four iterations, IABV converges to the
fixed value.

In Fig. 11, the mean total delay of URLLC service is
indicated according to the number of iterations of the pro-

posed algorithm (IABV) for different numbers of UEs for
one URLLC service. This figure shows that the algorithm
converged to the fixed value after four iterations.

In Fig. 12, the aggregate throughput is shown according
to the number of UEs for two different methods, namely
the proposed algorithm (IABV) and the optimal method for
URLLC service for the low interference. The minimum data
rate is 5bits/sec/Hz for each UE and the maximum delay is
0.1ms. Also the mean arrival rate is set to be 0.2Mbps and
the mean service rate is 0.5Mbps. The optimal approach
is obtained from the two-step joint exhaustive search and
using CVX. In each iteration in the first step, the PRB
allocation and O-RU association are obtained from brute
force, and in the second step, we use CVX to get optimal
power. Our solution is close to the optimal value in a
small number of UEs. Therefore, this figure numerically
demonstrates that the proposed algorithm converges to the
global optimal in low interference.

In Fig. 13, the aggregate throughput is depicted vs. the
maximum interference for two different maximum power
thresholds of O-RU. Here we assume that with the increase
of every ten dBm of interference power, it is assumed that
ten users have been added to the system. In -105 dBm,
we have 5 UEs, and at the end, we have 55 UEs in the
system. Since the amount of interference in the system
is entered as a fixed value, the allocation of PRBs is not
considered. The higher maximum power threshold leads to
a greater aggregate throughput. The aggregate throughput
first increases with the number of UEs and at the same time
the amount of the maximum interference, then it becomes
almost fixed and finally decreases so much. When the
aggregate throughput decreases, the maximum interference
is so high that it takes the system out of feasibility.

In Fig. 14, the aggregate throughput is shown versus the
number of UEs for an eMBB service with low interference
for the IABV and FA methods in the feasible region. The
minimum data rate for each UE is 1Mb/s/Hz. The maximum
power for each O-RU is 34dBm, and the maximum power
for each UE is 30dBm. We assume that the system is not
sensitive to fronhaul capacity and end-to-end delay and has
enough VNF resources. By increasing the number of UEs,
the aggregate throughput raises. And we can see that the
IABV method is better than the FA method.

Table III shows the execution time given a number of
UEs for one service for the three methods. We run our
simulation on the system with configuration (RAM = 8
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TABLE III: Execution Time vs. Number of UEs

Number of UEs Execution Time (usec)
Proposed method DR scheme Baseline scheme

5 12.156 8.9546 6.6436
10 19.156 12.3112 8.7870
15 29.140 15.4778 9.5648
20 44.573 21.5342 14.8334
25 67.912 32.7926 21.5510

GB, CPU = Core i5, SSD Hard Disk). As the number of
UEs in the system increases, the execution time increases
polynomially for all three algorithms. Since the baseline
scheme is a simpler algorithm, with random PRB allocation
and O-RU association based on distance, the execution time
is less than the two other algorithms. Power and PRB are
allocated in the DR scheme, but O-RUs are associated based
on distance. Therefore the execution time is less than the
proposed algorithm.

VIII. CONCLUSION

In this paper, we modeled the downlink of the O-RAN
system using isolated network slicing for different 5G
services, i.e., eMBB, mMTC, and URLLC. Our goal is
to maximize aggregate throughput by activating VNFs in
each service, associating RUs, allocating power, and PRBs.

The limited fronthaul capacity and the mean delay for each
service are considered. The problem is mixed-integer non-
linear programming that is solved by a two-step iterative
algorithm. In the first step, we reformulated the problem
to achieve the number of activated VNFs as a function of
data rate. Then, we obtained PRB association and power
allocation using the Lagrangian method. In the second
step, the O-RU association is carried out. The performance
of our proposed method (i.e., IABV) is compared with
the baseline scheme and DR scheme in [7]. In addition,
the feasible region is discussed, and the FA algorithm is
introduced to check the feasibility of the initial values. Also,
we assume distinct scenarios for each service, i.e., eMBB,
mMTC, and URLLC, based on their requirement QoS.
Simulation results show that the proposed method (i.e.,
IABV) achieves 18.6% higher data rate than the baseline
scheme. Moreover, simulation results illustrate more minor
delays for the proposed method (IABV) than DR scheme
and the baseline scheme.
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