
1

Multi-dimensional Resource Allocation in
Distributed Data Centers using Deep

Reinforcement Learning
Wenting Wei, Huaxi Gu, Kun Wang, Jianjia Li, Xuan Zhang, and Ning Wang

Abstract—With the development of edge-cloud comput-
ing technologies, distributed data centers (DCs) have been
extensively deployed across the global Internet. Since dif-
ferent users/applications have heterogeneous requirements
on specific types of ICT resources in distributed DCs, how
to optimize such heterogeneous resources under dynamic
and even uncertain environments becomes a challenging
issue. Traditional approaches are not able to provide ef-
fective solutions for multi-dimensional resource allocation
that involves the balanced utilization across different re-
source types in distributed DC environments. This paper
presents a reinforcement learning based approach for multi-
dimensional resource allocation (termed as NESRL-MRM)
that is able to achieve balanced utilization and availability of
resources in dynamic environments. To train NESRL-MRM’s
agent with sufficiently quick wall-clock time but without the
loss of exploration diversity in the search space, a natural
evolution strategy (NES) is employed to approximate the
gradient of the reward function. To realistically evaluate the
performance of NESRL-MRM, our simulation evaluations are
based on real-world workload traces from Amazon EC2 and
Google datacenters. Our results show that NESRL-MRM is
able to achieve significant improvement over the existing
approaches in balancing the utilization of multi-dimensional
DC resources, which leads to substantially reduced blocking
probability of future incoming workload demands.

Index Terms—distributed data centers, multi-dimensional
resources allocation, workload placement, balanced resource
utilization, deep reinforcement learning, natural evolution
strategy.

I. INTRODUCTION

REcent advances in cloud computing has given rise
to extensive deployment of data centers (DCs).

Thanks to virtualization techniques, cloud services of-
fered by cloud providers such as Amazon, Google and
Alibaba can be implemented on multiple distributed
data centers for on-demand sharing of resources (CPU,

W. Wei is with the State Key Laboratory of Integrated Service Net-
works, Xidian University, Xi’an 710071, China and with the Science and
Technology on Communication Networks Laboratory, Shijiazhuang
050081, China (e-mail:wtwei@xidian.edu.cn).

H. Gu, X. Zhang and J. Li are with the State Key Laboratory of
Integrated Service Networks, Xidian University, Xi’an 710071, China
(Corresponding author: H. Gu, e-mail:hxgu@xidian.edu.cn).

K. Wang is with the School of Computer Science and Technology,
Xidian University, Xi’an 710071, China.

N. Wang is with Department of Electrical and Electronic Engineering,
University of Surrey, United Kingdom.

memory, storage) [1]. Workload placement is a key func-
tion of resource management that is provided by Virtual-
ization Infrastructure Managers (VIMs) over distributed
data centers [2] for web applications, enterprise IT in-
frastructures and network function virtualization (NFV)
[3]. It is worth noting that it is possible to run multiple
virtual machines on the same DCs, while an application
(such as MapReduce and Spark) will be executed across
multiple distributed DCs in parallel. Therefore, efficient
resources managements in distributed DCs have attract-
ed renewed attention in both industry and academia.

Although virtualization technology enables cloud ser-
vice providers to expand the service scale and opti-
mize server utilization at a lower cost, the distributed
nature and coexistence of multidimensional resources
over distributed DCs [4] pose many challenges in ef-
ficient utilization of resources and satisfaction of the
SLA requirements from diversified applications. More
specifically, different applications have diverse resource
requirements, such as computation intensive, memory
intensive and I/O intensive applications [5]. Improper
resource allocations without consideration of balanced
utilization of multidimensional resource may lead to
resource fragmentations, where one type of resource will
be exhausted while others are still sufficient at DCs. As
a result, the waste of resources will occur due to re-
source fragmentation across DCs. Even, dynamic arrival
or departure of workloads from diverse applications
aggravates multi-dimensional resource fragmentations,
if the balanced utilization of multi-dimensional recourses
is not taken into account. Therefore, we focus on the es-
sential and promising issue of resource allocation related
to balanced utilization of multiple dimensions resources
(i.e., CPU, memory, storage) over distributed DCs.

Traditional resource allocation solutions in distributed
DCs are mostly based on heuristics with the priori
knowledge, which assume system environments and
resource requirements can be well modeled with hand-
crafted parameters. Indeed, heuristics work well in cer-
tain domains, but often fail at dynamic and heteroge-
neous requirements from various applications, due to the
lack of interaction with dynamic environment. Consid-
ering time-varying requirements of multi-dimensional
resources in distributed DCs, designing a resource al-
location scheme to meet stringent performance require-

2

ments without sacrificing the efficient usage of resources
is still a challenge. Thanks to recent advances of artificial
intelligence (AI) technologies, researchers have explored
whether machine learning can provide an alternative
solution for network management [6]–[12].

Still, state-of-the-art self-adaptive resource allocation
frameworks lack support for the growing diverse re-
quirements from the emerging applications, in which
balanced resource utilization is a critical option. Inspired
by previous researches, we are motivated to further
explore the balanced and efficient utilization of multi-
dimensional recourses over distributed data centers us-
ing deep reinforcement learning (DRL). DRL is regarded
as a worthwhile approach indeed, but is still a tentative
exploration as current research has seldom focused on
studying how to help agents of DRL make such much
faster and diverse exploration for DRL-based resource
allocation frameworks.

Therefore, in this work, we focus on multi-dimensional
resource allocation across distributed DCs, where job
requests arrive and depart dynamically in an online
manner and resource requirements are not known be-
forehand. We propose a multi-resources manager with
natural evolution strategy based DRL, termed as NESRL-
MRM. Specifically, its agent pursues to balance the u-
tilization of resources along multiple dimensions and
maximize remaining available resource, which leads to
accommodate future incoming jobs. To train such a DRL
agent in the most efficient manner possible, we design
the training process with NES strategy to train the agent
NESRL-MRM, which approximates the gradient of the
reward function in the parameter space by population-
based evolutionary search. As a result, NESRL-MRM fa-
cilitates the dynamic allocation of multiple dimensional
resources and promotes its adaptation to the dynamic
changes of traffic and the differentiation of service re-
quirements, so as to achieve the goal of dynamic, flexible
and real-time resource allocation and management.

The main contributions of this paper are summarized
as follows:

• We propose a DRL-based multi-dimensional re-
source allocation scheme across distributed data
centers, termed as NESRL-MRM, whose agent pur-
sues to balance multiple dimensional resources u-
tilization and maximize remaining available re-
sources, then in order to accommodate as many as
possible future incoming workloads.

• In reward design of NESRL-MRM, to reduce the
resource waste caused by multidimensional re-
source fragmentation (overloaded in some resources
but underutilized in others), we define multi-
dimensional resource balance index (MRBI) to quan-
tify the level of balanced utilization of multi-
dimensional resources, which can help in providing
more opportunity to reserve underlying workload
for future demands.

• To train such an DRL agent with much faster

wall-clock time and diverse exploration, we de-
sign a natural evolution strategy (NES) based train-
ing algorithm to approximate the optimal action-
value function. Without any domain-specific rule-
based heuristic, the agent of NESRL-MRM effective-
ly learns to make better selections by trial and error
in the form of reward signals.

• To evaluate the effectiveness of NESRL-MRM, our
simulations are driven by real-world data traces of
well-known cloud providers (Amazon and Google).
Extensive simulation results show that NESRL-
MRM achieves a significant improvement over the
existing approaches in balancing the utilization
of multi-dimensional resources and reducing the
blocking of requirements.

The remainder of this paper is organized as follows.
We discuss related works in Section II and present the
system model, the mathematical model and motivate
our work by using a simple example in Section III. The
NESRL-MRM is introduced with RL-based formulation
and its training algorithm in Section IV. We present our
simulation setup and evaluate the proposal compared
with baseline schemes in Section V. Finally, the conclu-
sions are drawn in Section VI.

II. RELATED WORK

With the growth of cloud service, increasingly large
amounts of data are computed and stored in distributed
DCs. Thus, resource management over distributed DCs
has drawn much attention and multiple research efforts
have been pursued from many different perspectives.

In [13], authors formulated the task scheduling over
geo-distributed DCs as an integer linear programming
problem with the goal of shortening job completion
times and cutting network costs. To achieve energy-
efficient workload placement for DCs, authors in [14]
constructed a rack-level power model that mapped the
workload directly to its power dissipation and pursued
an optimal workload allocation with minimized power
consumption. Authors in [15] presented a virtual da-
ta center resource manager that exploited the network
and topology knowledge, since they assumed traffic
and topology were informed before so that the over-
all performance would be improved drastically. HUG
[16] proposed a coflow scheduling algorithm to achieve
multiresource fairness and maximize network utilization
without sacrificing strategy-proofness. Similarly, aiming
at achieving max-min fairness across jobs sharing these
datacenters and improving job completion times, authors
[17] designed a fair job scheduler to assign tasks be-
longing to multiple jobs across datacenters, which was
formulated as a multi-objective problem and solved by
transforming it into its single-objective subproblems.

The above works deal with resource management or
job scheduling over distributed DCs, but pay no atten-
tion to the heterogeneity of both server specifications and
demand profiles, which leads to a waste of resources due

3

to unbalanced utilization among different dimensional
resources. Toward multiple and heterogeneous nature
of resources, a few recent works focus on multiresource
allocation in cloud computing.

Aiming at mitigating over-allocation and reducing re-
source fragmentation under multi-type resource scenari-
o, a heuristic-based multi-dimensional resource sched-
uler (named Tetris) [18] was presented. Nevertheless,
Tetris ignored the temporal resource usage changes dur-
ing runtime and was designed under assumption of
priori knowledge on both the resource requirements of
tasks and resource availability at machines. Authors in
[19] considered balanced usage of multiple dimensional
resources to design a threshold-based VM placement
strategy Min-DIFF, which is intended to balance the
usage of resources and reduce the risk of PM overloading
in an online manner but the threshold of each dimen-
sional resource didn’t vary with time-varying recourse
requirements and resource usage.

Due to the variety of applications and dynamic
changes of workload, traditional heuristic-based re-
source allocation schemes cannot solve online manage-
ment problem effectively. Since the resource allocation
across distributed DCs is time dependent planning prob-
lem and the impacts of allocation decisions are not im-
mediately observable, a handcrafted heuristic would be
sub-optimal, even doesn’t work to handles time-varying
resource usage aspects of the workloads. Inspired by
the rapid growth of AI technologies, researchers have
explored whether machine learning can provide an al-
ternative solution for network management [6], [7], [10],
protocol designs [20] [21] or performance modeling and
evaluation [8], and several works have attempted to
optimize resource allocation using machine learning.

Aiming at the conflict between cloud service provider-
s, DQN-based resource scheduling was proposed [11]
for the optimal trade-off between energy consumption
and task makespan. Focus on both resource allocation
and power management in cloud computing systems, a
RL-based hierarchical framework was proposed in [22],
which was constituted by a global and local resource
allocation and power management for VMs, respectively.
Authors in [23] proposed an architecture of intelligent
cloud resource management with deep reinforcement
learning, and only gave a simple DRL-based architecture
for online resource management to achieve cost reduc-
tion. To handle directed acyclic graph tasks in a cloud
computing environment, a DRL-based online scheduling
algorithm using deep Q-learning training method was
presented in [24], whose reward principle was only
simply designed according to busy and idle states of
VMs. A DRL-based fair resource sharing method named
FairTS was presented in [25], where the agent learned
to shorten the average task slowdown while ensuring
multi-dimensional fairness among the tasks. Focus on
online multi-dimensional scheduling, authors presented
a deep reinforcement learning (DRL) scheme termed as
DeepRM [26]. To facilitate such large-scale RL tasks,

deep neural networks (DNN) were attempted to an
approximation function and the resource profiles were
translated into distinct images as the input of DNN.
More similarly, A2CScheduler was presented in [27] as
a DRL algorithm with A2C to address the customized
job scheduling problem in data centers, which designed
a reward function related to averaged job waiting time,
but did not cover balanced utilization of multiple dimen-
sional resources.

Although the above works gives us an inspiration, stil-
l, state-of-the-art self-adaptive resource allocation frame-
works do not meet the growing diverse requirements
from the emerging applications, due to their absence
of balanced resource utilization and resource fragmen-
tation. Recently, related work TVW-RL [28] presented
a DRL-based workload scheduler by considering both
temporal resource-usage characteristics and various e-
quivalence classes of time-varying workloads. The main
innovation was elaborated its reward function to opti-
mize utilization, fragmentation and resource exhaustion.
But TVW-RL neither focus on how to measure the bal-
anced resource utilization to alleviate resource fragmen-
tation, nor do explore how to help such a complex agent
of DRL make much faster and diverse exploration for
DRL-based resource allocation frameworks.

Inspired by but different from previous works, we are
motivated to further explore DRL-based online resource
allocation optimization related to balanced and efficient
utilization of multi-dimensional recourses over distribut-
ed DCs, while exploring how to quantify balanced uti-
lization of multi-dimensional resources.

III. PROBLEM STATEMENT AND FORMULATION

A. System modeling
We consider a dynamic multi-dimension resource opti-

mization across all DCs without knowledge about future
incoming demands where multiple DCs are distributed.
Multiple candidate DCs are present in clusters where
workload may be placed. Each DC possesses three di-
mensions of resource space, including computing, s-
torage and memory resources under the control of a
local orchestration/control function. The workload may
be an aggregation with requirements of CPU, storage
and memory resources. We consider the model that job
requests arrive and depart dynamically in an online
manner, where resource requirements are not known
beforehand. This dynamic nature produces a realistic
scenario.

We transform such a dynamic resource allocation into
an online optimization problem. The mathematical de-
scription of the proposed method is as follows. Assume
that there are several distributed DCs, and the set of
DCs is denoted as D. The available resource space and
the resource capacities of distributed DCs are represent-
ed as AR = (ARCPU , ARMem, ARDisk) and CR =
(CRCPU , CRMem, CRDisk), respectively. The three di-
mensions of resource requirements from a workload are
denoted as QRt = QRCPU , QRMem, QRDisk).

4

B. Motivation Example
The main challenge of this scenario is the joint opti-

mization of multidimensional resources. Here, we pro-
vide an example of unbalanced allocation of multidi-
mensional resources. As observed from Fig. 1, there are
two DCs in the running state. One data center (marked
DC1) has provisioned 90% of its main CPU, 15.5 %
of its memory, and 20.5% of its disk for the already
allocated workloads, whose multi-dimensional resources
were allocated imbalancedly. The resources usage of
other data center (marked DC2) is balanced, specifically,
it is occupied by 47.75 %, 50%, and 43.75 % of its
three dimensions of resources respectively. Under such a
condition for DC 1, the allocation of new workload will
be very difficult due to the low available CPU, but a high
percentage of the memory and disk remain unused.

Used Resource Available Resource

DC1 DC2

CPU
Utilization

47.75%

Memory
Utilization

50%

Disk
Utilization

43.75%

CPU
Utilization

47.75%

Memory
Utilization

50%

Disk
Utilization

43.75%

CPU
Utilization

90%

Memory
Utilization

15.5%

Disk
Utilization

20.5%

CPU
Utilization

90%

Memory
Utilization

15.5%

Disk
Utilization

20.5%

Fig. 1: A motivation example for balanced utilization of
multi-dimensional resources

As shown in Fig. 2(a), assuming there are two new
workload requirements (marked R1 and R2) that need
to be allocated at the same time. Specifically, R1 requires
30%, 5%, and 10% of the total capacity for each dimen-
sion in multiple resource space, and R2 requires 5%,
15.5%, and 7.4% respectively. Meanwhile, there are two
DCs in the running state in Fig. 2(b). One DC (marked
DC1) has used 50% of its main CPU, 20% of its memory,
and 30% of its disk for the already allocated workloads.
The resource usage of the three dimensions of the other
DC (marked DC2) is 40%, 65%, and 50%.

Under such a condition, Fig.2(c) shows a sketch of
multi-dimensional resources allocations by a traditional
multidimensional resource allocation strategy Tetris [18].
Tetris firstly computes the alignment that is dot product
between workload requirements and available resources
of DC1, and the workload requirement with a larger
alignment (which is R1) will be allocated to DC1 firstly.
Then, it will compute the alignment between the left
requirement (R2) and the updated available resources
of the two DCs. Subsequently, the DC corresponding to
the higher result (still DC1) will be chosen. As a result,
the final utilization along three dimensional resources
is unbalanced, and the allocation of new workload will
be very difficult due to the low available CPU, but a
high percentage of memory will remain unused. If a
new workload requires 12.5%, 12.5%, and 7% of the

total capacity for each dimension in multiple resource
space respectively, unfortunately, there is no appropri-
ate resource for DC1 to provide it despite redundant
of Memory and Disk respectively. If multidimensional
resource allocation considers balanced multidimensional
resource utilization is executed, such as in the example
in Fig. 2(d), a new workload with 12.5%, 12.5%, and 7%
requirements for three dimensional resources will easily
be placed in DC1. We can observe from the example that
allocating resources in the proper DC will lead to a more
balanced system and convenience in the subsequent
placement of workload.

C. Mathematical Model
Our goal is to reduce the waste of multidimension-

al resources and improve resource utilization without
knowledge about future incoming demands in such an
online process. To facilitate the formulation of effective
decisions that can help in providing more opportunity
to reserve underlying workload for future demands,
objectives can be transformed into achieving the max-
imum the minimum (bottleneck) available resource and
maximizing the balanced usage of multidimensional re-
sources across all data centers.

Multi-dimension resource balance objective. Bal-
anced resource utilization facilitates multi-dimensional
resource allocation in distributed DCs. Otherwise, unbal-
anced resource utilization (overloaded in some resources
but underutilized in others) may cause a waste of re-
sources, since it requires more extra DCs to accommo-
date workloads due to resource fragmentations [2].

Definition 1: multi-dimensional resource balance in-
dex (MRBI) is defined to quantify the balanced degree
of multi-dimensional resource utilization. MRBI at any
time slot t can be calculated as:

MBt = min{ n

√√√√ n∏
i=1

ARt,i
CRi

× 1

1
n

n∑
i=1

ARt,i

CRi

|i=1,2,3 } (1)

where ARt,i is the residual available amount of the i−th
dimensional resource at time slot t. CRi denotes the
capability of the ith dimensional resource. The ratio of
ARt,i to CRi is called the normalized residual available
resource. Note that we define MRBI according to the
well-known Geometric-Arithmetic Mean (AM-GM) In-
equality [29] [30]. The Geometric-Arithmetic Mean (AM-
GM) Inequality states that the arithmetic mean of non-
negative real numbers is greater than or equal to the
geometric mean of set of data values. Further, equality
holds if and only if every normalized residual available
resource is the same. Therefore, the value of MRBI is
between 0 and 1, and it is infinitely close to 1 when the
normalized residual resources of every dimension is the
same.

According to Eq. 1, MRBI is proportional to the ge-
ometric mean of the normalized 3-dimensional residual

5

Used Resource R1 R2

65%

40%
50%

DC1 DC2
CPU Memory DiskCPU Memory DiskCPU Memory DiskCPU Memory Disk

R1

CPU: 30%

Memory: 5%

Disk: 10%

CPU: 30%

Memory: 5%

Disk: 10%

R2

CPU: 5%

Memory: 15.5%

Disk: 7.5%

CPU: 5%

Memory: 15.5%

Disk: 7.5%

DC1
CPU Memory DiskCPU Memory Disk

90%

40.5% 47.5%

70%70%
60%

DC2
CPU Memory DiskCPU Memory Disk

60%

35.5% 37.5%

(c) Allocation profiles with Tetris

DC1

CPU
Utilization

50%

Memory
Utilization

20%

Disk
Utilization

30%

CPU
Utilization

50%

Memory
Utilization

20%

Disk
Utilization

30%

DC2

CPU
Utilization

40%

Memory
Utilization

65%

Disk
Utilization

50%

CPU
Utilization

40%

Memory
Utilization

65%

Disk
Utilization

50%

(d) Allocation profiles with the balanced utilization

(a) Workload Requirements

(b) Original Resource Utilizations

Fig. 2: A sketch of multi-dimensional resources allocations

resources and inversely proportional to arithmetic mean
of the normalized 3-dimensional residual resources. The
larger MRBI is, the better balanced resource utilization
is.

Available resources objective. We term the small-
est value among the three dimensions of the avail-
able resources space as the minimum available multi-
dimension resource for a single data center. The minimum
available multi-dimension resource at any time slot t is
denoted as Eq. 2.

MAt = min{ARt,i
CRi

|i=1,2,3 } (2)

According to the mathematical model, optimization
objectives are translated into maximizing the minimum
(bottleneck) available multi-dimensional and multi-
dimensional balance index, so as to reduce the waste of
multidimensional resources caused by resource fragment
while improving resource utilization. For any date center
Dl ∈ D, the optimization objective is listed as follows.

Maximize(min(MA(Dl)),min(MB(Dl))) (3)

Note that MA and MB are independent with each
other and their weights can be adjusted according poli-
cies by cloud infrastructure providers.

It is worth noting that the focus of this paper is the
optimization of multi-dimensional resources across dis-
tributed DCs, so the traffic demand optimization across
inter-DC links is outside our scope.

IV. DESIGN OF NESRL-MRM: A DRL-BASED ONLINE
ALLOCATION OF MULTI-DIMENSIONAL RESOURCE

To achieve the objectives above, we design an online
multi-dimension resource manager with neuroevolution
based DRL, termed as NESRL-MRM. In the design of
NESRL-MRM, state-selection mapping policies are p-
resented as a deep neural network that maps a raw
observation to a selection, which is trained by a nat-
ural evolution strategy with some customizations, as
detailed in the Training Design part. NESRL-MRM takes
advantage of reinforcement learning to interact with the
network environment and learn a resource allocation
policy, aiming at balancing multi-dimension resource u-
tilization and reducing resource fragmentation efficiently
in distributed data centers.

A. Reinforcement Learning Formulation

According to the basic framework of reinforcement
learning, a DRL-based multi-dimension resource man-
agement algorithm is designed in this section. In a
reinforcement learning framework, it is assumed that an
agent exists in the environment. A schematic diagram
of our approach is shown in Fig. 3, where an agen-
t interacts with its environment through observations
and feedback. Specifically, the agent of NESRL-MRM
observes a set of metrics including past resources allo-
cation decisions and their reward feedbacks, and several
raw signals (distributed data centers, currently jobs and
their resource requirements, multi-dimensional resource

6

utilization), which are incorporated into the state space
at the t-th time slot (marked as st). These metrics are
fed into a deep neural network that provides a scalable
and expressive method for selections of candidate policy,
and then the agent chooses a corresponding action at.
Following the action, the state of the environment should
be transferred to the next state st+1 and the reward
information rt+1 is observed and fed back into the agent.
The agent uses the reward information to train and im-
prove the neural network model, whose objective in the
learning process is to maximize the expected cumulative
discounted reward, i.e., the long-term total reward, by
trial and error instead of the present reward.

The elements involved in this DRL-based design are
as follows.

1) State Space: The state space is denoted as S and
contains two elements that describe the current state.

IT resources requirement from dynamic arriving jobs,
including the CPU, memory, and disk requirements that
are enoted as QR = (QRCPU , QRMem, QRDisk).

Available IT resources in distributed data centers,
which are presented as:

ARIT k∗3 =


ARCPU1 ,ARMem

1 ,ARDisk1

ARCPU2 ,ARMem
2 ,ARDisk2

...
ARCPUn ,ARMem

n ,ARDiskn


where n is the number of DCs.

2) Action Space: The action space (marked as A) is the
set of allocation decision where DRL agent must choose
a certain action from it to optimize the reward function
at each time unit. In this design, the goal is to optimize
the decision-making of workload placement for resource
allocation according to the optimization objectives in the
mathematical model. Therefore, A is composed of the set
of date centers D. For a current job, the agent selects a
candidate DC from the A to meet workload requirements
of three dimensions of resource. The dimension of the
action space is |D|.

3) Reward Design: The agent learns how to select the
specific action in the specific environment to optimize
the long-term reward. The DRL-based multi-dimensional
resource allocation aims to place as many as possible
workloads for a given amount of resources. To achieve
this goal, the rewards are designed to maximize the min-
imum available multi-dimension resource and maximize
the balance usage of the multidimensional resources
within a single data center. Therefore, three dimensions
of IT resource space over distributed data centers can
be fully used and a further workload can be placed and
accommodated.

Specifically, the reward function at each timestep t is
designed as follows:

Rewardt =
∑

Dl∈D
(MAtl +MB

t
l) (4)

where MAlt and MBlt are its minimum available multi-
dimension resource and MRBI for a given DC Dl ∈ D,

respectively. The agent of NESRL-MRM only receives a
value of the reward function at one timestep. Without
loss of generality, we regard MA and MB as equally
for simplicity in the following context.

B. Training Design with a natural evolution strategy

To develop such an artificial DRL agent of multi-
dimensional resource manager, a natural evolution strat-
egy (NES) is designed to train deep neural networks
to approximate the optimal action-value function in the
NESRL-MRM model. This training design is inspired by
recent well-known work from OpenAI [31], which ap-
plied a developed NES (hereafter referred to as OpenAI-
ES) to solve standard RL benchmark problems.

NES is a class of black-box optimization algorithm-
s, whose main idea is its heuristic search procedures
inspired by natural evolution [32]. Specially, NES it-
eratively updates a parameterized search distribution
by an estimated gradient (the natural gradient) on its
parameters towards higher expected fitness. As an alter-
native approach to solve RL problems, NES can reliably
train neural network policies and be competitive with
competing RL algorithms on the hardest environments,
which is well suited to be scaled up to many parallel
workers in modern distributed computer systems [31].

For the proposed NESRL-MRM, training the agent
for a DRL task requires multiple trials or rollouts. In-
stead of other DRL techniques (e.g. Q-learning based
methods such as DQN and policy gradient methods
such as A3C), we employ NES strategy to train the
agent NESRL-MRM by population-based evolutionary
search. One motivation is its competitiveness with much
faster wall-clock time by distributed computation due to
better parallelization of NES [33]. The other motivation
is its potential advantage over diverse exploration of
the population-based evolutionary search, so as to avoid
falling into local optimal spaces. Moreover, the redun-
dancy inherent in a population also facilitates robustness
and stable convergence properties [34], especially when
incorporated with elitism.

By interacting with an environment through a se-
quence of observations, the agent of NESRL-MRM is to
select actions in a fashion that maximizes cumulative
future reward. In the training process, NES does not
calculate gradients analytically, but instead approximates
the gradient of the reward function in the parameter
space, similar to a finite-difference approximation of the
gradient [33] [34]. With the aid of NES, our NESRL-
MRM’s agent is capable of learning to handle such
a challenging DRL-based multi-dimension management
task.

We describe the training algorithm in Algorithm 1
and Algorithm 2, and its main notations are listed in
Table I. The evolution strategy used in this paper is a
class of black-box optimization algorithms, which is op-
timized repeatedly through parallel iterations [31] [33].
The parallelized nature of this training design is unique

7

Reward rt

Action at

Distributed data centers

State

Environment DRL AgentResource requirements

Residual available resources

tr

ta

{ , , }IT

t t t tR CPU Memory Disk=

1 1 1

,2 ,2 ,2

*3

, , ,

CPU Mem Disk

t t t

CPU Mem Disk

t t tDC

t k

CPU Mem Disk

t k t k t k

A A A

A A A
A

A A A

 
 
 

=  
 
 
 

， ， ，

ts

feedback

decision

Multi-dimensional

resource utilization

Multi-dimensional

resource utilization

Currently jobs and their

resource requirements

Currently jobs and their

resource requirements

Fig. 3: Applying DRL to multi-dimensional resource allocation

in making use of shared random seeds, which drastically
reduces the bandwidth required for communication be-
tween workers. Workers refer to objects in a computing
system or algorithm that can perform specific tasks in
parallel, which are widely used in the parallel computing
fields [35]. In this paper, worker refers to the parallel
working thread established by the evolutionary strategy
runtime, which is employed to execute each individual
of populations in a parallel manner to optimize the
algorithm performance.

In Algorithm 1, the episode is a brief unit in the
training process of agent, which ends with a terminal
state in a special time step, so that the agent-environment
interaction breaks naturally into subsequences [36]. After
one episode, with a reset to a standard starting state, the
next episode begins independently of how the previous
one ended. At every generation, a population is mutated
after obtaining environment information and its objec-
tive function value is evaluated. The parameter vectors
with highest function value are then used to form the
population for the next generation. In this way, training
is iterated until the objective is fully optimized, so that
NES directly searches in the parameter space of neural
networks to find an effective policy for this RL task.

The main idea of NES to train this agent is to iterative-
ly update parameters of deep neural networks using the
sampled gradient of expected fitness. In lines 19th and
20th in Algorithm 1, NES algorithm perturbs parameters
with the Gaussian noise to improve parameters θk for
each worker at each iteration, so that exploration is thus
driven and new individuals with better rewarding return
will occur.

TABLE I: Notations for NESRL-MRM

Notation Meaning

B dataset array

D the set of date centers

Lt the current number of unallocated jobs at a time slot t

α learning rate

σ standard deviation of noise

A action space

Ak
t action set of iteration k at time slott

S state space

st the state at time slot t

at the action at time slot t

rt the value of reward at time slot t

ϕ(st) the eigenvector of the state st

γ the discount factor in updated function

Q(•) state-action function

θk policy parameters at episode k,

θik policy parameters of neural network in the ith worker
at iteration k

εi the Gaussian perturbation vector in the ith worker

repi the total rewards for the work i

V. PERFORMANCE EVALUATION

A. Experiment Setting

The agent of NESRL-MRM was trained on a desktop
computer with 6 CPU cores, 256 GB RAM, 256 GB
SSD in Windows 10. NESRL-MRM is implemented using
the TensorFlow version 1.14.0. We used Python 3.8 and
pycharm as an IDE. In our evaluation, we assumed that
every DC has a CPU with 64 cores, memory of 512GB
and hard-disk I/O data rate capacity of 50Gbps.

8

Algorithm 1: Training Deep Neural Networks with
Neuro-evolution Strategy for NESRL-MRM

1 Input:
2 B: dataset for tasks;
3 //It contains states of DCs and task requirements
4 α: learning rate;
5 σ: noise standard deviation;
6 Initialize:
7 n: the number of parallel workers with known

random seeds;
8 //Construct a population with n individuals;
9 Q: the reward model of state-action;

10 θ0: the policy parameters of the reward model Q;
11 Output:
12 The neural network parameters with the highest

total reward among n parallel workers;
13 for episode k = 1 to M do
14 /*Parallelized neuro-evolution strategy*/
15 for each worker i = 1 to n do
16 /* Reset the environment and generate the

parameters of the model Q*/
17 Initialize the environment, get initial state s1

and its eigenvector φ1 = φ(s1);
18 Initialize the total rewards repi = 0;
19 Sample εi = N(0, I);
20 Update the parameters of neural network in

the ith worker θik = θk + σεi;
21 //Add noise to neural networks;
22 Use Alg. 2 to calculate rewards by

interacting with the environment;
23 end
24 /* Update the network parameters

proportionally according to the fitnesses */
25 Send all scalar returns repi from each worker to

every other worker;
26 for each worker i = 1 to n do
27 Reconstruct all perturbations εj for j = 1 to n;
28 Set θt+1 = θt + α 1

nσ

∑n
j=1 r

ep
i εj ;

29 end
30 end

The agent uses a deep fully connected neural network
to characterize the relationship between states and ac-
tions. In DNN construction, we use three layers of fully-
connected Exponential Linear Units (ELUs) with 30, 15
and 10 neurons, respectively, to build an autoencoder.
The NES-based training algorithm (i.e, Algorithm 1) is
used to guide neural network learning optimization,
where γ, α, σ and N were set as 0.95, 0.05, 0.05, 50,
respectively.

We have evaluated the proposed solution based on
real-life trace data according Amazon EC2 instances and
Google Trace, and simulation results show the effec-
tiveness of the proposed solution according to specific
performance metrics.

To demonstrate the effectiveness and robustness of

Algorithm 2: Total Reward Calculation involved In-
teraction with the Environment

1 Parameters:
2 θik: the policy parameters of the reward model Q of

the ith parallel worker of the kth episode;
3

4 Output:
5 The total reward values repi received by each

parallel workers;
6

7 for t = 1 to T do
8 Traverse the workload dataset and calculate the

number of operations to be allocated Lt = |Bt|;
// Obtain the current status of unallocated jobs

9 for c = 1 to Lt do
10 Calculate action values Q

(
ϕ
(
skt
)
; θik
)

in the
action set Akt ;

11 Sort the action set Akt in descending order of
action values Q

(
ϕ
(
skt
)
; θik
)
;

12 Read the first action in Akt and mark it as akt ;
13 Let m = akt and allocate resources of the mth

data center to the job;
14 Obtain the next state sk+1

t and calculate
reward value rkt ;

15 Update the eigenvector ϕk+1 = ϕ
(
sk+1
t

)
by

preprocessing;
16 Calculate the total reward repi = repi + rkt ;

//Calculate the total reward as individual
fitness;

17 end
18 end

NESRL-MRM, evaluations are conducted on real-life
trace data according Amazon EC2 instances [37] and
Google Trace [38]. In this paper, we consider an online
optimizing of multi-dimensional resource in distributed
data centers, where workload requests arrive and depart
dynamically in an online manner and resource require-
ments are not known beforehand. This dynamic nature
resembles a realistic scenario. We extract CPU cores,
Memory and Disk requests of jobs from the traces. In the
training process, the number of iterations of the models
is 10,000. To provide reasonable generalization, each
model was trained and evaluated against independent
datasets that were extracted from both Amazon EC2
instances and Google Trace.

Amazon EC2. We consider resource requirements of
workload to be equal to three different types of instances
from general purpose applications provided by Amazon
EC2. The resources characteristics are downloaded from
the Amazon websites [37]. The instance types provided
by Amazon EC2 consists of different combinations of
CPU, memory, and I/O data rate capacity, which pro-
vides users with flexibility to choose the appropriate
combination of resources for different applications. In
our simulation, we chose 9 types of instances belong

9

TABLE II: The profile of Amazon EC2 instances

Instance Type CPU Memory Disk bandwidth
(Cores) (GiB) (Gbps)

General
instance

m5.large 2 8 3.5
m5.2xlarge 8 32 3.5
m5.8xlarge 32 128 5

Memory
optimal type

r5.large 2 16 3.5
r5.2xlarge 8 64 3.5
r5.4xlarge 16 128 3.5

Computing
optimal type

c5.large 2 4 3.5
c5.2xlarge 8 16 3.5
c5.9xlarge 36 72 7

to 3 typical classes in Amazon EC2 instances for both
training and testing, including the balanced instance,
the computation-optimized instance and the memory-
optimized instance. All types of instances with their
specific requirements are generated randomly with equal
probability. The arrival process of Amazon EC2 instances
follows the Poisson distribution and their lifetime is
subject to the negative exponential distribution. Resource
allocation is implemented in accordance with the first-
come-first-served (FCFS) principle.

The specific requirements of EC2 instances are listed
in Table II.

Google Trace. We use real data center workload traces
from Google cluster-usage traces [38], [39] to emulate the
multi-dimension resource demands of traffic, similar to
the datasets in [22] and [19]. Google trace records the
resource usage data of different workload in a Google
data center over a month-long period, which contains
the CPU, memory and disk requirements (normalized
by the resource of one server) from workload, as well
as arrival time (absolute time value) and durations. To
simulate the workload in distributed DCs, we read open-
sourced Google Trace file and split the traces into 200
segments, and each segment contains about 100,000 jobs,
corresponding to the workload for a M-machine cluster.
For the training, we extract CPU cores, Memory and
Disk requests of jobs from the traces, and simulate the
workload on a M-DC cluster by changing the number
of jobs to obtain the different workloads. We randomly
selected jobs with specific requirements from the dataset
file according to the load intensity based on the business
requirement files.

B. Baseline schemes
We evaluate the proposed NESRL-MRM and compare

its performance against four baseline schemes, including
a DRL-based resource allocation scheme according to
A2CScheduler in [27], a threshold-based algorithm Min-
DIFF in [19], a tight packing heuristic algorithm (termed
as TPA), and a traditional round-robin resource alloca-
tion policy (denoted RRA).

A2CScheduler presented in [27] is an A2C deep rein-
forcement learning algorithm to address the customized
job scheduling problem in data centers, which applies a
reward function related to averaged job waiting time.
The DRL framework of A2CScheduler consists of an

actor network, a critic network and the cluster envi-
ronment. Its main contribution is that DRL training
process is designed to reduce the gradient estimation
variance and to update parameters efficiently. Due to
differences between A2CScheduler and our proposed
NESRL-MRM in their application scenarios and opti-
mization objectives, we slightly modified the reward
design and datasets of A2CScheduler in terms of mul-
tiple dimension resources for the sake of fairness. The
modified A2CScheduler is hereafter referred to as A2C-
based Multi-dimensional Resource Management (A2C-
MRM).

As one of the most related virtual machines placement
problem in cloud DCs, a threshold-based algorithm,
termed as Min-DIFF [19], is used as a baseline scheme.
The main idea of Min-DIFF is to balance the usage
of resources along different dimensions according to a
well-designed threshold, so to reduce the risk of PM
overloading in a threshold-based placement strategy. In
the simulation, similarly, we set the warning line is 80%
along each resource dimension, and then the threshold of
each resource dimension is calculated according to the
definition of threshold in [19], which depends on the
warning line, the largest VM requirement threshold and
total resource along dimension d of the PM.

Tetris [18] is a heuristic by the alignment of a task
relative to a machine across multiple dimensions, where
the alignment was calculated as the dot product between
task requirements and available resources across multi-
ple dimensions.

To demonstrate the benefit of our scheme in terms of
guaranteeing the accommodation of more workload in
the future, we simulate another heuristic scheme–Tight
Packing Algorithm (termed as TPA)– with the aim to
minimize the number of DCs to accommodate the given
workload. In TPA, new workload will be placed in the
current DC if there are enough resources; otherwise, the
next DC with available resources will be considered as
a candidate.

C. Simulation Results

In this part, we firstly evaluate the proposed NESRL-
MRM in terms of convergence performance of training
against the DRL-based baseline scheme A2C-MRM, and
time efficiency against all baseline schemes. To demon-
strate the effectiveness and robustness of NESRL-MRM,
we simulate 20 tests for different traffic load from 50 to
350 using both Amazon EC2 instances and Google Trace.
We compare all algorithms in terms of the minimum
utilization, the multi-dimensional resource balance index
(MRBI) as mentioned earlier and blocking probability,
and report results on average and the 95% confidence
interval.

1) Convergence Performance of Training: We first assess
convergence performance of training for both A2C-MRM
and NESRL-MRM in 15 distributed DCs scenario. Train-
ing DNNs involves evaluating the neural network in

10

iterative update manner, where the number of iterations
is set 10,000 per input sequence sample. We refer to one
execution of this process as a training epoch. To pro-
vide reasonable generalization, each model was trained
and evaluated against independent datasets that were
extracted from both Amazon EC2 instances and Google
Trace.

Figs. 4 show the evolutions of cumulative rewards
during training. We can obtain the an observation that
cumulative reward curves of both algorithms gradually
tend to convergence with increased number of training
epoch. Moreover, after convergence by sufficient number
of epochs, NESRL-MRM can achieve slightly higher
cumulative rewards than A2C-MRM in the same dateset.
Our results suggest that A2C leads to ineffective learning
although it is faster than, i.e., even after more than
600 learning epochs, the reward value of the produced
resource allocation strategy is still lower than NESRL-
MRM. It is because NESRL-MRM’ potential advantage
over diverse exploration of the population-based evolu-
tionary search, so as to avoid falling into local optimal
spaces.

11400

11500

11600

11700

11800

11900

0 200 400 600 800 1000

to
ta

l_
re

w
a
rd

s

episodes

NESRL-MRM

A2C-MRM

Fig. 4: Cumulative rewards of NESRL-MRM and
A2C-MRM

2) Evaluation for Time Efficiency: Time efficiency is eval-
uated by training and reasoning decision time (testing
time for DRL-based algorithm) through experimental
simulations. Node processes of decision-making of each
baseline scheme is executed on the same datasets. We
report the training time of A2C and NESRL for DRL
models in Table III, including the convergence time and
the average time of each epoch. For the decision process,
A2C-MRM and NESRL-MRM with their trained model,
as well as non DRL-based algorithms, are evaluated
according to their corresponding decision time.

As shown in Table III, NESRL-MRM needs to spend
around twice more time to train its convergent DRL
model than A2C-MRM, and also takes a slight more
time to run each epoch. The learning time is slower
than the baseline solution due to diverse exploration of
the population-based natural evolutionary search in the
training design of NESRL-MRM. In the decision process,
however, NESRL-MRM is competitive its online decision
over A2C-MRM (only 15% or less of that in A2C-MRM),

and its average decision time is near to those in heuristics
(i.e, RRA, TPA, Min-DIFF and Tetris), which makes the
proposed scheme practical in reality. Compared with
A2C-MRM, the reason for the faster online decision is
that NESRL-MRM has competitiveness with much faster
wall-clock time by distributed computation due to better
parallelization of NES. It is noteworthy that NESRL-
MRM sacrifices offline training time to outperform all
baseline schemes in terms of decision time on average
and performances.

3) Performance analysis in terms of MU and MRBI: After
training our model, in this part, we compare NESRL-
MRM with A2C-MRM, Min-DIFF, Tetris, RRA, and TPA
in terms of the minimum utilization (MU) and multi-
dimension resource balance index (MRBI) using Amazon
EC2 instances. All simulation were repeated 20 times and
the number of distributed DCs is set as 15, which realis-
tically resembles modern distributed datacenters cluster,
such as FaceBook datacenters [40], Baidu datacenters
[41].

Fig. 5 shows the average of the minimum utilization
(MU) along multi-dimensional resource across distribut-
ed DCs. Each bar shows the average of the minimum
utilization over the 20 test instances, and error bars
depict the 95% confidence interval. NESRL-MRM is ob-
served to achieve much higher MU than those of RRA,
TPA, Min-DIFF and Tetris. It is because that maximizing
the the minimum utilization is one pursuit of NESRL-
MRM, and the agent can learn to optimize the allocation
by reward feedback. Heuristics such as Tetris, min-
diff, RRA and TPA just follow certain rules (such as
scoring and thresholds) without considering historical
experience and evironment information, which makes
it difficult to adapt to complex across DCs environ-
ments. But compared with A2C-MRM, it is observed
that the average MU of NESRL-MRM is slightly larger
with 20% performance improvement, furthermore, the
performance gap is widened as the traffic load increases.
The main reason is that the agent of A2C-MEM is also
to maximize resource utilization, but has a disadvantage
over diverse exploration against NESRL-MRM, resulting
in falling into local optimal spaces.

As another significance metric, the multi-dimension
resource balance index is to assess the balancing per-
formance along three dimensional resources across all
data centers, which is shown in Fig. 6. It is observed
from Fig. 6 that regardless the patterns of workload,
NESRL-MRM still has a higher multi-dimension resource
balance index than baseline schemes, especially for A-
mazon EC2 instants. With the rising of traffic loads, the
advantages of NESRL-MRM further increase for Amazon
EC2, and its value is about more than 4 times of Teris
(also considering muti-dimensional resource utilization).
For testing Google Trace, the performance advantage of
NESRL-MRM is less obvious compared with baseline
schemes under low traffic load. This is because resources
of Google clusters are so abundant that no resource
fragmentation occurs. And the performance gap between

11

TABLE III: Evaluation of Time Efficiency

Agorithm Convergence Average Time Decision
Time of Epoch Time

EC2 datasets

NESRL-MRM 9833.168s 11.568s 1.342ms
A2C-MRM 3172.748s 9.614s 9.074ms

RRA - - 1.064ms
TPA - - 1.131ms

Min-DIFF - - 1.326ms
Tetris - - 1.014ms

Google Trace datasets

NESRL-MRM 30456.578s 17.915s 1.053ms
A2C-MRM 1640.321 s 13.556s 9.36ms

RRA - - 0.937ms
TPA - - 0.916ms

Min-DIFF - - 1.095ms
Tetris - - 1.287ms

0%

10%

20%

30%

40%

50%

60%

50 100 150 200 250 300

A
v

er
a

g
e

M
U

Traffic Load

NESRL-MRM A2C-MRM Tetris Min-DIFF RRA TPA

(a) EC2 instants

0%

10%

20%

30%

50 100 150 200 250 300

A
v

er
a

g
e

M
U

NESRL-MRM A2C-MRM Tetris Min-DIFF RRA TPA

Arrive Rate

(b) Google Trace

Fig. 5: Performance Comparison on average minimum utilization using (a) Amazon EC2 instants (b) Google Trace.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

A
v

er
a

g
e

M
R

B
I

Traffic Load

NESRL-MRM A2C-MRM Tetris Min-DIFF RRA TPA

(a) Amazon EC2 instants

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

A
v

er
a

g
e

M
R

B
I

NESRL-MRM A2C-MRM Tetris Min-DIFF RRA TPA

Arrive Rate

(b) Google Trace

Fig. 6: Performance Comparison on the multi-dimension resource balance index using (a) Amazon EC2 instants
(b) Google Trace.

NESRL-MRM and Min-DIFF is dwindled compared with
Amazon EC2 testing. Min-Diff which optimized bal-
anced resource utilization along muti-dimensional re-
sources also outperforms than other baselines, but has
poor performance than NESRL-MRM in terms of both
balanced utilization and the worst available utilization.
The main reason is that the agent of NESRL-MRM is
also to maximize resource utilization, while the balance
usage of multi-dimension resource also is considered.
As a result, the remaining resource of each dimension
is sufficient, rather than being wasted to meet only the
individual requirement.

4) Performance analysis in blocking probability under vari-
able traffic load: Blocking probability is defined as the ra-
tio of the total unsuccessful requests to the total arriving
requests over a period of time, which is the probability
that a coming request from various applications is not
immediately serviced because of inadequate resources.
A lower blocking probability usually indicates a more
successful allocation process that can accommodate more
workload requirements. Blocking probability of future
incoming workload demands is the most important
metric for online resource optimization where resource
demands are not known beforehand [42]. Blocking prob-

12

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300

B
lo

ck
in

g
 P

ro
b

a
b

il
it

y

Traffic Load

NESRL-MRM A2C-MRM Tetris

Min-DIFF RRA TPA

Greedy

(a) Amazon EC2 instants

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300

B
lo

ck
in

g
P

ro
b

ab
ili

ty

NESRL-MRM A2C-MRM Tetris

DIFFMin- RRA TPA

Greedy

Arrive Rate

(b) Google Trace

Fig. 7: Performance Comparison on average blocking probability (a) Amazon EC2 instants (b) Google Trace.

ability is only evaluated the effect of decisions during
a period of time from the user perspective, while MRBI
and MU are the metrics to measure immediate utilization
of resources at the current moment from the provider
perspective. The evaluation is derived from the fact that
resource allocation algorithms should avoid service level
objective violations due to resource exhaustion or over
utilization [28].

To justify the effectiveness of our proposed solution,
we have conducted extensive experiments to evaluate
blocking probability under different traffic load in the
15-DC scenario. In this particular case, additional ex-
periments with a simple greedy baseline algorithm are
presented, which searches over the feasible space in a
greedy fashion with regard to MRBI only. It chooses the
DC with the highest MRBI at each step of allocation.
The greedy baseline algorithm is evaluated to further
benchmark the effect of balanced utilization on blocking
probability and explain the efficiency of our reward
design.

In Fig. 7, it can be seen that the proposed NESRL-
MRM significantly outperforms other algorithms with a
much lower blocking probability, specifically no higher
than 20%. NESRL-MRM can achieve only 40% block-
ing of heuristics, while 20% of those in medium and
high load for Google Trace. Compared with A2C-MRM,
NESRL-MRM has lower blocking probability for Ama-
zon EC2 instants, but it is comparable blocking per-
formance for Google traces. The main reason is that
the agent of A2C-MRM is also to maximize resource
utilization under consideration of multiple dimension
resources, but has a different training manner against
NESRL-MRM.

The other observation is the greedy algorithm has a
small advantage on blocking probability comprised to
other heuristics, but it is incomparable than NESRL-
MRM. It is because the greedy algorithm is to max-
imize MRBI at each step of allocation, and balanced
utilization along resource dimensions will bring a gain
to the acceptance rate; on the other hand, the greedy

algorithm only focuses balanced utilization in the most
short-sighted style. While our reward design is to select
the DC with the most balanced utilization along resource
dimensions, as well as the more bottleneck available
multi-dimensional after deploying workload.

5) Performance analysis in blocking probability with dif-
ferent scale of distributed DCs: To more comprehensively
evaluate the permanence of our proposed NESRL-MRM
scheme in terms of block probability, we carried out
further experiment scenarios with different number of
distributed DCs, ranging between 11 and 26. As shown
in Fig. 8, NESRL-MRM has the lowest blocking proba-
bility (under 15%) in the testing of different numbers
of DCs although its agent was trained in the 15-DC
setting. Another observation is that blocking probability
is decreasing with the increase in quantity of distributed
DCs, this is because the total resources are set to be
the same across these scenarios, then the larger number
of DCs mean the less resources each DC will get. So
intuitively, resource fragmentation is more likely to occur
with larger number of low-capacity DCs.

VI. CONCLUSION

In this paper, we proposed NESRL-MRM, a DRL-
based multi-dimensional resource allocation algorithm
for learning the optimal online resource allocation poli-
cies in distributed data centers. Aiming at balancing
multi-dimensional resource utilization and maximize
available resources, NESRL-MRM parameterizes multi-
dimensional resource allocation policies with DNNs
based on DRL framework. To train such an DRL agent
with much faster wall-clock time and diverse explo-
ration, we developed a training mechanism and search
space dynamicity based on a natural evolution strategy
(NES) to train DNNs progressively with its experience
from dynamic resource provisioning, rather than an
accurate mathematical model. Based on Amazon EC2
and Google data traces, our simulation results show that
NESRL-MRM achieves a more balanced use of resources
along multiple resource dimensions, which significantly

13

Fig. 8: Performance Comparison on average blocking
probability with different numbers of DCs (11 for

Apple Inc. [43], 18 for Facebook [40], 21 for Google [44]
and 26 for Amazon [45]).

reduces blocking probability compared with heuristic
baseline schemes and obtains competitive online deci-
sions with a 85 percent improvement in time efficiency
compared with A2C-MRM.

ACKNOWLEDGMENT

This work was supported in part by the National Key
R&D Program of China under Grant 2018YFE0202800,
National Natural Science Foundation of China under
Grant 62102302 and 61934002, the Natural Science Foun-
dation of Shaanxi Province for Distinguished Young
Scholars under Grant no 2020JC-26, the Science and
Technology on Communication Network Laboratory un-
der Grant BAX20641X008 and SXX21641X033, National
Key R&D Program of China (2019YFE0113200) and Na-
tional Natural Science Foundation of China (61901317).
This work was also supported by The Youth Innovation
Team of Shaanxi Universities.

REFERENCES

[1] B. Wan, J. Dang, Z. Li, H. Gong, F. Zhang, and S. Oh, “Model-
ing analysis and cost-performance ratio optimization of virtual
machine scheduling in cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 7, pp. 1518–1532, 2020.

[2] C. Guerrero, I. Lera, B. Bermejo Gonzalez, and C. Juiz, “Multi-
objective optimization for virtual machine allocation and replica
placement in virtualized hadoop,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, pp. 2568–2581, 05 2018.

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[4] D. Jiang, Y. Wang, Z. Lv, W. Wang, and H. Wang, “An energy-
efficient networking approach in cloud services for iiot networks,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 5, pp.
928–941, 2020.

[5] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly efficient data
migration and backup for big data applications in elastic optical
inter-data-center networks,” IEEE Network, vol. 29, no. 5, pp. 36–
42, 2015.

[6] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y. C. Liang, “Network
slice reconfiguration by exploiting deep reinforcement learning
with large action space,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2197–2211, 2020.

[7] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning
based approach,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 1871–1879.

[8] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Routenet: Leveraging graph neural net-
works for network modeling and optimization in sdn,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp.
2260–2270, 2020.

[9] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 270–288.

[10] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu, “Inter-
preting deep learning-based networking systems,” in SIGCOMM
’20: Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020.

[11] Z. Peng, J. Lin, D. Cui, Q. Li, and J. He, “A multi-objective trade-
off framework for cloud resource scheduling based on the deep
q-network algorithm,” Cluster Computing, vol. 23, 12 2020.

[12] J. Feng, W. Zhang, Q. Pei, J. Wu, and X. Lin, “Heterogeneous
computation and resource allocation for wireless powered feder-
ated edge learning systems,” IEEE Transactions on Communications,
vol. 70, no. 5, pp. 3220–3233, 2022.

[13] Z. Hu, B. Li, and J. Luo, “Time- and cost- efficient task scheduling
across geo-distributed data centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, pp. 705–718, 03 2018.

[14] Q. Zhang and W. Shi, “Energy-efficient workload placement in
enterprise datacenters,” Computer, vol. 49, pp. 46–52, 02 2016.

[15] D. Erickson, B. Heller, N. McKeown, and M. Rosenblum,
“Using network knowledge to improve workload performance
in virtualized data centers,” in Proceedings of the 2014 IEEE
International Conference on Cloud Engineering, ser. IC2E ’14. USA:
IEEE Computer Society, 2014, p. 185?194. [Online]. Available:
https://doi.org/10.1109/IC2E.2014.81

[16] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “Hug: Multi-
resource fairness for correlated and elastic demands,” in Proceed-
ings of the 13th Usenix Conference on Networked Systems Design and
Implementation, ser. NSDI’16. USA: USENIX Association, 2016,
pp. 407–424.

[17] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-
distributed datacenters with max-min fairness,” IEEE Transactions
on Network Science and Engineering, vol. PP, pp. 1–1, 01 2018.

[18] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akel-
la, “Multi-resource packing for cluster schedulers,” ACM SIG-
COMM Computer Communication Review, vol. 44, 08 2014.

[19] S. Ji, M. Li, N. Ji, and B. Li, “An online virtual machine placement
algorithm in an over-committed cloud,” in Proceedings of 2018
IEEE International Conference on Cloud Engineering (IC2E), 04 2018,
pp. 106–112.

[20] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning
to route,” in Proceedings of the 16th ACM workshop on hot topics in
networks, 2017, pp. 185–191.

[21] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path tcp meets deep reinforce-
ment learning,” IEEE Journal on Selected Areas in Communications,
pp. 1–1, 2019.

[22] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A
hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in 2017 IEEE
37th International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 372–382.

[23] Y. Zhang, J. Yao, and H. Guan, “Intelligent cloud resource man-
agement with deep reinforcement learning,” IEEE Cloud Comput-
ing, vol. 4, no. 6, pp. 60–69, 2017.

[24] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling scheme
in the cloud computing environment using deep q-learning,”
Information Sciences, vol. 512, 10 2019.

[25] S. Bian, X. Huang, and Z. Shao, “Online task scheduling for
fog computing with multi-resource fairness,” in 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall), 09 2019, pp. 1–5.

[26] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, 11 2016, pp.
50–56.

14

[27] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” in Proceedings of 24th Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD:),
ser. PAKDD’18, 05 2020, pp. 906–917.

[28] S. M. Shanka Subhra Mondal, Nikhil Sheoran, “Scheduling of
time-varying workloads using reinforcement learning,” in 35th
AAAI Conference on Artificial Intelligence (AAAI), 2021, pp. 9000–
9008.

[29] M. M. Jubayer Nirjhor, Sandeep Bhardwaj, “Arithmetic
mean - geometric mean,” https://brilliant.org/wiki/
arithmetic-mean-geometric-mean/.

[30] B. Carlson, “The logarithmic mean,” The American Mathematical
Monthly, vol. 79, pp. 615–618, 06 1972.

[31] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,”
https://arxiv.org/abs/1703.03864, 2017.

[32] Wierstra, Daan, Schaul, Tom, Glasmachers, Tobias, Yi, Sun, Peters,
and J. and, “Natural evolution strategies.” Journal of Machine
Learning Research, vol. 15, pp. 949–980, 2014.

[33] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley,
and J. Clune, “Improving exploration in evolution strategies for
deep reinforcement learning via a population of novelty-seeking
agents,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, ser. NIPS’18. Red Hook, NY, USA:
Curran Associates Inc., 2018, pp. 5032–5043.

[34] Z. Wang, C. Chen, and D. Dong, “Instance weighted incremental
evolution strategies for reinforcement learning in dynamic envi-
ronments,” 2020.

[35] A. G. Vipin Kumar, Ananth Grama and G. Karypis, Introduction
to Parallel Computing: Design and Analysis of Parallel Algorithms.
Benjamin-Cummings Pub Co, 1 1994.

[36] P. Babington, Reinforcement Learning: An Introduction (second edi-
tion), 2nd ed. Massachusetts London, England: The MIT Press
Cambridge, 11 2018.

[37] “Amazon ec2 instants,” https://aws.amazon.com/ec2/
instance-types/.

[38] “Google cluster-usage traces: format + schema,” https://ode.
google.com/p/googleclusterdata/wiki/TraceVersion2.

[39] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing, 10 2012.

[40] M. Zhang, “Facebook’s 18 data centers: $20bn in-
vestment, 40m square feet,” https://dgtlinfra.com/
facebook-18-data-centers-20bn-investment/, 2021.

[41] C. Sbeglia, “Baidu to increase investment in ai and cloud, plans
for 5 million servers,” https://www.rcrwireless.com/20200622/
business/baidu-ai-cloud-plans-5-million-servers, 2020.

[42] C. K. Dehury and P. K. Sahoo, “Dyvine: Fitness-based dynamic
virtual network embedding in cloud computing,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 5, pp. 1029–1045,
2019.

[43] https://en.wikipedia.org/wiki/ICloud.
[44] https://time.com/5814276/google-data-centers-water/, 2021.
[45] “Global infrastructure of aws,” https://aws.amazon.com/

about-aws/global-infrastructure/?p=ngi&loc=0, 2021.

Wenting Wei received the M.E. and PhD degree
in Telecommunication and Information Systems
from Xidian University, in 2014 and 2019. Since
2019, she has been working in the State key lab
of ISN, Xidian University. Her main research in-
terests include data center networking, network
virtualization, cloud computing and intelligent
networking.

Huaxi Gu is a professor affiliated with the State
Key Lab of ISN, Xidian University. Prof. Gu
is the leader of the Youth Innovation Team of
Shaanxi Universities. He is leading a project as
the principal investigator, funded by the Na-
tional Key Research and Development Program
of China. He is also the principal investigator
for one key, two general and one youth project
funded by National Natural Science Founda-
tion. Prof. Gu has published over 200 journal
and conference papers, with his research in-

terests being in the areas of networking technologies, network on
chip, optical interconnect, etc. Prof. Gu served as the TPC member of
GLOBECOM, ICC, PDCAT, etc., and the technical reviewer for multiple
journals including IEEE Transactions on Computers, IEEE Transactions
on VLSI, IEEE Transactions on Cloud Computing, IEEE/OSA Journal
of Lightwave Technology, etc.

Kun Wang received the B.E. degree and M.E.
degree in Computer Science and Technology
from Xidian University, Xian in 2003 and 2006
respectively. Now she is a lecturer in the Dept.
of Computer Science, Xidian University, Xian
China. Her Current interests include high per-
formance computing and cloud computing, the
network vitulization technology.

Jianjia Li received his M.E. degree from Xidian
University in 2022. From 2019 to 2022, he has
been engaged in research on data center net-
work and intelligent networking at Advanced
Network Technology Laboratory in Xidian U-
niversity.

Xuan Zhang received his B.E. degree of T-
elecommunication Engineering from Xidian U-
niversity in 2020 and now proceeding his M.S.
degree from University of California, Davis in
ECE department. From 2020 to 2021, he worked
in the Advanced Networking Technology Lab
of State Key Laboratory of ISN. His main re-
search interests include reinforcement learning
and intelligent networking.

Ning Wang (SM’17) received his Ph.D degree in
electronic engineering from the Centre for Com-
munication Systems Research (CCSR), Univer-
sity of Surrey, UK in 2004. He is currently a full
professor at the Institute for Communication
Systems University of Surrey. Professor Wang’s
research interests include future network de-
sign, 5G networks, network optimizations and
network and service management.

