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Abstract—In this paper, we explore the use of multi-agent
deep learning as well as learning to cooperate principles to
meet stringent service level agreements, in terms of throughput
and end-to-end delay, for a set of classified network flows.
We consider agents built on top of a weighted fair queuing
algorithm that continuously set weights for three flow groups:
gold, silver, and bronze. We rely on a novel graph-convolution
based, multi-agent reinforcement learning approach known as
DGN. As benchmarks, we propose centralized and distributed
deep Q-network approaches and evaluate their performances
in different network, traffic, and routing scenarios, highlighting
the effectiveness of our proposals and the importance of agent
cooperation. We show that our DGN-based approach meets
stringent throughput and delay requirements across all scenarios.

Index Terms—Smart Queuing, Adaptive WFQ, Deep Rein-
forcement Learning, MADQN, DGN, Multi-Agent Systems.

I. INTRODUCTION

Traffic scheduling is key to control how bandwidth is
shared among different applications and in particular, to satisfy
Service Level Agreements (SLA) of applications in terms of
throughput, delay, loss and jitter. In typical Software-Defined
Wide Area Networks (SD-WAN) architectures [1], a central-
ized controller maintains a set of policies deployed at edge
routers that interconnect multiple sites (enterprise branches,
data centers). Each edge router is configured to send traffic
to its peers over several transport networks (e.g., private lines
based on MPLS or cheaper broadband internet connections).
Typically, these routers are responsible for applying routing
and queuing policies to meet SLA requirements in terms of
end-to-end Quality of Service (QoS), security, etc. At a slow
pace, the controller optimizes policies, while edge devices
make real-time decisions.

Several solutions [1] have been proposed for the dynamic
selection of paths in WAN networks to satisfy SLA require-
ments. The general idea is to compare the quality of paths with
application requirements and update the path selection strategy
inside routers when needed. Beyond path selection, a number
of adaptive queuing and Active Queue Management (AQM)
techniques [2] have been proposed to help sustain delay and
throughput requirements. In particular, the dynamic adaptation
of scheduling parameters, such as the weights in Adaptive
Weighted Fair Queuing (AWFQ) [3, 4, 5], has been shown
to significantly improve performance. Nonetheless, existing

mechanisms are local and work at the level of individual
routers in the network, without trying to explicitly cooperate to
globally improve the QoS. In [6], for instance, an agent at the
destination informs the source node of delay limit violations,
so the upstream agent adjusts its queuing weight, but there
is no cooperation or sharing of information across agents.
In our work, we design a multi-agent system based on deep
reinforcement learning with the objective of improving queue
management in networks.

To this end, we propose a set of Deep Reinforcement
Learning (DRL) algorithms that optimize queuing parameters
to meet SLA requirements. We consider a typical SD-WAN
scenario in which routers deal with an array of classified flow
groups with different requirements in terms of throughput and
latency. A WFQ approach is set up to control how each flow
group is served at ingress nodes. Our DRL algorithms are
embedded into agents controlling WFQ weights for each flow
group depending on the traffic and network status at hand. The
delay on each path, as well as the eventual achieved throughput
by the flows, depends on the interfering traffic present in
other queues and on other paths. This necessitates dynamically
tuning the weights and motivates cooperation between agents
managing the different nodes, ¢.e., routers. While closed-form
expressions for WFQ [5] can be used to tune weights locally, a
machine learning approach can better adapt to realistic traffic
patterns and generalize to the case where multiple agents are
interfering (e.g., sending traffic over the same links) and end-
to-end QoS requirements must be met.

We utilize a multi-agent approach to tackle the problem.
In Multi-Agent Reinforcement Learning (MARL), multiple
methods exist to govern agent communication and coopera-
tion. The MARL system could be completely centralized, fully
distributed, or semi-distributed. In a centralized MARL sys-
tem, all the agents act as one, sharing the same environment,
states, actions and rewards. In a distributed one the agents
are completely independent, and in a semi-distributed MARL
architecture, these distributed agents are able to communicate
and cooperate.

In this paper, our main contribution is the application of a
graph convolutional reinforcement learning (DGN) approach
to the multi-agent smart queuing problem. DGN is a semi-
distributed approach to MARL in which the collaboration
between agents can be parameterized and learned. In addition,
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Figure 1: SD-WAN network with 5 branches

as benchmark solutions covering other MARL architectures,
we propose two Multi-Agent Deep Q-Learning (MADQN)
solutions based on DQN [7]. One is completely centralized
and the other fully distributed.

In our work, we discuss how both the DGN and MADQN
agents learn. We detail their observations, actions, rewards, and
the extent of their cooperation across the different considered
approaches. We perform packet-level simulations in ns-3 [8]
and compare our proposals against traditional priority queuing
(PQ), in both SD-WAN and classic network topologies (Abi-
lene). We show that our proposals are better suited to deal
with classified traffic than PQ. While DGN is always capable
of meeting the required throughput and delay demands, we
illustrate how the lack of agent cooperation in the distributed
MADQN approach can cause the latter to falter in convoluted
scenarios. And while the centralized approach to MADQN can
meet the set objectives, we show that DGN can do it without
the need for a centralized setting and with negligible overhead
during execution.

Section II of this paper describes the related works in the
state-of-the-art. Section III discusses the system architecture,
including our SD-WAN use case and the WFQ approach
we build our agents upon. Section IV introduces our graph
convolutional reinforcement learning based proposal for smart
queue management. Section V details both our centralized and
distributed deep Q-learning approaches to the smart queuing
problem. Section VI presents the simulation results and anal-
ysis, while Section VII concludes this paper.

II. RELATED WORKS

In this section, we discuss the related works on smart queu-
ing and the utilization of deep reinforcement learning (DRL) in
network management. In this context, we first focus on active
queue management and multi-path traffic engineering.

In terms of what we aim to accomplish in this work, the
paper of Kim and Eng [9] is the closest. The authors propose
a DQN based AQM algorithm in a single-agent environment,
wherein the agent decides which packets to serve from the
queue and which ones to drop. Other queue-based DRL usages
can be seen in the paper of Balasubramanian et al. [10], where
the agents decide which request traffic instances are to be
served first, and in the work of Bachl, Fabini and Zseby [11],
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Figure 2: Access router architecture

where they are tasked with finding the optimal buffer sizes.

DRL approaches in the domain of multi-path traffic engi-
neering in general and multi-path TCP specifically are also
popular. Rosello [12] proposed a DQN agent with the purpose
of selecting the optimal paths for MPTCP, while Liao et
al. [13] used an actor-critic framework to the same end.
Finally, Houdi et al. [14] proposed a multi-agent actor-critic
framework to perform path selection and optimize quality of
experience.

In this paper, we propose a graph convolutional rein-
forcement learning multi-agent approach for optimal weight
selection in a network using WFQ schedulers. The objective
is to meet delay and throughput requirements for a set of
classified network flows. Originally proposed by Jiang et
al. [15], DGN aims at learning how agents cooperate in a
MARL environment. It uses attention [16] and adjacency
matrices to extract relevant features and relay important infor-
mation where needed. With respect to the state-of-the-art on
cooperation in multi-agent deep reinforcement learning, DGN
utilizes attention mechanisms similar to those proposed by
Jiang & Lu [17], whilst avoiding its full-scale communication.
It uses parameter sharing as done in the proposal by Zhang et
al. [18], but without assuming a fully observable environment.
And finally, while DGN was not the first proposal to utilize a
graph convolutional network, Malysheva et al. [19], Agarwal
et al. [20], among others, it does so in a partially observable
environment whilst allowing for a dynamic adjacency of
agents. Our paper goes beyond state-of-the-art by considering
a multi-agent architecture based on reinforcement learning
algorithms, such as DGN, for the adaptive tuning of queuing
parameters to meet SLA requirements.

III. SYSTEM ARCHITECTURE

We consider a semi-distributed architecture where edge
devices are controlling traffic based on real-time measurements
using local agents sharing some information with their peers.
The agents are centrally trained, but their execution is done in
a distributed manner. In this section, we detail the architecture
of the SD-WAN use case that we focus on, and afterwards
we discuss the scheduling approach on which we build our
reinforcement learning proposals.



A. SD-WAN Use Case

Figure 1 presents a typical SD-WAN use case where
an enterprise network headquarters (HQ) and five remote
branches are interconnected by MPLS and broadband internet
connections controlled by third-party operators. A controller
is placed at the headquarter site and access routers (ARSs)
are responsible for the interconnection. Flows issued by user
applications are grouped into flow groups that correspond
to traffic classes with different SLA requirements. A typical
traffic scenario includes gold, silver, and bronze groups for
multimedia, business critical, and non-critical applications,
respectively.

The system architecture is split into two control entities
operating at two different time scales. In a slow control loop,
the global controller (at the headquarter site) updates policies
and communicates them to edge devices (i.e., AR devices). In
a fast control loop, devices take tactical decisions to follow the
evolution of traffic and network conditions. Figure 2 depicts
the architecture of AR devices. The traffic of each flow group
is first load balanced over available access networks (e.g.,
internet, MPLS) using a routing agent and then a scheduling
engine at each port (each access network link), controlled
by a QoS agent, applies a QoS policy, i.e., the WFQ based
RL approach we describe later on. The monitoring block
provides information on the network at path and flow group
levels such as jitter, delay, and throughput metrics, some of
which are factored into our deep learning decision-making.
The focus of this paper is on the smart queuing part of the
aforementioned architecture. In what follows, we consider
that the routing policy is already decided, and we discuss
only traffic scheduling, with the integration of the two being
the subject of our future works. In practice, we expect the
routing control loop to be much slower than the QoS one,
i.e., decisions by the latter will be taken at a much faster
pace. This allows for our current approach of separating the
two, wherein the QoS decisions are being taken during what
constitutes a steady state for the routing.

Our objective is to satisfy SLAs for classified network flows.
In particular, we aim at meeting performance targets for each
flow group in terms of minimum throughput and maximum
end-to-end delay. To do so, we enlist the aid of DRL to
continuously optimize queuing parameters. In what follows,
we discuss our WFQ approach and the QoS agent’s role.

Finally, we note that in addition to our SD-WAN use case,
we also test our proposal in a more generalized network
topology, namely the Abilene topology. We show that our
learning model is resilient to different topologies and can adapt
to the objectives regardless of the scenario at hand.

B. Adaptive Weighted Fair Queuing and DRL Agents

While strict priority queuing is generally used to prioritize
traffic, WFQ can be used to maintain fairness, and its weights
can be adjusted so that each flow group of traffic receives a
bandwidth proportional to its weight. The latter also impacts
the resulting end-to-end delay experienced by the flows. Let

{1,..., K} denote the set of flows. In a WFQ scheduler, each
flow achieves an average data rate Ry equal to:

Ry = —x—R, (1
ZiKzl wy

where R is the total link capacity, and wj is the weight
associated with flow k. As such, the greater the weight of
the flow is, the higher its service rate and the lower its local
queuing delay are (see latency-rate server model [21]).

We assume that every flow in the SD-WAN network can,
based on packet priority, be classified intro three groups.
These flow groups are in order of importance: gold, silver,
and bronze. Each group has its set of minimum throughput
thresholds to be attained: T}, T, and T}, for gold, silver, and
bronze, respectively and an equivalent set of maximum end-
to-end delay thresholds to be respected: dg, ds, and dp. The
objective of the DRL agents for QoS is to assist in meeting
these thresholds by learning how to continuously update the
weights (increase or decrease) for each flow group served by
the WFQ algorithms. Each agent in this MARL deployment is
built on top of a WFQ scheduler. While WFQ is used in our
SD-WAN use case, the proposed solution is generic enough to
handle any other scheduling architecture. The agents observe
the throughput and end-to-end delay values attained by the
flow groups, and then make individual decisions on whether
to increase or decrease the weights for the flow groups that
are served at their corresponding nodes. With the delay and
throughput values being influenced by how the packets traverse
the entire network, inter-agent communications are expected
to be a key feature.

IV. GRAPH CONVOLUTIONAL REINFORCEMENT
LEARNING FOR MULTI-AGENT SYSTEMS

The objective of the deep learning agents is to continuously
adjust the weights, either by increasing or decreasing them,
for a weighted fair queuing algorithm managing a set of
classified network flows. These agents are situated at ingress
nodes across the network, such as the numbered ones in
our illustrated scenario in Figure 1. In this paper, our main
proposal utilizes multi-agent graph convolutional reinforce-
ment learning, or DGN, to manage both how the agents learn
and communicate. DGN combines the ideas of graph neural
networks and deep reinforcement learning. The agents are
embedded in a graph G = (V, E), whose topology is related
to the computer network in our scenario. The existence of
an edge between two agents in this graph means that they
can exchange information. Each node (agent) i € N, where
N denotes the set of agents, has a set of neighbors B; with
which it can communicate. This collaboration between agents
can be parameterized and is dependent on an adjacency matrix
C that defines which agents are neighbors. Limiting agent
communication to neighbors reduces what could be costly
interactions, in terms of bandwidth and complexity, while
keeping the neighborhood present between agents that are
likely to impact each other the most.
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Figure 3: Structure of two DGN agents at HQ and Branch 1

A. Multi-agent System, Replay Buffer and Target Network

In DGN, the learning problem is formulated as a partially
observable Markov decision process. During every time iter-
ation t, each agent ¢ receives a local observation from the
environment denoted of. The latter consists of a set of values
detailing the end-to-end delay and throughput values of the
flow groups it is serving. The agent then takes an action af,
increasing or decreasing the WFQ weight of each flow group,
and as a result is issued a reward r! determined by whether
the SLA requirements for the flows groups are met or not. The
aim is to maximize the sum of the expected rewards of all the
agents.

Multi-agent collaboration. Each agent ¢ will run its own
reinforcement learning algorithm, whose purpose is to learn
how weights (wS, w?, w?), for the gold / silver / bronze flow
groups, should change with respect to the local observations
and information received from its neighbors. As displayed in
Figure 3, this reinforcement learning agent is composed of
multiple modules. The first module, a multi-layer perceptron
(MLP) referred to as an encoder, takes as input the local
observations of the agents and extracts the relevant features,
referred to as fio, of these observations. Once each agent 7 has
its computed features f?, it will send them to its neighbors and
receive their features, which reflect their own observations.

In Figure 3, agent 1 at the HQ sends £} to all the branches
it connects to and receives f??, fg , etc..., from the respective
branches. Agent 1 at the HQ shares information with all the in-
ternet branch agents as justified by its adjacency matrix, which
details its neighborhood. Recall that in our implementation,
agents that share links at the network layer are considered to
be neighbors. These features will be the input of the second
module, which is a convolutional neural network. Similar to
the encoder, the role of the convolutional network is to extract
the relevant features of the combination of the local observa-

tions and the features received from neighbors. As suggested
by the figure, a multiple convolutional layer module can be
used. Each layer takes as input the features computed by the
preceding convolutional layer, as well as a new set of features
received from the neighbors. In our work, we consider two
convolutional layers. Similarly, as it is performed by distance
vector routing to learn the shortest path by exchanging routing
tables with neighbors, the exchange of features between agents
will permit the agents to obtain local knowledge from agents
that are at a distance h from them, where h denotes the
number of layers in the second module. For example, the
second convolutional layer of node 3 at branch 1 will receive
the feature f} from HQ node 1, which contains information
received from the rest of the branches. Even if these branches
cannot communicate directly, the exchange of features with the
HQ nodes will permit them to have a full view of the network
information. After several stages of convolutional layers, all
the information computed will be gathered into a vector of
features. The last module is a Q-learning algorithm. It takes as
input the features produced by each layer of the convolutional
layer. The reinforcement learning algorithm will run on this
third module and the decisions, which maximize the expected
reward, on the weights will be made by it.

Attention mechanisms. The convolutional layers of DGN
implement attention mechanisms. Convolutional kernels,
widely present in convolutional neural networks (CNNs) and
image recognition, enable extracting features from images.
In DGN, these kernels integrate the features in the receptive
field in order to extract the latent features. They should be
able to learn how to abstract the relationship between agents
as to integrate their input features. DGN uses a multi-head
dot-product convolutional kernel to calculate the interactions
between different agents. A more in depth illustration of how
attention works in neural networks can be found in [16].

Replay buffer. DGN implements a replay (experience)
buffer, i.e., samples are stored in a memory and afterwards
randomly sampled for training. This removes any correlation
that might exist among consecutive samples. The experi-
ences are of the type (O,A4,0',R,C), where O is the set of
agent observations {o1,...,ox}, A is the set of agent actions
{a1,...,an}, and as such O’ is the set of new observations
{0},...,0y} as a result of the taken actions. R is the set
of rewards issued to the agents {r1,...,7n}, and finally C =
{C1,...,Cn} is the set of adjacency matrices for the agents.
The adjacency matrices essentially define the neighborhoods
for the agents. C;, V i, is constructed with dimensions (|B;|+1)
x N, wherein the upper row is a one-hot representation of the
index of the agent i, and the kth row, k = 2,...,|B;|+ 1, is a
one-hot rendition of the index of the (k-1)th neighbor. Note
that the time notation ¢ is dropped from these expressions for
the sake of simplicity.

Target network. With enough samples in the replay buffer,
we are able to train the agents. The training is done with
the aid of target networks [7]. A target network is a copy
of the agent’s main Q-network. Its parameters however are
not trained every iteration, but rather updated slowly or every



while. This helps root out any instability in training the main
Q-network that could arise from consecutive states being very
similar. The replay buffer is randomly sampled for a minibatch
of size S on which the agent is trained with the purpose of
minimizing the loss:

N
L(0) = % XS: % ;(yi - Q(0;,0,a:;0))?, 2

where we recall that N is the total number of agents and that
yi = i +ymax Q(0; o, a;; 0'). 3)

O;,c € O represents the observations of ¢’s neighbors. Q
represents the Q-function, 6’ the target network parameters,
and + is the discount factor. The latter weighs the impact of
future rewards. The gradients of the loss of all the agents are
accumulated and used to update the main network parameters.
The target network parameters are updated smoothly (:.e.,
softly) every iteration following:

0 =710+ (1—-1)0, “)

where 7 denotes the smoothness of the update. If =1, then
the update is classified as “hard” and the parameters of the
main network are simply copied onto the target network.
Finally, we note that during the training phase, as well as
during the execution period, the agents are well aware of their
neighborhoods, i.e., their own adjacency matrices. That is
to say that they know with which agents they would need
to communicate. During this communication, agents share
copies of their feature vectors, as illustrated in Figure 3. The
significance of this overhead is discussed in the results section.

B. DGN based Smart-Queue Management

In our work, we enlist DGN to help with our problematic: to
meet stringent SLA requirements for classified network flows.
The different components presented in DGN are redefined as
follows for our problem:

o The local observation, in our case, is a tuple rep-
resenting the end-to-end throughput and delay values
attained the flows served by the agent and denoted
put of the gold flows, d, the average end-to-end delay
of the gold flows, and so on. The end-to-end delays are
typically measured using in-band network telemetry.

o The actions taken by every agent throughout the learning
problem consist of either increasing or decreasing the
weight of every flow group it is serving (gold, silver,
bronze) by a preset constant value d. Each agent will act
on the weights of all three groups simultaneously (£0).
This means that, in total, each agent has eight possible
actions to take at every iteration.

« The reward issued for each agent after it takes an action
is relative to whether it has helped meet the requirements
for each flow group. Let 7; be the reward for meeting
required throughput values of flow group j, and ¢; the
reward for meeting the delay requirement of the group

7. For the reward we are aiming to meet the an average
end-to-end delay maximum for the flows of the groups.
The total reward r; issued for an action is then computed
as follows:

Wil g +wl-dg+wl e+ wd- g +wlmp+wi -y, (5)

where w?h is set to -1 if the required throughput for flow j
is not met and +1 otherwise. wf is its delay equivalent in
regard to meeting the target delay values. Consequently,
the agent reward can be negative, i.e., a penalty.

The rewards/penalties for meeting the gold flow requirements
are set higher than that for the silver, and for this latter higher
than the bronze. That is to say, the agent is better rewarded,
alternatively penalized more, for meeting or violating the
gold flow requirements than they are for those of the silver
and bronze flows, respectively. Note that we can weight the
rewards/penalties for the delay with respect to those of the
throughput. With gold group flows, for example, ¢4 = Kg4-7g.
If k4 < 1, the agents are incentivized to meet the throughput
requirements ahead of the delay ones, for the gold flows.

Note that the throughput and delay are continuous values.
Since we cannot learn over a space of infinite states, it is
important to discretize it. We first need to define the size
of the observation space. In our work, we set it to 20. This
means that for every observed element, we have 20 possible
values. Since our observation is made up of six different
inputs, the discrete observation space size is a sextuplet, with
each element belonging to a set of 20 different values. The
window size is computed as the maximum attainable value
minus the corresponding minimum for each element of the
state tuple. The discrete state is the integer value resulting from
subtracting the minimum observation space from the state and
dividing the result by the discrete window size.

Algorithm 1: Discretization of the States

1 Define the discrete observation space size:
DISCRETE_OS_SIZE = |20, 20, 20, 20, 20, 20]

2 Compute the window size: discrete_os_win_size =
(observation_space.high —
observation_space.low)/DISCRETE_OS_SIZE

3 Function get_discrete_state (state) :

4 int discrete_state = (state —
observation_space.low)/discrete_os_win_size
5 return discrete_state

An increased state space would mean the algorithm has more
room to explore for better solutions, but would incur a time
penalty for convergence. That is to say if we set the discrete
observation size to 100 for example, we would be encom-
passing a lot of additional states/observations. Nonetheless,
the space would be too large. Striking the correct balance is
mostly a matter of approximation and experimenting.
Finally, in Algorithm 2 we summarize how the training for
DGN is done. We detail the process starting from the filling of



the experience replay buffer to the training of each agent, up
until the update of the target network. The exploration rate €
determines how often the agents explore during learning, and it
is kept constant during training in our approach. Convergence
can be inferred from the training loss. When the experience
buffer has enough samples, the training phase can begin.
We train on positive rewards and the terminal state is when
maximum reward is achieved. The variable done indicates that
the terminal state has been reached.

Algorithm 2: Training the DGN Agents

1 Initialize randomly the main Q network and its target
2 Initialize the agents and the environment at random states
3 while not converged do
/* Sample phase in the replay buffer «/
for every agent i € N do
Generate a random number e
if ¢ < e then
L Choose a random action a;

q B

else
9 L

10 Agent i gets reward 7; and next observation o

®

Query the Q-network for the best action based
on observation o;

11 Store tuple (0,A,0’,R,C,done) in replay memory D
/* done; indicates if agent i reached

its set target or not */
12 if enough experiences in D then
/+ Training phase */
13 Sample a random minibatch of transitions from D
14 for every (0, A,0',R,C,done) do
15 for every agent i € N do
16 if done; then
17 L Yi = T4
18 else
19 | i =7+ ymaxe Q(O] ¢, a;;6').
20 Calculate the Loss
L) =555 2 (v~ Q0ic,ai:0))°,
21 Update Q by minimizing the loss £
22 Update the target network softly using Q’s
weights: ' = 70 + (1 — 7)¢’

V. DEEP Q-LEARNING APPROACH

We present two benchmark multi-agent solutions, based on
DQN, to the problem. While DGN is semi-distributed, one
of these DQN approaches is completely centralized, and the
other fully distributed without any inter-agent communica-
tions. Deep Q-learning revolves around the idea of attaching a
deep neural network to the traditional Q-learning problem. It
aims at solving its memory problem by removing the Q-table
and using neural networks to determine the best actions.

For the distributed approach, the agents are considered to
be fully independent. They each have their own set of states,
actions, and rewards, and they each view the environment
from their local perspective. No inter-agent communications
exist. Figure 4 shows the structure of the distributed DQN
agents in our work. Unlike DGN, wherein we have an encoder
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Figure 4: Structure of the DQN agents

and convolutional layers managing inter-agent relations, here
we have two fully-connected layers in between the input and
output layers. There are no built-in cooperation mechanisms.
The actions taken by the agents and the rewards they are issued
remain unchanged from before. In DQN, we again utilize
two principle deep learning mechanisms: target networks and
replay buffers. The replay buffer is filled with experiences of
the type (O, A, R,O’,done), i.e., current observation, action
taken, reward received, and the new observation. As in the case
of DGN, the variable done indicates if the learning reached
its objective or not. The target network, with parameters 6,
is a copy of the main Q-network and is used to stabilize
the training. The predicted Q-values of the target Q-network
are utilized to backpropagate through and train the main
Q-network. However, they themselves are not trained but
regularly updated with the values of the main Q-network. In
this case, we use a hard update with 6’ = 6.

We train on positive rewards, i.e., the experiences in which
the agent does not reach a terminal state are not used to
minimize the loss. Once enough experiences are stored in
the buffer, the training process starts on randomly selected .S
minibatches. For every experience, each agent acts as follows:

Yi =T, If done = True

yi =i +7-maz Q(o},a;0'), Otherwise
a’'€

The loss, which is minimized using stochastic gradient de-
scent, is then computed as follows:

L= % ;(Q(Ou ai;0) — y;)*. (6)

As for the approach to the weight selection problem itself,
things remain virtually unchanged from DGN. We have the
same states of states and observations, the same possible agent
actions and the reward is calculated in the same manner.

For the centralized approach, the agents are trained as if they
are one central unit, they interact jointly with the environment,
i.e., they share the same state and observations. They also take
their actions jointly, as if it is one superimposed action, and
they receive a single reward. The agents are practically sharing
a complete vision of the environment and their individual
interactions with it.

VI. SIMULATION AND RESULTS

We now evaluate the proposed multi-agent architecture for
smart queuing using ns-3 [8] with the deep learning agents
being built using Python and TensorFlow. We simulate SD-
WAN network illustrated in Figure 1. As we considered that



routing is controlled by a slower control loop, and it is
in steady state (see Section III), the adjustment of queuing
parameters inside transport networks (i.e., internet, MPLS)
can be considered independently. For this reason, we only
simulated one type of transport network at a time, with a
scenario of UDP traffic over the internet, and another of TCP
traffic over MPLS, being considered. We simulate HQ-branch
links with propagation delays of 10 ms with capacities of
10 Mbps each. Small rates are chosen to speed up simulation
duration, however we verified the results are not impacted
when the bandwidths are of higher magnitude. We used on-off
applications for traffic generation and build the WFQ approach
over active queue management techniques, namely random
early detection (RED). At each branch, origin-destination
(OD) flows for two flow groups are generated towards HQ.
For instance, at branch 1 we have gold and silver, at branch 2
we have silver and bronze, and at branch 3 we have gold and
bronze, etc. The purpose of this variation is to avoid having
homogeneity across the traffic treated by the different agents,
and thus create a need for agent collaboration.

Agent communications. In the case of DGN, we recall that
the adjacency of the agents in our scenario, i.e., the neighbors
with which each agent can communicate, is defined through
the presence of links. In Figure 1, HQ agent 2 communicates
with nodes 4, 6, etc..., but not 3 or 5, and so on. In the case
of distributed MADQN, no inter-agent communications exist
whatsoever. In the case of centralized MADQN, the agents act
as if they are one unit, sharing the same environment, states,
actions and rewards.

Traffic scenario. Table I details the simulation parameters.
The transmit rate of the sources follows diurnal and sinusoidal
patterns between 0 and 20 Mbps. The HQ-branch links (ex
1-3, 2-4, etc.) have limited bandwidths and are the links
where congestion is likely to occur and impact the general
performance of the network. The simulations are done as a
series of 300 snapshots, the duration of each being 10 seconds.
The duration is enough to achieve a steady state for TCP in
our topology, and it has no impact on the eventual results.
The weights for the agents are randomly assigned at the start,
with that of the gold flow being higher than the silver and
the bronze, respectively. The delay metric considered is the
average end-to-end delay for flow groups. The simulation
parameters can be seen in Table 1.

Benchmarks. In terms of deep reinforcement learning, we
compare our proposal to two multi-agent DQN approaches.
One is fully distributed with no agent communications, and the
other completely centralized with shared states, actions, and
rewards. In terms of traditional approaches to QoS manage-
ment in queuing, we simulate a classic priority queuing (PQ)
algorithm. The latter serves the packets in descending order of
priority. This means that all gold packets are dequeued first,
the silver second and the bronze last.

Training of agents. Tables II and III detail the param-
eters for the MADQN and DGN agents, respectively. When
choosing this set of parameters, the objective is to create the
smallest neural network capable of addressing the problem.

These parameters were set intuitively following models in
the state-of-the-art. The exploration rate € dictates how often
during training we take random actions, and how often we
utilize the trained model.

Table I: Parameters for the simulations

Parameter Value
Number of O-D pairs 10, 4 gold, 3 silver, 3 bronze
Snapshot duration / # of snapshots 10 sec / 300

T,/Ts/Ty 30/ 10/ 5 Mbps
dg/ds/dy for UDP 0.15 /0.3 / 0.4 seconds
dg/ds/dy for TCP 0.1/0.15 /0.2 seconds
Delay to throughput relevance xg, ks, kp 0.8

Reward relative to flows G/S/B 3x/2z/x

WFQ weight update § 0.03

Table II: Parameters for MADQN agents

Parameter Value

ReLu
2 each with 128 neurons
starts with 1 and decays to 0.001

Activation function
N¢ of fully connected layers
Exploration rate €

€ - decay € multiplied by 0.99955 per episode
Discount factor ~y 0.99
Training batch size 32

Table III: Parameters for DGN agents

Parameter Value

N¢ of convolutional layers 2
N¢ of encoder MLP layers 2

N° of encoder MLP units (128,128)
Scaling factor 7 0.01
Discount factor ~y 0.99
Training batch size 32

A. Agent Convergence

We first assess if the agents converge or not. For the multi-
agent distributed DQN approach, Figure 5a tracks the loss
function for a DQN agent after 3000 training iterations.

12000 6000
10000 5000 [==DGN Training Loss]|
8000 4000
" @
& 6000 83000
S S
4000 2000
2000 1000
0 0
3000 3150 3300 3450 3600 o 500 1000 1500 2000
Iterations Iterations
(a) Distributed DQN (b) DGN

Figure 5: Convergence of the learning approaches

The algorithm is not converging. Even if more time is given
for the training, this oscillation remains present. This is mainly
down to the completely distributed nature of this distribution.
There is a lack of communication between agents in a scenario
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Figure 6: UDP traffic: DGN vs. Distributed MADQN (DDQN) (a) and (b), Centralized MADQN (CDQN) vs. PQ in (c) and

(d). G: Gold, S: Silver, B: Bronze. SD-WAN scenario.

that requires it, and this is confirmed by the fact that the
centralized approach converges without an issue. For the DGN
approach, we track the loss averaged across all the agents.
The DGN approach was able to converge. This is illustrated
in Figure 8, where at around 800 training episodes the loss
tends towards zero.

B. UDP Scenario

First, we consider simulations with UDP traffic. Starting
with DGN, we show a cumulative distribution function (CDF)
plot with the throughput values attained by the different flow
groups throughout all the snapshots. Figure 6a has the results.
The vertical dashed lines show the SLA requirements in terms
of throughput per class. The semi-vertical lines, for each flow
group and each DRL solution, in the plots show how the
network behaves when the traffic sources are transmitting at

a congestion causing rate on the links. It can be seen as a
sort of steady state. It is during this period that we are mainly
concerned in verifying that the SLAs are met. When there is no
congestion, in the lower parts of the diurnal traffic patterns for
instance, the traffic sources are transmitting at a rate lower than
that needed to maintain the required throughput thresholds.
As such, we do not take throughput SLA violations in this
region into consideration. We note that the DGN approach
can always meet the required throughput. When the network
is congested, the throughput for the bronze flow is just above
6 Mbps, for the silver flow about 11 Mbps, and for the gold
flow is around 31 Mbps. All above the required throughput
values of 30, 10, and 5 Mbps for gold, silver, and bronze flow
groups, respectively.

We additionally look at how DGN performed in terms of
the delay attained by the different flows. Figure 6b has box
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Figure 7: TCP traffic: DGN vs. Distributed MADQN (DDQN) (a) and (b), Centralized MADQN (CDQN) vs. PQ in (c) and

(d). G: Gold, S: Silver, B: Bronze. SD-WAN scenario.

plots with the results. The requirements are 0.15, 0.3, and
0.4 seconds for the gold, silver and bronze flows, respectively.
We note that DGN was able to meet all of these thresholds.

We observe on the other hand the results for distributed
MADQN agents. Figure 6a has CDF plots with the results. The
latter validate what is seen in the training convergence trend.
The demands for the bronze flows are not met, and are below
the 5 Mbps mark. While the algorithm does not converge, we
did show that the average reward does go into the positives
for multiple aggregated iterations as time goes on. As such,
the algorithm still manages to meet certain demands.

In terms of the delay, the box plots of Figure 6b show
a similar trend. The delay requirements for the silver flows
are violated in more than half the instances. Out of six total
constraints, distributed MADQN violates three.

Nonetheless, the centralized version of MADQN delivers

the required thresholds. In Figure 6¢, we note that the through-
put values lie around 5.5, 11.4, and at above 31 Mbps for the
bronze, silver, and gold flows, respectively. All above the re-
quired mark. Figure 6d shows that median delay values for the
centralized MADQN flows at 0.128, 0.209, and 0.298 seconds
meet all requirements. This however is not the case for PQ.
We see in the same figures that its bronze flows’ throughput
is less than 1 Mbps, while the maximum delay values, for
both the silver and bronze flows, are around 2 and 3 seconds,
respectively. Both are in violation of the required thresholds.
Out of the six constraints, PQ meets only three.

In conclusion, the communication between agents was
key to addressing the problem. The centralized MADQN
approach was able to meet the demands unlike its distributed
counterpart, highlighting that it is not an issue of the deep
learning mechanism being used. DGN provides a solution



to the problem without relying on the unrealistic centralized
training and execution of the centralized MADQN approach.

C. TCP Scenario

Similarly, we now look at the results in the case of TCP
traffic. Figure 7a has the throughput results for DGN. Again,
DGN meets all the required demands. When the links are
congested, the plots show throughput values of about 5.1, 10.6,
and 31.5 Mbps for the bronze, silver, and gold flows. All above
the set requirements of 5, 10, and 30 Mbps, respectively. The
same cannot be said for distributed MADQN. Figure 7a shows
that the throughput requirement for the gold group flows,
sitting at around 28 Mbps, was violated.

We additionally observe the delay results as reported in the
box plots in Figure 7b for DGN. The required delay thresholds
are set at 0.1, 0.15 and 0.2 seconds for the gold, silver, and
bronze flows. The DGN agents meet all these requirements.
Distributed MADQN meets these demands, but in general with
higher mean delay values compared with DGN. Furthermore,
the centralized version of MADQN was able to meet all the
required throughput and delay thresholds. Figure 7c shows
throughput values at around 6.2, 10.1, and 31 Mbps for the
bronze, silver, and gold flows, respectively. The same cannot
be said regarding priority queuing. The silver flows throughput
is about 9.7 Mbps and the bronze about 0.73 Mbps, both in
violation of the requirements.

In terms of delay, Figure 7d shows that centralized MADQN
group flows have maximum delays at around 0.04, 0.12, and
0.15 seconds, respectively. All within the required margins.
As for PQ, it fails to meet the delay requirements for both
the silver and bronze flows, with maximum values recorded
at 0.23 and 0.35 seconds, respectively.

The results with TCP traffic validate the conclusions of their
UDP counterparts. The lack of agent communications in the
decentralized MADQN approach caused the algorithm to be
inefficient. The results also show that our proposals are much
more equipped to deal with the problem than priority queuing.

D. Impact of Varying the Number of Convolutional Layers

As discussed in Section IV-A, the number of convolution

layers controls the communication between agents. Indeed,
we verified experimentally the significance of the number of
convolutional layers in the DGN agent modules. To do so, we
ran the same experiment from before but this time with the
convolutional layer module containing only one layer.
The main reason being that agents controlling branches are not
able to efficiently collaborate via the HQ. The presence of only
one convolutional layer, means that the 2-hop communications
needed in this scenario, are not available.

E. On Agent size, Complexity, and Communication overhead

When setting neural network parameters for the deep learn-
ing agents, we always seek the smallest working configuration.
That is independent of the MARL agent setting, whether
the system is centralized, distributed or semi-distributed. In
terms of size of agents, in bytes on disk, DGN agents are
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Figure 8: DGN convergence with one convolutional layer. SD-
WAN scenario.

considerably larger. DGN has more layers, more structure,
and even its own Q-network. A trained DQN agent takes
an average 0.267 MBs of space, while DGN ones consume
1.9 MBs.

For DGN, during the agents’ execution phase, the agents
would need to communicate their feature vectors, i.e., the
output of the convolutional layers. We assess the incurred
overhead using two methods. First, in order to quantify the
amount of communications involved, as discussed in [22], the
overhead is defined as a function the total number of pair of
agents that communicate during a certain time instance t € 7T,
denoted ¢;, and the total number of agent pairs R as:
ZT gt

t=1
p= RT (N
A ratio closer to one, would mean all the agents are talking
with each other. One closer to zero, means agents are barely
communicating. In the case of the SD-WAN scenario, the ratio
is 0.18 for our DGN approach. This indicates a very small
overhead and communications limited to where needed.

Additionally, we compute the bandwidth required for such
inter-agent communications. In our DGN scenario, the agents
refresh their policies every 10 seconds. At that time they need
to communicate messages equal to the number of convolu-
tional layers they have. The size of each message is equal
to the size of the feature vector. For our implementation, we
have 2 convolutional layers. The output of each is 1x128.
Assuming a 64 bit machine, we would need 4 bytes to store
each of these values. That means on each link between two
communicating agents, we would only need 0.8192 kbps of
reserved bandwidth for inter-agent communications.

We would also note that in this work, we considered
a synchronous execution of agents so that they exchange
information at the time is it needed by their neighbors. An in-
teresting development would be to consider the asynchronous
setting.
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FE. Generalized Network Topology

Finally, we are interested as well in testing our proposal
in a more generalized network topology. For that, we choose
the Abilene network topology illustrated in Figure 10. Traffic
is generated from hosts connected to nodes 1, 2, and 3, and
collected at a destination connected to node 7. Each of these
sources generates three flows, one of each type: gold, silver,
and bronze. Similar to our previous scenario, we consider
that the links interconnecting the main nodes shown in the
figure are the ones with bandwidth constraints. Our DGN
agents are placed on all the nodes (one through eleven). Two
convolutional layers are considered for each agent. At each
of the source nodes, we have a gold flow, a silver, and a
bronze flow. The sources are of type UDP. Reminder that
the source flows are sinusoidal and initially the transmit rates
are not enough to meet the throughput requirements. We are
concerned with SLA violations only in the period where they
can.

Figure 10: Abilene Topology

11

Figure 9a compares between our approach and priority
queuing (PQ) in terms of throughput. The required thresholds
are maintained as before. During congestion on the links,
we note that our DGN approach is able to meet all the
requirements for all flows with gold flows throughput being
between 30.8 and 31.2 Mbps, the silver flows throughput at
around 12 Mbps, and bronze flow throughput values just above
5 Mbps. For PQ, the algorithm is capable of meeting the gold
flows’ requirements, but records violations in both silver and
bronze flows’ requirements.

In Figure 9b, we compare between the two approaches in
terms of the end-to-end delay. The requirements as before are
set at 0.15, 0.3, and 0.4 seconds for gold, silver, and bronze,
respectively. With DGN, all the flows meet their requirements
with maximum values recorded at 0.112, 0.242, and 0.389
for the gold, silver, and bronze flows, respectively. The same
cannot be said for PQ, which shows excessive violations for
both the silver and bronze flows.

Additionally, we are also interested in measuring the impact
of the number of convolutional layers the DGN agents have
on their performance. We reduce the number of these layers
per agent from two to one, and afterwards repeat the training
and the simulations under the same settings. In Figure 11, we
show the resulting delay values achieved by the DGN agents
with the aforementioned structure.

We notice that the approach no longer uniformly meets all
the delay requirements, with several infringes recorded for
gold and silver flows, and violations in more than 18 % of the
cases for the bronze flows. As with before, the reduced number
of convolutional layers causes the DGN to fail in extracting
key relations between the different agents, that would have
otherwise enabled it to succeed.

In conclusion, we showed the resilience of our model and
its capability of adapting in different and classic network



a4 a4 a4
N o ®»
: . : :
+
, , , ,

-
(M)
.
,

End-to-End Delay (seconds)

0.8F ' ]
0.6F |
O ]
I ‘
—— —
0,

DGN G DGN S

Figure 11: End-to-end delay values. One convolutional layer.
Abilene scenario.

topologies. We again showed the relevance of the number of
convolutional layers when it comes mapping the relationship
between different DGN agents. Note that in our current model,
we assume that information needed for the agents to make
decisions (observations) are available or shared with them.
We are currently experimenting with keeping the agents only
at ingress and egress nodes, while increasing the number of
convolutional layers per agent. This increase will make up for
the loss in intelligence from the network center due to the lack
of agents. Preliminary results show that we can maintain the
SLA requirements and similar levels of performance.

VII. CONCLUSION

This paper presented a multi-agent graph convolutional
reinforcement learning approach built on top of a weighted
fair queuing algorithm with the purpose of meeting stringent
demands, in terms of throughput and delay, for a set of
classified network flows. The deep learning agents contin-
uously determine the weights with which the flow packets
are dequeued. In addition, we implemented two classic multi-
agent DQN solutions: one is completely centralized and the
other fully distributed. We compare our approaches across
different network topologies, scenarios, traffic types, and trans-
port mechanisms, highlighting both their efficiency and the
importance of inter-agent communication.

These types of solutions are still in their infancy, but as we
showed in this work, they can provide promising results. In
future works, we will consider a larger scale scenario with
multi-layer branches and non-direct connections to the HQ
network. We will consider variable neighborhoods dependent
on the links between routing nodes. Finally, We will assess
our smart queuing proposals alongside a deep reinforcement
learning assisted approach to load balancing in networks.
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