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Offloading computation-intensive tasks to edge clouds
has become an efficient way to support resource con-
straint edge devices. However, task offloading delay is an
issue largely due to the networks with limited capacities
between edge clouds and edge devices. In this paper, we
consider task offloading in Open Radio Access Network
(O-RAN), which is a new 5G RAN architecture allowing
Open Central Unit (O-CU) to be co-located with Open
Distributed Unit (DU) at the edge cloud for low-latency
services. O-RAN relies on fronthaul network to connect
O-RAN Radio Units (O-RUs) and edge clouds that host
O-DUs. Consequently, tasks are offloaded onto the edge
clouds via wireless and fronthaul networks [1], which
requires routing. Since edge clouds do not have the same
available computation resources and tasks’ computation
deadlines are different, we need a task distribution
approach to multiple edge clouds. Prior work has never
addressed this joint problem of task offloading, fronthaul
routing, and edge computing. To this end, using segment
routing, O-RAN intelligent controllers, and multiple
edge clouds, we formulate an optimization problem to
minimize offloading, fronthaul routing, and computation
delays in O-RAN. To determine the solution of this
NP-hard problem, we use Deep Q-Learning assisted by
federated learning with a reward function that reduces
the Cost of Delay (CoD). The simulation results show
that our solution maximizes the reward in minimizing
CoD.

Index Terms—Task Offloading, Fronthaul Routing,
Segment Routing, Edge Computing, Open Radio Access
Network

I. Introduction
By the year 2025, there will be 34.2 billion edge de-

vices, including 21.5 billion IoT devices [2]. Consequently,
edge devices will be anywhere, anytime, and connected
to anything. Therefore, it will be not only people who
generate data but also machines/things [3]. However, edge
devices have limited resources such as memory, CPU, and
energy. Offloading computation-intensive tasks to edge
clouds helps resource-constrained edge devices address this
issue. However, networks between edge clouds and edge
devices critically impact offloading delay.

To provide edge devices with low latency and high data
rates, the 5G Radio Access Network (RAN) has experienced
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Figure 1: O-RAN deployment scenarios [4].

some transformations to increase deployment flexibility and
network dynamics. The recent RAN transformation is Open
Radio Access Network (O-RAN) architecture [5]. In O-
RAN deployment scenarios shown in Fig. 1 and described
in [4], O-DU and O-CU, where O stands for Open, can
be modular base station software stacks on off-the-shelf
server hardware that different vendors can supply. A low
latency offloading service may require O-RAN deployment
scenario A, where O-CU can be co-located with the O-
DU at the edge cloud (e.g., a telecom room close to the
edge devices). In scenario A, the edge cloud has O-Cloud
that hosts O-RAN Central Unit Control Plane (O-CU-CP)
and O-RAN Central Unit User Plane (O-CU-UP), O-DU,
and Near-Real Time RAN Intelligent Controller (Near-RT
RIC). Nearly real-time RAN resources and elements can
be optimized using Machine Learning (ML) algorithms
implemented in Near-RT RIC. Also, O-RAN has a Non-
Real Time RAN Intelligent Controller (Non-RT RIC) that
enables Machine Learning (ML) functionalities for policy-
based guidance of applications and features. Using O-RAN,
the tasks are offloaded onto the edge cloud via a wireless
network between edge devices and O-RUs, and the fronthaul
network linking O-RUs with the edge cloud that hosts O-DU
[6]. Ideally, offloading should be based on a reliable fronthaul
and wireless connection between edge devices and edge
clouds. Unfortunately, it is not always the case in reality.
Offloading traffic pressures and strict delay requirements
for time-sensitive applications can significantly challenge
wireless and fronthaul networks.

Currently, there are many fronthaul transport tech-
nologies described in [7] to reach edge clouds. Some of
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these technologies are microwave, Passive Optical Network
(PON), Wavelength-Division Multiplexing (WDM) PON,
Coarse-WDM (CWDM) PON, Dense-WDM (DWDM), and
Ethernet. Ethernet-based fronthaul network is a lower-cost
solution that can reduce Capital Expenditure (CapEx) and
Operating Expenses (OpEx) compared to other technologies
[7]. Therefore, this paper considers Time-Sensitive Network-
ing (TSN) [8] for Fronthaul as an Ethernet-based solution.
IEEE 802.1CM [9] standard and Common Public Radio
Interface (eCPRI) [10] allow to connect O-RUs to O-DUs
using a packet network. Fronthaul traffic over the packet
network enables switched connectivity between O-RUs and
O-DUs. Therefore, we can route fronthaul traffic to edge
clouds using multiple paths and hops. A class of low-latency
5G applications requires a fronthaul delay of 100 µs for the
user plane traffic [11]. To meet this requirement, we need
a routing approach that simplifies the existing IP/Multi-
Protocol Label Switching (MPLS) based strategies to reduce
fronthaul latency. We consider Segment Routing (SR) [12]
in the fronthaul network as a routing solution because it
simplifies the control plane by removing the need for a per-
flow state to be maintained at each node in MPLS. In other
words, in SR, the per-flow state is only maintained at the
ingress node of an SR domain. Still, there are many critical
challenges for data offloading, fronthaul routing, and edge
computing that have never been addressed in the literature,
such as:

• The problem of task offloading, fronthaul routing, and
edge computing should be addressed jointly to satisfy
task computation deadlines.

• In forwarding decisions, TSN bridges for the fronthaul
network use Ethernet header contents, not IP addresses.
Therefore, we need a network approach that extends
layer 2 as a network overlay for TSN fronthaul routing.

• When each edge cloud operates independently, required
resources for offloaded computation-intensive tasks
to the edge cloud may exceed available computation
resources. Therefore, task distribution to multiple edge
clouds should be considered.

• Computation tasks have different deadlines. Also, edge
clouds do not have the same available computation
resources. Therefore, we need a task distribution
approach to multiple edge clouds to meet computation
deadlines.

In this work, we opt for O-RAN and take advantage of
O-RAN intelligent controllers to tackle the abovementioned
challenges of task offloading, fronthaul routing, and edge
computing. However, O-RAN is not restrictive; other RAT
technologies considering the 7-2x split option (fronthaul be-
tween DU and RU can be applied). The main contributions
of this paper are summarized as follows:

• We propose offloading approach for edge devices. The
proposed approach enables edge devices with insuf-
ficient computation resources to balance the costs
between keeping the computational task until the
resources become available for local computation and
offloading tasks to the edge cloud.

• We propose O-RAN fronthaul routing approach using

Near-RT RIC to route offloaded tasks to edge clouds.
Since fronthaul TSN bridges use the Ethernet header
contents, not the IP addresses, we consider Virtual
Extensible LAN protocol (VXLAN) [13] to extend layer
two connectivity as a network overlay. Then, we apply
SR in the fronthaul network to route offloaded tasks to
multiple edge clouds. To the best of our knowledge, this
research is the first that leverages O-RAN controllers,
SR, and VXLAN in a joint task offloading, fronthaul
routing, and edge computing problem.

• We propose an edge cloud computing approach that
enables edge cloud with insufficient resources to request
computation support to its neighbor edge clouds or
regional cloud through redirecting offloaded tasks.

• We formulate an optimization problem to minimize
offloading, fronthaul routing, and computation delay.
We convert the proposed NP-hard problem to the
reward function for a dynamic offloading environment.
Then, we design a Deep Q-Learning approach, assisted
by federated learning, to maximize the reward function
by reducing CoD.

As related work, task offloading in wireless networks
[3], [14]–[17] has gained significant attention in research
communities compared to offloading in fronthaul networks.
Considering wireless and fronthaul networks between edge
devices and edge clouds, the authors in [18] proposed an
offloading approach in Cloud Radio Access Network (C-
RAN), where the mobile device can change the offloading
strategy to reduce fronthaul traffic. In [19] authors propose
multi-hop fronthaul offloading in C-RAN and compare multi-
hops with single-hop communication. For fronthaul routing,
the authors in [20] proposed a lower latency scheme in
C-RAN that enables the selection of a set of paths that
minimizes delays from the preselected k shortest paths.
The proposed C-RAN-based approaches consider fronthaul
between Remote Radio Unit (RRU) and Baseband Pro-
cessing Unit (BBU). However, we have fronthaul between
O-RUs and O-DUs and middlehaul between DUs and CUs
in O-RAN. Since our proposal considers O-DU and O-
CU to be hosted at the same edge cloud in O-RAN, the
middlehaul network is outside this paper’s scope. To apply
machine learning in data offloading, the authors in [21]
highlight that exchanging raw data may slow down wireless
communication services. Therefore, the authors in [22]
emphasized that sharing only machine learning parameters
of federated learning without sharing raw data can be an
appropriate solution to address this issue. The authors in
[23] proposed intelligent task offloading approach that uses
a federated Q-learning method to minimize the probabilities
of data offloading failure by considering communication and
computing budgets. However, the authors did not consider
fronthaul network in offloading data to the edge cloud. In
[24], the authors applied a deep Monte Calor tree search
in data offloading. Their proposed approach enables an
agent to observe the network environment and decide the
offloading actions. To address the issue of limited resource
sharing in data offloading, the authors in [25] formulated a
computation offloading problem using a multi-agent Markov
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Figure 2: Illustration of our system model.

decision process in multi-access edge computing. However,
the previous related works have never addressed the issue of
joint task offloading, fronthaul routing, and edge computing.

The rest of this paper is structured as follows: we present
our system model in Section II, while Section III describes
in detail our task offloading, fronthaul routing, and cloud
computation. We present our problem formulation and
solution in Section IV. Section V presents our performance
evaluation. We conclude the paper in Section VI.

II. System model
The system model of our joint task offloading, fronthaul

routing, and cloud computation approach is depicted in Fig.
2. For easy visualization of the system model, we omit some
interfaces in Fig. 2.

In the system model, we consider V as a set of edge
devices. Each edge device v ∈ V has computation-intensive
tasks that need to use computation resources, such as on-
device machine learning and Extended Reality (it combines
Virtual Reality and Augmented Reality [26]). For example,
in XR, edge devices participating in crowd-sensing [27]
can sense their environment, compute sensed data, and
create virtual environment. However, if the edge device
does not have resources, it can send tasks and data to
the edge cloud for computation and creating the virtual
environment. We define a task Γv = (dv, τ̃v, z̃v), where dv

is the size of computation input data from edge device v in
terms of bits, τ̃v is the task computation deadline, and z̃v

is the computation workload or intensity in terms of CPU
cycles per bit. Each edge device v ∈ V has computation
capability χv. Offloading happens when the edge device
does not have enough computation resources, and it can
not hold computational tasks until the resource becomes
available.

Table I: Summary of key notations.

Notation Definition
N Set of Edge Clouds (ECs), |N | = N
M Set of O-RUs, |M| = M
V Set of edge devices, |V| = V
W Set of fronthaul TSNBs, |W| = W
Γv Computation task of edge device v ∈ V
τ loc

v Local computational delay of device v
τoff

v Offloading delay of device v
µv Status parameter of device v
E Set of fronthaul links, |E| = E
χn Computation capability of EC n ∈ N
χv Computation resource of device v ∈ V
xm→n

v Offloading variable of device v ∈ V
ωm

v Wireless capacity between device v
and EC m

ωj
i Fronthaul capacity of link ei,j

ωq
n Link capacity between EC n and EC q

ωRC
n Backhaul capacity between EC n and RC

R Reward
A Action space
S State space
P Transition probability matrix

Task offloading requires communication resources. There-
fore, each edge device v ∈ V is connected to O-RU m ∈ M
via a wireless link of capacity ωm

v . Here, we denote M
as a set of O-RUs. Once offloaded tasks reach O-RUs,
the O-RUs forward the task to O-DUs using Fronthaul
Bridged Network (FBN) of multiple paths. We model FBN
as graph G = (W, E), where W is the set of Time-Sensitive
Networking Bridges (TSNBs) and E is the set of links. In
FBN, each O-RU m is connected to ingress TSNB, and each
O-DU is connected to egress TSNB. We denote N as a set of
Edge Clouds (ECs) that host O-DUs. We use the terms “EC”
and “O-DU” interchangeably. O-DU n ∈ N means the O-
DU hosted at EC n. To route offloaded tasks using multiple
paths, we use SR in FBN, where Near-RT RIC at EC
controls fronthaul SR. To implement SR described in Section
III-C, we assume that VXLAN is applied in FBN. We choose
VXLAN [13] over Virtual LAN (VLAN) because VXLAN
uses a VXLAN network identifier of 24 bits, while VLAN
has a network identifier of 12 bits. Therefore, VLAN can
be scaled up to 4000 VLANs, while VXLAN can be scaled
up to 16 million VXLANs segments. Combining SR and
VXLAN can help the network to handle massive fronthaul
traffic offloading that needs to be routed to multiple ECs.
In implementing SR using VXLAN, we assume Near-RT
RIC knows the FBN topology and can communicate with
all TSNBs. The Near-RT RIC records traffic matrix. With
the MEC server’s help, traffic matrix, and network topology
information, the Near-RT RIC has the segment paths for
each source-destination pair in the FBN.

Each EC has an MEC server, User Plane Function (UPF),
and O-Cloud to improve reliability and lower latency in data
offloading. Once the tasks reach O-DU via egress TSNB,



the O-DU sends them to the MEC server accessible via O-
CU-UP and UPF for computation. Each MEC n ∈ N has a
computational resource of capacity χn that can be allocated
to edge devices. Here, unless stated otherwise, we use the
terms “EC” and “MEC” interchangeably. MEC n ∈ N
means the MEC hosted at EC n. Here, we assume ECs
can exchange application-level data using Xn interface [28].
Furthermore, each EC n ∈ N has access to the Regional
Cloud (RC) via a wired backhaul of capacity ωRC

n . When
computation resources are unavailable in ECs, the tasks
will be offloaded to the RC in the worst-case scenario. We
denote χRC as the computation capacity of the RC. Each
RC hosts Non-RT RIC. Unless stated otherwise, we use the
terms “RC”, and “Non-RT RIC” interchangeably.

III. Task Offloading, Fronthaul Routing, and
Cloud Computation

This section discusses our task offloading approach that
enables edge devices to balance the costs of local computa-
tion and offloading tasks to the edge cloud. Furthermore, we
present the models for wireless communication and fronthaul
routing that enable offloaded tasks to reach edge clouds.
We conclude the section with a computation model for edge
and regional clouds.

A. Computation at Edge Devices
Each edge device v ∈ V has an application that generates

computation task Γv. Computing task Γv at edge device v
requires CPU computation resources. By using computation
resource χv, the execution latency for task Γv at edge device
v is given by:

τv = dv z̃v

χv
. (1)

When τv > τ̃v, or z̃v > χv, edge device v does not
have enough resources or cannot meet the computation
deadline. Therefore, the edge device can hold on the
computational task until the resources become available for
local computation or offload the task to the edge cloud. To
handle such a situation, we define the edge device status
parameter µv ∈ {0, 1}, where µv is expressed as follows:

µv =
{

0, if τv > τ̃v, or z̃v > χv,
1, otherwise.

(2)

Based on µv ∈ {0, 1}, the total local execution time τ loc
v of

task Γv at edge device v becomes:

τ loc
v =


τv , if µv = 1, and xm→n

v = 0,

τv + φv , if µv = 0, and xm→n
v = 0,

0, if µv = 0 and xm→n
v = 1,

(3)

where φv is the average hold time for task Γv until it is
locally computed at edge device v. The φv can be considered
as a time for charging the battery or finishing ongoing
computation of other tasks than Γv. When edge device v
cannot hold on computational task, it can offload task to

the edge cloud. Therefore, we define xm→n
v ∈ {0, 1} as an

offloading decision variable, where xm→n
v is given by:

xm→n
v =


1, if Γv is offloaded from edge device v to

EC n via O-RU m

0, otherwise.
(4)

B. Task Offloading in Wireless Networks
Offloading a task from the edge device v ∈ V to EC

n ∈ N via O-RU m ∈ M requires wireless communication
between each edge device v and O-RU m. The spectrum
efficiency (as described in [29]) for edge device v is given
by:

γm
v = log2

(
1 + ρv|Gm

v |2

σ2
v

)
, ∀v ∈ V, m ∈ M. (5)

Here, ρv is the transmission power of edge device, |Gm
v |2 is

the channel gain between edge device v and O-RU m, and
σ2

v is the power of the Gaussian noise at edge device v. The
instantaneous data rate for edge device v is expressed as:

Bm
v = xm→n

v bm
v ωm

v γm
v , ∀v ∈ V, m ∈ M, (6)

where each edge device v is allocated a fraction bm
v (0 ≤

bm
v ≤ 1) of bandwidth ωm

v . We assume that the spectrum
of the mobile network operator is orthogonal, and there is
no interference among the edge devices. Furthermore, we
assume that the demand of edge devices for task offloading
will only be accepted if there are enough spectrum resources
to satisfy its demand. Based on the instantaneous data rate,
the transmission delay for offloading a task from edge device
v to EC n is expressed as:

τv→m = xm→n
v

dv

Bm
v

, ∀v ∈ V, m ∈ M. (7)

C. Task Offloading in Fronthaul Bridged Network
When the offloaded tasks reach O-RUs, the O-RUs

forward them to O-DUs using FBN. Since O-DUs are hosted
at ECs, the offloaded tasks can reach ECs using multiple
fronthaul paths. To route the offloaded tasks to O-DU, we
use SR described below.

1) Overview of Segment Routing
The existing fronthaul routing in [20] is based on the

shortest path algorithm in C-RAN. Here, we use SR [12] in
O-RAN as a source routing approach because it overcomes
the MPLS Traffic-Engineering (MPLS-TE) per-flow state
that needs to be maintained in each network node to support
traffic-engineered paths in IP backbones. SR improves
MPLS-TE in labeling, where SR does not require configuring
forwarding tables in each node along the transmission path.
SR includes the route in the packet header at the ingress
node. In other words, SR adds a list of hops in the packet
header as a route.

As an illustrative example, we consider SR in Fig. 3, where
the SR domain is defined as a set of TSNBs participating
in the source-based routing model. In other words, O-RUs
and O-DUs are connected to the segment domain but not
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included in the SR domain. Since we use VXLAN, we can
have multiple fronthaul segment domains over one physical
FBN, where each Near-RT RIC controls one domain. The
ingress TSNB B1 adds the segment label B4 and B8 to the
packet header, where B8 is the destination address. The
packet is routed from B1 to B4 along the shortest path
B1 − B2 − B4. The top label is popped at bridge B4, and
the packet is routed to B8. In other words, we have two
segments, B1−B2−B4 and B4−B6−B8. Routing within
each segment is done by the Interior Gateway Protocol
(IGP) routing protocol such as Open Shortest Path First
(OSPF). In other words, each link is associated with cost,
and IGP can use the cost to choose the shortest path.
The path (red path) from source to destination can be the
shortest, but it does not guarantee to be the fastest route.
Also, the shortest path may fail. Therefore, we consider
the SR path (green path) as the best way to choose an
alternative path based on the network delay.

2) Segment Routing in Fronthaul Network
We assume that ECs are close to the edge devices. There-

fore, we use two segments in SR for FBN. As highlighted
in [30], SR with two segments is generally enough in traffic
planning problems that aim to route traffic so that no link
is overloaded. However, extending from two segments to
multiple segments is straightforward.

In our SR, Near-RT RIC chooses intermediate TSNB
w ∈ W that splits the fronthaul path into two segments.
Let us consider i ∈ W as source TSNB and j ∈ W as
destination TSNB. When w ̸= i and w ̸= j, the offloaded
traffic is first routed on the shortest path Ψi,w from i to w
and then on the shortest path Ψw,j from w to j. To route
the offloaded traffic via FBN, the amount of traffic from i
to j through intermediate TSNB w is given by:

lw
i,j =

∑
Vw

i,j
⊂V

xm→n
v dv, (8)

where Vw
i,j ⊂ V is a set of edge devices using fronthaul

path Ψw
i,j = Ψi,w ∪ Ψw,j from i to j through intermediate

TSNB w. The important node w as middle point for traffic
routing can be chosen based on node centrality approach
presented in [31]. We use τv,m→n

SR as transmission delay of
each fronthaul link using SR, where τv,m→n

SR is given by:

τv,m→n
SR =

lw
i,j

ωj
i

. (9)

However, when the fronthaul network is not segmented,

the offloaded traffic is routed using a shortest path Ψi,j .
Transmission delay τv,m→n

SP for shortest path becomes
τv,m→n

SP = li,j

ωj
i

, where li,j =
∑

Vi,j⊂V xm→n
v dv. Here,

Vi,j ⊂ V is a set of edge devices using fronthaul shortest
path Ψi,j from i to j.

Considering the shortest path Ψi,j and the SR path Ψw
i,j ,

the Near-RT RIC needs to choose one path that gives the
lowest possible latency to reach egress node. Therefore, we
define fronthaul path selection variables, where ηm→n

SP is for
SP and ηm→n

SR is for the the SR, such that ηm→n
SP +ηm→n

SR = 1.

ηm→n
SP =

{
1, if τv,m→n

SP ≤ τv,m→n
SR ,

0, otherwise,
(10)

ηm→n
SR = 1 − ηm→n

SP (11)

If the shortest route has more transmission delay than the
SR path, the ingress TSNB uses the SR path. Therefore,
the fronthaul transmission delay becomes:

τm→n
v = ηm→n

SP τv,m→n
SP + τv,m→n

SP ηm→n
SR . (12)

D. Computation at Edge and Regional Clouds
1) Computation at Edge Clouds
Once tasks reaches O-DU, the O-DU sends it to MEC

server r via O-CU-UP and UPF. Then, MEC server checks
if it has computation resource χvn required to compute
task Γv from edge device v. The χvn can be computed as
follows:

χvn = χn
z̃v∑

g∈Vn
z̃g

, ∀v ∈ Vn, n ∈ N , (13)

where Vn is a set of edge devices connected to EC n. In
Eq. (13), we use weighted proportional allocation, which is
available in systems such as 4G and 5G cellular networks
for resource allocation [32].

If χn − χvn ≤ Θn, the EC n allocates χvn to the task
Γv. Here, Θn is resource allocation threshold of EC n.
Furthermore, we define ym→n

v as a computation decision
variable, where ym→n

v is given by:

ym→n
v =


1, if Γv offloaded via O-RU m

is computed at EC n (χn − χvn ≤ Θn),
0, otherwise.

(14)
The total computation resource allocations must satisfy:∑

v∈Vn

xm→n
v χvnym→n

v ≤ χn, ∀n ∈ N . (15)

. Using the computation resource χvn, the execution latency
τvn of task Γv from edge device v at EC n becomes:

τvn = dv z̃v

χvn
. (16)

Furthermore, the total execution and offloading time for
task Γv at EC n is given by:

τe
vn = τv→m + τm→n

v + τvn. (17)

When χn − χvn > Θn or z̃v > τe
vn or τvn > τ̃v, we

consider EC n to be overloaded. EC n requests support to



any neighboring EC q that has enough resources to satisfy
the offloading demand and is located in less distance than
RC by redirecting a task with high computation deadline.
Otherwise, EC n requests support RC. As proposed in [3],
we assume that ECs exchange the resource utilization infor-
mation. The EC n checks resource utilization information
of neighboring ECs, then compares EC q that has enough
resources with RC using propagation delay. We use τn→q to
denote propagation delay between EC q and EC n, where
τn→q can be expressed as follows:

τn→q = Ln→q

κ
, ∀r, q ∈ R, (18)

where Ln→q is the length of physical link between EC q
and EC n and κ is the propagation speed. Furthermore,
the propagation delay τn→RC between EC n and RC can
be expressed as follows:

τn→RC = Ln→DC

κ
, ∀n ∈ N , (19)

where Ln→RC is the length of physical link between EC n
and RC. We define a task forwarding decision variable xn→q

v ,
which indicates whether or not the task of edge device v
is forwarded from EC n to EC q for computation. xn→q

v is
given by:

xn→q
v =

{
1, if τn→q ≤ τn→RC ,
0, otherwise.

(20)

The execution latency τvq of task Γv at EC q can be
calculated using a similar approach as in (16). Therefore,
the total execution time for a task offloaded by edge device
v to EC q becomes:

τe
vnq = τv→m + τm→n

v + τn→q
v + τn→q + τvq. (21)

Furthermore, the offloading delay τn→q
v between EC n and

EC q can be calculated as follows:

τn→q
v =

∑
v∈Vn

xn→q
v dv

ωq
n

, ∀r, q ∈ R, (22)

where ωq
n is link capacity between EC n and EC q.

2) Offloading Tasks to the Regional Cloud
When there are no available computation resources at

any neighboring EC q, or EC q is at far distance than
RC, the EC n forwards the task to the RC. Therefore, we
define xn→RC

v as offloading decision variable that indicates
whether or not the task of edge device v is offloaded by EC
n to the RC:

xn→RC
v =


1, if τn→q > τn→RC or no available resources

at ECs,
0, otherwise.

(23)
We define τn→RC

v as the offloading delay between EC n and
RC, where τn→RC

v is given by:

τn→RC
v =

∑
v∈Vn

xn→RC
v dv

ωRC
n

, ∀n, q ∈ N . (24)

ωRC
n is the link capacity between EC n and RC. Therefore,

the total execution time for task Γv offloaded by edge device
v at RC becomes:

τe
vnRC = τv→m + τm→n

v + τn→RC
v + τn→RC + τvRC , (25)

where τvRC can be calculated using a similar approach as
in (16).

The total offloading and computation latency τoff
v of task

Γv from edge device v is given by:

τoff
v = ym→n

v τe
vn + (1 − ym→n

v )(xn→q
v τe

vnq + xn→RC
v τe

vnRC).
(26)

To ensure that task Γv from edge device v is executed at
only one location, i.e., computed locally at a edge device, or
at one of ECs, or at RC, we impose the following constraints:

(1 − xm→n
v ) + xm→n

v (ym→n
v + nsup

v ) = 1, (27)

where nsup
v = 1 − ym→n

v (xn→q
v + xn→RC

v ) corresponds to
the support EC n gets from neighboring EC q or RC to
compute the offloaded task Γv.

IV. Problem Formulation and Solution
This section discusses the problem formulation for mini-

mizing total delay, including offloading, fronthaul routing,
and computation delays. Then, we present the solution
approach of the formulated problem.

A. Problem Formulation
Computing task Γv locally at the edge device v requires

computational delay cost τ loc
v . On the other hand, comput-

ing offloaded task Γv at the EC or RC requires offloading,
fronthaul routing, and cloud computation delays τoff

v . We
assume that the offloading decision making operates in time
frames t ∈ T = {1, 2, . . . , T}. Therefore, considering both
local computation and offloading at time t, we formulate
the following optimization problem to minimize total delay.

min
x,η,y

∑
n∈N

∑
v∈Vn

(1 − xm→n
v (t))τ loc

v (t) + xm→n
v (t)τoff

v (t)

(28)
subject to∑
v∈Vn

xm→n
v (t)bm

v (t) ≤ 1, ∀m ∈ M, (28a)

xm→n
v (t)( ηm→n

SP (t)li,j(t) + ηm→n
SR (t)lw

i,j(t)) ≤ ωj
i (t), (28b)∑

v∈Vn

xm→n
v (t)χvn(t)ym→n

v (t) ≤ χn(t), ∀n ∈ N . (28c)

The objective function in (28) combines (3), (26), and (27).
The constraint in (28a) guarantees that the sum of wireless
resources allocated to all edge devices has to be less than or
equal to the total available resources. The constraint in (28b)
is related to FBN, ensuring that each TSNB does not send
more traffic than the link capacity. The constraint in (28c)
guarantees that the computation resources allocated to edge
devices at each EC do not exceed available computation
resources.



The problem in (28) is combinatorial optimization prob-
lem, which is NP-hard. Also, using combinatorial optimiza-
tion, the number of possibilities increases exponentially
as the problem size increases. However, a heuristic ap-
proach can be designed to solve it. As an example, by
applying Block Successive Majorization Minimization (BS-
MM) technique described in [33], [34], we can get a proximal
convex surrogate problem by adding the quadratic term
to (28) and relaxing variables. Then, we can minimize the
proximal convex surrogate problem. However, the heuristic
approach may results in a stationary solution, which is
not appropriate for a dynamic environment. Therefore, we
change the problem in (28) to be a reward function rt which
can be maximized by an existing ML approach such Deep
Reinforcement Learning (DRL) [35]. Also, rt can represent
network condition:

rt = ϖCoD(
∑
n∈N

∑
v∈Vn

τ̃v(t) − ((1 − xm→n
v (t))τ loc

v (t)+

xm→n
v (t)τoff

v (t)) + ϖw(1 −
∑

v∈Vn

xm→n
v (t)bm

v (t))+

ϖf (ωj
i (t) − xm→n

v (t)( ηm→n
SP (t)li,j(t) + ηm→n

SR (t)lw
i,j(t))+

ϖc(χn(t) −
∑

v∈Vn

xm→n
v (t)χvn(t)ym→n

v (t)). (29)

In the reward function (29), ϖCoD is the Cost of Delay
(CoD), which represents the penalty for missing the com-
putation deadline τ̃v(t) in offloading. Similarly, we use ϖw

to denote the penalty of violating wireless communication
resource constraint, and ϖf is the penalty for overloading
the fronthaul link capacity. ϖc is the penalty for violating
computational resources constraint. The penalties ϖCoD,
ϖc, ϖf , and ϖc correspond to the constraints in (28a),
(28b), and (28c), respectively. In other words, using penal-
ties, rt goes down (Figs 11 and 12) when any of these
constraints is violated.

B. Proposed Solution
One of the emerging approaches for handling (29) is to

use ML algorithms such as DRL. In DRL, a DRL agent
acts in the environment to find a proximal solution for a
given problem. DRL considers time-varying workloads and
network conditions, where the Markov Decision Process
(MDP) can be applied to model the environment (detailed
procedures of MDP are defined in [36]). In our solution ap-
proach presented in Fig. 4 , we consider tuple ⟨A, S, R, P⟩
defined as follows:

• We consider the action space A = {(x, b, η, y)} that
represents the offloading decisions, communication
resource allocation and routing decisions, and com-
putation resources allocation decision.

• We define a state space S which consists of cur-
rent local computation, offloading using wireless and
fronthaul, and cloud computation states such that
S = {(τ loc, τ off, ω, l, χ)}.

• We represent R =
∑

t∈T rt as an accumulated reward
which indicates how action chosen in particular state
improves resource allocation and CoD;

ED 1 ED 1 ED V
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Resource and routing
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Task Offloading
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CURRENT SYSTEM STATE AND AVAILABLE RESOURCES

Input layer

Output layer

Action 

Communication 

Resource allocation 

and routing

Communication 

Resource allocation
Offloading Decision 

Figure 4: DRL process to solve (29).

• We use P = {(p(st+1, rt|st, at)} as the transition
probability matrix that governs transition dynamics
from one state st ∈ S to another st+1 ∈ S in response
to action at ∈ A and reward rt ∈ R.

The state transition and reward are stochastic and
modeled as an MDP. The state transition probabilities
and rewards depend only on the state of the offloading
environment and the agent’s action. The transition from
st ∈ S to st+1 ∈ S with reward rt ∈ R when action
at ∈ A chosen is characterized by the conditional transition
probability P, which is only determined by offloading
environment.

In Fig. 4 (ED means edge device), the MEC server as an
agent periodically learns to take actions, observes the most
reward, and automatically adjusts its strategy. In DRL,
we use Deep Q-Learning (DQL) [37]. We consider DQL
as a better solution that leverages deep neural networks
(DNNs) to train the deep learning model. In other words,
DQL integrates deep learning into Q-Learning. The simplest
form of Q-Learning, which is called one-step Q-Learning, is
given by:

Q(st, at) = Q(st, at) + α[rt+1 + ΥQ(st+1, a)
− Q(st, at)],

(30)

where α is the learning rate and a ∈ A is an action that
was taken in the state st by the agent. Υ (0 < Υ ≤ 1)
is discount factor that encourages the agent to account
more for short-term reward rt. On the other hand, DQL
uses standard feed-forward neural networks to calculate Q-
Value. The DQL uses two networks, Q-Network to calculate
Q-Value in the state St and target network to calculate
Q-Value in the state St + 1 such that:

Q(st, at) = Q(st, at) + α[rt+1 + Υmax
a

Q(st+1, a)

− Q(st, at)].
(31)
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Figure 5: FL assisted DQL in routing.

As shown in Fig. 5, Near-RT RIC has a global view
of fronthaul resources and fronthaul routing in forms of
the traffic matrix. Sending the whole traffic matrix to
MEC for DQL can consume huge bandwidth. Near-RT
RIC can use a network matrix to overcome this issue by
predicting the appropriate candidate routes for fronthaul
traffic. Then, Near-RT RIC sends processed fronthaul
routing information to the MEC server for DQL. We
consider processed fronthaul routing information to be
smaller and take a short transmission time than sending the
whole unprocessed traffic matrix. Since we have multiple
Near-RT RICs, we use Non-RT RICs to coordinate Near-RT
RICs. However, sending traffic matrix to Non-RT RIC for
centralized fronthaul routing prediction may consume high
bandwidth. To this end, we choose a Federated Learning
(FL) approach over other approaches to learn fronthaul
routing distributively. In FL, Near-RT RICs and Non-RT
RIC are not required to exchange the whole traffic matrix
but only the model and learning parameters. This can save
bandwidth and guarantee the privacy of the fronthaul traffic
matrix.

Each Near-RT RIC n can get FL model and learning
parameter N t from Non-RT RIC. Then, Near-RT RIC
n uses traffic matrix lt

n of size ϱn to improve the model
through training and testing the downloaded model. We
use N1

t , . . . , NN
t to denote the current parameters of the

ECs. Each Near-RT RIC n ∈ N computes its gradient Nn
t ,

where Nn
t is given by:

Nn
t = 1

ϱn

∑
ϱn

∇fn,ϱn
(wn, lt

n, l̃
t

n). (32)

We use fn,ϱn
as the loss function, wn as the weight, and

l̃
t

n as the predicted fronthaul routing at Near-RT RIC n.
Furthermore, Near-RT RIC n calculates the difference Φn

t

between its gradients Nn
t and N t as follows:

Φn
t = Nn

t − N t, ∀n ∈ N . (33)

Each Near-RT RIC n shares Φn
t with Non-RT RIC. Then,

Non-RT RIC aggregates the received parameters from Non-

Algorithm 1 : FL assisted DQL algorithm for joint task
offloading and segment routing.

1: Input: Get communication resources and routing (from
Near-RT RIC using FL), computation, and offloading
states at MEC server;

2: Output: Offloading variable x, fronthaul rouring
variable η, computation variable y, communication
resources allocation b, and computation resources allo-
cation χ;

3: MEC server uses Target Network and Q-Network to get
the Q-Values of all possible actions in the defined state;

4: repeat
5: Pick random action at or action at with the maximum

Q-Value from the set of actions A based onΥ value;
6: Perform action at, observe reward rt and the next

state st+1;
7: Store ⟨st, st+1, at, rt⟩ in the experience replay

memory;
8: Sample random batches from experience replay mem-

ory and perform training of the Q-Network;
9: Each kth iteration, copy the weights values from the

Q-Network to the Target Network;
10: until terminal state is reached
11: MEC server informs Near-RT RIC about updated com-

munication resource allocation and fronthaul routing
decision.

RT RICs. The parameter aggregation at Non-RT RIC is
defined as follows:

φt = 1
N

N∑
n=1

Φn
t . (34)

Furthermore, the FL update at Non-RT RIC can be
expressed as follows:

N t+1 = N t + αφt. (35)

Then, Non-RT RIC shares N t+1 with Near-RT RICs. The
iteration continues until N t+1 = N t (there is no more
improvement of the FL model). We consider the FL model
to be trained and tested once and saved for later usage to
minimize the delay. Then, Near-RT RIC can load and use
the pre-trained model.

A key goal of FL is to optimize a global training objective
function defined over distributed devices, where each device
uses its data to optimize this global training objective [38].
In our approach, we use the loss function fn,ϱn

as global
training objective function, where each Near-RT RIC uses
fronthaul traffic data to minimize fn,ϱn

. As discussed and
proved in [38], local Stochastic Gradient Descent (SGD)
with periodic averaging has O( 1√

NK
) convergence rate,

where N is the number of devices, and K is the number
of iterations. Therefore, our FL has O( 1√

NK
) convergence

rate, where N is the number of Near-RT RICs involved in
FL.

For FL assisted DQL, we propose Algorithm 1 to get
offloading variable x, fronthaul routing variable η, com-
putation variable y, communication resources allocation b,



Figure 6: Normalized fronthaul traffic data at Near-RT RICs.

Figure 7: Prediction of fronthaul traffic (Mbps).

Figure 8: Convergence of global loss function fn,ϱn .

and computation resources allocation χ. In the Algorithm
1, the MEC server gets communication resources and
routing state from Near-RT RIC that uses FL, computation,
and offloading states. Then, MEC server performs DQL
processes. After DQL processes, the MEC server sends to
Near-RT RIC updated fronthaul routing decisions. In Fig.
5, after receiving fronthaul routing decisions, Near-RT RIC
sends segment paths information to the ingress TSNB to
push the segment labels on the header of incoming packets.
Once the segments are added to the packet header, fronthaul
packets are routed through FBN using these segments.

V. Performance Evaluation
This section presents the performance evaluation of the

proposed FL-assisted DQL for joint task offloading and
fronthaul SR.

Figure 9: Delay for shortest paths vs. SR paths.

Figure 10: DQL with and without FL assistance in SR.

A. Simulation Setup
In simulation setup, we use edge devices V = 65, where

z̃v = 737 cycles per bit. For task Γv of the edge device,
the size of the input data dv is generated randomly within
a range of 1 to 8 Mb. The task computation deadline for
each device v is within a range of τ̃v = 0.2 to τ̃v = 1.2
seconds. Furthermore, each edge device has a computation
resource χv = 2 GHz. To offload the computation task
in the wireless network, we set the transmission power
ρv = 27.0 dBm. The channel bandwidth is in the range
from bm

v = 25 MHz to bm
v = 32 MHz. For fronthaul routing,

we use the cubical graph from NetworkX (a Python library
for studying graphs and networks) [39] of 8 nodes. Each edge
in graph has bandwidth in range ωj

i = 6000 to ωj
i = 6500

Mbps. The cubical graph is connected to three O-RUs and
three ECs with links of bandwidth selected in the range
from 6000 to 6500 Mbps. Since each EC has O-DU and



Figure 11: Offloading and computation delay.

Figure 12: EC offloading vs RC offloading.

Near-RT RIC, we consider each Near-RT RIC manages
one virtual fronthaul segment routing domain as overlay
networks that sit on top of one fronthaul physical network.
Furthermore, we consider bandwidth between each pair of
ECs that hosts O-DUs in the range from ωq

n = 7000 to
ωq

n = 7500 Mbps. Also, the symmetric bandwidth between
each EC and RC is selected in the range from ωRC

n = 7000
to ωRC

n = 7500 Mbps. Each EC n has computation resource
in the range from χn = 10 GHz to χn = 30 GHz, while at
RC, the computation resource is in the range χRC = 20 to
χRC = 40 GHz.

We use PyTorch [40] and Gym [41] as machine learning
libraries to make Q-Network and target network for DQL.
We set α = 0.001 and Υ = 0.995 for Q-Network and
target network of 3 fully connected layers. For FL, we use
TensorFlow Federated [42] and Long short-term memory
(LSTM) [43] of two layers (64 neurons in the input layer and
one neuron in output later) to predict fronthaul traffic in
each fronthaul path. We generated a fronthaul traffic matrix
using both shortest path and SR paths for 3600 seconds for
FL. Based on the traffic matrix at Near-RT RICs, Fig. 6
shows the normalized fronthaul traffic at each Near-RT RIC
in the range between 0 and 1. The FL model was trained
offline and saved in memory, where Near-RT RIC loads the
pre-trained model for predicting the fronthaul routing.

Figure 13: Total delay of DQL vs Q-Learning.

Figure 14: Maximization of reward.

B. Baseline Approaches
In the performance evaluation, for fronthaul routing, we

use Dijkstra’s shortest path algorithm [44] as a baseline
for SP to compare with SR. SP and SR approaches use
the cubical graph from NetworkX [39]. SP approach uses
an unsegmented cubical graph and computes the shortest
fronthaul path in the graph between source and destination.
On the other hand, SR divides the cubical graph into
segments, and this requires the computation of intermediate
node w ∈ W that splits the fronthaul path into segments.
Furthermore, for our joint task offloading, fronthaul segment
routing, and edge computation problem, we consider Q-
Learning and BS-MM-based solutions described in Section
IV as baselines. Then, we compare DQL-based solution
with Q-Learning and BS-MM-based solutions.

C. Simulation Results
Fig. 7 shows the sample of predicted fronthaul traffic

at Near-RT RIC in terms of Mbps using different paths.
This figure starts having predicted fronthaul traffic after 60
seconds because we use 60 seconds as a lookback period. The
lookback period defines the number of time steps used to
predict fronhaul traffic. In other words, using our prediction
approach, we can know fronthaul traffic in 60 seconds
ahead. In the initial implementation of our fronthaul routing
approach for a real network environment, the Near-RT RIC
should record fronthaul traffic for at least a lookback period.
During this period, Near-RT RIC can use existing routing



Figure 15: Total delay of BS-MM vs. DRL.

Figure 16: Delay for BS-MM in short time frame.

approaches such as Open Shortest Path First (OSPF). Then,
after the lookback period, the Near-RT RIC can start using
SR and select the path between SP and SR with the lowest
latency to reach each egress node. Furthermore, Fig. 8
presents the convergence of MSE as global loss function
fn,ϱn

, where our FL model converges starting from the
50th epoch. By using Mean Squared Error (MSE) as a loss
function, our prediction reaches 0.1119 MSE.

Fig. 9 shows comparisons of fronthaul delay using all
possible shorted paths and SR paths from ingress TSNBs
to egress TSNBs. The results demonstrate that considering
the shortest routes and the SR paths, the SR gives the
lowest possible latency paths to reach egress TSNBs. After
predicting the fronthaul routing and traffic, the Near-RT
RIC shares routing information with MEC server for DQL
(joint problem of offloading, fronthaul routing, and edge
computation). Furthermore, Fig 10 shows the advantages
of FL by comparing DQL with FL assistance and DQL
without FL support. In DQL assisted by FL, Near-RT
RIC shares predicted fronthaul routing information with
MEC for DQL. In DQL without FL assistance, near-RT
RIC shares fronthaul traffic matrix without using FL for
prediction in SR. The simulation results show that DQL
performs better when assisted by FL because decisions can
be made rapidly for the lowest latency path to reach egress
TSNBs. This reduces fronthaul delay.

Fig. 11 shows the total delay for computation and
offloading when we compute only at edge devices, ECs, or
RC. Computation at edges devices experiences lower latency

because local computation does not involve offloading delay.
Also, the edge devices can minimize delay by offloading some
tasks to ECs or RC. Furthermore, Fig. 12 shows offloading
delay where computation delay is excluded in the results.
The results from both figures (Figs 11 and 12) demonstrate
that computation at RC experiences high delays because
the RC is far from edge devices, which involves significant
communication latency. Considering the reward function
in (29), the agent needs to decide to compute locally at
edge devices, offload at ECs, or RC to meet computation
deadlines and avoid paying penalties. We use ϖCoD = 0.5,
ϖw = 1e−7, ϖf = 1e−4, and ϖc = 1e−10 as penalties.
Fig. 13 shows total computation delay considering all
computation and offloading scenarios (at edge devices, ECs,
and RC). In other words, in Fig. 13, we compared total delay
related to local computation, offloading, routing, and edge
computation delays using DQL and Q-learning. This figure
clearly shows that using DQL has a minimum delay over Q-
learning. In other words, the excellent performance of DQL
is thanks to the agent/MEC server that stores previous
experiences in local memory and uses neural networks’
maximum output to get a new Q-Value. In Fig. 14, we
compare the DQL and Q-learning in terms of reward. We
run our simulation for 10000 episodes. This figure shows
that DQL achieves a better performance than Q-learning
in maximizing rewards (i.e., avoiding penalties for missing
computation deadlines and violating resource constraints).

We compare DQL in solving (29) and optimization-based
solution in solving (28). To solve (28), we use CVXPY [45]
as Python library for convex optimization problems and
BS-MM discussed in Section IV. Using BS-MM for long long-
term optimization (considering 10000 episode corresponds
to 10000 time frames) takes a long time to finish, and always
DQL outperforms BS-MM and Q-learning. In Fig. 16, we
compute a BS-MM-based solution in a short time frame
of 1000 using Cyclic, Gauss-Southwell, and Randomized
indexes selection rules [46]. BS-MM performs better for a
short time frame/ short episode, but still, DQL outperforms
BS-MM. Therefore, DQL can easily adopt network condition
changes for a large episode than BS-MM and Q-learning.

VI. Conclusion
Tasks offloading from edge devices to multiple edge clouds

requires wireless and fronthaul communication resources to
reach edge clouds. Thus, edge clouds do not have the same
available computation resources, and tasks’ computation
deadlines are different; we need a joint approach for task
routing and distribution to multiple edge clouds. This paper
proposed a new joint task offloading, segment routing for
the fronthaul network, and edge computing approach in O-
RAN. We formulated an optimization problem to minimize
offloading, routing, and computation delay. We converted
the optimization problem to the reward function. Then,
we used reinforcement learning and federated learning to
maximize the formulated reward by reducing the cost of
delay subject to communication and computation resource
constraints. The simulation results show that the proposed
DQL approach outperforms Q-leaning and BS-MM in



minimizing delay and increasing reward. We plan to enhance
our offloading and fronthaul routing evaluation using various
network scenarios and metrics as future work.
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