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Flying and ground-based cars require various ser-
vices such as autonomous driving, remote pilot, info-
tainment, and remote diagnosis. Each service requires
specific Quality of Service (QoS) and network features.
Therefore, network slicing can be a solution to fulfill
the requirements of various services. Some services,
such as infotainment, may have similar requirements
to serve flying and ground-based cars. Therefore, some
slices can serve both kinds of cars. However, when
network slice resource sharing is too aggressive, slices
can not meet QoS requirements, where resource under-
provisioning causes the violation of QoS, and resource
over-provisioning causes resources under-utilization. We
propose two closed loops for managing RAN slice re-
sources for cars to address these challenges. First, we
present an auction mechanism for allocating Resource
Block (RB) to the tenants who provide services to the
cars using slices. Second, we design one closed loop that
maps slices and services of tenants to virtual Open Dis-
tributed Units (vO-DUs) and assigns RB to vO-DUs for
management purposes. Third, we design another closed
loop for intra-slices RB scheduling to serve cars. Fourth,
we present a reward function that interconnects these
two closed loops to satisfy the time-varying demands
of cars at each slice while meeting QoS requirements
in terms of delay. Finally, we design distributed deep
reinforcement learning approach to maximize the formu-
lated reward function. The simulation results show that
our approach satisfies more than 90% vODUs resource
constraints and network slice requirements.

Index Terms—Open radio access network, network
slicing, urban aerial mobility, connected car systems

I. Introduction
A. Background and Motivations
Flying cars were recently introduced in Urban Air Mobility

(UAM) as an innovative concept for the transportation of
people and goods [1]. Flying cars are expected to become
a reality in smart cities. Some essential projects for flying
cars have recently been introduced, such as electric Vertical
Take-Off and Landing (eVTOL) and Personal Aerial Vehicles
(PAVs). The cruising altitude of the fying cars can reach
around 300 meters. The flying cars can fly at very high
speeds, up to 300 km/h. However, in terms of connectivity,
using existing base stations in the cellular network without
antennas adjustment is almost infeasible because antennas
propagate towards the ground [2]. As discussed in [3], base
stations can have additional antennas pointing toward the
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sky with omnidirectional coverage to address this challenge.
Therefore, flying cars can operate within the coverage
domains of ground base stations [4]. In other words, the
ground base stations can serve both ground-based cars
and flying cars. Each car may need different services of
different QoS and connectivity requirements such as high
definition maps, remote pilot, autonomous driving, remote
diagnosis, and infotainment contents. Therefore, network
slicing that enables virtualized networks on the same physical
network can be an appropriate solution to fulfill the diverse
requirements for services of flying and ground-based cars.
However, such heterogeneity of services per each car cannot
be effectively managed and efficiently mapped onto one
slice. We need a slice per service. Also, some slices such as
infotainment slice may serve flying and ground-based cars.

Several prototypes have been designed for network slicing
at the core network [5]. However, Radio Access Network
(RAN) slicing is still in the early stages. Therefore, this
work focus on RAN slicing and consider the Open Radio
Access Network (O-RAN) as a use case. However, O-RAN
is not restrictive. O-RAN has been introduced to enable
the intelligence and openness of RAN [6]. O-RAN uses
distributed intelligent controllers, where Near-Real-Time
RAN Intelligent Controller (Near-RT RIC) enables training,
testing, utilization, and updating machine learning. In
contrast, Non-Real-Time RAN Intelligent Controller (Non-
RT RIC) enables machine learning functionalities for policy-
based guidance of applications and features. In O-RAN,
there are three types of control loops. Loop 1 operates at
a time scale less than 10 msec. Loop 1 can be employed
for Resource Block (RB) scheduling in Transmission Time
Interval (TTI). Loop 2 operates at Near-RT RIC within
the range of 10 − 1000 msec. Loop 2 can be appropriate
for resource optimization. In Non-RT RIC, Loop 3 operates
at a time scale greater than 1000 msec. Loop 3 can be
employed for policies-based resource orchestration. Also,
O-RAN supports O-RAN Central Unit Control Plane (O-
CU-CP) and O-RAN Central Unit User Plane (O-CU-UP).
O-RAN Central Units (O-CU-CP and O-CU-UP) interfaces
with O-RAN Distributed Unit (O-DU) to provide services
to edge devices via O-RAN Radio Units (O-RUs).

B. RAN slicing Challenges in Dealing with Car Services
Considering slicing in RAN and O-RAN, the following are

key challenging issues for serving the cars:
• Allocate radio resources and coordinate multiple RAN
slices of multiple tenants who provide services to cars
such that the required QoS is satisfied and Service Level
Agreement (SLA) is respected.
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• Heterogeneity of services per each car such as ultra-low
latency connectivity for autonomous driving/pilot, a
high data rate for infotainment, and an extremely high
connection density for remote diagnosis. One slice can
not meet all required network features of the services
needed by the car.

• High mobility of cars requires fast decisions in radio
resources allocation. Therefore, a closed loop with real-
time analytics is needed for taking appropriate and
quick radio resource allocation decisions.

• Satisfy slice requirements with high efficiency in finite
radio resources. If radio resource sharing is too aggres-
sive, the slices can not meet the required QoS for car
services, and this can cause services to degrade.

C. Contributions
To address the aforementioned challenges, this work

proposes two-level closed loops for managing RAN slice
resources serving flying and ground-based cars. Our key
contributions are summarized as follows:
• We propose an auction mechanism for allocating RBs to
the tenants who provide services to flying and ground-
based cars using slices. We assume the RBs are limited,
and tenants should compete to get them.

• We propose one closed loop to create the slices asso-
ciated to the services of tenants to vO-DUs for RBs
scheduling purposes. We consider virtualized O-DU,
where vO-DU is virtualized instance of O-DU.

• We propose another closed loop for intra-slices RB
scheduling to serve flying and ground-based cars. Also,
we design communication planning approach that sup-
ports the proposed closed loop in RB scheduling.

• We formulate a reward function that joins two closed
loops and consider QoS fulfillment in terms of delay and
workload changes. However, finding one solution that
fits all two closed loops is a challenging issue. Therefore,
we design distributed Reinforcement Learning (RL)
approach that enables two closed loops to exchange
experiences for maximizing the reward function.

The rest of this paper is organized as follows. Section II
discusses the related work, while Section III presents the
system model. In Section IV, we present initial resource
allocation, while Section V demonstrates the problem for-
mulation. We discuss the proposed solution in Section VI.
Section VII presents a performance evaluation. We conclude
the paper in Section VIII.

II. Literature Review
We group the existing related works into three categories:

(i) network slicing in general, (ii) closed loops and RAN
slicing, and (iii) RB allocation for RAN slices.

Network slicing in general. Network slicing has gained
significant attention in literature [5]. In this category, we
discuss end-to-end network slicing. The authors in [7], [8]
proposed optimization framework to fine-grained resource
allocation and Machine Learning (ML) approach to do
traffic prediction. However, each use case scenario of 5G
has its requirements in terms of energy, latency, throughput,

mobility, and reliability. Therefore, QoS requirements should
be considered in network slicing. The authors in [9] proposed
a QoS framework for network slicing that satisfies QoS
of different 5G application scenarios. In [10], the authors
proposed ML approach for automation of network slice
operations. In [11], the authors used deep learning and
Lyapunov stability theories to enable the network to learn
appropriate and safe slicing solutions. As decentralized deep
learning solution, the authors in [12] proposed decentralized
Deep RL (DRL) for edge computing networks that learns
demands for network slices and orchestrates end-to-end
resources. In [13], the authors discussed vertical industries
with multiple use cases, where each use case is associated
with diverging services and connectivity requirements. They
used Vehicle to Everything (V2X) communication slices as
a slicing example. The authors in [14] proposed AerialSlice
as a network slicing framework to handle unmanned aerial
vehicle applications classified according to QoS requirements.
In [15], relying on the testbed, the authors proposed a new
5G network slicing approach that provides connectivity to
cars and trains using UAV. In view of the above discussed
works, network slicing that considers distributed elements
of O-RAN is new in the literature.

Closed loops and RAN slicing. Here, we discuss RAN
slicing and application of closed loops in RAN slicing.
The authors in [16] discussed a new approach to satisfy
the different QoS requirements for the Internet of vehicles
services, where multiple slices are implemented at roadside
units. In [17], the authors proposed vehicle location-aware
RAN slicing approach for mission-critical services. They used
bandwidth reservation technique to serve vehicles using RAN
slices. The authors in [18] proposed RAN inter-slice resource
partitioning and allocation as an optimization problem that
facilitates inter-slice radio resource sharing. The authors
in [19] discussed three closed loops to coordinate service
management for network slices. Furthermore, in [20], the
author presented a closed loop deployment for automatic
slicing assurance in 5G RAN to meet the SLA of each
deployed slice. However, there are no mathematical modeling
and solutions in these two works in [19], [20]. The use and
modeling of interconnected closed loops for network slicing
is new in the literature.

RBs allocation for RAN slices. The authors in [21]
proposed radio resource allocation using matching theory
and auctions in a visualized wireless environment. The
authors in [22] used DRL to perform RB allocation to the
RAN slice, where each DRL agent manages one network
slice. In [23], the authors presented an energy-efficient DRL-
based solution for power and radio resources allocation
in RAN slices. The author in [24] discussed off-line RL
for allocating resources to RAN slices that serve enhanced
mobile broadband (eMBB) and V2X services.

Novelties of this paper over related work. Our proposed
approach have several novelties over these prior approaches
including: (i) while [19], [20] focused on one closed loop,
we consider two closed loops that exchange experiences
for improving resource allocation; (ii) many related work
focused on one type of vehicles in network slicing [14]–[17],
here, we combined flying and ground-based cars in network
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Figure 1: Illustration of our system model.

Table I: Summary of key notations.

Notation Definition

V Set of cars, |V| = V
K Set of services, |K| = K
M Set of O-RUs, |M| = M
B Set of RBs |B| = B
L Set of tenants |L| = L
C Set of slices |C| = C
D Set of vO-DU |D| = D
λvk,c Arrival rate of the packets for service k
J l,kb Bid of tenant l for RB
nl,kb Number of RB needed by tenant l
χmv Distance between the car v and O-RU m
Iv Speed of vehicle v
Rvm Achievable data rate of car v
rt(y, z,w) Main reward function
Ψd
c,k Queue status parameter for service k

Ωdc,k Intra-slice orchestration parameter

slicing; (iii) managing RAN slices using two O-RAN closed
loops in multi-tenants and multi-services environment of
flying and ground-based cars is new and has not been tackled
in literature.

III. System model
In our model depicted in Fig. 1, we consider V =

{1, . . . , V } as a set of cars. In the cars, it includes both flying
cars Va and ground-based cars Vg, such that V = Va ∪ Vg.
Each car v ∈ V can require one or more services such
as infotainment content, remote diagnosis, computation
in Multi-Access Edge Computing (MEC) server. We use
K = {1, . . . ,K} as a set of services. Each service k ∈ K
needed by car v ∈ V is associated with delay budget τvk ,
where delay budget is based on 5G QoS Identifier (5QI)
defined in [25]. Each car requires network connection to
get service. We assume each car can be connected to O-
RU via a wireless network. We consider the Orthogonal

Frequency Division Multiple Access (OFDMA) downlink
scenario, where O-RU provides wireless connection to certain
number of cars. We denoteM = {1, . . . ,M} as a set of O-
RUs. In O-RUs includes O-RUs of type RSU (Road-Side
Unit), which support both O-RU and V2X functionalities.

The O-RUs and vO-DUs belong to Infrastructure Provider
(InP), where InP has RBs B at the cost of Γ(B). We
assume that the RBs are divisible for being allocated to
the tenants who provide services to cars using the slices.
We consider cars are subscribed to the slices of tenants.
We denote L = {1, . . . , L} as a set of tenants. Each service
of tenant can be mapped to specific slice types such as
enhanced Mobile Broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC). We use C = {1, . . . , C} as
a set of slices, where each slice manages one service. We use
the auction to allocate RBs to the slices associated to the
services of tenants. Near-RT RIC gets slice requirements
from tenants via RAN Network Slice Subnet Management
Function (NSSMF) and performs RBs allocation. In near
real-time loop (loop 2 works in 10 ms to 1 s), Near-RT RIC
assigns RBs and slices to vO-DUs for management purpose.
In the real-time loop (less than or equal to 10 ms), each slice
at vO-DU allocates RBs to cars. Here, we consider slicing
at the core network and Data Network (DN) to be outside
the scope of this paper. Also, we consider slice-aware Access
& Mobility Management Function (AMF) and O-CU-UP
selection as future work.

IV. Initial Slice and Resource Block Allocation
A. Resource Block Allocation to the Tenants
We consider RBs are limited. The tenants, who provide

service to vehicles using slices, should compete to get RBs
from InP. Therefore, InP makes RBs B available to L tenants
of K services for buying via auction. In the auction, we
consider InP as a seller of RBs and multiple tenants L as
buyers.
The workflow of Auction for RB (ARB) is presented in

Fig. 2 and summarized as follows:
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Figure 2: Workflow of auction for RBs.

• Step 1: The InP announces available RBs for auction
to tenants L and reserve price bp per unit of RB b.
A reserve price bp represents minimum price that InP
would accept from tenants per unit of RB b.

• Step 2: In receiving available RBs for auction and reserve
price bp, each tenant l ∈ L of service k prepares and a
submits bid (J l,kb , nl,kb ) to InP as demand for RBs. J l,kb
represents bid per unit of RB b for service k and nl,kb
represents initial number of RB b needed for service k.

• Step 3: InP collects all of the bids from the tenants and
evaluates them. For J l,kb ≥ bp, the InP sorts the bids
in descending order. Then, InP allocates the RBs to
tenants starting with the tenant with highest bidding
values. The InP calculates the payment J l,k∗b (nl,kb ) that
each winning tenant l of service k has to pay for RBs.
Then, the InP declares the winning tenants and the
winning price J l,k∗b (nl,kb ).

ARB helps the InP to choose winning tenants that
submitted bidding values that maximize its revenue and
the social welfare. In ARB, we consider that each tenant
l ∈ L submits its bid for RB b ∈ B without knowing the
bidding values of other tenants. Also, each tenants l ∈ L can
submit one bid per service. We consider that each tenant
l has its own valuation for RB b denoted Υl,k(nl,kb ). Here,
Υl,k(nl,kb ) is given by:

Υl,k(nl,kb ) =
{
ιl,kb nl,kb , if the tenant l paricipates in ARB,
0, otherwise,

(1)
where ιl,kb is the true valuation of tenant l for service k that
requires RB b. However, when tenant l does not participate
in the ARB, its true valuation is 0. On the other hand, the
valuation Γ(B) of the InP is defined using reserved price bp
such that Γ(B) = Bbp. InP sets bp that ensures its revenue
does not become negative. In other words, its revenue covers
its CAPEX and OPEX associated to RBs.
In our action, we choose Vickrey Clarke Groves (VCG)

mechanism [26] over other auction mechanisms because VCG
mechanism enables welfare maximization of all tenants and
guarantees a truthful outcome. VCG enables to achieve
better efficiency in RBs allocation and competition between
tenants. It allows optimal price J l,k∗b (nl,kb ) for RB to come
from the competition. To apply the VCG in our auction, we
define the maximum valuation ΥL(nl,kb ) of all tenants with

bidding values J l,kb ≥ bkp as follows:

ΥL(nl,kb ) = argmax
Jl,k

b
≥bp

∑
l∈L

J l,kb nl,kb . (2)

In the VCG, each tenant l should pay for the damage it
may cause on other tenants by participating in the ARB.
Therefore, we compute the total valuation Υ−l(nj,kb ) without
each tenant l, where Υ−l(nj,kb ) is given by:

Υ−l(nj,kb ) = argmax
Jj,k

b
≥bp

∑
j∈L\{l}

Jj,kb nj,kb . (3)

From (2) and (3), we can compute the price J l,k∗b (nl,kb ) that
each tenant l of service k has pay to InP as follows:

J l,k∗b (nl,kb ) = Υ−l(nj,kb )−
∑
j 6=l

Jj,kb nj,kb . (4)

Definition 1 (Tenant Utility). In ARB, in which tenant
submit a bid (J l,kb , nl,kb ), if the tenant l wins the ARB, it pays
J l,k∗b (nl,kb ) to InP. Otherwise, if tenant l loses the ARB, it
pays nothing. Therefore, the utility Ul,k of any tenant l of
service k is given by:

Ul,k =
{
J l,k∗b (nl,kb )−Υl,k(nl,kb ), if tenant l ∈ W win ARB
0, otherwise,

(5)
where W is the set of the winners. We consider each tenant
will participate in ARB if and only if J l,k∗b (nl,kb ) ≥ Υl,k(nl,kb ).
In other words, a tenant will participate in ARB when its
utility is not negative.

Definition 2 (Individual Rationality). ARB is individ-
ually rational if and only if no tenant l ∈ L receives negative
utility, i.e., Ul,k is not negative (Ul,k ≥ 0).

Definition 3 (Truthfulness). ARB is truthful if and only
if, for each tenant l ∈ L, bidding the truth value ιl,kb = J l,kb
is the dominant strategy. In other words, bidding ιl,kb that
maximizes the utility of each tenant l ∈ L given for all
possible bidding values is the dominant strategy.

Theorem 1. The ARB is truthful.

Proof. We consider that each tenants l ∈ L wins the ARB
by submitting its true valuation, i.e., ιl,kb = J l,kb . Also, ARB
satisfies monotonicity and critical payment conditions of
truthful bidding defined in [27].
• Monotonicity: Let us consider a scenario of two tenants l
and l′ submitted bidding values J l,kb and J l

′,k
b for service

k ∈ K, where J l,kb > J l
′,k
b . ARB chooses bidding value

that maximizes total valuation in descending order of
the bidding values. Therefore, J l,kb will give more chance
tenant l ∈ L to win ARB over J l

′,k
b because J l,kb > J l

′,k
b .

• Critical payment: In ARB, the payment of winner is
based on its bidding value and the bidding values of
other tenants, where VCG tries to maximize social
welfare. The ARB makes tenants l ∈ L with maximum
bidding value J l,kb as the winner whatever other bidding



values such as J l
′,k
b , and winner l ∈ L pays J l,k∗b (nl,kb ) ≤

J l,kb nl,kb .

Theorem 2. The ARB is individually rational.

Proof. Considering Definition 2 and individually rational
condition defined in [27], ARB becomes individually rational
when no tenant receives negative utility. Based on the above
Theorem 1 and (5), ARB makes tenant l ∈ L with maximum
bidding value J l,kb as the winner whatever other bidding
values and pays J l,k∗b (nl,kb ) ≤ J l,kb nl,kb . Otherwise, based (5),
tenant who does not win ARB receives zero utility (Ul,k = 0).
Therefore, Ul,k ≥ 0.

The above ARB can be designed as Total Revenue
Maximization (TRM) problem, where TRM is expressed
as follows:

maximize
x

∑
k∈K

∑
l∈L

xl,kb nl,kb J l,kb (6)

subject to:∑
k∈K

∑
l∈L

xl,kb nl,kb ≤ B, ∀b ∈ B, (6a)

xl,kb J l,kb ≥ bp, (6b)
xl,kb ∈ {0, 1}. (6c)

In TRM problem (6), the RBs needed to be allocated to
tenants must be less than the total RBs. In (6b), the bidding
value of the tenant should be greater or equal to the reserve
price of InP. In (6c), we use xl,kb as binary decision variable,
where xl,kb = 1 if tenant l submit bid J l,kb and wins the
auction, and xl,kb = 0 otherwise.
TRM problem is an Integer Linear Programming (ILP)

problem. To handle (6), we propose an algorithm (Algorithm
1) for Winner and Price Determination. Algorithm 1 is
based on the VCG mechanism. The inputs of Algorithm
1 include a set of tenants L, set of services K, available
RBs B for auction, vector of bids Jb, vector of the number
of RBs needed n. At the line 3, the algorithm initializes
the parameters of the auctions including set of winners
W and set of tenants W ′ who do not win the auction.
Then, the algorithm performs iterations for winner and
price determination until all RBs B are allocated to the
tenants or no more tenants need RBs. The outputs of the
Algorithm 1 are set of winning tenants W, vector x of
winning decision variables, and vector of J∗ payments. We
assume that J l,k∗b (nl,kb ) is the flat price that the tenant l and
InP agreed for RBs of slice associated to service k during
the auction. Once the tenant RB usage passes the initial
number of RB nl,kb requested in the auction, i.e., cap, InP
does not stop the tenant service, but InP introduces a flat
rate increase described in [28]. However, we consider a flat
rate increase to be outside the scope of this paper. Also,
the auction is performed outside the closed loops. In other
words, the auction helps to get RBs that will be managed
using closed loops.

Theorem 3. Computational complexity of ARB is O(n2)

Algorithm 1 : Winner and price determination for ARB.
1: Input: K, L, B, bp, Jb, n;
2: Output: W,x,J∗

//Initialization;
3: W ← ∅, J∗ ← ∅,W ′ ← ∅, x← (0, . . . , 0), ΥL(nl,kb )← 0,

Υ−l(nj,kb )← 0, Υ(b)← 0;
4: while n 6= ∅ and J l,kb ≥ bp > 0, do
5: Jb ← J l,kb ;
6: Sort Jb in decreasing order;
7: repeat
8: Find a tenant l that has the maximum bid J l,kb

(max(Jb)) as a winner;
9: J∗ ← J l,kb ;
10: ΥL(nl,kb ) = ΥL(nl,kb ) + J l,kb nl,kb ;
11: W ←W ∪ {l};
12: L0 ← L \ {l};
13: xl,kb ← 1;
14: x← xl,kb ;
15: B = B − nl,kb ;
16: until B = 0 or L = ∅;
17: end while
18: Reset B and L;
19: repeat
20: Find a tenant j ∈ L′ = L0 ∪ W \ {l} that has the

maximum bid Jj,kb (max(Jb)) when each tenant l ∈ W
is not participating in the auction;

21: Υ−l(nj,kb )← Υ−l(nj,kb ) + Jj,kb nj,kb ;
22: W ′ ←W ′ ∪ {j};
23: L′ ← L′ \ {j};
24: xj,kb ← 0;
25: x← xj,kb ;
26: B = B − nj,kb ;
27: until B = 0 or L′ = ∅;
28: while j 6= l ∈ L1 =W ∪W ′ do
29: Find a tenant j that has the maximum bid max(Jb)

when tenant j ∈ W ′ and l ∈ W;
30: Υ(b)← Υ(b) + Jj,kb nj,kb ;
31: end while
32: l,k∗b (nl,kb ) = Υ−l(nj,kb )−Υ(b);
33: J∗ ← J l,k∗b (nl,kb );
34: Return: W,x,J∗.

Proof. In the Algorithm 1, we have while loop at lines
4 − 17 that performs n iterations for checking submitted
bids (J l,kb ≥ bp > 0), where n is the size of the vector
Jb. Inside the while loop, we have another loop at lines
7− 16 for allocating RBs to the tenants starting from the
tenant with maximum bidding value and this loop takes n
iterations. We have third loop at lines (19− 27) for finding
the winners if each tenant with maximum bidding value does
not participate in ARB, which takes n− 1 iterations. The
last loop is at lines (28− 31) for calculating total evaluation
and it takes n iterations. As result, the Algorithm 1 takes
n2 + n− 1 + n iterations. In conclusion, the computational
complexity of RA is O(n2), which is linear time.



B. RBs Distribution to vO-DUs for Scheduling Purpose
In closed loop two, initially, InP assigns RBs B to vO-DUs

equally such that B =
∑D
d=1 bd, where bd = bBD c is the RB

assigned to each vO-DU d. After the auction, InP creates
slices C associated to K services at vO-DUs and assigns RBs
to slices. InP uses round-robin policy [29] to create each slice
c ∈ C associated to service k ∈ K of each winning tenant l
at vO-DU. The round-robin policy cyclically create slices
associated with services to vO-DUs starting from vO-DU 1
such that

∑Kd

k=1 b
c,k
d ≤ bd, where b

c,k
d is RBs of each slice c

at each vO-DU d for service k. Kd represents the number
of services at vO-DU d and bc,kd = yc,db,kx

l,k
b nl,kb . Furthermore,

we define yc,db,k as decision variable indicating whether slice c
of service k has assigned radio resource at vO-DU d, where
yc,db,k is given by:

yc,db,k =


1, if slice c of service k has assigned RBs

at vO-DU d,
0, otherwise.

(7)
To ensure that each slice c of service k is created at one
vO-DU, InP imposes the following constraint:∑

c∈C
yc,db,k ≤ 1, ∀d, b, k. (8)

C. Intra-slices RBs Scheduling for Cars
In closed loop 1, we consider vO-DUs are connected to O-

RUs via wired fronthaul network, where O-RUs serve V cars
available in their coverage areas. Based on chosen numerology
i, each RB bc,kd is partitioned into f c,ki,d number of sub-bands,
indexed by Fc,ki,d = {1, 2, . . . , F c,ki,d } in the frequency-domain
and tc,ki,d number of TTIs, indexed by T c,ki,d = {1, 2, . . . , T c,ki,d }
in the time-domain. Therefore, a total F c,ki,d × T

c,k
i,d number

of RBs are available for the service k using numerology i.
RBs scheduling can be modeled using perfect Channel State
Information (CSI). However, in practice, it is challenging
to obtain perfect CSI due to some limitations such as
delayed feedback. As described in [30], the channel coefficient
between the O-RU and scheduled cars on the RB (tc,ki,d , f

c,k
i,d )

of numerology i is modeled as:

hv,kti,fi
= h̃v,kti,fi

+ ev,kti,fi
, (9)

where h̃v,kti,fi
and ev,kti,fi

represent the estimated CSI and
estimated error, respectively. Using hv,kti,fi

, the achievable
achievable SNR at the cars v on the RB (tc,ki,d , f

c,k
i,d ) becomes:

δvti,fi
=
yc,db,k|h

v,k
ti,fi
|2p̃ti,fi

χmv

σ2
v

, (10)

where p̃ti,fi
is the allocated power to the each RB (tc,ki,d , f

c,k
i,d ),

χmv is the distance between the car v and O-RU m and σ2
v

is the noise power.
As shown in Fig. 3, due to car mobility, the distance

χmv keeps changing. Therefore, the combination of global
navigation satellite systems (GNSS) such as GPS and
GLONASS can be applied to find χmv . The same approach
was applied in [31]–[33]. Furthermore, we consider the

Edge Cloud (RT-SC)

0-RU 1

Ground
0-RU m

Figure 3: Communication planning for the cars.

distance of a flying car from the earth and height the O-RU,
where O-RU has antennas pointing toward the sky for aerial
coverage to serve flying cars. As described in [3], χmv for the
flying cars can be calculated as follows:

χmv =
√
ηvm + (ηv − ηm)2, ∀v ∈ Va, (11)

where ηm is the height of O-RU m, ηvm is the estimated
flying car to O-RU m projection distance on the ground,
and ηv is the estimated height of the flying car.
We consider the list of O-RUs is a priori known at edge

cloud, i.e., at Real-time Slice Controller (RT-SC). RT-SC
can calculate the remaining distance ςvm of each car v to
reach area Λm covered by each nearby O-RU m, where ςvm
is given by:

ςvm = χmv cosg
m
v . (12)

We use gmv as an estimated angle between the trajectory of
movement of car v and the line from O-RU m. By using ςvm,
the RT-SC can compute the probability pmv that O-RU m
can serve car v using wireless communication such that:

pmv =
{

1, if ςvm = 0 and τmv ≤ τvk ,
0, otherwise.

(13)

When ςvm = 0, the car v ∈ V reaches the area Λm covered
by O-RU m. We define τmv as the time required by car v to
leave the coverage area of O-RU m, where τmv is given by:

τmv = Λm
Iv

, (14)

where Iv is the estimated speed of car v. When τmv ≤ τvk ,
the car can easily use O-RU m for wireless communication
and meet delay budget τvk . Otherwise, when τmv > τvk , our
approach can select the next O-RU to use that can satisfy
the delay budget. However, we consider O-RU handover for
flying and ground-based cars as future work.
According to Shannon’s theory, the achievable data rate

for the car v on the RB (tc,ki,d , f
c,k
i,d ) can be written as:

Rv,mti,fi
= ωmti,fi

pmv log2
(
1 + δvti,fi

)
, ∀v ∈ V, (15)

where ωmti,fi
is the bandwidth of the RB with numerology i.



Then, the data rate of each car v can be computed as:

Rvm =
∑

i=1,...,4

T c,k
i,d∑

tc,k
i,d

=1

F c,k
i,d∑

fc,k
i,d

=1

zv,mti,fi
Rvti,fi

, (16)

where zv,mti,fi
is binary decision variable indicates whether car

v uses RB (tc,ki,d , f
c,k
i,d ) of numerology i at O-RU m, where

zv,mti,fi
is given by:

zv,mti,fi
=


1, If pmv = 1 and RB (tc,ki,d , f

c,k
i,d ) is allocated

to car v,
0, otherwise.

(17)
To comply with the requirement of OFDMA system, where
each RB (tc,ki,d , f

c,k
i,d ) can only be allocated to a single car, we

impose the following orthogonality constraint:∑
u∈V

zv,mti,fi
≤ 1, ∀v, tc,ki,d , f

c,k
i,d . (18)

V. Problem Formulation for Two-level closed
loops

The previous section discussed the two closed loops
in initial RBs distribution and scheduling. This section
discusses RBs distribution and scheduling feedback.

Feedback for closed loop 1: After RBs scheduling for cars,
we monitor RBs utilization. We consider λvk,c as the arrival
rate of the packets for each service k needed by car v. RT-SC
maps incoming packets with vO-DU that manages slice c of
service k. Each service has its queue, where queuing delay
can be modeled with M/M/1 queuing system, where queuing
delay qv,kc can be expressed as follows:

qv,kc =
zv,mti,fi

λvk,c − µvk,c
, (19)

where µvk,c represents the service rate. w
v,d
k,c is binary decision

variable indicating whether or not packet is assigned to slice
c associated to service k at vO-DU d, where wv,dk,c is given
by:

wv,dk,c =


1, if packet is assigned to slice c associated to

service k at vO-DU d,
0, otherwise.

(20)
Furthermore, we consider buffer β̃dc,k associated to service k
that uses slice c at vO-DU d. Then, we introduced queue
status parameter Ψd

c,k associated to each service k and buffer
threshold βdc,k, where Ψd

c,k can dynamically computed as
follows:

Ψd
c,k = max{(β̃dc,k − E[λvk,c]), βdc,k}, (21)

where E[λvk,c] is the expected number of packets in queue
or queue occupancy for service k.

Besides queuing delay and status, we consider transmission
and prorogation delays. We assume that each packet of the
car v passes through fronthaul and wireless network. Let us

consider ov,kc as the size of the packet. The transmission delay
for the wireless network between car and O-RU becomes:

τv→mc,k = ov,kc
Rvm

. (22)

Furthermore, the transmission delay τmv→d
c,k for fronthaul

between O-RU m and vO-DU d can be expressed as follows:

τmv→d
c,k = ov,kc

$m,d
, (23)

where $m,d is the capacity of fronthaul link between O-
RU m and vO-DU d. The propagation delay τm→d can be
expressed as follows:

τm→d = ρm→d

κ
, (24)

where ρm→d is the length of fronthaul link (m, d) and κ is the
propagation speed. The end-to-end delay can be expressed
as follows:

τvc,k = qv,kc + τv→mc,k + τmv→d
c,k + τm→d. (25)

We consider τvc,k as feedback for the loop 1, where τvc,k
should satisfy delay budget constraint τvc,k ≤ τvk .
To evaluate intra-slices RB allocation using closed loop

1, we defined network slice requirement satisfaction ϕck. ϕck
measures whether or not each slice c of service k satisfies
delay budget τvk . The ϕck is expressed as:

ϕck =
∑Vk

v=1 z
v,m
ti,fi

ξvc,k
Vk

, (26)

where Vk is a set of cars that use service k and ξvc,k is the
delay budget fulfillment parameter. ξvc,k is given by:

ξvc,k =
{

1, if τvc,k ≤ τvk
0, otherwise.

(27)

To update initial RBs allocation for cars, we define intra-
slice orchestration parameter Ωd

c,k for close loop 1, where
Ωdc,k is given by:

Ωdc,k =



β̃d
c,k

βd
c,k

, if Ψd
c,k = βdc,k,

βd
c,k

β̃d
c,k

, if Ψd
c,k > βdc,k,

0, if Ψd
c,k = β̃dc,k,

1, otherwise.

(28)

For close loop 1, when Ψd
c,k = βdc,k, we consider that there

are many incoming packets for slice c associated to service k.
In this scenario vO-DU d needs performs slice resource scale-
up with Ωdc,k = β̃d

c,k

βd
c,k

rate. Also, if Ψd
c,k > βdc,k, the vO-DU d

needs to perform slice resource scale-down with Ωdc,k = βd
c,k

β̃d
c,k

rate because the RB are under utilized (E[λvk,c] is small).
When Ψd

c,k = β̃dc,k, there is no demands for slice c associated
to service k, vO-DU d can terminate RB allocation to that
slice using Ωd

c,k = 0 because E[λvk,c] = 0. Otherwise, we
consider the initial RB allocation is well performed and
there is no need to update initial RB allocation and we set
Ωdc,k = 1.



Feedback for loop 2: We define RB usage to evaluate the
usage of RB bd allocated to vO-DU d, where RB usage ϕ̃dc,k
is given by:

ϕ̃dc,k =
∑Kd

k=1 b
c,k
d

bd
. (29)

Based on RB usage and slice requirement satisfaction, we
formulate the following optimization problem that maximizes
resource utilization, while meeting resource constraints and
QoS requirements in terms of latency:

max
(y,z,w)

∑
d∈D

yc,db,kϕ̃
d
c,k +

∑
v∈Vk

wv,dk,cϕ
c
k (30)

subject to∑
u∈Vk

zv,mti,fi
≤ 1, ∀m ∈M, (30a)∑

c∈C
yc,db,k ≤ 1, (30b)

∑
v∈Vk

zv,mti,fi
Ωvc,kRvi ≤ b

c,k
d , (30c)

∑
v∈Vk

λvk,cz
v,m
ti,fi

ov,kc ) ≤ $m,d. (30d)

In the formulated optimization problem in (30), the con-
straint in (30a) ensures RB (tc,ki,d , f

c,k
i,d ) can only be allocated

to a single car. The constraint in (30b) guarantees that each
slice c associated to service k is create at one vO-DU. The
constraint in (30c) ensures that the RBs allocated to cars
(Rvi represents (tc,ki,d , f

c,k
i,d )) do not exceed the available vO-

DU resources. The constraint in (30d) is related to fronthaul
network and it ensures that each node does not send more
traffic than the fronthaul capacity.
The problem in (30) is a combinatorial optimization

problem, which is NP-hard and does not have an efficient
polynomial-time solution. Also, an optimization problem
that can lead to a stationary solution is not appropriate
for resource auto-scaling because the resource auto-scaling
process is a continuing, not stationary task [34]. Demands
for network slices should be learned continuously to adapt to
the change in workload and network environment. Therefore,
we change (30) to a reward function so that it can reflect
different QoS fulfillment, workload changes, and network
condition changes.

We formulate a reward function rt,c(z,w) for closed loop
1 so that it can reflect intra-slice QoS fulfillment in terms
of delay and workload changes at time t:

rt,c(z,w) = wv,dk,cϕ
c
k + ∆m($m,d −

∑
v∈Vk

λvk,cz
v,m
ti,fi

ov,kc )

+ ∆v(1−
∑
u∈Vk

zv,mti,fi
) + ∆z(−νdc ), (31)

where νdc =
∑
u∈Vk

zv,mti,fi
RviΩdc,k− b

c,k
d . We use ∆m to denote

the penalty of violating fronthaul resource constraint. ∆v

is penalty parameter for violating RB allocation constraint.
∆z is the penalty parameter to ensure that intra-slice scaling
does not violate the vO-DU RBs capacity constraint.

We formulate a reward function rt,d(y) for closed loop 2

to evaluate the RB bd utilization at vO-DU d at time t:

rt,d(y) = yc,db,kϕ̃
d
c,k + ∆d(1−

∑
c∈C

yc,db,k)+

∆b(B −
∑
c∈C

yc,db,kb
c,k
d + νdc ). (32)

where ∆d is the penalty parameter to ensure each slice is
managed by one vO-DU. We use ∆b to denote the penalty
that guarantees RB updates do not violate RB constraint.

Connecting two loops: Closed loop 1 maximizes reward
function rt,c(z,w) by satisfying intra-slice QoS in terms
of delay and workload changes at time t. On the other
hand, closed loop 2 needs to maximize reward rt,d(y) and
avoid violation of RB capacity constraints at vO-DU d.
However, RB usage at vO-DU d depends on intra-slice RB
allocation. Therefore, νdc enables to connect the actions of
closed loop 1 with actions of closed loop 2. Closed loop 1
needs to sends νdc to closed loop 2 as feedback that show
the difference between RB demands and allocated RBs to
vO-DU. Therefore, we formulate a main reward function
rt(y, z,w) that interconnects the two proposed closed loops
at time t, where rt(y, z,w) is given by:

rt(y, z,w) = rt,d(y) + φdisrt,c(z,w). (33)

Since the closed loop two has to maximize reward in (33) that
combines (31) and (32), where (31) is already maximized
with closed loop one, we introduce φdis as discount parameter
for rt,c(z,w) to allow the closed loop 2 to put more emphasis
on (32).

VI. Proposed Solution
In (32), closed loop 2 at Near-RT RIC needs to deal

with actions A(y) consist of assigning initial RBs, keep
initial RBs allocation (νdc = 0), RBs scale-up (νdc > 0),
RBs scale-down (νdc < 0) , and terminate RBs allocation
for vO-DUs (νdc = −bc,kd , i.e.,

∑
u∈Vk

zv,mti,fi
RviΩdc,k = 0). The

states S = {(B,D,C)} at Near-RT RIC consist of the
states of RBs B, vO-DUs D, and slices C managed by
vO-DUs. On the other hand, closed loop 1 needs to deal
with actions A′(z,w) consist of assigning initial RBs, keep
initial RBs allocation (Ωdc,k = 1), RBs scale-up (Ψd

c,k = βdc,k),
RBs scale-down (Ψd

c,k > βdc,k), and terminate RBs allocation
(Ψd

c,k = β̃dc,k) for cars. The states S ′ = {(V ,Ω,Ψ)} at RT-SC
consist of the states of V cars managed by slices, intra-slice
orchestration Ω, and queue Ψ. The closed loop 1 has direct
access to the environment, observes cars’ demands, and
assigns RBs to cars. Based on queue status and intra-slice
satisfaction, the closed loop 1 can keep or update the RBs
allocation for cars. Then, it gives feedback to closed loop
2 so that closed loop 3 can have an overview of A(y, z,w),
maximize (32), and update RBs for vO-DUs D. Since the
initial RBs allocation to the services of tenants is based on
ARB, in RB auto-scaling using νdc and Ωdc,k, we assume the
InP and tenants can negotiate flat rate increase or decrease
on J l,k∗b (nl,kb ).

RL or DRL [35] can be applied to handle the formulated
rewards. However, finding one RL or DRL model that uses
two closed loops is a challenging issue. To overcome this issue,
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Figure 4: The Ape-X architecture [36].

we choose Ape-X [36] shown in Fig. 4 as distributed RL over
other RL or DRL approaches. Ape-X decomposes deep RL
into two components. The first component interacts with the
environment, implements, and evaluates deep neural network.
Then, it stores the observation data in a replay memory. We
consider this process as acting, where the component is an
actor. The second component samples batches of data from
replay memory and updates the parameters. We consider this
process as learning, where the second component is leaner.
Ape-X can be combine with different learning algorithms,
such as Deep Q Learning (DQN). In this work, we combined
Ape-X with DQN [37], where DQN integrates deep learning
into Q-Learning. The simplest form of Q-Learning, which is
called one-step Q-Learning, is given by:

Q(st, at) = Q(st, at) + α[rt+1 + γtQ(st+1, a)
− Q(st, at)],

(34)

where α is the learning rate and a ∈ A is an action that was
taken in the state st by an agent. γt (0 < γt ≤ 1) is discount
factor. On the other hand, DQN uses standard feed-forward
neural networks to calculate Q-Value. The DQN uses two
networks, Q-Network to calculate Q-Value in the state st
and target network to calculate Q-Value in the state st+1
such that:

Q(st, at) = Q(st, at) + α(rt+1 + γtmax
a
Q(st+1, a)

− Q(st, at)).
(35)

The loss function Φ(θ) to be minimized can be expressed as
follows:

Φt(θ) = 1
2(G̃t −Q(st, at, θ))2, (36)

where θ represents parameters of the neural network and
G̃t is the return function. G̃t can be expressed as follows:

G̃t = rt+1 + γrt+2 + · · ·+ γn−1rt+n+
γnQ(st+n, argmax

a
Q(st+n, a, θ), θ−). (37)

In (37), n is the number of steps. We use t to represent a
time index of sampling experience in replay memory. The
experience sampling starts with state st, action at, and
parameters of the target network θ−. We use T to denote
the total number of time steps until the end of the training
process.

Fig. 5 shows the application of Ape-X as solution to our
problem. In our approach, Near-RT RIC acts as learner and

actor for closed loop 2 and vO-DUs acts as actors for closed
loop 1. In Algorithm 2, Near-RT RIC initializes θ0 and bc,kd .
Then, Near-RT RIC sends bc,kd and θ0 to vO-DUs via RT-SC
and save them to replay memory. Also, Algorithm 2 keeps
checking the replay memory to get updates from closed loop
1 and computes the loss function Φt(θ) and updates θt to
θt+1. Then, Near-RT RIC computes Temporal Difference
(TD) error (γtmax

a
Q(st+1, a) − Q(st, at)) using DQN and

updates replay memory and sends θt+1 and updated RBs
bc,kd to RT-SC for vO-DUs.

Algorithm 2 : RBs allocation to vO-DUs (Near-RT RIC
as Learner and Actor).
1: Input: T ;
2: Initialize t = 0;
3: θ0 ← InitializeLeaningParameter();
4: bc,kd ← AssignRBtovODU();
5: for all t = 1 to (t = T ) do
6: at−1 ← KeepUpdateSliceResourcetovODU();
7: ϕ̃dc,k ← CalculatevODUutilization();
8: rt,d(y)← CalculateReward();
9: InLocalMemory.add((st−1, at−1, rt,d, γt));
10: id, τ ← GetSampleFromReplayMomory();
11: Φt(θ)← CalculateLoss(τ ; θt);
12: θt+1 ← UpdateLearningParameters(Φt(θ), θt);
13: bc,kd ← UpdateRBAllocation();
14: rt(y, z,w)← CalculateReward();
15: p← CalculateTD();
16: InReplayMemory.SetTD(id, p, rt);
17: PeriodicallyUpdateReplayMemory()).
18: end for

In Algorithm 3, vO-DU gets initial parameters from the
learner and via RT-SC such as θ0 and RBs bc,kd and slices
assigned to vO-DU. Then, vO-DU performs intra-slices
actions. We use T ′ to denote the total number of time steps
for vO-DU. Each vO-DU stores states, νdc , actions, rewards,
and discount factors in local memory. In each period T̃ ,
states, orchestration parameters, actions, rewards, discount
factors, and TD, are sent to replay memory via RT-SC so
that the Algorithm 2 can update bc,kd and θ0. We assume
that T̃ is not the same for different vO-DUs.

Theorem 4. Computational complexity of Algorithms 2 and
3 is O(n).

Proof. In the Algorithm 2, we have one loop at lines 5− 18,
which depends on number of vO-DUs and slices. On the other
hands, the Algorithm 3 contains one loop at lines (6−19) and
it depends on the number of vehicles. In extreme scenario,
we may have n number of vehicles, slices, and vO-DUs. As
result, Algorithms 2 and 3 have computational complexity
O(n).

VII. Performance Evaluation
In this section, we present the performance evaluation of

the proposed closed loops for RAN slice resources manage-
ment serving flying and ground-based cars. We use Python
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Algorithm 3 : Intra-slices RB allocation to cars (vO-DU
as Actor).

1: Input: T̃ , T ′;
2: Initialize t = 0;
3: θ0 ← GetLearningParameters();
4: bc,kd ← vODUGetRBs();
5: s0 ← environment.initialize();
6: for all t = 1 to (t = T ′) do
7: a′t−1 ← KeepUpdateRBtoCars();
8: ϕck ← CalculateNetworkSliceSatisfaction();
9: Ωdc,k ← CalculateOrchestrationParameter();
10: rt,c(z,w)← CalculateReward();
11: InLocalMemory.add((s′t−1, Ωdc,k, νdc , a′t−1, rt,c, γt));
12: if LocalBuffer≥ T̃ then
13: τ ← LocalBuffer.Get(T̃ );
14: p← CalculateTD(τ);
15: InReplayMemory.ADD(τ, p, Ωd

c,k, νdc , s′t−1, a′t−1,
rt,c, γt);

16: end if
17: Periodically(θt ← GetLearningParameterUpdate());
18: Periodically(bc,kd ← vODUGetRBsUpdate()).
19: end for

[38] for numerical analysis and OpenAI Gym [39] for making
DRL environment.

A. Simulation Setup
We use 3 flying cars and ground-based cars ranging from 10

to 35 cars. We use 6 O-RUs and one edge cloud to provide a
network connection to car. For the location of O-RUs, travel
distances, time, and routes of flying and ground-based cars,
we use VeRoViz as a suite of tools designed for car routing
from Optimator Lab at the University at Buffalo [40]. Since
VeRoViz has drone features, we use drones as flying cars.
We consider each car navigates/flies in the area of 6 O-RUs.
We use 100 MHz channel bandwidth with 30 kHz subcarrier
spacing and 0.5 millisecond TTI. The number of RBs is
273 managed by 3 vO-DUs, where each vO-DU initially has
bd = 91 RBs. In ARB, we use 10 tenants, where the demand

Figure 6: RBs allocation to tenants.

Figure 7: Tenant payments.

nl,kb of each tenant is in the range of 6 to 40, and J l,kb is in
the range from 10 to 20. We set bp = 15 and consider that
the number of slices associated with services varies based on
the output of the auction. We consider 7 services from 5QI
[25] such as advanced driving and remote driving, where the
delay budget τvk is in the range from 5 to 300 milliseconds.
Each car chooses one or more service (s) randomly from the
list of 7 services. The packet size ov,kc is generated randomly
in the range from 1 kilobyte to 10 megabytes.

As described in [41], to implement Ape-X, we use Ray [42]
and Keras with TensorFlow [43]. In Ape-X, for the neural



Figure 8: RBs allocation to services.

Figure 9: Number of cars per vO-DU .

network, we use the input layer of 3 neurons, two hidden
layers of 64 neurons per hidden layer, and an output layer of
4 neurons. The input of 3 neurons corresponds to states. We
assume initial RBs allocation can be performed based on
initial demands. The four neurons in the output layer consist
of 4 actions: keep initial RBs allocation, RBs scale-up, RBs
scale-down, and termination of RBs allocation. Time steps is
set to 100000, maximum sample size is set to 50000 records,
α = 0.0001, and γt = 0.99.

B. Simulation Results
The simulation results in Fig. 6 show RBs allocation

to the tenants who provide services to the cars. Based on
available RBs and bidding values (Jj,kb ≥ bp), 7 tenants
won the auction using the VCG and get 72% of the total
RBs. Furthermore, we solve the optimization problem in (6)
using MOSEK [44] as mixed-integer optimization solver and
compare MOSEK solution with VCG solution. In MOSEK,
only a small number of tenants of Jj,kb ≥ bp win the auction
and get 26% of the total RBs. Even if we consider unallocated
RBs as the residual resources that serve for RBs allocation
scale-up, using MOSEK, InP remains with more unallocated
RBs. Therefore, VCG has better performance than MOSEK.
The common behavior of VCG and MOSEK, they do not
allow InP to allocate more than available RBs. Also, as shown
in Fig. 7, with VCG and MOSEK, all winning tenants pay
prices that are less or equal to their bidding values. In other
words, our ARB satisfies individual rational and truthful
bidding, where the winner pays a price that is less or equal

Figure 10: Number of cars per slice.

Figure 11: RBs usage ratio at vODUs.

to its bidding value, while the tenant who does not win ARB
pays nothing.

After the auction, hereafter, we use the results from VCG.
Fig. 8 shows RBs allocation to the services of the tenants
who won the auctions, where each service corresponds to
one slice. RBs of services are distributed to vO-DUs for
scheduling purposes in the closed loop 2. Fig. 9 shows the
RBs distributed to vO-DUs using the round-robin policy
starting from vO-DU 1, where vO-DU 1 and vO-DU 2
manages 3 slices, while vO-DU 3 has one slice. Here, we
remind that each vO-DU has bd = 91 RBs as the maximum
limit, and RBs allocation to the slices at vO-DU has to
respect RBs constraint (

∑Kd

k=1 b
c,k
d ≤ bd). In other words,

the observation space of Ape-X for each vO-DU is in the
range from bd = 0 to bd = 91. RB allocation, scale-up,
and scale-down should vary in this range. In this figure,
we show the number of cars getting service(s) from each
vO-DU. Fig. 10 shows the number of cars (minimum, first
quartile, median, third quartile, and maximum) that use
specific slices, where slice 3 is more utilized than other slices.

Fig. 11 presents RBs usage ratio defined in (29) for vODUs.
Since each vODU manages limited RBs, we consider ϕ̃dc,k = 1
as the maximum RB usage ratio. In general, this figure shows
that our approach satisfies vODUs resource constraints with
a minor resource constraint violation at vO-DU 2 (at ϕ̃dc,k >
1.0 i.e., at more than 100% utilization, the incoming request
for RBs needs to be rejected). Furthermore, Fig 12 shows
network slice requirement satisfaction in terms of delay as
described in (26), wherein most of the case our approach



Figure 12: Network slice requirement satisfaction.

Figure 13: Reward maximization per actor.

Figure 14: Mean total reward maximization.

reaches 100% slice requirement satisfaction except slices 0
and 1 managed by vO-DU 1.

Fig 13 presents the reward per actor using Ape-X. In other
words, the rewards of vODU 1 (actor 1), vODU 2 (actor 2),
vODU 3 (actor 3), and Near-RT RIC (actor 4). Here, we
remind that vODUs focus on maximizing rt,c(z,w) in closed
loop 1, while Near-RT RIC focuses on maximizing rt,d(y) in
closed loop 2. Rewards are not the same for actors because
different vODUs manage different slices. Also, the slices
do not have the same numbers of RBs and serve varying
numbers of vehicles. To compare Ape-X-based solution with
other DRL approaches, we use reward function in (33), where
discount parameter is set to φdis = 0.0018. Fig. 14 shows
the mean of total reward using Ape-X and Actor-Critic
DRL. Actor-Critic is popular in DRL-based network slicing

literature such as [45]. The results in this figure show that
Ape-X has better performance than Actor-Critic DRL.

VIII. Conclusion
This paper presented two-level closed loops for managing

RAN slice resources serving flying and ground-based cars.
We have used an auction mechanism for allocating RBs
to the tenants who provide services to cars using slices.
Then, we proposed two closed loops that complement each
other, where closed loop 2 distributes RBs to vO-DUs and
closed loop 1 at vO-DUs performs intra-slices RB scheduling
for cars. Closed loop 1 sends resources utilization updates
to closed loop 2 so that the closed loop 2 can update
RBs distribution to vO-DUs. Using Ape-X as distributed
reinforcement learning, the simulation results demonstrate
that our approach satisfies more than 90% vODUs resource
constraints and network slice requirements. One of our future
works is extending our framework with more performance
evaluation in different simulation environments.
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