
HKUST SPD - INSTITUTIONAL REPOSITORY

Title Semi-Decentralized Federated Edge Learning with Data and Device Heterogeneity

Authors Sun, Yuchang; Shao, Jiawei; Mao, Yuyi; Wang, Jessie Hui; Zhang, Jun

Source IEEE Transactions on Network and Service Management, v. 20, (2), June 2023, article
number 10059225, p. 1487-1501

Version Accepted Version

DOI 10.1109/TNSM.2023.3252818

Publisher Institute of Electrical and Electronics Engineers Inc.

Copyright © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

This version is available at HKUST SPD - Institutional Repository (https://repository.hkust.edu.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1109/TNSM.2023.3252818
https://repository.hkust.edu.hk

1

Semi-Decentralized Federated Edge Learning with

Data and Device Heterogeneity
Yuchang Sun, Jiawei Shao, Student Member, IEEE, Yuyi Mao, Member, IEEE, Jessie Hui Wang, Senior

Member, IEEE, and Jun Zhang, Fellow, IEEE

Abstract—Federated edge learning (FEEL) emerges as a
privacy-preserving paradigm to effectively train deep learning
models from the distributed data in 6G networks. Nevertheless,
the limited coverage of a single edge server results in an
insufficient number of participated client nodes, which may
impair the learning performance. In this paper, we investigate
a novel FEEL framework, namely semi-decentralized federated
edge learning (SD-FEEL), where multiple edge servers collectively
coordinate a large number of client nodes. By exploiting the
low-latency communication among edge servers for efficient
model sharing, SD-FEEL incorporates more training data, while
enjoying lower latency compared with conventional federated
learning. We detail the training algorithm for SD-FEEL with
three steps, including local model update, intra-cluster, and inter-
cluster model aggregations. The convergence of this algorithm
is proved on non-independent and identically distributed data,
which reveals the effects of key parameters and provides design
guidelines. Meanwhile, the heterogeneity of edge devices may
cause the straggler effect and deteriorate the convergence speed
of SD-FEEL. To resolve this issue, we propose an asynchronous
training algorithm with a staleness-aware aggregation scheme,
of which, the convergence is also analyzed. The simulations
demonstrate the effectiveness and efficiency of the proposed
algorithms for SD-FEEL and corroborate our analysis.

Index Terms—Federated learning (FL), mobile edge computing
(MEC), non-independent and identically distributed (non-IID)
data, device heterogeneity.

I. INTRODUCTION

The recent upsurge of Internet of Things (IoT) applications

brings about a drastically increasing number of IoT devices,

which is predicted to reach more than 30 billion by 2025 [3].

As a result, an unprecedented volume of data is generated and

stored at the edge of the wireless network, which can facilitate

the training of powerful machine learning (ML) models to

empower various intelligent mobile applications. Meanwhile,

as an enabler of the emerging IoT applications, the sixth

generation (6G) of wireless networks is envisioned to provide

ubiquitous artificial intelligence (AI) services anywhere at

any time [4], [5]. To leverage the valuable data resources, a

Part of this paper was accepted by the 2022 IEEE Wireless Communications
and Networking Conference [1] and submitted to the 2022 IEEE International
Conference on Communications [2]. (The corresponding author is J. Zhang.)

Y. Sun, J. Shao, and J. Zhang are with the Department of Electronic
and Computer Engineering, the Hong Kong University of Science and
Technology, Hong Kong (E-mail: {yuchang.sun, jiawei.shao}@connect.ust.hk,
eejzhang@ust.hk). Y. Mao is with the Department of Electronic and Informa-
tion Engineering, the Hone Kong Polytechnic University, Hong Kong (E-mail:
yuyi-eie.mao@polyu.edu.hk). J. H. Wang is with the Institute for Network
Sciences and Cyberspace, Tsinghua University, Beijing 100084, China, and
also with the Beijing National Research Center for Information Science and
Technology, Beijing 100084, China (E-mail: jessiewang@tsinghua.edu.cn).

traditional approach is to upload them to a centralized server

for training. However, this approach may not be suitable to

support ubiquitous AI in 6G networks, since data uploading

incurs heavy communication overhead and serious concerns

on privacy leakage [6], [7]. Therefore, there is an emerging

trend of pushing AI computing to the edge devices [8].

In 2017, Google proposed a privacy-preserving training

paradigm, namely federated learning (FL) [9], where the client

nodes (e.g., mobile and IoT devices) train models based on

local data and periodically upload them to a Cloud-based pa-

rameter server (PS) for model aggregation. Since FL requires

no data sharing, it substantially avoids privacy leakage. Nev-

ertheless, model uploading between the client nodes and the

Cloud-based PS introduces expensive communication costs,

which degrades the efficiency of FL. Inspired by the emerging

mobile edge computing (MEC) platforms [10], federated edge

learning (FEEL) [11] has been proposed to overcome this

bottleneck, where an edge-based PS (i.e., the edge server)

is deployed to be located near the edge devices as a model

aggregator. Despite its great promise in reducing the model

uploading latency, the training efficiency of FEEL is far from

satisfactory, since the number of client nodes accessible by a

single edge server is insufficient due to its limited coverage.

To fully exploit the potential of FEEL, recent works started

to incorporate multiple edge servers, each of which is in charge

of a number of client nodes. Accordingly, the total amount of

training data samples can be significantly increased. To speed

up the training process, edge servers collaborate in training by

sharing their models. A possible solution is to allow the Cloud

to collect and aggregate the models from edge servers [12],

[13], which still introduces excessive communication latency.

In this work, we will investigate a novel FL architecture to

support collaborated learning in 6G networks, namely semi-

decentralized federated edge learning (SD-FEEL) [1], [14],

which utilizes the low-latency communication among edge

servers to realize effective and efficient model aggregation.

A. Related Works

The training efficiency of FEEL faces two bottlenecks, i.e.,

the limited communication bandwidth and straggler effect.

On one hand, the client nodes and edge servers suffer from

unstable wireless connections and thus frequent communi-

cations will cause a large training latency. To improve the

learning efficiency, a control algorithm was proposed in [15] to

adaptively determine the global model aggregation frequency

given the available resources on client nodes. Besides, Shi

2

et al. [16] solved a joint bandwidth allocation and device

scheduling problem to maximize the learning performance of

FL with the given training time. Moreover, gradient quanti-

zation and sparsification techniques were adopted to achieve

communication-efficient FEEL [17], [18].

On the other hand, different types of edge devices have

heterogeneous computational resources, e.g., processing speed,

battery capacity, and memory usage [11]. Particularly, it may

take a longer time for the client nodes with less compu-

tational resources (namely stragglers) to conduct the same

amount of local training, which prolongs the total training

time. This device heterogeneity issue can be problematic

especially in large-scale implementations. A client selection

algorithm for FEEL was proposed in [19], which eliminates

the straggling client nodes from global model aggregation.

Meanwhile, asynchronous FL has attracted much attention

due to its effectiveness in dealing with device heterogeneity

[20]–[22]. Xie et al. [20] proposed the first asynchronous

training algorithm for FL, where the model aggregation is

triggered once the PS receives an update from any client node.

However, this scheme incurs more frequent communications

between the PS and client nodes. To strike a balance between

model improvement and training latency, a semi-asynchronous

training algorithm for FL was proposed in [21], where the

model aggregation is delayed until the PS collects a targeted

number of local updates. However, the stale models uploaded

from the straggling client nodes are less valuable to the

global model aggregation and may even degrade the learning

performance. The design in [22] relieved this issue by forcing

some client nodes with up-to-date or deprecated local models

to synchronize with the PS, while most client nodes stay

asynchronous.

When being implemented over wireless networks, the afore-

mentioned benefits of FEEL are hindered by the limited

coverage of a single edge server. Recent works considered

the cooperation among multiple edge servers in the training

to further explore the potential of FEEL. The client-edge-cloud

hierarchical FL system, namely HierFAVG, was investigated in

[12], [13], where each edge server is responsible for aggregat-

ing the models of its associated client nodes, while the Cloud-

based PS performs global aggregation to average the models

from edge servers periodically. However, the communication

with the Cloud-based PS still incurs a high latency. As an

alternative to the Cloud-based aggregator, in [23], a fog node

(i.e., an edge server) was selected by the Cloud to perform

global model aggregation in each communication round. Such

a design requires all the fog nodes to be fully connected and

may suffer from single-point failure. Besides, a recent work

[24] adopted the cell-edge users (i.e., client nodes) as bridges

to share models between multiple edge servers. These client

nodes may suffer from poor signal quality because of the cell-

edge effect [25], which degrades the training performance.

Table I summarizes the main characteristics of the above

works.

Motivated by the efficient communication among edge

servers, this paper investigates a novel FEEL system, semi-

decentralized federated edge learning (SD-FEEL) [1], [14],

where multiple edge servers collectively coordinate a large

number of client nodes. The client nodes perform local model

updates for several iterations and then upload the model to

the associated edge server for intra-cluster model aggrega-

tion. After several times of intra-cluster model aggregations,

multiple rounds of model exchanges and aggregations with

the neighboring edge servers, which is termed as inter-cluster

model aggregation, are conducted by edge servers. Such

a semi-decentralized architecture can easily include a huge

amount of client nodes and adequately explore their data at

a very low cost. The recent work [14] investigated a similar

design as SD-FEEL and analyzed its convergence, but only

on independent and identically distributed (IID) data. Besides,

they assumed only one round of communication among edge

servers, which may degrade the training performance due to

the model inconsistency among different edge servers.

B. Main Contributions

This paper investigates SD-FEEL at the edge of 6G wireless

networks, accounting for the non-IID data and heterogeneous

computational resources at different client nodes. Our main

contributions are summarized as follows:

• We first propose a generic training algorithm for SD-

FEEL, where client nodes and edge servers collaboratively

train an ML model through local updates, intra-cluster,

and inter-cluster model aggregations. To relieve the model

inconsistency among edge clusters, edge servers are allowed

to exchange and aggregate models multiple times in each

round of inter-cluster model aggregation.

• We analyze the convergence of the training algorithm on

non-IID data, with data heterogeneity among clients within

the same edge cluster, as well as that among different edge

clusters. Based on the analytical results, the impacts of

intra-/inter-cluster aggregation periods are discussed. We

also investigate how the network topology among edge

servers affects the convergence rate. It is found that SD-

FEEL converges slowly when the edge servers are sparsely

connected, which, however, can be alleviated by multiple

times of model sharings in inter-cluster model aggregation.

• To effectively combat device heterogeneity that may sig-

nificantly hinder the training performance, we propose an

asynchronous training algorithm for SD-FEEL, where edge

servers can independently set deadlines for local compu-

tation at client nodes. Particularly, we design a staleness-

aware aggregation scheme to account for the device hetero-

geneity. For analysis, we decompose the variance incurred

by asynchronous training and prove the convergence of the

proposed algorithm.

• We conduct extensive simulations on two image classifica-

tion tasks. The results demonstrate the benefits of SD-FEEL

in achieving faster convergence without sacrificing model

quality. The simulations also verify our discussions on the

effects of various key parameters. Especially, increasing the

number of rounds of inter-server communications is found

to be an effective strategy to reduce the model inconsistency

among edge clusters. Besides, further experiments show that

the proposed asynchronous training algorithm improves in

the test accuracy when SD-FEEL is under a high degree of

device heterogeneity.

3

TABLE I. COMPARISON OF FEEL SYSTEMS WITH MULTIPLE EDGE SERVERS

System

Communication

Among

Edge Servers

Communication

Between the Cloud

and Edge Servers

Latency

Insensitive to

Network

Topology

Insensitive to

the Cell-edge

Effect

Convergence

Guarantee on

Non-IID Data

HierFAVG [12], [13] % ! High ! ! !

FogFL [23] ! ! High % ! %

FedMes [24] % % Low ! % %

Multi-level Local SGD [14] ! % Low % ! %

SD-FEEL (Ours) ! % Low ! ! !

C. Organizations

The rest of the paper is organized as follows. In Section

II, we introduce the SD-FEEL system and propose a generic

training algorithm. Section III presents the convergence anal-

ysis and corresponding discussions, including the effects of

key parameters and comparison of different FEEL systems. In

Section IV, we investigate SD-FEEL with device heterogeneity

and propose an asynchronous training algorithm, followed by

its convergence analysis. We provide the simulation results in

Section V and conclude this paper in Section VI.

D. Notations

Throughout this paper, we use bold-face lower-case let-

ters, bold-face upper-case letters, and math calligraphy letters

to denote vectors, matrices, and sets, respectively. Besides,

X ≜ [x(𝑖)]𝑁
𝑖=1

represents a matrix, of which, the 𝑖-th column

vector is x(𝑖) . The 𝑁 × 𝑁 identity matrix is denoted as I𝑁 ,

and we define 1𝑁 ≜ [1, 1, . . . , 1]1×𝑁 . For any 𝑀 × 𝑁 matrix

X, 𝜆𝑖 (X) represents its 𝑖-th largest eigenvalue, the operator

norm is denoted as ∥X∥op ≜ max∥w ∥=1 Xw =
√︁
𝜆max (XTX),

and the weighted Frobenius norm is defined as ∥X∥M ≜∑𝑀
𝑖=1

∑𝑁
𝑗=1 𝑚

𝑖, 𝑗 |𝑥𝑖, 𝑗 |2, where M ≜ {𝑚𝑖, 𝑗 }. In addition, ⌈·⌉
denotes the ceil function, and ✶{·} is the binary indicator

function. We denote 𝑓 (𝑥) = O(𝑔(𝑥)) when there exists a

positive real number 𝑀 and a real number 𝑥0 such that

| 𝑓 (𝑥) | ≤ 𝑀𝑔(𝑥),∀𝑥 ≥ 𝑥0.

II. SYSTEM MODEL

A. Semi-Decentralized FEEL System

The SD-FEEL system comprises of 𝐶 client nodes (denoted

as set C) and 𝐷 edge servers (denoted as set D), as shown

in Fig. 1. The system can be viewed as 𝐷 edge clusters, each

of which consists of an edge server (denoted as 𝑑) and a set

of associated client nodes (denoted as C𝑑). Assume each edge

server coordinates at least one client node, and each client

node is associated with only one edge server, according to

some predefined criteria, e.g., physical proximity and network

coverage. Besides, the edge servers are connected with the

neighboring servers N𝑑 via high-speed cables, formulating a

connected graph G.

Client node 𝑖 possesses a set of local training data, denoted

as S𝑖 = {s(𝑖)𝑗 }
|S𝑖 |
𝑗=1

, where s
(𝑖)
𝑗

is the 𝑗-th data sample at client

node 𝑖. The collection of data samples at the set of client nodes

C𝑑 is denoted as S̃𝑑 , and the training data at all the client

nodes is denoted as S. The ratios of data samples are defined

as �̂�𝑖 ≜
|S𝑖 |
| S̃𝑑 |

, 𝑚𝑖 ≜
|S𝑖 |
|S | , and �̃�𝑑 ≜

| S̃𝑑 |
|S | , respectively. The

client nodes collaboratively train an ML model w ∈ R𝑀 with

𝑀 trainable parameters. Denote the loss function associated

with a data samples s with model w as 𝑓 (s;w), a typical

example of which is the categorical cross-entropy between the

predicted label and the ground truth for a classification task.

Accordingly, the objective of SD-FEEL is to minimize the

value of the loss function over the training data across all the

client nodes, i.e., minw∈R𝑀
{
𝐹 (w) ≜ ∑

𝑖∈C
|S𝑖 |
|S | 𝐹𝑖 (w)

}
, where

𝐹𝑖 (w) ≜ 1
|S𝑖 |

∑
𝑗∈S𝑖 𝑓 (s

(𝑖)
𝑗

;w) is the local loss at client node

𝑖.

We use ℎ𝑖 to denote the computational speed of client node

𝑖, which is in the unit of floating point operations per second

(i.e., FLOPS). Accordingly, the degree of device heterogeneity

is characterized by the heterogeneity gap 𝐻 ≜max𝑖, 𝑗∈C
ℎ𝑖
ℎ 𝑗

.

B. Training Algorithm

Assume there are 𝐾 iterations in the training process, which

includes three main procedures: 1) local model update, 2)

intra-cluster model aggregation, and 3) inter-cluster model

aggregation. While every training iteration consists of local

model update, intra-/inter-cluster model aggregations are trig-

gered with the periods of 𝜏1 and 𝜏1𝜏2, respectively. We show

an illustration of SD-FEEL training for two edge clusters in

Fig. 2 and introduce the details as follows. For clarity, we will

first present synchronous SD-FEEL, while the asynchronous

training will be considered in Section IV.

1) Local Model Update: Denote the model on the client

node 𝑖 at the beginning of the 𝑘-th training iteration as w
(𝑖)
𝑘−1

.

This client node performs model updating based on its local

data by using the mini-batch stochastic gradient descent (SGD)

algorithm [26], which is expressed as follows:

w
(𝑖)
𝑘
← w

(𝑖)
𝑘−1
− 𝜂𝑔(ξ (𝑖)

𝑘
;w
(𝑖)
𝑘−1
), 𝑖 ∈ C. (1)

Here 𝜂 is the learning rate, and 𝑔(ξ (𝑖)
𝑘

;w
(𝑖)
𝑘−1
) is the stochastic

gradient computed on a randomly-sampled batch of training

data ξ
(𝑖)
𝑘

.

2) Intra-cluster Model Aggregation: When the iteration

index 𝑘 is an integer multiple of 𝜏1, the client nodes upload

their local models to the corresponding edge server after

completing local training. The edge server aggregates these

received models by computing a weighted sum as follows:

ŷ
(𝑑)
𝑘
←

∑︁

𝑖∈C𝑑
�̂�𝑖w

(𝑖)
𝑘
, 𝑑 ∈ D . (2)

4

Client Nodes

Edge Server

Edge Cluster

2) Intra-Cluster
Model Aggregation

1) Local Model Update

3) Inter-Cluster Model Aggregation

Fig. 1. The semi-decentralized FEEL system.

If 𝑘 is not an integer multiple of 𝜏1𝜏2, the edge server directly

sends the model y
(𝑑)
𝑘

to its associated client nodes, i.e.,

w
(𝑖)
𝑘+1 ← y

(𝑑)
𝑘
, 𝑖 ∈ C𝑑 . (3)

Otherwise, the inter-cluster model aggregation is triggered.

3) Inter-cluster Model Aggregation: When 𝑘 is an integer

multiple of 𝜏1𝜏2, each edge server shares its model to the one-

hop neighboring edge servers after intra-cluster model aggre-

gation. Each round of inter-cluster model aggregation includes

𝛼 ∈ {1, 2, . . . } times of model exchanges and aggregations,

which can be expressed as follows:

ŷ
(𝑑)
𝑘,𝑙
←

∑︁

𝑗∈N𝑑∪{𝑑 }
𝑝 𝑗 ,𝑑ŷ

(𝑗)
𝑘,𝑙−1

, 𝑙 = 1, 2, . . . , 𝛼, 𝑑 ∈ D . (4)

Here ŷ
(𝑑)
𝑘,0

= y
(𝑑)
𝑘

is the intra-cluster aggregated model, and we

denote P ≜ [𝑝 𝑗 ,𝑑] ∈ R𝐷×𝐷 as the mixing matrix. To reduce

model inconsistency among edge clusters, i.e., to ensure fast

convergence to the weighted sum of the distributed models

through inter-cluster model aggregation, P can be chosen as

follows [27]:

P = I𝐷 −
2

𝜆1 (L̃) + 𝜆𝐷−1 (L̃)
L̃, (5)

where L̃ ≜ L𝛀
−1, L is the Laplacian matrix of graph G, and

𝛀 ≜ diag(�̃�1, �̃�2, . . . , �̃�𝐷). We define 𝜁 ≜ |𝜆2 (P) | ∈ [0, 1).
The edge server then updates y

(𝑑)
𝑘

as ŷ
(𝑑)
𝑘,𝛼

and broadcasts it

to the associated client nodes according to (3).

After repeating the above steps for 𝐾 iterations (𝐾 is

assumed as an integer multiple of 𝜏1𝜏2), the system enters

a consensus phase where the edge servers exchange and

aggregate models with their neighboring clusters. After suf-

ficient rounds of such operations, the system will output a

model
∑
𝑑∈D �̃�𝑑y

(𝑑)
𝐾

and broadcast it to the associated client

nodes. The consensus phase takes place only once, which will

incur negligible extra overhead. We summarize the training

algorithm of SD-FEEL in Algorithm 1.

Algorithm 1: Training Algorithm for SD-FEEL

Initialize all client nodes with the same model (i.e.,

w
(𝑖)
0

=w0, ∀𝑖 ∈ C);

for 𝑘 = 1, 2, . . . , 𝐾 do

for each client node 𝑖 ∈ C in parallel do

Update the local model as w
(𝑖)
𝑘

according to (1);

if mod (𝑘, 𝜏1) = 0 then

for each edge server 𝑑 ∈ D in parallel do
Receive the most updated model from

the client nodes in C𝑑;

Obtain y
(𝑑)
𝑘

by performing intra-cluster

model aggregation according to (2);

if mod (𝑘, 𝜏1𝜏2) = 0 then

Set ŷ
(𝑑)
𝑘,0

as y
(𝑑)
𝑘

;

for 𝑙 = 1, . . . , 𝛼 do
Share models with N𝑑 and per-

form inter-cluster model aggre-

gation according to (4);

Update y
(𝑑)
𝑘

as ŷ
(𝑑)
𝑘,𝛼

;

Broadcast y
(𝑑)
𝑘

to the client nodes in C𝑑;

Enter the consensus phase;

return
∑
𝑑∈D �̃�𝑑y

(𝑑)
𝐾

;

III. THEORETICAL ANALYSIS

A. Convergence Analysis

To facilitate the convergence analysis, we make the fol-

lowing assumptions that are commonly used in the existing

literature [28]–[30].

Assumption 1. For all 𝑖 ∈ C, we assume:

5

Local iteration = 0

Asynchronous SD-FEEL

Local iteration = 0

Local iteration = 1

Synchronous SD-FEEL

Edge Server

Client node

Local update

Intra-cluster
model aggregation

Inter-cluster
model aggregation

Idle

Legend

Fig. 2. An illustration of synchronous (left) and asynchronous (right) SD-FEEL. In synchronous SD-FEEL, the client nodes are required to
perform the same number of local iterations before intra-cluster and inter-cluster model aggregations, where the fast client nodes stay idle
until all the client nodes complete their local training. In asynchronous SD-FEEL, the client nodes in edge cluster 𝑑 ∈ {1, 2} perform local

model updates for a duration of 𝑇
(𝑑)

comp before uploading the model updates to the associated edge server. The edge server then aggregates
the received models from the client nodes in its cluster and shares the aggregated model with its one-hop neighbors.

• (Smoothness) The local objective function is 𝐿-smooth, i.e.,

∥∇𝐹𝑖 (w) − ∇𝐹𝑖 (w′)∥2 ≤ 𝐿 ∥w −w′∥2 ,∀w,w′ ∈ R𝑀 .
(6)

• (Unbiased and bounded gradient variance) The mini-batch

gradient is unbiased, i.e.,

Eξ (𝑖) |w [𝑔(ξ (𝑖) ;w)] = ∇𝐹𝑖 (w),∀w ∈ R𝑀 , (7)

and there exists 𝜎 > 0 such that

Eξ (𝑖) |w

[𝑔(ξ (𝑖) ;w) − ∇𝐹𝑖 (w)

2

2

]
≤ 𝜎2,∀w ∈ R𝑀 . (8)

• (Degree of non-IIDness) There exists 𝜅 > 0 such that

∥∇𝐹𝑖 (w) − ∇𝐹 (w)∥2 ≤ 𝜅, ∀w ∈ R𝑀 , (9)

where 𝜅 measures the degree of data heterogeneity across

all client nodes. When 𝜅 = 0, it reduces to the IID case.

Denote W𝑘 ≜ [w (𝑖)
𝑘
]𝑖∈C ∈ R

𝑀×𝐶 and G𝑘 ≜

[𝑔(ξ (𝑖) ;w (𝑖)
𝑘
)]𝑖∈C ∈ R𝑀×𝐶 . To characterize the process of

model uploading and broadcasting between client nodes and

edge servers, we define V ≜ [𝑣𝑖,𝑑] ∈ R𝐶×𝐷 and B ≜

[𝑏𝑑,𝑖] ∈ R𝐷×𝐶 , where 𝑢𝑖,𝑑 ≜ �̂�𝑖✶ {𝑖 ∈ C𝑑} represents the

data ratio of client node 𝑖 within the 𝑑-th edge cluster, and

𝑏𝑑,𝑖 = ✶ {𝑖 ∈ C𝑑} denotes the affiliation between edge server

𝑑 and client node 𝑖. Thus, the local models at client nodes

evolve according to the following lemma.

Lemma 1. The local models evolve according to the following

expression:

W𝑘+1 = (W𝑘 − 𝜂G𝑘)T𝑘 , 𝑘 = 1, 2, . . . , 𝐾, (10)

where the transition matrix is given by

T𝑘 =

VB if mod (𝑘,𝜏1)=0 and mod (𝑘,𝜏1𝜏2)≠0,

VP
𝛼
B, if mod (𝑘,𝜏1𝜏2) = 0,

I𝐶 , otherwise.
(11)

Proof. We rewrite (4) in the matrix form as Ŷ𝑘,𝑙 = PŶ𝑘,𝑙−1,

where Ŷ𝑘,𝑙 ≜ [ŷ (𝑑)𝑘,𝑙] ∈ R
𝑀×𝐷 . According to this iterative

relationship, we have Ŷ𝑘,𝛼 = P
𝛼
Ŷ𝑘,0. Then the proof is

completed by following Ŷ𝑘,0 = VW𝑘 and W𝑘+1 = BŶ𝑘,𝛼. □

Denote m ≜ [𝑚𝑖]𝑖∈C and M ≜ m1
T
𝐶

. We define an

auxiliary global model as u𝑘 ≜ W𝑘m and the corresponding

concentration matrix is u𝑘1
T
𝐶

= W𝑘M. Let u𝑘 evolve as if

G𝑘M can be obtained by a centralized PS and used to update

the global model in every iteration. Accordingly, we have the

following relationship:

u𝑘+1 = u𝑘 − 𝜂G𝑘m
T. (12)

Such a relationship is desired to ensure fast convergence in

terms of training iterations, as the gradients computed at all

the client nodes can be leveraged to update the global model

[15], [31]. Unfortunately, this can be achieved only when

edge servers receive local models and reach a consensus in

each training iteration (i.e., 𝜏1 = 1, 𝜏2 = 1, and 𝜁 𝛼 = 0).

Comparatively, the model W𝑘 in SD-FEEL deviates from this

desired sequence due to the existence of T𝑘 in (10). However,

there exists an upper bound for the deviation between W𝑘 and

u𝑘1
T
𝐶

, introduced by both mini-batch sampling of SGD (i.e.,

𝜎2) and non-IIDness across client nodes (i.e., 𝜅2).

Lemma 2. With Assumption 1, we have:

1

𝐾

𝐾∑︁

𝑘=1

E

[W𝑘 − u𝑘1T
𝐶

2

M

]

≤ 2𝜂2𝑉1𝜎
2 + 8𝜂2𝑉2𝜅

2 + 8𝜂2𝑉2

𝐾

𝐾∑︁

𝑘=1

𝐽𝑘 ,

(13)

6

where 𝑉1 ≜ (𝜏1𝜏2 𝜁 2𝛼

1−𝜁 2𝛼 + 𝜏1𝜏2−1
2
)/(1−16𝜂2𝐿2𝑉3), 𝑉2 ≜ 𝑉3/(1−

16𝜂2𝐿2𝑉3), 𝑉3 ≜ 𝜏1𝜏2 (𝜏1𝜏2Λ+ 𝜏1𝜏2−1
2

2−𝜁 𝛼

1−𝜁 𝛼), Λ≜ 𝜁 2𝛼

1−𝜁 2𝛼+ 2𝜁 𝛼

1−𝜁 𝛼+
𝜁 2𝛼

(1−𝜁 𝛼)2 , and 𝐽𝑘 ≜E[∥
∑
𝑖∈C 𝑚𝑖∇𝐹𝑖 (w

(𝑖)
𝑘
)∥2

2
].

Proof. Since u𝑘1
T
𝐶
= W𝑘M, we have W𝑘 −u𝑘1T

𝐶
= W𝑘 (I𝐶 −

M), which can be expanded as W0 (I𝐶 − M)∏𝑘−1
𝑙=1 T𝑙 −

𝜂
∑𝑘−1
𝑠=1 G𝑠 (

∏𝑘−1
𝑙=𝑠 T𝑙 −M) using (10). Given that w

(𝑖)
0

=

w0,∀𝑖 ∈ C, it remains to provide an upper bound for the term

E[∥−𝜂∑𝑘−1
𝑠=1 G𝑠 (

∏𝑘−1
𝑙=𝑠 T𝑙−M)∥2

M
]. The proof is concluded by

bounding accumulated variance of gradients with Assumption

1 and the Jensen’s inequality. The complete proof is referred

to Appendix C in [1]. □

As aforementioned, the training objective is to output a

global model u𝑘 which minimizes the global objective func-

tion. We now characterize how the expected loss of u𝑘 changes

in two consecutive iterations in the following lemma.

Lemma 3. With Assumption 1, the expected change of the

local loss functions in two consecutive iterations is bounded

as follows:

E[𝐹 (u𝑘+1)] − E[𝐹 (u𝑘)]

≤ −𝜂
2
E
[
∥∇𝐹 (u𝑘)∥22

]
+ 𝜂

2𝐿

2

∑︁

𝑖∈C
𝑚2
𝑖𝜎

2

−
(
𝜂

2
− 𝜂

2𝐿

2

)
𝐽𝑘 +

𝜂𝐿2

2
E
[
∥W𝑘 (I𝐶 −M)∥2

M

]
.

(14)

Proof. Following Lemma 8 in [32], the proof is completed by

plugging the right hand side (RHS) of (12) into the first-order

Taylor expansion of ∇𝐹 (u𝑘+1) and leveraging Assumption 1.

Please refer to the detailed proof in [1]. □

With above lemmas, we prove the convergence of Algorithm

1 in the following theorem.

Theorem 1. If the learning rate 𝜂 satisfies:

1 − 𝜂𝐿 − 8𝜂2𝐿2𝑉2 ≥ 0, 1 − 16𝜂2𝐿2𝑉3 > 0, (15)
we have:

1

𝐾

𝐾∑︁

𝑘=1

E
[
∥∇𝐹 (u𝑘)∥22

]
≤ 2Δ

𝜂𝐾

+ 𝜂𝐿
∑︁

𝑖∈C
𝑚2
𝑖𝜎

2

︸ ︷︷ ︸
Φ0

+𝜂2𝐿2 (2𝑉1𝜎
2 + 8𝑉2𝜅

2)
︸ ︷︷ ︸

Φ(𝜏1 ,𝜏2 ,𝛼,𝜁)

, (16)

where Δ ≜ E [𝐹 (u1)] − 𝐹 (u∗) and u∗ ≜ arg minw 𝐹 (w).

Proof. We sum up both sides of (14) over 𝑘 = 1, 2, . . . , 𝐾 , and

divide them by 𝐾 . Then we apply (13) in its RHS and choose

a suitable 𝜂 that satisfies the conditions in (15) to eliminate

𝐽𝑘 . The proof is concluded by rearranging the terms. □

B. Discussions

The result in Theorem 1 provides us with various insights,

as presented in this subsection.

Corollary 1. (Convergence rate) If the learning rate is chosen

as 𝜂 = O
(

1

𝐿
√
𝐾

)
, (16) can be simplified as follows:

1

𝐾

𝐾∑︁

𝑘=1

E
[
∥∇𝐹 (u𝑘)∥22

]
≤O

(
2𝐿Δ +Φ0√

𝐾

)
+O

(
Φ(𝜏1, 𝜏2, 𝛼, 𝜁)

𝐾

)
,

(17)

which implies that Algorithm 1 converges within O(1
𝜖 2)

training iterations to find an 𝜖-approximate solution (i.e.,
1
𝐾

∑𝐾
𝑘=1 E

[
∥∇𝐹 (u𝑘)∥22

]
≤ 𝜖).

In the results of Theorem 1 and Corollary 1, there are

two variance terms, i.e., Φ0 and Φ(𝜏1, 𝜏2, 𝛼, 𝜁). The constant

term Φ0 is the same as the bound in previous literature of

centralized SGD [33] and FL frameworks [28], [32]. However,

infrequent aggregations in SD-FEEL result in model diver-

gence across client nodes, reflected through Φ(𝜏1, 𝜏2, 𝛼, 𝜁).
Remark 1. (Effect of aggregation periods) By taking the

first-order derivative, we see that the term Φ(𝜏1, 𝜏2, 𝛼, 𝜁)
increases with both 𝜏1 and 𝜏2. With more local iterations

performed, the models on client nodes become biased towards

local datasets, which slows down the convergence speed [29],

[31]. Therefore, to minimize the error floor in the RHS of

(16), we prefer setting 𝜏1 = 1 and 𝜏2 = 1. Nevertheless, as will

be seen in Section V, with smaller values of 𝜏1 and 𝜏2, such

frequent aggregations incur a huge latency in both intra-cluster

and inter-cluster communications. Thus, 𝜏1 and 𝜏2 should be

properly selected to achieve fast convergence with respect to

the wall-clock time.

Remark 2. (Effect of network among edge servers) The

RHS of (16) also increases with 𝜁 and 𝛼, Note that when

𝜁 𝛼→0 (i.e., with the fully connected topology or 𝛼→∞), the

edge servers can reach consensus (i.e., y
(𝑑)
𝑘
←∑

𝑗∈D �̃� 𝑗y
(𝑗)
𝑘

)

after inter-cluster model aggregation.

• A smaller value of 𝜁 (i.e., a more connected graph among

the edge servers) results in faster convergence. Fig. 3

shows several typical topologies formed by six edge servers,

including the star (𝜁 = 0.71), ring (𝜁 = 0.6), partially con-

nected (𝜁 = 0.33), and fully connected (𝜁 = 0) topologies.

It is clear that the fully-connected network topology can

achieve the best performance with a fixed 𝛼.

• Increasing 𝛼 (i.e., raising the inter-server communication

overhead) can reduce the variance terms in the RHS of

(16) and thus speed up the convergence. Nevertheless, such

benefits diminish as 𝛼 increases. As will be demonstrated

in Section V, there is no additional gain after 𝛼 is beyond

some value.

Remark 3. (Comparison with HierFAVG) If edge servers

can achieve a consensus in each training iteration, i.e., 𝜁 𝛼 =

0, our results in Theorem 1 and Corollary 1 reduce to the

case of HierFAVG [12]. Accordingly, Corollary 1 indicates that

HierFAVG requires fewer iterations to converge. Nevertheless,

SD-FEEL adopts inter-server communication to replace the

communication between the edge server and the Cloud, which

significantly reduces the per-iteration latency. As a result, the

total training time of the two architectures depends on the

application scenarios. Here we discuss two special cases as

follows:

7

1

2

3

4

6

5

1

2

3

4

6

5

(b) Ring (c) Partially-connected (d) Fully-connected

1

2

3

4

6

5

(a) Star

6

2

34

5

1

Fig. 3. Typical network topologies of the edge servers.

• When the network among edge servers is fully-connected,

SD-FEEL always leads to a better model than HierFAVG

within a given training time.

• When the inter-server communication latency is adequately

low, the edge servers are allowed to perform sufficient

rounds of model sharing to reach consensus. Thus, SD-

FEEL converges faster than HierFAVG with respect to the

wall-clock time.

When client nodes differ slightly in computation resources,

i.e., with a small 𝐻, SD-FEEL converges fast with Algorithm

1. Nevertheless, the training efficiency may be degraded if

there is a huge disparity in computational speeds, i.e., 𝐻 is

large. In the next section, we propose an asynchronous training

algorithm to alleviate such an issue.

IV. ASYNCHRONOUS TRAINING FOR SD-FEEL

When client nodes have significantly diverse computational

speeds (i.e., 𝐻 ≫ 1), performing an equal number of local

iterations results in idle time of the fast client nodes since

they have to wait for the straggling ones to complete local

training. To mitigate such an issue, we propose an asyn-

chronous training algorithm for SD-FEEL where each edge

server presets a deadline for local training time and proceeds

to the next training iteration once it completes inter-cluster

model aggregation of the current iteration.

A. Training Algorithm

Denote the training iteration counter as 𝑡, which gives the

total number of training iterations completed by edge clusters.

Before entering the training process, each edge server presets

a deadline for local model updates given the computational

resources of the coordinated client nodes. Specifically, edge

server 𝑑 sets the value of 𝑇
(𝑑)

comp for the client nodes in C𝑑 . The

determination of 𝑇
(𝑑)

comp is beyond the scope of this paper, but

in general, it follows the same principles mentioned in Remark

1, namely to ensure effective training as well as avoid large

model inconsistency in model aggregations. An illustration of

the asynchronous training process is shown in Fig. 2. Now

we present the details of three key stages in each iteration as

follows.

1) Local Model Update: In the 𝑑-th edge cluster, client

node 𝑖 performs 𝜃𝑖 = ℎ𝑖𝛽 ∈ {𝜃min, 𝜃min + 1, . . . , 𝜃max} local

epochs using mini-batch SGD within the duration of 𝑇
(𝑑)

comp

and 𝛽 is related to the complexity of training task and the

batch size. Denote the model of client node 𝑖 at the beginning

of the 𝑙-th local training epoch in the 𝑡-th global iteration as

w
(𝑖)
𝑡 ,𝑙

. Then we have the following expression:

w
(𝑖)
𝑡 ,𝑙+1←w

(𝑖)
𝑡 ,𝑙
−𝜂𝑔(ξ (𝑖)

𝑡 ,𝑙
;w
(𝑖)
𝑡 ,𝑙
), 𝑙 ∈{0, 1,. . ., 𝜃𝑖−1} , 𝑖 ∈C. (18)

Given that the varying numbers of local epochs among client

nodes may incur model bias [29], client node 𝑖 normalizes the

local updates by 𝜃𝑖 as follows:

𝚫
(𝑖)
𝑡 ≜

1

𝜃𝑖

(
w
(𝑖)
𝑡 , 𝜃𝑖
−w (𝑖)

𝑡 ,0

)
=− 𝜂

𝜃𝑖

𝜃𝑖−1∑︁

𝑙=0

𝑔(ξ (𝑖)
𝑡 ,𝑙

;w
(𝑖)
𝑡 ,𝑙
), 𝑖 ∈ C. (19)

2) Intra-cluster Model Aggregation: Once the deadline

𝑇
(𝑑)

comp arrives, edge server 𝑑 collects the normalized model

updates from its associated client nodes C𝑑 and computes the

weighted average with the weighting factors {�̂�𝑖}’s. Denote

the most updated model at edge server 𝑑 at the beginning of

the 𝑡-th iteration as y
(𝑑)
𝑡 . Then such an update is added to

y
(𝑑)
𝑡 as the implementation of gradient descent, which can be

expressed as follows:

ŷ
(𝑑)
𝑡 ← y

(𝑑)
𝑡 + 𝜃𝑑

∑︁

𝑖∈C𝑑
�̂�𝑖𝚫

(𝑖)
𝑡 , 𝑑 ∈ D, (20)

where 𝜃𝑑 ≜
∑
𝑖∈C𝑑 �̂�𝑖𝜃𝑖 is the weighted average of the

numbers of local epochs completed by the client nodes.

3) Inter-cluster Model Aggregation: After intra-cluster

model aggregation, edge server 𝑑 exchanges the local model

ŷ
(𝑑)
𝑡 with its neighboring edge servers in N𝑑 . The models

maintained by these edge servers are accordingly updated as

follows:

y
(𝑗)
𝑡 ←

∑︁

𝑗′∈N𝑗∪{ 𝑗 }
𝑝
𝑗′, 𝑗
𝑡 ŷ

(𝑗′)
𝑡 , 𝑗 ∈ N𝑑 ∪ {𝑑}, (21)

where P𝑡 ≜ {𝑝 𝑗
′, 𝑗
𝑡 } ∈ R𝐷×𝐷 denotes the mixing matrix

in the 𝑡-th iteration. Note that the neighboring edge server

𝑗 maintains a model updated in a previous global iteration

𝑡 ′(𝑗) < 𝑡, the gap of which is named the iteration gap, i.e.,

𝛿
(𝑗)
𝑡 ≜ 𝑡 − 𝑡 ′(𝑗). Since a larger value of 𝛿

(𝑗)
𝑡 implies that the

8

model is more stale and has less value to other edge clusters

[20], we design a staleness-aware mixing matrix as follows:

𝑝
𝑖, 𝑗
𝑡 =

𝜓 (𝛿 (𝑗)𝑡)
Ψ
(𝑗)
𝑡

if 𝑗 = 𝑑 and 𝑖 ∈ N𝑑 ∪ {𝑑},
𝑝
𝑗 ,𝑖
𝑡 if 𝑗 ∈ N𝑑 and 𝑖 = 𝑑,

1 − 𝑝𝑑, 𝑗𝑡 if 𝑗 ∈ N𝑑 and 𝑖 = 𝑗 ,

1 if 𝑗 ∉ N𝑑 ∪ {𝑑} and 𝑖 = 𝑗 ,

0, otherwise,

(22)

where 𝜓(𝑥) is a general non-increasing function of 𝑥 and

Ψ
(𝑗)
𝑡 ≜

∑
𝑖∈N𝑗∪{ 𝑗 } 𝜓(𝛿

(𝑖)
𝑡). Then the model y

(𝑑)
𝑡 is broadcasted

to the client nodes in C𝑑 according to w
(𝑖)
𝑡+1,0 ← y

(𝑑)
𝑡 , 𝑖 ∈ C𝑑 .

For illustration, consider an example with three edge clusters

𝑑 ∈ {1, 2, 3} arranging in a sequential order. When edge

cluster 1 triggers the inter-cluster model aggregation in the 𝑡-

th training iteration, the iteration gaps of its neighboring edge

cluster (N1 = {2}) is 𝛿
(2)
𝑡 = 2. The corresponding mixing

matrix is P𝑡 = [𝜓 (0)
Ψ
(1)
𝑡

,
𝜓 (2)
Ψ
(1)
𝑡

, 0;
𝜓 (2)
Ψ
(1)
𝑡

, 1 − 𝜓 (2)
Ψ
(1)
𝑡

, 0; 0, 0, 1].
The above steps repeat until timeout or the values of local

loss at all the client nodes cannot be further reduced. Assume 𝑇

is the global iteration index at that time. Then the system enters

the consensus phase to output a global model
∑
𝑑∈D �̃�𝑑y

(𝑑)
𝑇

.

B. Convergence Analysis

We define an auxiliary global model at the 𝑡-th training

iteration as y𝑡 ≜
∑
𝑑∈D �̃�𝑑y

(𝑑)
𝑡 , the evolution of which is

expressed as:

𝒚𝑡+1 = 𝒚𝑡 − 𝜂Ĝ𝑡m̃
T
𝚲, (23)

where Ĝ𝑡 ≜ [
∑
𝑖∈C𝑑

�̂�𝑖

𝜃𝑖

∑𝜃𝑖−1

𝑙=0
𝑔(ξ (𝑖)

𝑡 ,𝑙
;w
(𝑖)
𝑡 ,𝑙
)]𝑑∈D ∈ R𝑀×𝐷 ,

m̃ ≜ [�̃�𝑑]𝑑∈D , and 𝚲 ≜ diag(𝜃1, 𝜃2, . . . , 𝜃𝐷). Since the

client nodes perform different local epochs, we prove the

convergence by focusing on the servers’ models, in contrast

to the client models as in the proof of Section III. The

equivalence y𝑡 =
∑
𝑖∈C 𝑚𝑖w

(𝑖)
𝑡+1,0 always holds if all edge

servers broadcast the models to the associated client nodes.

The analysis basically follows the procedures in subsection

III-A, i.e., using accumulated gradients to provide an upper

bound for model deviation. Nevertheless, the asynchronous

training incurs additional model inconsistency among edge

clusters. Specifically, the iteration counter 𝑡 increases once an

edge cluster completes a training iteration. However, the client

nodes in other edge clusters are training on stale models as

aforementioned. To characterize this phenomenon, we define

a
(𝑑)
𝑡
≜ a

(𝑑)
𝑡−𝛿 (𝑑)𝑡

(respectively a
(𝑖)
𝑡
≜ a

(𝑖)
𝑡−𝛿 (𝑑)𝑡

, 𝑖 ∈ C𝑑) as the

delayed model or gradient at the 𝑑-th edge server (respectively

the 𝑖-th client node) in the 𝑡-th iteration. The following

lemma shows that 𝛿
(𝑑)
𝑡 is upper bounded throughout the whole

training process.

Lemma 4. (Bounded iteration gap) There exists a constant

𝛿max such that 𝛿
(𝑑)
𝑡 ≤ 𝛿max,∀𝑡 ∈ N, 𝑑 ∈ D.

Proof. After setting {𝑇 (𝑑)comp}’s, the training latency for each

iteration is fixed as 𝑇
(𝑑)

iter
. During one training iteration of the

slowest edge cluster 𝑗∗, 𝛿max =
∑
𝑑∈D

(⌈
𝑇
(𝑑)

iter

𝑇
(𝑗∗)

iter

⌉
− 1

)
gives a

maximal value for the number of total iterations that other

edge clusters have completed. □

To show the convergence, we begin with upper bounding the

expected change of loss functions in two consecutive iterations

in Lemma 5.

Lemma 5. The expected change of the global loss function in

two consecutive iterations is bounded as follows:

E[𝐹 (𝒚𝑡+1)] − E[𝐹 (𝒚𝑡)]

≤ −1

2
𝜂𝜃minE

[∇𝐹 (𝒚𝑡)
2
]
+ 1

2
𝜂2𝐿𝜃2

max𝜃
−1
min

∑︁

𝑖∈C
𝑚2
𝑖𝜎

2

− 𝜂
2
(𝜃min − 𝜂𝐿𝜃2

max)𝑄𝑡 +
1

2
𝜂𝜃min E

[∇𝐹 (𝒚𝑡) − ∇F̂𝑡m̃
T
2
]

︸ ︷︷ ︸
E𝑡

,

(24)

where 𝑄𝑡 ≜ E[∥∇F̂𝑡m̃
T∥2] and ∇F̂𝑡 ≜

[∑𝑖∈C𝑑
�̂�
𝜃𝑖

∑𝜃𝑖−1

𝑙=0
∇𝐹𝑖 (w (𝑖)𝑡 ,𝑙)]𝑑∈D .

Proof. Similar with the proof of Lemma 3, by plugging the

RHS of (23) into the first-order Taylor expansion of ∇𝐹 (𝒚𝑡+1)
and following Lemma 8 in [32], we conclude the proof. □

The term E𝑡 in (24) measures the degree to which the

gradients collected from client nodes (i.e., ∇F̂𝑡m̃
T) deviate

from the desired gradient of global model (i.e., ∇𝐹 (𝒚𝑡)).
Using the 𝐿-smoothness and the Jensen’s inequality (i.e.,

∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2,∀a, b ∈ R𝑑), we derive an upper

bound the term E𝑡 , which can be decomposed as follows:

E𝑡 ≤ 2𝐿2
E

[𝒚𝑡 − 𝒚𝑡

2
]

︸ ︷︷ ︸
E𝑡,1

+4𝐿2
∑︁

𝑑∈D
�̃�𝑑E

[𝒚𝑡 − y
(𝑑)
𝑡

2
]

︸ ︷︷ ︸
E𝑡,2

+ 4𝐿2
∑︁

𝑑∈D
�̃�𝑑

∑︁

𝑖∈C𝑑

�̂�𝑖

𝜃𝑖

𝜃𝑖−1∑︁

𝑙=0

E

[y (𝑑)
𝑡
−w (𝑖)

𝑡 ,𝑙

2
]

︸ ︷︷ ︸
E𝑡,3

.

(25)

In the RHS of (25), the term E𝑡 ,1 quantifies the influence

of the staleness, which can be upper bounded by using

Lemma 4. The term E𝑡 ,2 measures the inter-cluster model

divergence between an edge server and the averaged model 𝒚𝑡 ,

while the term E𝑡 ,3 measures the weighted sum of the model

divergence between edge clusters. After respectively bounding

three terms, we obtain the following lemma.

Lemma 6. With Assumption 1, we have:

1

𝑇

𝑇−1∑︁

𝑡=0

E𝑡 ≤ 𝐴(𝜃min, 𝜃max, 𝛿max)𝜎2

+ 𝐵(𝜃min, 𝜃max, 𝛿max)𝜅2 + 𝐶 (𝜃max, 𝛿max)𝑄𝑡 ,
(26)

where 𝐴(𝜃min, 𝜃max, 𝛿max) ≜ 4𝜂2𝐿2𝛿2
max𝜃

2
max𝜃

−1
min
𝑈4 +

4𝜂2𝐿2 (𝜃max−1)
1−2𝜂2𝐿2𝑈2

+ 8𝜂2𝐿2𝜃2
max𝜃

−1
min

𝑈3

𝑇

𝑇−1∑
𝑡=0

𝑡−1∑
𝑠=1

𝜌2
𝑠,𝑡−1

,

𝐵(𝜃min, 𝜃max, 𝛿max) ≜ 8𝜂2𝐿2𝛿2
max𝜃

2
max𝜃

−1
min
𝑈4 + 24𝜂2𝐿2𝑈2

1−2𝜂2𝐿2𝑈2
+

16𝜂2𝐿2𝜃2
max𝜃

−1
min
𝑈3

1
𝑇

∑𝑇−1
𝑡=0 (

∑𝑡−1
𝑠=1 𝜌𝑠,𝑡−1)2 𝐶 (𝜃max, 𝛿max) ≜

9

8𝜂2𝐿2𝛿2
max𝜃max𝑈4+16𝜂2𝐿2𝜃2

max𝑈3
1
𝑇

∑𝑇−1
𝑡=𝑠+1 𝜌𝑠,𝑡−1 (

∑𝑡−1
𝑙=1 𝜌𝑙,𝑡−1),

𝑈2 ≜ 𝜃max (𝜃max − 1), 𝑈3 ≜
1+4𝜂2𝐿2𝑈2

1−2𝜂2𝐿2𝑈2
, 𝑈4 ≜

1+22𝜂2𝐿2𝑈2

1−2𝜂2𝐿2𝑈2
, and

𝜌𝑠,𝑡−1 ≜ ∥
∏𝑡−1
𝑙=𝑠 P𝑙 −M∥op.

Proof. The proof is obtained by respectively bounding the

three terms in the RHS of (25). Please refer to Appendix

A. □

We are now ready to prove the convergence of the asyn-

chronous training algorithm.

Theorem 2. With Assumption 1, if the learning rate 𝜂 satisfies

1 − 𝜂𝐿𝜃2
max𝜃

−1
min − 𝐶 (𝜃max, 𝛿max) ≥ 0, 1 − 2𝜂2𝐿2𝑈2 > 0, (27)

we have

1

𝑇

𝑇−1∑︁

𝑡=0

E

[∇𝐹 (𝒚𝑡)
2
]

≤ 2{E[𝐹 (y0)] − E[𝐹 (𝒚𝑇)]}
𝜂𝜃min𝑈1𝑇

+ 𝜂𝐿𝜃
2
max

𝑈1𝜃
2
min

∑︁

𝑖∈C
𝑚2
𝑖𝜎

2

+ 𝐴(𝜃min, 𝜃max, 𝛿max)
𝜎2

𝑈1

+ 𝐵(𝜃min, 𝜃max, 𝛿max)
𝜅2

𝑈1

,

(28)

where 𝑈1 ≜
1−14𝜂2𝐿2𝑈2

1−2𝜂2𝐿2𝑈2
.

Proof. Summing up both sides of (24), plugging (26) into the

RHS, and then choosing the learning rate as (27) to eliminate

𝑄𝑡 , we conclude the proof. □

Remark 4. (Convergence rate) If we choose the learning

rate as 𝜂 =O
(

1

𝐿
√
𝑇

)
, the RHS of (28) decreases at a speed of

O(1√
𝑇
) and approaches zero when 𝑇→∞, which ensures the

convergence.

V. SIMULATIONS

A. Settings

We simulate an SD-FEEL system with 50 client nodes

and 10 edge servers. It is assumed that each edge server

coordinates five client nodes. We consider a ring topology

of edge servers unless otherwise specified. We evaluate SD-

FEEL on two benchmark datasets for image classification,

i.e., the MNIST [34] and CIFAR-10 [35] datasets, each of

which has ten classes of labels. For the non-IID setting, we

adopt the skewed label partition [36] for the MNIST dataset,

where each client node has 𝑐 (with a default value of 2)

random classes of data samples. For the CIFAR-10 dataset,

we utilize a Dirichlet distribution Dir50 (𝛽) to sample the

probabilities {𝑝′
𝑙,𝑖
}’s, which is the proportion of the training

samples of class 𝑙 assigned to the 𝑖-th client node [37],

where 𝛽 (with a default value of 0.5) is the concentration

parameter and a smaller value of 𝛽 results in a more uneven

local distribution across the client nodes. Following [12], we

train a convolutional neural network (CNN) with two 5 × 5

convolutional layers and 𝑀 = 21, 840 trainable parameters on

the MNIST dataset, and another CNN with six convolutional

layers that consists of 𝑀 = 5, 852, 170 trainable parameters on

the CIFAR-10 dataset. The mini-batch SGD is employed with

a batch size of 10, and the learning rate is set as 0.01 and 0.1

for the MNIST and CIFAR-10 datasets, respectively.

To demonstrate the effectiveness of SD-FEEL, we adopt

three FL schemes as baselines, including 1) FedAvg [9],

2) HierFAVG [12], and 3) FEEL [11]. We implement the

three baseline schemes based on FedML [38], which is an

open-source research library for FL. Note that FEEL is an

edge-assisted FL scheme with a single edge server randomly

scheduling five client nodes in each iteration. For fair compar-

isons, each edge server in HierFAVG, FEEL, and SD-FEEL is

assumed to have equal number of orthogonal uplink wireless

channels.

B. Training Latency

The latency of 𝐾 training iterations can be calculated as

𝑇tot = 𝐾
(
𝑇ct

comp + 1
𝜏1
𝑇ct-sr

comm + 𝛼
𝜏1𝜏2

𝑇 sr-sr
comm

)
, where 𝑇ct

comp is the

computation latency for each local iteration at client nodes,

𝑇ct-sr
comm denotes the model uploading latency from a client

node to its associated edge server, and 𝑇 sr-sr
comm is the model

transmission latency between neighboring edge servers. Fol-

lowing [39], the averaged computation time is assumed to

𝑇ct
comp =

𝑁MAC

𝐶CPU
, where 𝑁MAC is the number of the floating-

point operations (FLOPs) for one local iteration, and 𝐶CPU =

10 GFLOPS denotes the CPU’s computing bandwidth for the

slowest device. The numbers of FLOPs required for local

training at each iteration are 𝑁MAC = 487.54 KFLOPs for the

MNIST dataset and 𝑁MAC=138.4 MFLOPs for the CIFAR-10

dataset1. The communication latency is expressed as 𝑇comm =
𝑀bit

𝑅
with 𝑀bit=32𝑀 bits and 𝑅 denoting the transmission rate.

Specifically, we assume that the client nodes communicate

with the associated edge servers using orthogonal channels

and there is no inter-cluster interference [16]. The transmission

rate is assumed to be 𝑅ct-sr=𝐵 log2 (1 + SNR) ≈5 Mbps, where

𝐵 = 1 MHz and SNR= 15 dB. The edge server communicates

with the neighboring edge servers via high-speed links with

the bandwidth of 50 Mbps [40], and the bandwidth from the

edge servers to the Cloud is set as 5 Mbps. Accordingly, the

transmission rate from the client nodes to the Cloud is given

by 𝑅ct-cd=2.5 Mbps.

C. Results

1) Convergence Speed and Generalization Performance:

We show the training loss with respect to the training time

for both the MNIST and CIFAR-10 datasets in Fig. 4. We

see that the training loss of SD-FEEL drops rapidly in the

initial training stage, and SD-FEEL converges at around 40

seconds and 250 minutes for the MNIST and CIFAR-10

datasets, respectively. Comparatively, HierFAVG and FedAvg

fall behind due to the high communication latency with the

Cloud-based PS. Besides, despite the low uplink transmission

delay, FEEL has an unstable and slower training process as

the edge server has access to a limited number of accessible

client nodes in each iteration. Fig. 5 shows the generalization

1These values are calculated using OpCounter, which is an open-source
model analysis library available at https://github.com/Lyken17/pytorch-OpC
ounter.

10

0 10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Tr

ai
ni

ng
 L

os
s

(a) MNIST
FedAvg
FEEL
HierFAVG
SD-FEEL

0 50 100 150 200 250
Time (min.)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

ni
ng

 L
os

s

(b) CIFAR-10
FedAvg
FEEL
HierFAVG
SD-FEEL

Fig. 4. Training loss over time on the (a) MNIST (𝜏1 = 5, 𝜏2 = 1,
and 𝛼 = 1) and (b) CIFAR-10 (𝜏1 = 2, 𝜏2 = 1, and 𝛼 = 5) datasets.

performance in terms of the test accuracy over time. Within the

given training time, the test accuracy of SD-FEEL improves

over FedAvg and FEEL due to efficient communication across

edge servers, while their learned models are still unusable. In

addition, we notice that in Fig. 4(a) and Fig. 5(a), SD-FEEL

and HierFAVG have a small gap in terms of training loss

and test accuracy, respectively, since the computation latency

dominates the training time for this task on the MNIST dataset.

To further compare the performance of SD-FEEL and

HierFAVG, Fig. 6(a) shows the test accuracy over time

with different inter-server communication rates, i.e., 𝑅sr-sr
comm =

10 Mbps, 50 Mbps, and 200 Mbps. When edge servers share

models with a slower rate (e.g., 10 Mbps), SD-FEEL reaches

a lower test accuracy than HierFAVG. Correspondingly, a high

communication speed among edge servers (e.g., 200 Mbps)

ensures SD-FEEL to converge faster. Besides, in Fig. 6(b),

we see that with a sparsely-connected network (i.e., the ring

topology), SD-FEEL may have a slower convergence speed

0 5 10 15 20 25 30 35 40
Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

(a) MNIST

FedAvg
FEEL
HierFAVG
SD-FEEL

0 50 100 150 200 250
Time (min.)

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

(b) CIFAR-10

FedAvg
FEEL
HierFAVG
SD-FEEL

Fig. 5. Test accuracy over time on the (a) MNIST (𝜏1 = 5, 𝜏2 = 1,
and 𝛼 = 1) and (b) CIFAR-10 (𝜏1 = 2, 𝜏2 = 1, and 𝛼 = 5) datasets.

due to the model inconsistency among edge servers, which

can be alleviated through multiple rounds of communications

in inter-cluster model aggregation. These observations verify

the discussion in Remark 3.

2) Impacts of Parameters: We investigate how the aggrega-

tion period 𝜏1 affects the learning performance on the MNIST

dataset by showing the relationship between the training loss

and training iterations (respectively training time) in Fig. 7(a)

(respectively Fig. 7(b)). We fix 𝜏2 = 1 and evaluate SD-FEEL

at 𝜏1 = 1, 3, and 20. Fig. 7(a) shows that a smaller value

of 𝜏1 leads to a lower training loss within the given training

iterations, as explained in Remark 1. This conclusion, however,

is invalid when considering the training time, as shown in Fig.

7(b). Since less frequent communications between client nodes

and edge servers can reduce the total latency, a larger value

of 𝜏1 may be preferred. The inter-cluster model aggregation

period 𝜏2 has similar behaviors, and the results are omitted

due to space limitation.

We also evaluate the test accuracy of SD-FEEL on different

11

0 5 10 15 20 25 30 35
Time (s)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97
Te

st
 A

cc
ur

ac
y

(a) MNIST

HierFAVG
SD-FEEL (200 Mbps)
SD-FEEL (50 Mbps)
SD-FEEL (10 Mbps)

0 50 100 150 200 250
Time (min.)

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

(b) CIFAR-10

HierFAVG
SD-FEEL (= 1)
SD-FEEL (= 5)

Fig. 6. Test accuracy over time on the (a) MNIST (𝜏1 = 1, 𝜏2 = 1,
and 𝛼 = 1) and (b) CIFAR-10 (𝜏1 = 2, 𝜏2 = 1, 𝛼 = 1, and 𝑅sr-sr

comm =

50 Mbps) datasets.

network topologies of the edge servers. As shown in Fig. 8,

with 𝛼 = 1 round of communication, a more connected topol-

ogy leads to a higher test accuracy within the given number

of training iterations. This is because more information can be

received from neighboring edge clusters in each round of inter-

cluster model aggregation, as discussed in Remark 2. Besides,

as 𝛼 increases in the ring topology, the training speed becomes

faster in terms of training iterations since more information

is collected from neighboring edge clusters. When 𝛼 = 10

(respectively 𝛼 = 15), SD-FEEL with the ring topology leads

to a comparable performance with fully-connected topology

on the MNIST dataset (respectively CIFAR-10 dataset), which

corroborates the discussion in Remark 2.

3) Effect of DAta and Device Heterogeneity: We test SD-

FEEL with different degrees of data and device heterogeneity.

We start with the effect of data heterogeneity in Fig. 9.

According to Fig. 9(a), when each client node has more

classes of data samples, the local training is less biased and

0 25 50 75 100 125 150 175 200
Local Rounds

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

ni
ng

 L
os

s

(a)
1 = 1
1 = 3
1 = 20

0 20 40 60 80 100
Time (min.)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Tr
ai

ni
ng

 L
os

s

(b)
1 = 1
1 = 3
1 = 20

Fig. 7. Training loss of SD-FEEL (𝜏2 = 1 and 𝛼 = 1) over (a)
iterations and (b) time on the CIFAR-10 dataset.

thus SD-FEEL has a faster learning speed. Similarly in Fig.

9(b), a smaller value of 𝛽 leads to a higher degree of data

heterogeneity and thus slows down the training significantly.

To investigate the effect of device heterogeneity, we next

compare synchronous SD-FEEL (denoted as Sync.), asyn-

chronous SD-FEEL (denoted as Async.), and asynchronous

SD-FEEL with a constant mixing matrix (denoted as Vanilla

Async.) in Fig. 10. The computation deadline is chosen

such that each client node is able to compute at least

100 (respectively 1000) batches of data samples on the

MNIST (respectively CIFAR-10) dataset. Besides, we adopt

𝜓(𝛿 (𝑗)𝑡) = 1

2(𝛿 (𝑗)𝑡 +1)
to calculate the mixing matrix for inter-

cluster model aggregation. According to Fig. 10, we observe

that asynchronous SD-FEEL with a constant mixing matrix

has a slightly slower convergence than synchronous training.

Nevertheless, with the proposed staleness-aware mixing ma-

trix, asynchronous SD-FEEL performs much better, which

demonstrates the necessity of our proposed staleness-aware

12

0 50 100 150 200 250 300 350
Local Rounds

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

(a) MNIST

Star
Partial-connected
Fully-connected
Ring (=1)
Ring (=5)
Ring (=10)

0 100 200 300 400 500
Local Rounds

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y

(b) CIFAR-10

Star
Partial-connected
Fully-connected
Ring (=1)
Ring (=10)
Ring (=15)

Fig. 8. Test accuracy over iterations with different network topologies
(𝜏1 = 5 and 𝜏2 = 5) on the (a) MNIST and (b) CIFAR-10 datasets.

mixing matrix.

Fig. 11 shows the test accuracy over time with different

degrees of device heterogeneity on the CIFAR-10 dataset.

When the computational resources are quite uneven (i.e., with

a larger 𝐻), the convergence speed of synchronous SD-FEEL

is degraded, since slower client nodes require more time for

local training. Comparatively, the training efficiency of SD-

FEEL is improved with the asynchronous training algorithm,

which is more notable as the device heterogeneity becomes

more significant. This is because the fast client nodes are

allowed to perform more local training and thus have less

idle time. With the limited training time, asynchronous SD-

FEEL obtains an improvement in the test accuracy over

synchronous training. However, if given a sufficiently long

training time such that the data at the slower client nodes are

fully exploited, synchronous SD-FEEL is able to achieve a

higher test accuracy.

0 5 10 15 20 25 30 35 40
Time (s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

(a) MNIST

c= 1
c= 2
c= 5

0 100 200
Time (min.)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y

(b) CIFAR-10

= 0.1
= 0.5
= 1

Fig. 9. Test accuracy over iterations with varying degrees of non-
IIDness (𝜏1 = 5, 𝜏2 = 1, 𝛼 = 1, and 𝐻 = 1) on the (a) MNIST and
(b) CIFAR-10 datasets.

VI. CONCLUSIONS

In this paper, we investigated a novel FL system for privacy-

preserving distributed learning in 6G networks, named semi-

decentralized federated edge learning (SD-FEEL). It enjoys

high training efficiency by employing low-latency communi-

cation among multiple edge servers. We presented the training

algorithm for SD-FEEL with a convergence analysis on non-

IID data. Then the effects of various parameters on the training

performance of SD-FEEL were discussed. Moreover, to com-

bat the device heterogeneity, we proposed an asynchronous

training algorithm for SD-FEEL, followed by its convergence

analysis. Simulation results demonstrated the benefits of SD-

FEEL and corroborated our analysis. For future works, it is

worth considering the performance of SD-FEEL under varying

channel conditions. Further investigations are also needed for

the selection of key algorithmic parameters as well as practical

deployment.

13

0 100 200 300 400 500 600 700 800
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Sync.
Vanilla Async.
Async.

Fig. 10. Test accuracy over time on the MNIST dataset (𝐻 = 10).

0 500 1000 1500 2000 2500 3000
Time (min.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Async.(H= 10)
Sync.(H= 10)
Async.(H= 30)
Sync.(H= 30)

Fig. 11. Test accuracy over time on the CIFAR-10 dataset.

REFERENCES

[1] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized
federated edge learning for fast convergence on non-IID data.” [Online].
Available: https://arxiv.org/pdf/2104.12678.pdf.

[2] Y. Sun, J. Shao, Y. Mao, and J. Zhang, “Asynchronous semi-
decentralized federated edge learning for heterogeneous clients.” [On-
line]. Available: https://arxiv.org/abs/2112.04737.pdf.

[3] K. L. Lueth, “State of the IoT 2020: 12 billion IoT connec-
tions, surpassing non-IoT for the first time.” [Online]. Available:

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connectio
ns-surpassing-non-iot-for-the-first-time/.

[4] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: Ai empowered wireless networks,” IEEE Commun.

Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.
[5] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato,

O. Dobre, and H. V. Poor, “6G Internet of Things: A comprehensive
survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.

[6] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“IoT: Internet of threats? A survey of practical security vulnerabilities
in real IoT devices,” IEEE Internet Things J., vol. 6, no. 5, pp. 8182–
8201, Oct. 2019.

[7] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on IoT security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, Jun. 2019.

[8] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Commun. Surveys

Tuts., vol. 22, no. 4, pp. 2167–2191, 4th Quart. 2020.
[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), Ft. Lauderdale,
FL, USA, Apr. 2017.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart. 2017.
[11] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,

D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart. 2020.

[12] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.

(ICC), Dublin, Ireland, Jun. 2020.
[13] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Local averaging helps:

Hierarchical federated learning and convergence analysis.” [Online].
Available: https://arxiv.org/pdf/2010.12998.pdf.

[14] T. Castiglia, A. Das, and S. Patterson, “Multi-level local SGD: Dis-
tributed SGD for heterogeneous hierarchical networks,” in Proc. Int.

Conf. Learn. Repr. (ICLR), Virtual Event, May 2020.
[15] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and

K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp.
1205–1221, Mar. 2019.

[16] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device schedul-
ing and resource allocation for latency constrained wireless federated
learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467,
Jan. 2021.

[17] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in IoT,” IEEE Internet Things J., vol. 7,
no. 7, pp. 5986–5994, Jul. 2020.

[18] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–
3557, May 2020.

[19] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.

Commun. (ICC), Shanghai, China, May 2019.
[20] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”

in Proc. Wkshop. Optim. Mach. Learn., Virtual Event, Dec. 2020.
[21] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA:

A semi-asynchronous federated learning mechanism in heterogeneous
edge computing,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp.
3654–3672, Dec. 2021.

[22] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: A semi-
asynchronous protocol for fast federated learning with low overhead,”
IEEE Trans. Comput., vol. 70, no. 5, pp. 655–668, May 2020.

[23] R. Saha, S. Misra, and P. K. Deb, “FogFL: Fog assisted federated
learning for resource-constrained IoT devices,” IEEE Internet Things

J., vol. 8, no. 10, pp. 8456–8463, May 2021.
[24] D.-J. Han, M. Choi, J. Park, and J. Moon, “FedMes: Speeding up

federated learning with multiple edge servers,” IEEE J. Sel. Areas

Commun., vol. 39, no. 12, pp. 3870–3885, Dec. 2021.
[25] X. You, D. Wang, P. Zhu, and B. Sheng, “Cell edge performance of

cellular mobile systems,” IEEE J. Sel. Areas Commun., vol. 29, no. 6,
pp. 1139–1150, Jun. 2011.

[26] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal dis-
tributed online prediction using mini-batches,” J. Mach. Learn. Res.,
vol. 13, no. 1, pp. 165–202, Jan. 2012.

[27] R. Elsässer, B. Monien, and R. Preis, “Diffusion schemes for load
balancing on heterogeneous networks,” Theory Comput. Syst., vol. 35,
no. 3, pp. 305–320, Jun. 2002.

[28] W. Liu, L. Chen, and W. Zhang, “Decentralized federated learning:
Balancing communication and computing costs.” [Online]. Available:
https://arxiv.org/pdf/2107.12048.pdf.

[29] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
in Proc. 34th Conf. Adv. Neural Inf. Process. Syst., Virtual Event, Dec.
2020.

[30] Y. Wang, Y. Xu, Q. Shi, and T.-H. Chang, “Quantized federated learning
under transmission delay and outage constraints,” IEEE J. Sel. Areas

Commun., to appear.
[31] J. Wang and G. Joshi, “Adaptive communication strategies to achieve

the best error-runtime trade-off in local-update SGD,” in Proc. Mach.

Learn. Syst., Palo Alto, CA, USA, Mar. 2019.

14

[32] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in Proc. Int. Conf. Mach. Learn.

(ICML), Stockholm, Sweden, Jul. 2018.
[33] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-

scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, Aug.
2018.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images.” [Online]. Available: https://www.cs.toronto.edu/~kriz/cifa
r.html.

[36] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID data
quagmire of decentralized machine learning,” in Proc. Int. Conf. Mach.

Learn. (ICML), Virtual Event, Jul. 2020.
[37] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,

and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, CA,
USA, Jun. 2019.

[38] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu et al., “FedML: A research library
and benchmark for federated machine learning.” [Online]. Available:
https://arxiv.org/pdf/2007.13518.pdf.

[39] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proc. 31st Adv. Neural Inf. Process. Syst. (NeurIPS),
Long Beach, CA, USA, Dec. 2017.

[40] L. Hu, G. Sun, and Y. Ren, “CoEdge: Exploiting the edge-cloud
collaboration for faster deep learning,” IEEE Access, vol. 8, pp. 100 533–
100 541, May 2020.

Yuchang Sun (Student member, IEEE) received
the B.Eng. degree in electronic and information
engineering from Beijing Institute of Technology in
2020. She is currently pursuing a Ph.D. degree at
Hong Kong University of Science and Technology.
Her research interests include federated learning and
distributed optimization.

Jiawei Shao (Student member, IEEE) received the
B.Eng. degree in telecommunication engineering
from Beijing University of Posts and Telecommu-
nications in 2019. He is currently pursuing a Ph.D.
degree at Hong Kong University of Science and
Technology. His research interests include edge in-
telligence and distributed learning.

Yuyi Mao (Member, IEEE) received the B.Eng.
degree in information and communication engineer-
ing from Zhejiang University, Hangzhou, China, in
2013, and the Ph.D. degree in electronic and com-
puter engineering from The Hong Kong University
of Science and Technology, Hong Kong, in 2017. He
was a Lead Engineer with the Hong Kong Applied
Science and Technology Research Institute Co., Ltd.,
Hong Kong, and a Senior Researcher with the The-
ory Lab, 2012 Labs, Huawei Tech. Investment Co.,
Ltd., Hong Kong. He is currently a Research Assis-

tant Professor with the Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong. His research interests
include wireless communications and networking, mobile-edge computing and
learning, and wireless artificial intelligence.

He was the recipient of the 2021 IEEE Communications Society Best
Survey Paper Award and the 2019 IEEE Communications Society and
Information Theory Society Joint Paper Award. He was also recognized as an
Exemplary Reviewer of the IEEE Transactions on Communications and the
IEEE Wireless Communications Letters in 2020 and 2019, respectively.

Jessie Hui Wang (Senior member, IEEE) received
the B.S. and M.S. degrees in computer science from
Tsinghua University and the Ph.D. degree in infor-
mation engineering from The Chinese University of
Hong Kong in 2007. She is currently an Associate
Professor with Tsinghua University. Her research
interests include Internet routing, cloud computing,
edge computing, network measurement, and Internet
economics.

Jun Zhang (Fellow, IEEE) received the B.Eng.
degree in Electronic Engineering from the University
of Science and Technology of China in 2004, the
M.Phil. degree in Information Engineering from the
Chinese University of Hong Kong in 2006, and the
Ph.D. degree in Electrical and Computer Engineer-
ing from the University of Texas at Austin in 2009.
He is an Associate Professor in the Department of
Electronic and Computer Engineering at the Hong
Kong University of Science and Technology. His
research interests include wireless communications

and networking, mobile edge computing and edge AI, and cooperative AI.
Dr. Zhang co-authored the book Fundamentals of LTE (Prentice-Hall,

2010). He is a co-recipient of several best paper awards, including the 2021
Best Survey Paper Award of the IEEE Communications Society, the 2019
IEEE Communications Society & Information Theory Society Joint Paper
Award, and the 2016 Marconi Prize Paper Award in Wireless Communications.
Two papers he co-authored received the Young Author Best Paper Award of
the IEEE Signal Processing Society in 2016 and 2018, respectively. He also
received the 2016 IEEE ComSoc Asia-Pacific Best Young Researcher Award.
He is an Editor of IEEE Transactions on Communications, and was an editor
of IEEE Transactions on Wireless Communications (2015-2020). He served
as a MAC track co-chair for IEEE Wireless Communications and Networking
Conference (WCNC) 2011 and a co-chair for the Wireless Communications
Symposium of IEEE International Conference on Communications (ICC)
2021.

