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Employing Deep Ensemble Learning for Improving
the Security of Computer Networks Against
Adversarial Attacks

Ehsan Nowroozi
Erkay Savag
and Mauro Conti

Abstract—In the past few years, Convolutional Neural
Networks (CNN) have demonstrated promising performance in
various real-world cybersecurity applications, such as network
and multimedia security. However, the underlying fragility of
CNN structures poses major security problems, making them
inappropriate for use in security-oriented applications, including
computer networks. Protecting these architectures from adver-
sarial attacks necessitates using security-wise architectures that
are challenging to attack. In this study, we present a novel
architecture based on an ensemble classifier that combines
the enhanced security of 1-Class classification (known as 1C)
with the high performance of conventional 2-Class classifica-
tion (known as 2C) in the absence of attacks. Our architecture
is referred to as the 1.5-Class (cmb-classifier) classifier and
is constructed using a final dense classifier, one 2C classifier
(i.e., CNNs), and two parallel 1C classifiers (i.e., auto-encoders).
In our experiments, we evaluated the robustness of our proposed
architecture by considering eight possible adversarial attacks in
various scenarios. We performed these attacks on the 2C and
cmb-classifier architectures separately. The experimental results
of our study showed that the Attack Success Rate (ASR) of
the I-FGSM attack against a 2C classifier trained with the
N-BaloT dataset is 0.9900. In contrast, the ASR is 0.0000 for the
cmb-classifier.

Index Terms—Adversarial machine learning, counter-forensics,
secure classification, deep-learning security, adversarial exam-
ples, adversarial attacks, ensemble classifiers, cybersecurity.
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I. INTRODUCTION

HE DEVELOPMENT of reliable Machine Learning

(ML) techniques with a particular reference to Computer
Networks applications is gaining popularity. Such technology
can provide satisfactory performance in the face of an adver-
sary trying to impede an accurate analysis. In this context,
Digital Forensics tries to gather data on the history of docu-
ments, their authenticity, source, the process they underwent,
and other factors. However, complicated forensics tasks often
need statistical features and modeling. Therefore, forensic sci-
entists have to consider different ML techniques. Whereas
disabling ML/DL-based forensic analysis turns out to be a sim-
ple task. In this case, the adversary is trying to employ different
Counter Forensics techniques to erase the main traces that the
ML detector relies on for distinguishing between pristine and
malicious examples [1], [2], [3], [4], [S]. In recent years, var-
ious Counter Forensics approaches have been developed to
bypass forensics analysis and are often commonly referred to
as adversarial attacks. As a consequence, the primary objective
of an adversary is to impede detection by removing or alter-
ing evidence of illicit processing and making the counterfeit
example look authentic [3], [4]. The information collected by
the adversary concerning the machine to be attacked will have
a significant impact on the adversary’s strategies and the coun-
termeasures employed by the forensic specialist to counter
them [4]. In this study, we explore Computer Networks detec-
tion by considering different DL models, which is a forensic
analysis used to identify if an example has been subject to
any manipulation. Therefore, the analysis is often known as
a binary decision, meaning that the examples are divided into
two categories, referring to pristine and malicious examples.
The most common approach in ML for this problem is to
train the detector with both malicious and pristine examples.
The objective of the training procedure is to divide the train-
ing examples so that they may be appropriately classified.
Also, the detector should work well when encountering new
situations that were not seen during training. The problem
with the procedure described above is that the analyzer has
to choose between two classes of cases, even when it comes
across examples that are very different from those shown dur-
ing the training phase, possibly because they do not belong
to either.

1932-4537 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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(c) Cmb-classifier

The 2C, 1C, and cmb-classifier’s decision margins are visually presented. Red samples are considered pristine, whereas black dots signify malicious

examples. The attacker attempts to relocate the black samples from the malicious region within the red region, a) The attacker takes full advantage of the
availability of empty spaces to cause a missed detection error; as a result, the 2C classifier is vulnerable, b) Since they define a closed region enclosing
samples from only one class, 1C classifiers are inherently more resilient to attacks with minor classification errors (a green circle in the figure highlights
the examples that have a missed detection error), ¢) the cmb-classifier is designed to exhibit similar resilience against attacks as the 1C classifier, but the

acceptance region is better formed than in the 1C classification scenario.

As soon as the examples fit into any of the aforemen-
tioned classifications, the classifier will return a true response
depending on the instances seen during training. Given that
these characteristics were absent during the training phase,
the classifier would likely make a random decision. This is
unlikely to be an issue under normal work conditions because
the classifier model will never require handling such abnormal
conditions. However, under adversarial settings, the adversary
might use the availability of unpopulated areas of the example
space to induce a low-cost classification error (we refer to it
as distortion). Figure 1(a) depicts the above scenario, in which
black example points are displaced with minimum distortion
into an unpopulated red region. The abovementioned problem
may be addressed using a 1C classifier when the adversary’s
goal is unidirectional [6]. In this case, only examples from
the specific class are used to teach the ML how to decide
if an example belongs to that class. The significant distinc-
tion between a conventional 2C and a 1C classifier is that
the latter divides the example region into a closed region with
examples from the class considered during training and a com-
plement region including all additional examples. As depicted
in Figure 1b, an attacker intending to move an example from
the outside (black) region into the closed area containing the
target class’s examples (red region) can no longer take full
advantage of unpopulated portions of the example area.

Given the high accuracy advantage of 2C classifiers and
the robustness of 1C classifiers, as shown in Figures (a) and
(b), a system that leverages the accuracy and robustness of 2C
and 1C classifiers is required. As a result, the cmb-classifier’s
main objective is to maintain both benefits: (i) accuracy of
detection, and (ii) robustness, as shown in Figure Ic. In this
study, we propose the cmb-classifier, which has comparable
robustness against numerous adversarial attacks as the 1C
classifier has; however, the acceptance regions are signifi-
cantly more formed in comparison to the 1C (see Figure 1c).
Note that the accuracy in the absence of attacks is similar to
the 2C classifier. This characteristic is proven in our study
by considering two well-respected datasets: the N-BaloT and
RIPE datasets. Despite its security appeal, the 1C classifier

has limitations. These constraints in 1C may not employ any
information about the examples relating to a particular two
classes. A 1C may be developed by evaluating only pris-
tine examples (i.e., 1C-Leg), but this ignores details about
the specific traces left in a malicious example. In contrast, a
1C classifier may be developed by evaluating only malicious
examples (i.e., 1C-Mal). Consequently, in the absence of
attacks, the efficiency of 1C classifiers is expected to be lower
than that of a 2C architecture; however, when compared to
the approach in [7], [8], we achieved good performance by
including DL architectures. The authors in [7], [8] proposed
a multi-classifier model based on a Support Vector Machine
(SVM) that includes the benefits of both models, combining
the greater accuracy of 2C classifiers with the inherent security
of 1C classifiers. We considered this scenario and introduced
the cmb-classifier, a novel architecture based on a combina-
tion of multiple DL architectures (e.g., CNN as a 2C classifier,
pristine auto-encoder as one 1C-Leg, malicious auto-encoder
as one 1C-Mal, and dense classifier). In Table I, we list all the
acronyms and notations considered in our study.

A. Contributions

Our contributions are outlined in the following:

e We propose an ensemble architecture, known as the
cmb-classifier, by employing deep ensemble learning in
computer networks. The cmb-classifier architecture con-
sists of four classifiers. Namely: a 2C classifier (i.e.,
CNN), a 1C classifier (i.e., trained with pristine exam-
ples), and a 1C classifier (i.e., trained with malicious
examples), followed by a final dense classifier.

e We perform eight adversarial attacks with different
parameters against 2C (i.e., scenario 1) and the cmb-
classifier (i.e., scenario 2) classifiers separately: the
I-FGSM, FGSM, JSMA, L-BFGS, PGD, BIM, DeepFool,
and C&W attacks. We considered two well-known
datasets in computer networks while performing these
attacks: the RIPE-Atlas [9] and N-BaloT [10] datasets.
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TABLE I
LIST OF ABBREVIATION

Acronym | Description
CNN Convolutional Neural Network
2C/ 1C 2-Class Classification / 1-Class Classification
PK /LK | Perfect Knowledge / Low Knowledge
DL /ML | Deep Learning / Machine Learning
SVM Support Vector Machine
GAN Generative Adversarial Networks

ToT Internet of Things

DDoS Distributed Denial of Service
ASR Attack Success Rate
Max. dist | Maximum distortion
PSNR Peak Signal-to-Noise Ratio
L dist L, distance
FGSM Fast-Gradient-Sign-Method
I-FGSM Iterative-Fast Gradient-Sign-Method
JSMA Jacobian-based Saliency-Map-Attack
LBFGS Limited-Memory Broyden-Fletcher-Goldfarb-Shanno
PGD Projected-Gradient-Descent
BIM Basic-Iterative-Method
C&W Carlini and Wagner

e The impact of the selected adversarial attacks on the
resilience of the 2C classifier and the cmb-classifier archi-
tecture is systematically investigated. These attacks are
considered during the testing phase, and we refer to them
as exploratory evasion attacks.

e We compared the security of the cmb-classifier architec-
ture with 2C. To elaborate more, we demonstrate that the
ASR for the I-FGSM adversarial attack with the attack
strength factor 0.1 is 0.9900 for 2C and 0.0000 for the
cmb-classifier, respectively.

B. Organization

Our study is organized as follows. Section II review relevant
studies that examined the 1C property in various tools in the
cybersecurity domain. In Section III, we provide the experi-
mental setup and present our proposed framework. Following
that, we present the experimental findings in Section IV and
discuss the adversarial strategies employed against the 2C clas-
sifier (i.e., CNN). We summarize our research and potential
directions for further research in Section V.

II. RELATED WORKS

In this section, we provide related works on 1C classifiers
in the cybersecurity domain.

Although the use of 1C classifiers in cybersecurity and
Digital Forensics applications is not innovative, they may be
found in various forensic tools. For example, in [11], the
researchers utilized 1C for video forgery identification to pro-
vide an effective system in complex environments such as
social networks. The scientists employed a technique based on
auto-encoders trained on pristine data. When there is a con-
siderable reconstruction error between both the outputs and
inputs, auto-encoders behave like 1C. One class classification
(known also as 1C) is typically used for outlier detection in a
variety of scenarios if a robust statistical characterization under
abnormal conditions is not available. Consider the problem
of recognizing acoustic diversity [12] or predicting network

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

intrusion [13]. Another work in [14] provides a strategy for
an adversarial intrusion detection system that integrates several
1Cs to improve the complexity of exploratory attacks. In [8],
the authors considered an ensemble model with the combi-
nation of SVM blocks to improve the security of a detector
against adversarial attack. Although they achieved high secu-
rity against adversarial attacks, a proposed model completely
breaks against noise addition in the input.

The Open set problems, which have been investigated in
various Digital Forensics as well as security-oriented tools, are
another type of 1C classification wherein LK of the domain is
provided at the training phase and unidentified classes might
be presented to a method during testing [15], such as open
set authentication of IoT [16], incremental open set intrusion
detection [17], android malware detection [18], and DDoS
attack detection [19]. Later, 1C classifiers were integrated with
Generative Adversarial Networks (GANSs) to build detectors
that operate on the hypothesis that there are not many mali-
cious examples available. This is true for [20], which is utilized
for intrusion detection systems, as well as [21], which is used
to identify unknown IoT infections.

Apart from considering 1C classification in various appli-
cations for improving detection accuracy and robustness, a
second approach consists of building an architecture that might
resist various attacks. In [22], the authors demonstrated the
absence of attack transferability in Computer Networks, and
only a few attacks are transferable between source and target
networks. As a result, they explored several deep architectures
as a target network to limit attack transferability. The major
disadvantage of this method is that it only responds to a few
adversarial attacks. In another related work, the authors in [23]
developed a secure architecture using feature randomization to
mitigate attack transferability between networks. The major
disadvantage of this strategy is that it only works against a
limited number of adversarial attacks, the same as previous
research work. The system fails if the adversary considers an
attack with a high attack parameter. In Table II, we provide
an overview that summarizes past and present research on the
various machine and deep learning applications in different
applications that considers 1C classifiers. To the best of our
knowledge, the security domain aspect in computer networks
has not been considered in most published research in this
area. We explore many application domains that used 1C clas-
sifiers. To create a model with high accuracy and security, we
aim to combine the advantages of several classifiers for the
first time in DL. Using prominent datasets as well as black-
box scenarios, we also intend to carry out comprehensive
evaluations.

III. EVALUATION METHODOLOGY

In this section, we specify the detection task. Afterward,
we discuss the cmb-classifier framework, including adversarial
techniques on the 2C and 1C. Then, we describe the considered
datasets as well as the cmb-classifier’s training process.

In this study, we considered two class classifications for
pristine and malicious examples: hypothesis HO refers to the
case of pristine examples provided and without any additional

Authorized licensed use limited to: TU Delft Library. Downloaded on July 19,2023 at 07:02:05 UTC from IEEE Xplore. Restrictions apply.
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TABLE II
DIFFERENCE BETWEEN OUR WORK AND EXISTING WORKS IN 1C CLASSIFIER

Application Domain Classifier Considered Datasets | Advantages Disadvantages
. . . -NSL-KDD .. . .
Network Intrusion Detection [13] | -Bi-GAN _CIC-DD0S2019 -Less training overhead -High false positive rate
-CNN .
Open set [16] -OpenMAX -ADS-B -Applicable on real world problems -Low robustness of the features
Android malware detection [18] -Different classifiers | -Private Dataset -Increase high detection rate -Sensitive to adversarial attacks
-DNN -Good inference time
Intrusion detection [19] -CNN -CIC-DDo0S2019 Small ¢ trainabl -Sensitive to adversarial attacks
LSTM -Smaller number of trainable parameters
-N-BaloT
Computer Networks [22] -CNN -DGA -Considering adversarial attacks -Responds to a few adversarial attacks
-RIPE Atlas
This stud -CNN -N-BaloT _-Improve a Computer Networks security | -Need to investigate against causative
1s study -Auto-encoder -RIPE -Robust against noise addition attacks (future research work)

processing. In contrast, hypothesis H1 refers to the case of
modified or altered examples. In this case, in a real-world
scenario, the attacker is constantly eager to apply adversar-
ial attacks to H1 to prevent a correct detection. In this paper,
we consider the most well-known and widely used adversar-
ial attacks against CNN (2C) models in the DL literature and
apply them to the cmb-classifier architecture to evaluate its
robustness. All of these strategies are applicable in both white-
box and black-box scenarios. These attacks include the FGSM
attack, the I-FGSM attack, the JSMA attack, the L-BFGS
attack, the PGD attack, the BIM attack, the DeepFool attack,
and the C&W attack. We note that these attacks have been
discussed in detail in previous studies [22]. In addition, we
suppose that the attacker’s purpose is to evade detection of
the manipulation, i.e., to cause a missed detection error. In
Counter Forensics, the most standard attack is an integrity vio-
lation attack [24]. With Pj;p and Ppy4, respectively, we can
represent the probabilities of a missed detection error, which is
the possibility that a malicious example will be misidentified
for a clean example, and a false alarm probability, which is
the possibility that a clean example will be wrongly identified
as a tampered example.

A. Architecture of the cmb-Classifier

The cmb-classifier’s architecture used in this study by con-
sidering the ensemble method is shown in Figure 2. Three
classifiers were trained in parallel using dataset examples: a
2C (here, CNN) trained with pristine and malicious instances
from both classes from the N-BaloT and RIPE-Atlas datasets
independently, and two 1Cs (here, two auto-encoders), one
trained with pristine and the other with malicious examples.
The results of these classifiers are subsequently processed by
a final dense classifier, which makes a final decision.

As stated in the introduction, in the absence of attacks, 2C
classification techniques can achieve high accuracy; neverthe-
less, they do not generalize properly to examples that were
improperly represented during the training process, enabling
the adversary to carry out his attack by exploiting the unex-
plored areas of the features space. This scenario is illustrated
in Figure la, where the adversary takes full advantage of the
availability of empty spaces to induce a missed detection error,
exposing the 2C vulnerable to attacks. However, 1C is inher-
ently more robust to adversarial attacks since they provide a
closed region that only includes examples through a specific
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Fig. 2. The framework of the cmb-classifier employed in this study is as
follows. The input data contains both pristine and malicious examples. In this
diagram, we considered CNN architecture as a 2C, considering auto-encoder
“1C-Leg” trained with pristine examples, auto-encoder “1C-Mal” trained with
malicious examples, and final dense classifier, also known as a classifier com-
bination. Consequently, the outputs of these three classifiers are employed to
train a dense classifier.

class, commonly called the HO class. Figure. 1b illustrates this
impact, showing that a larger distortion is required to move an
example from the H1 (malicious examples) region to the HO
(pristine examples) region. As a consequence, the acceptance
region in Figure 1c (referred to as cmb-classifier) has compa-
rable robustness and performance against adversarial attacks
as those obtained by the 1C (see Figure 1b) and 2C classi-
fier (see Figure 1c). To clarify more regarding Figure 2, we
present two possible scenarios:

e Scenario 1: The attacker exploits several adversarial
attacks against the 2C classifier. Afterward, we ana-
lyze the performance of all classifiers using adversarial
examples generated by the 2C classifier.

e Scenario 2: In this scenario, the attacker performs a
variety of adversarial attacks against the entire secure
cmb-classifier’s architecture.

B. Network Architecture

We adopted the network configuration provided by [25] for
the 2C classifier. This network has nine convolutional layers
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Fig. 4. The proposed 1C (auto-encoders) architecture’s pipeline.

followed by max-pooling layers, and a dense layer followed
by a sigmoid layer. The 2C architecture’s process is depicted
in Figure 3. For all convolutions, we employ a kernel size of
3 x 3 and a stride of 1, and for max-pooling with a stride 2
with a kernel size of 2 x 2. Only one dense layer is employed,
which reduces the number of parameters. The network has
several convolutions to transmit every neuron before the first
max-pooling layer effectively. Adjusting the stride to one, the
best spatial information will remain. We employ this network
configuration because it offers a high level of accuracy over
training.

For 1C-Leg and 1C-Mal auto-encoders, we employed a
simple CNN-based auto-encoder. We used convolutional lay-
ers, batch normalization layers, and a fully-connected layer
for the encoding part. For decoding, we adopted a fully-
connected layer, de-convolutional (transposed convolutions)
layers, a batch normalization layer, and a convolutional layer.
In addition, we have a latent space between the encoder and
the decoder, which has just one fully-connected layer. The
latent space is the output of the encoder and is used as input
for the decoder. In the encoder, the network has some con-
volutions to capture the most important features of the input
samples. For decreasing the size of feature maps, the strides of
all convolutions were set to two. To build a compressed rep-
resentation of input samples, auto-encoders can be utilized.
For this reason, we exploit this network architecture because
it allowed us to have extremely good similarity for the orig-
inal input and network output, i.e., reconstructed input using
latent space features. The 1C model is illustrated in Figure 4.
We set 3 x 3 kernel sizes and strides of two for all convolu-
tions and deconvolutions. For the latent space, we considered

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

a dense layer with a size of 512 that may help us to increase
the effectiveness of auto-encoders in the cmb-classifier.

Three dense layers are considered to perform the classifica-
tion task for the dense network. The first dense layer is created
by concatenating the extracted flatten layer of the 2C classifier
with the size of 1728 to latent spaces, i.e., the output of the
encoder part of two 1C classifiers that size of each one is 512.
The concatenation task will generate a dense layer with a size
of 2752 neurons. As we have two classes (pristine and mali-
cious), layers of size 128 and 2 are considered for the second
and third dense layers, respectively, which are suitable for our
classification task.

C. Datasets

We employed large real-world datasets comprising pris-
tine and malicious examples to assess the effectiveness of the
cmb-classifier capability in computer networks. Our study uti-
lized the N-BaloT and RIPE datasets to train the CNN model
(2C) and auto-encoders (1Cs). This well-known dataset has
been used to achieve various cybersecurity objectives lately.
Employing deep auto-encoders [26], the N-BaloT dataset was
also utilized to monitor botnet attacks in the Internet of Things
(IoT) devices, IoT detection methods [27], and Federated
Learning for identifying and mitigating IoT attacks [28]. The
following paragraphs provide a detailed explanation of the
dataset.

N-BaloT dataset: This dataset combines malicious and
benign traffic from nine business IoT devices using port mir-
roring. The N-BaloT dataset contains approximately seven
million examples with 115 properties. As a result of the evo-
lution of IoT cyber-attacks, the adversary relies on botnets
to exploit such vulnerabilities, transforming the IoT into a
vulnerable Internet [29].

RIPE-Atlas dataset: The RIPE Atlas project evaluates
network packets using Internet-aware sensors [30]. It is used
to continually monitor network or client visibility from vari-
ous locations. Furthermore, it can perform ad-hoc connection
assessments to examine the network, fix any faults discovered,
and check the DNS server availability.

Utilizing traffic data, the RIPE dataset first attempts to deter-
mine the type of applications. Two distinct architectures are
being considered to explore these datasets: Recurrent Neural
Networks and CNN.

D. Experimental Setup

We employed 29000 samples from the N-BaloT dataset for
training, 10000 for verification, and 10000 for testing, per
class to train a 2C classifier. We employed the same dataset
split strategy for training 1C-Leg, where only pristine exam-
ples were considered, while only malicious examples were
considered for 1C-Mal. The dense classifier (also known as
a cmb-classifier) is fed by concatenating a flattening layer
from a 2C and two latent layers from 1C-Leg and 1C-Mal.
In this regard, the 2C flatten layer size is 1728, the latent
layer size from the 1C-Leg is 512, and the 1C-Mal is 512.
As a consequence, the input size fed to the cmb-classifier
is 2752. Concerning the RIPE dataset, we considered 30000
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examples for training a 2C classifier, 10000 for validation, and
10000 for testing, per class. We utilized the same dataset split
strategy for training 1C-Leg that we employed for N-BaloT,
where only pristine examples were considered, whereas only
malicious examples were considered for 1C-Mal. Furthermore,
the cmb-classifier size is 2752, the same as the N-BaloT
cmb-classifier.

To clarify the training of the cmb-classifier, we utilized the
features from the flattening layer (2C) and the features from
the latent space of auto-encoders (1Cs). Figure 5 exhibits the
training pipeline considered for the cmb-classifier.

All features are then merged and structured into a dense
network. In all cases, the input size is always 64 x 64. We
believe that this set of features is sufficient to generalize
a CNN, auto-encoders, and a dense network. We employed
TensorFlow and Python to create our classifiers, using the
Keras API. In our experiments, we employed the Intel CoreTM
i7 processor 10750H, the GeForce NVIDIA 2060 RTXTM
with GDDR6 6GB GPU, and DDR4 32GB, and Ubuntu oper-
ating system version 20.04 were used in our tests. We provided
the Python code for the simulation on Github [31]. For the
cmb-classifier, 500 training cycles have been carried out across
all classifiers. We used the Adam solution with a momentum
of 0.99 and a learning rate (Ir = 10_4). For training and vali-
dation, the batch size for the N-BaloT and RIPE datasets is 16.

E. Security Assessment

The cmb-classifier’s security is evaluated by examining the
study’s validity under adversarial attacks. Compared to those
achieved by 2C under the same attacks, these outcomes are
close to each other. To prove that the cmb-classifier model
provides better security than the 2C classifier, this study aims
to demonstrate that system compromise causes more distortion
in the scenarios that are being attacked. We especially took
into account the threat model below:

o The attacker’s objective is to alter a malicious example
so that the feature representation is transferred into the
pristine area, leading to a missed detection error.

o By using terminology from [7], we highlight a PK where
the adversary has full knowledge of the model. This refers
to considering the attacker’s knowledge scenario.

o In terms of attacker capabilities, we concentrate on
exploratory attacks [32], that is, attacks conducted during
the testing phase. This category comprises most of the
Counter Forensics approaches proposed in the literature.
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TABLE III
TEST ACCURACY AND PRECISION VALUES OF ALL THE CLASSIFIERS

Dataset 2C 1C-Leg 1C-Mal Cmb-classifier
Test Accuracy N-BaloT | 99.98% | 98.86% 98.80% 100%
RIPE 99.76% | 98.32% 98.51% 100%
Precision N-BaloT | 99.86% | 98.73% 98.78% 99.99%
RIPE 99.80% 98.28% 98.32% 99.99%

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We present experimental results in 2C and the cmb-classifier
separately in this section. First, we present the accuracy rate
of all classifiers in the absence of attacks. Then, we con-
duct several adversarial attacks against 2C and evaluate the
performance of each classifier. Finally, we employed the same
adversarial attacks on the cmb-classifier in a black-box set-
ting to understand its robustness fully. All experiments were
carried out using two datasets, N-BaloT and RIPE.

A. Experimental Results

Table III provides the test accuracy and precision values
of the 2C, 1C pristine, 1C malicious, and the combination
dense classifier (acronym to cmb-classifier). We see that the
performance of the cmb-classifier increase slightly compared
to 2C.

The average ASR on 2C based on CNN networks and dense
networks utilized in the cmb-classifier are represented in the
results when we applied different adversarial attacks. In addi-
tion, we took into account the average PSNR on 500 samples
from the test folder, the average L1 distortion (L; dist), and
the average maximum absolute distortion (Max. dist) as other
metrics. In addition, we provide running attack timings in sec-
onds while performing adversarial assaults on CNN and dense
networks.

For the I-FGSM attacks, we considered the strength attack
factors € to 0.1, 0.01, and 0.001, and we employed the same
attack parameters for the FGSM. We fixed the number of steps
S to 10. The strength factor € for JSMA adversarial attack
is set at 0.1 and 0.01. In the case of other attacks such as
DeepFool, LBFGS, BIM, and PGD, we considered the default
attack variable, which we believe is sufficient to fool a 2C
network. Finally, we looked into C&W adversarial attacks with
various confidence factors such as 0, 50, and 100.

1) Performance Under Attacks: In this part, we evaluate
the effectiveness of the 2C and the cmb-classifier in the face
of attacks. We started by deploying all attacks on 2C and
then evaluated the cmb-classifier-1.5C to see how it per-
formed. Subsequently, to evaluate the security level of the
cmb-classifier, we conducted adversarial attacks directly on it.

Attack against 2C (Scenario 1): For detecting task N-BaloT
and RIPE pristine examples from malicious examples, we
first conduct the different adversarial attacks against 2C to
demonstrate that this classifier is intrinsically sensitive to
all adversarial attacks. As predicted, the attack was consis-
tently successful in producing an incorrect classification, and
after running, all malicious examples are classified as pristine.
Table IV, and V reported when the eight different adversar-
ial attacks were employed against the 2C classifier and when
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TABLE IV
EXPERIMENTAL RESULTS FOR ADVERSARY ATTACKS ON A 2C (TRAINED
WITH N-BAIOT DATASET). THE TIME OF RUNNING ATTACKS ON THE
MODELS IS REPORTED IN SECONDS IN THIS TABLE

Attack Type PSNR L; dist | Max. dist ASR Exe. Time
I-FGSM, &= 0.1 17.617 29.691 40.733 0.9900 315518
I-FGSM, &= 0.01 17.996 28.557 39.101 0.9500 3044.2015
I-FGSM, &= 0.001 17.997 28.410 38.927 0.9463 | 29805.6208

FGSM, &= 0.1 17.277 30.856 40.712 0.9800 29.6365
FGSM, &= 0.01 17.414 30.396 40.098 0.9756 46.8270
FGSM, &= 0.001 17.546 29.931 39.470 0.9500 152.3631

JSMA, 6= 0.1 17.432 7.025 178.500 0.9900 3513.4855
JSMA, 6= 0.01 Fails Fails Fails Fails Fails
DeepFool, Default 23.489 7.162 175.386 1.0000 221.2673
LBFGS, Default 24.145 7.143 132.766 0.9700 2825.4893

BIM, Default 17.905 28.823 38.980 0.9800 559.6410

PGD, Default 17.915 28.876 38.747 0.9800 2279.5689

C&W, ¢ =0 24.130 6.981 131.851 1.0000 9012.3253

C&W, ¢ =50 23.60 7.099 127.714 1.0000 7968.1794

C&W, ¢ = 100 23.50 7.100 127.8402 1.0000 7464.7506
TABLE V

EXPERIMENTAL RESULTS FOR ADVERSARY ATTACKS ON A 2C (TRAINED
WITH RIPE DATASET). THE TIME OF RUNNING ATTACKS ON THE
MODELS Is REPORTED IN SECONDS IN THIS TABLE

Attack Type PSNR L, dist Max. dist ASR Exe. Time
I-FGSM, &= 0.1 16.415 27.541 40.883 0.9900 423.618
I-FGSM, &= 0.01 16.763 26.998 40.765 0.9863 5440.1006
I-FGSM, &= 0.001 16.761 26.986 39.601 0.9556 | 39805.1309

FGSM, &= 0.1 16.107 28.733 38.510 0.9900 35.5140
FGSM, &= 0.01 16.212 28.190 38.190 0.9856 56.9280
FGSM, &= 0.001 16.440 27.721 36.255 0.9800 250.1616

JSMA, 6= 0.1 16.322 7.125 187.652 0.9832 4510.3905
JSMA, 6= 0.01 Fails Fails Fails Fails Fails
DeepFool, Default 39.515 8.252 180.165 1.0000 301.1695
LBFGS, Default 29.450 8.120 143.855 0.9800 | 39215.4990

BIM, Default 20.905 29.763 40.129 0.9900 439.5009

PGD, Default 20.816 30.521 40.556 0.9700 3289.4699

C&W, c =0 22.140 5.871 132.751 1.0000 8212.5360

C&W, ¢ =50 20.41 6.098 136.604 1.0000 7968.2414

C&W, ¢ = 100 20.52 6.510 136.6512 1.0000 7464.7706

the models were trained using the N-BaloT and RIPE-Atlas
datasets.

The findings in this table relate to the average ASR on
2C, average PSNR on 500 examples, average LI distortion,
average maximum absolute distortion (Max. dist), and aver-
age running attacks time in seconds, as was stated earlier. The
adversarial attack was effective if the average ASR threshold
was higher than 50%.

The I-FGSM attack has a predefined number of steps S for
attacks, which is 10 where SSS, which refers to search step
size and is related to the optimum strength of attacks; there-
fore, the optimal strength is considered in the [e5 : 0.1, 0.01,
and 0.001] range. A powerful attack is often considered when
setting a higher €4, but we need to apply high distortion in the
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input example; therefore, we will have a high PSNR. In our
studies, we examined ¢; = 0.1, 0.01, and 0.001, which mis-
lead a 2C architecture also that average PSNR remains around
17db, implying that attacks must apply higher distortion. This
attack scenario also happens for the FGSM; even though there
are no steps in this attack, it can mislead a network with a
close average PSNR, similar to I-FGSM. The BIM technique
is an enhancement of the FGSM approach. The approach is
to iteratively adjust the value one step at a time and prune the
resulting value to verify that it is within the prescribed range
of the original sample. Regarding BIM, we investigated using
a default parameter since the default parameter is sufficient
to deceive the 2C classifier. PGD adversarial attack, simi-
lar to FGSM, is concerned with determining the perturbation
that maximizes the loss function under given / distortion con-
straints. Regarding PGD, we considered the default parameter,
which we believe is sufficient to mislead a 2C architecture.

The JSMA’s parameter T is set at 7. The method’s number
of iterations is set to 2000 by default. The relative alternation
per pixel is fixed at 0.01 and 0.1. We did not examine param-
eters lower than 0.01 since JSMA already fails to deceive
a 2C architecture with a parameter of 0.01. We utilized the
default attack setting for L-BFGS, which attempts to esti-
mate the optimal solutions of the optimization method that
the attack should handle to determine the lowest perturbation
in an adversarial example that causes the error in predictions
(typical gradient-descent approach).

In DeepFool, adversarial attacks initialize the sample con-
fined by a classifier’s decision boundaries. The area of the
decision boundaries determines the sample’s class designation.
A small vector is conducted with a sample approximated by
the polyhedron’s boundary in each cycle. The perturbations
are then carried out to an example in each iteration to deter-
mine the overall perturbation based on initial decision classifier
limitations. Regarding C&W adversarial attack, C&W claims
that a series of attacks evaluate norm-restricted additive per-
turbations and completely destroy defensive distillation. It is
further shown that when the perturbation is produced using
an exposed white-box model, their attack effectively deceives
a network that has been defensively distilled under black-box
settings. The results in Table IV and Table V show that both
attacks can mislead a 2C architecture. In reality, we investi-
gated both attacks in this study since recent studies show that
both are among the most powerful attacks in DL.

Performance of 2C attacks against the cmb-classifier and
Auto-encoders: In the previous section, we conducted various
attacks on the 2C classifier and concluded that most attacks
fully fooled a detector. After performing attacks to 2C with
500 samples, we kept attack samples separately to test the
cmb-classifier since we wanted to know if the cmb-classifier
could determine whether these samples were attack samples.
The results of 2C attack samples against the cmb-classifier
are shown in Table VI for the N-BaloT dataset and Table VII
for a RIPE dataset. We observe that the attacked samples we
achieved against 2C are ineffective since most of the cmb-
classifier test accuracy is close to 0%.

Additionally, the architecture of the cmb-classifier includes
two auto-encoders, one of which is trained with pristine sam-
ples while the other is trained with malicious samples (see
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TABLE VI
THE PERCENTAGE OF ATTACKED CASES THAT WERE MISCLASSIFIED.
THE ATTACK IS DIRECTED EMPLOYED AT 2C (N-BAIOT DATASET)

Attack Type 1C-Leg | 1C-Mal | cmb-classifier
I-FGSM, £ = 0.1 0.0020 0.0100 0.0000
I-FGSM, ¢ = 0.01 0.0001 0.0020 0.0000

I-FGSM, & = 0.001 0.0000 0.0000 0.0000
FGSM, & = 0.1 0.0050 0.0010 0.0000
FGSM, & = 0.01 0.0001 0.0030 0.0000
FGSM, & = 0.001 0.0000 0.0000 0.0000
JSMA, 6 =0.1 0.0011 0.0150 0.0000
JSMA, 6 = 0.01 Fails Fails Fails
DeepFool, Default 0.1812 0.1200 0.0000
LBFGS, Default 0.0010 0.0002 0.0000

BIM, Default 0.0050 0.0001 0.0000

PGD, Default 0.0005 0.0000 0.0000

C&W, c =0 0.0004 0.0000 0.0001

C&W, ¢ =50 0.0018 0.0021 0.0061

C&W, ¢ =100 0.1012 0.1001 0.0070

TABLE VII

THE PERCENTAGE OF ATTACKED CASES THAT WERE MISCLASSIFIED.
THE ATTACK IS DIRECTED EMPLOYED AT 2C (RIPE DATASET)

Attack Type 1C-Leg 1C-Mal cmb-classifier
I-FGSM, & = 0.1 0.0040 0.0031 0.0000
I-FGSM, & = 0.01 0.0006 0.0010 0.0000

I-FGSM, & = 0.001 0.0000 0.0000 0.0000
FGSM, & = 0.1 0.0300 0.0020 0.0000
FGSM, & = 0.01 0.0020 0.0010 0.0000
FGSM, & = 0.001 0.0000 0.0000 0.0000
JSMA, 6 =0.1 0.0800 0.0030 0.0000
JSMA, 6 = 0.01 Fails Fails Fails
DeepFool, Default 0.0240 0.0120 0.0030
LBFGS, Default 0.0300 0.0010 0.0000

BIM, Default 0.0050 0.0001 0.0000

PGD, Default 0.0009 0.0010 0.0000

C&W, c =0 0.0081 0.0030 0.0010

C&W, ¢ =50 0.0041 0.0033 0.0051

C&W, ¢ = 100 0.2021 0.2201 0.0084

Figure 2). For ease of use, we refer to auto-encoders trained
on pristine samples as 1C-Leg and those trained on malicious
samples as 1C-Mal. Given that we obtained the adversar-
ial samples from the 2C architecture, we tested 1C-Leg and
1C-Mal against these attacks. Attacks over 1C-Leg and 1C-
Mal are ineffective, demonstrating that using a constrained
acceptance area makes the 1C more resistant to adversarial
attacks (see Figure 1b). As a result, the attack is inefficient in
causing an inaccurate classification for the cmb-classifier (see
Figure 1c) but efficient in causing a missed classification error
in 2C (see Figure la).

According to Table VI and Table VII, attacking 2C is
insufficient to deceive the cmb-classifier as well as both
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TABLE VIII
EXPERIMENTAL RESULTS FOR ADVERSARY ATTACKS ON THE
CMB-CLASSIFIER (TRAINED WITH N-BAIOT DATASET).
THE TIME OF RUNNING ATTACKS ON THE MODELS
IS REPORTED IN SECONDS IN THIS TABLE

Attack Type PSNR | L; dist | Max. dist ASR Exe. Time
I-FGSM, & = 0.1 Fails Fails Fails Fails 406.415
I-FGSM, & = 0.01 Fails Fails Fails Fails 4144.1005

I-FGSM, & = 0.001 Fails Fails Fails Fails 37605.4521
FGSM, & = 0.1 Fails Fails Fails Fails 49.4734
FGSM, & = 0.01 Fails Fails Fails Fails 66.8612
FGSM, & = 0.001 Fails Fails Fails Fails 451.2393
JSMA, 6 =0.1 Fails Fails Fails Fails 4313.7812
JSMA, 6 = 0.01 Fails Fails Fails Fails 6349.2156
DeepFool, Default 17.690 13.477 255.000 0.0020 87.4947
LBFGS, Default 19.74 9.670 253.529 0.4100 4915.2149

BIM, Default Fails Fails Fails Fails 450.3401

PGD, Default Fails Fails Fails Fails 6267.9812

C&W, c =0 19.41 9.796 239.149 0.3200 | 48992.2740

C&W, ¢ =50 19.20 9.532 212.341 0.3122 | 47856.1244

C&W, ¢ = 100 19.12 9.942 239.597 0.3000 | 47966.0449

1C classifiers. According to the values in these tables, the
misclassification rate in the cmb-classifier is 0% in most adver-
sarial attacks, and only in C&W, the misclassification rates
are 0.0001, 0.0061, and 0070. To better understand, for the
I-FGSM adversarial attack in Table VI with a parameter of 0.1,
we evaluate all classifiers using attack examples given by 2C;
thus, testing 1C-Leg, the misclassification rate is 0.0020, 1C-
Mal is 0.0100, and the cmb-classifier is 0.0000. Furthermore,
we have seen similar behavior when the cmb-classifier’s archi-
tecture is trained on a RIPE dataset. As a result, as shown in
Table VII, we assess all classifiers using attack examples pro-
vided by 2C; so, evaluating 1C-Leg, the misclassification rate
is 0.0040, 1C-Mal is 0.0031, and the cmb-classifier is 0.0000.
Thereby, we can state that 1C-Leg and 1C-Mal enhance the
cmb-classifier in improving security.

Attack against the cmb-classifier (Scenario 2): We have
launched adversarial attacks against 2C and evaluated the
misclassification rate of the 1C-Leg, 1C-Mal, and the cmb-
classifier. We have discovered that attacks in 2C are insuffi-
cient to mislead the entire architecture. In this scenario, we will
analyze the security of the cmb-classifier model to determine
if the attacker can deceive this model or become fail.

The experimental results of the attacks on the cmb-classifier
classifier when trained with an N-BaloT dataset are shown in
Table VIII and in Table IX while trained with a RIPE dataset.
In this scenario, the attack usually requires more iteration to
enter the pristine region. However, ASR demonstrates that
even with high attack iteration, the cmb-classifier is still secure
against various adversarial attacks since most of the adver-
sarial attacks completely fail to fool a model. According to
the experimental results obtained with the N-BaloT dataset
in Table VIII, all attacks, including I-FGSM, FGSM, JISMA,
BIM, and PGD, fail to mislead a network. Only DeepFool,
LBFGS, and CW adversarial attacks can fool the cmb-
classifier; as we indicated, if ASR is less than 50%, the system
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TABLE IX
EXPERIMENTAL RESULTS FOR ADVERSARY ATTACKS ON THE
CMB-CLASSIFIER (TRAINED WITH RIPE DATASET). THE
TIME OF RUNNING ATTACKS ON THE MODELS
IS REPORTED IN SECONDS IN THIS TABLE

Attack Type PSNR | L; dist | Max. dist ASR Exe. Time
I-FGSM, & = 0.1 Fails Fails Fails Fails 521.405
I-FGSM, £ = 0.01 Fails Fails Fails Fails 5304.2130

I-FGSM, & = 0.001 Fails Fails Fails Fails 66700.5011
FGSM, & = 0.1 Fails Fails Fails Fails 69.0314
FGSM, & = 0.01 Fails Fails Fails Fails 80.9420

FGSM, & = 0.001 Fails Fails Fails Fails 372.1473
JSMA, 6 = 0.1 Fails Fails Fails Fails 6200.8241
JSMA, 6 = 0.01 Fails Fails Fails Fails 9215.1270

DeepFool, Default 18.60 14.515 255.100 0.0041 91.3950
LBFGS, Default 20.43 10.310 250.412 0.2010 3420.1860

BIM, Default 20.00 10.421 251.326 0.0020 3104514

PGD, Default 22.12 12.67 250.120 0.1012 7130.8523

C&W, ¢ =0 18.21 8.142 221.020 0.2200 | 48992.2740

C&W, ¢ =50 18.10 8.411 214.190 0.2101 | 43871.0109

C&W, ¢ =100 18.00 8.820 231.475 0.2000 | 48540.1309

is still secure. To elaborate more, in C&Ws, the ASR is close
to 30%. In only one attack with LBFGS, the ASR is 40%,
which is still below 50%. As a result, we can state that 1C-Leg
and 1C-Mal are quite effective in strengthening the robust-
ness of the cmb-classifier, indicating that the 1C classifiers
are more difficult to attack as a consequence of the use of a
closed acceptance region. Furthermore, based on the execu-
tion running time, attacks, even with a significant distortion
into the examples, fail to mislead the cmb-classifier.

According to the experimental results obtained with a RIPE
dataset, in Table IX, the cmb-classifier is still robust against
various adversarial attacks. All attacks, including I-FGSM,
FGSM, and JSMA, completely fail to deceive a network. In
Table IX, for the adversarial attacks such as DeepFool and
BIM attacks, the ASR is close to 0%, implying that the
network is fairly secure against these attacks. On the other
hand, with LBFGS, PGD, and C&Ws attacks, ASR is close
to 20%, meaning that only 20% of attack examples were mis-
classified, so the ASR is lower than 50%, suggesting that the
system remains secure.

V. CONCLUSION AND FUTURE WORK

According to recent studies, most ML and DL methods are
intrinsically vulnerable and fragile to adversarial attacks, pos-
ing new serious security threats to cybersecurity tools. The
study of the security of ML and DL-based methods in the
presence of an adversary becomes important. As a result, in
this study, we proposed the cmb-classifier, a multi-classifier
architecture, to mitigate the damage caused by an adversary
in a PK scenario. Our classification technique successfully
takes the benefits of 2C and 1C techniques, providing bet-
ter security while maintaining 2C classification’s exceptional
performance in the absence of attacks. We trained our classifier
to discriminate between pristine and malicious examples using
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the prominent datasets namely: N-BaloT and RIPE-Atlas. The
experimental results demonstrated the robustness of the cmb-
classifier against several adversarial attacks. In our study, we
opted for exploratory types of attacks over causative attacks
since most of the Counter Forensics attacks that have been
provided currently fit into the category of exploratory attacks.

In future work, we aim to improve the cmb-classifier by
employing a block-GAN combination. As a result, it would be
interesting to identify the most suitable GAN network for this
research study. Another possible future study direction is the
development of backdoor or poisoning attacks that adversaries
may employ to interrupt the training phase, often known as
causative attacks.
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