
This item is the archived peer-reviewed author-version of:

Enabling time-sensitive network management over multi-domain wired/Wi-Fi networks

Reference:
Miranda Gilson, Municio Esteban, Haxhibeqiri Jetmir, Hoebeke Jeroen, Moerman Ingrid, Marquez-Barja Johann.- Enabling time-sensitive network management

over multi-domain wired/Wi-Fi networks

IEEE transactions on network and service management / IEEE [New York, N.Y.] - ISSN 1932-4537 - 20:3(2023), p. 2386-2399

Full text (Publisher's DOI): https://doi.org/10.1109/TNSM.2023.3274590

To cite this reference: https://hdl.handle.net/10067/1966520151162165141

Institutional repository IRUA

1

Enabling Time-Sensitive Network Management

Over Multi-Domain Wired/Wi-Fi Networks
Gilson Miranda Jr.∗†, Esteban Municio∗§, Jetmir Haxhibeqiri‡,

Jeroen Hoebeke‡, Ingrid Moerman‡, Johann M. Marquez-Barja∗

∗University of Antwerp - imec, IDLab, Faculty of Applied Engineering - Antwerp, Belgium
†Universidade Federal de Minas Gerais - Computer Science Department - Minas Gerais, Brazil

‡Ghent University - imec, IDLab, Department of Information Technology - Ghent, Belgium
§i2CAT Foundation - Barcelona, Spain

Abstract—Deterministic performance and reliable operation
are vital for many applications with industrial-grade require-
ments. Such applications rely on Time-Sensitive Networking
(TSN) to enable time-critical deterministic communication. While
standardization efforts were focused mainly on TSN features for
wired domains, recent advances in wireless technologies (e.g.,
Wi-Fi 6/7) are extending time-sensitive communication towards
wireless networks as well. However, achieving multi-domain
LAN/Wireless LAN (WLAN) end-to-end TSN communication re-
quires addressing challenges on end-to-end time synchronization,
multi-domain control plane interoperability, run-time end-to-end
scheduling, and fine-grained monitoring. Because state-of-the-
art TSN controllers’ scope lays far below these new required
capabilities, in this work we present a novel, fully-programmable
controller for end-to-end TSN-enabled networks. Our controller
is based on a modular architecture to be adaptable to chal-
lenges arising when shifting the standard TSN scope towards
WLAN domain. We deploy a proof-of-concept in a cloud-wired
environment to evaluate its key performance indicators when
handling increasing numbers of nodes and simultaneous requests.
Further, we run experiments on real TSN-enabled networks
comprising Ethernet and Wi-Fi technologies, demonstrating the
effectiveness of the controller in performing seamless fine-grained
traffic control in both domains.

Index Terms—TSN, 802.1, SDN

I. INTRODUCTION

Applications with industrial-grade requirements demand re-

liable and deterministic network performance. Ethernet has

been used for industrial applications since the early days

of the technology invention and solutions usually required

over-provisioning, isolation of networks for specific tasks, and

detailed traffic engineering [1]. These networks still suffered

from many drawbacks such as high cost, unpredictability

due to corner cases, and lack of flexibility. With origins

in the audio/video context, the IEEE 802.1 Time-Sensitive

Networking (TSN) Task Group has been developing a set of

standards to enable reliable and deterministic communication

over IEEE 802.1 networks [2], [3]. The new standards enable

more reliable network operation for time-sensitive traffic and

allow their coexistence with best-effort traffic on the same

network.

As more features are incorporated and standardized for

wired TSNs, the interest in extending those capabilities to

the wireless domain also increases [4]. The flexibility allowed

by wireless communication makes it attractive for industrial

applications requiring mobility or more flexible deployments.

However, the unpredictability of the wireless medium has

been a major limitation to the wide adoption of wireless

technology for deterministic applications. Still, Wireless TSNs

(W-TSNs) are becoming a reality with recent developments,

especially with those related to 5G technologies [5], and

with Wi-Fi-based technologies using unlicensed bands [6], [7].

Besides industrial applications, W-TSNs also brings appealing

capabilities for real-time applications like gaming and aug-

mented/virtual reality (AR/VR) [4].

To accelerate the integration of W-TSN along with current

IEEE 802.1 TSNs and the ecosystem around them, seamless

operation and interoperability from LAN to WLAN domains

are required [4]. In this sense, Software Defined Networking

(SDN) control architectures for TSN must also take into

account the existence of wireless components in the network.

Additionally, in view of ongoing feature developments, it is

interesting to have an extensible and flexible architecture that

supports the fast integration of new features.

In this work, we present a modular, multi-domain controller

architecture to provide end-to-end TSN-enabled control over

LAN and WLAN domains. We identify the required building

blocks to support multi-protocol conversion, QoS mapping,

and cross-domain scheduling. Our controller architecture aims

to perform such tasks in a flexible manner, allowing the use

of different types of schedulers or control-loop algorithms ac-

cording to use case demands, as well as extensions to support

upcoming TSN features under development/standardization.

Additionally, to coordinate and exert such operations in the

network nodes, we specify an agent entity that holistically

manages devices in near real-time for both LAN and WLAN

domains. To show the feasibility of our controller, we present a

proof-of-concept capable to initialize, monitor, and reconfigure

an end-to-end TSN network comprised of wired Ethernet

and Wi-Fi segments. We performed experiments in testbeds

comprising a wired TSN, as well as an end-to-end W-TSN

implemented on top of openwifi1, an open-source implemen-

tation of Wi-Fi with support for TSN extensions [7], [8]. The

results demonstrate the relevance of our multi-domain TSN

controller to unveil the full potential of TSN networks.

This paper is organized as follows: Section II provides back-

1https://github.com/open-sdr/openwifi

2

ground about TSNs and the main related standards. Section

III presents related work, focusing on SDN controller archi-

tectures for TSNs. In Section IV, we present our controller

architecture, and in Section V we detail the agent module that

is placed on network nodes. Section VI describes the setup

of the experiments to evaluate the solution, and Section VII

presents and discusses the obtained results. Finally, Section

VIII concludes this paper. We provide a list of acronyms used

in this paper at the end of the document.

II. BACKGROUND

TSN originated from the multimedia domain with the Audio

Video Bridging (AVB) Task Group by IEEE 802.1 in 2007 [1].

AVB brought improvements to IEEE 802.1 networks, but more

mechanisms were still necessary to support the requirements

of automotive and industrial applications [9]. The current TSN

standards can be organized into four main pillars [9]: i) timing

and synchronization; ii) bounded low latency; iii) reliability;

iv) resource management.

As time-sensitive applications frequently operate based on

strict deadlines, time synchronization is essential in many use

cases. In addition, time-based scheduling, as proposed by IEEE

802.1Qbv relies on strict synchronization of the network for an

effective operation. On wired TSN the Precision Time Protocol

(PTP) enables time synchronization of nodes with nanosecond

precision [10], [11]. Recently, the functionalities required by

PTP were implemented and demonstrated over Wi-Fi using

openwifi [8], [12], [13].

Standards IEEE 802.1Qav, Qbv, and Qbu introduce features

for bounded low-latency communication [14]–[16]. The first

two specify traffic shaping mechanisms that allow precise

coordination of data transmission. Based on such features,

network devices can be properly configured in order to provide

the required performance to different traffic flows. The last

standard defines a frame preemption mechanism allowing the

interruption of an ongoing frame transmission in favor of

frames with higher priority.

Addressing reliability in TSN, we highlight IEEE 802.1Qci

and IEEE 802.1CB standards [17], [18]. The first provides en-

hancements for stream2 filtering and policing to, for example,

direct traffic to specific queues. IEEE 802.1CB defines frame

replication and elimination, enabling packet transmission via

multiple paths and its re-combination closer to the destination,

discarding duplicates, and reducing the packet loss probability.

Addressing resource management, we highlight IEEE

802.1Qcc [19]. This amendment defines protocols for the

configuration of stream reservations and stream requirements.

The configuration process of a TSN network begins when

Talkers and Listeners inform their requirements to the network,

by means of a User-Network Interface (UNI). The UNI allows

Listeners and Talkers to inform their application requirements

(e.g., required QoS and stream characteristics) to the network

elements (bridges or controllers), as well as to confirm whether

they are ready to receive packets from a given stream. Then,

there is a process of configuration of TSN features on Bridges

2We use the terms “stream” and “flow” interchangeably in this work.

along a tree from each Talker to the corresponding Listener(s).

The document describes three TSN configuration models:

1) Fully distributed: in this model there is a UNI between the

end node (talker/listener) and the bridge it is connected to.

The configuration of each bridge in the path between the end

nodes is performed locally, without a centralized network

controller entity. The knowledge of each bridge does not

necessarily include information about the whole network or

the whole path.

2) Centralized network/distributed user: this model also

provides a UNI between end nodes and the bridges they

are connected to, however, the configuration of the bridges

is carried by a centralized controller. The Centralized Net-

work Configuration (CNC) has knowledge about network

topology and capabilities of bridges, being able to define

configurations that would not be possible using the fully

distributed model.

3) Fully centralized: this model defines an additional entity,

the Centralized User Configuration (CUC), which central-

izes the configuration of Talkers/Listeners. The UNI is

provided by a centralized configuration entity also encom-

passing CNC and CUC. This model aims at use cases

that require significant configuration in the end stations, for

example, cases in which the TSN streams must align with

I/O timing of sensors/actuators [19].

This brief overview shows how many software and hardware

components must be properly configured and coordinated to

achieve a reliable and functional TSN network. With stan-

dardization still in process and new features envisioned for

the future, the capacity to quickly integrate the new functions

into existing TSNs can result in competitive advantages. The

architecture that we propose and implement in this work

supports existing functionalities from current standards for

time synchronization, traffic shaping, and network coordina-

tion required by Ethernet-based TSN networks. Such features

were extended to Wi-Fi in previous works [13], [20], and can

be seamlessly managed by our controller.

In the next section, we analyze and discuss works in the

literature that focus on the design, development, and evaluation

of solutions related to the management of TSN networks

through centralized network control.

III. RELATED WORK

Different works such as [21], [30] have investigated the

instantiation of general-purpose wired TSN in industrial con-

texts through an SDN controller. Although these works aim to

ensure the dynamic configuration of TSN networks, some of

their modeling and configuration services are still done offline,

requiring manual re-execution every time the network con-

ditions change (e.g., topology changes, device failures, etc.).

This significantly increases the Time-to-Integrate and, thus,

the deployment cost. In this line, there are also other control

solutions to integrate wired TSN with industrial standards,

such as OPC UA [22], [31], or PROFINET [23]. In contrast

to these approaches, in the present work, we provide a fully

dynamic configuration through the use of a closed-loop cycle

of monitor and control.

3

TABLE I: Summary of related work

Reference Model Wireless Support Sync Monitoring Scheduling Status

This work Centralized/Hybrid Yes, Wi-Fi 802.1AS, IEEE1588 (e2e) Yes (e2e) Yes (e2e) Prototype. See Sec.VI

Said et al. [21] Centralized No 802.1AS No No Prototype

Kobzan et al. [22] Centralized No 802.1AS No No Prototype

PROFINET [23] Centralized No PROFINET No No Commercial

Nsiah et al. [24] Centralized Yes, DECT (not e2e) DECT (not e2e) No No Prototype (partial)

5G-TSSDN [25], [26] Centralized Yes, 5G (not e2e) 802.1AS (not e2e) No No Prototype

Gutiérrez et al. [27] Centralized No N/A No Yes Model

Pop et al. [28] Centralized No N/A No Yes Model

Pahlevan et al. [29] Centralized No N/A No Yes Simulation

While these previous works are limited to wired domains,

other works try to extend the ideas of TSN to wireless

domains, such as Nsiah et al. [24]. The work introduces the

concept for a TSN controller supporting wireless devices,

specifically, Digital Enhanced Cordless Telecommunication

(DECT) Ultra-Low Energy (ULE) [32]. However, these wire-

less extensions are used as uncoupled extensions of the wired

TSN domain and do not offer actual end-to-end support (e.g.,

[24] it only demonstrates a few DECT-dependent operations

performed through NETCONF). Other more mature works are

the ones proposing the integration of traditional TSN wired

networks with the Ultra-Reliable Low-Latency Communica-

tion (URLLC) slice of 5G networks, such as [25], [26]. Such

works are based on a TSN bridge to integrating both domains,

allowing a Time Sensitive SDN (TSSDN) controller [33]

to allocate resources in the wireless domain. However the

synchronization is still not end-to-end [20], and the proposed

controllers do not support monitoring or scheduling.

Aligned with these works (and also with the same problem),

there is also the work carried out in the IETF DETerministic

NETworks (DetNet) working group (WG) focusing on the

integration with 5G [34]. There are other works that tackle

the dynamic control and optimal scheduling in TSN networks

through optimization models, heuristics, and simulations [27]–

[29], [35]. These theoretical approaches, however, are focused

only on wired TSN and do not consider practical limitations

such as the ones related to synchronization or monitoring.

A summary of the related works is presented in Table I. The

comparative table describes the reference, the configuration

model supported, whether the solution supports wireless de-

vices or not, and the TSN components managed (i.e., synchro-

nization, scheduling, or monitoring). The last column indicates

whether and how each solution was evaluated. Notice that all

related works target fully centralized configuration models,

while our architecture additionally supports the centralized

network/distributed user model. This is because clients are able

to request flows to the controller through an In-band signaling

protocol [36].

According to the existing literature, our work is the first

in demonstrating a standalone TSN controller solution for

both Ethernet and Wi-Fi. In addition, we propose a modular

organization of the SDN controller for TSN in which each

module is specialized in a specific feature set of TSN in

order to fulfill the requirements for deploying effective TSN

networks. This modular approach allows faster integration of

new technologies, as well as support for different types of

devices.

IV. TSN CONTROLLER ARCHITECTURE

Before describing the TSNC components and the agents

we define the network model considered in this work. We

distinguish the Network Elements (NEs) in the following

types: i) Controller; ii) Switches; iii) Routers; iv) Wired Nodes;

v) Wireless Access Points; and vi) Wireless Clients.

Figure 1 illustrates a high-level view of the network model.

The central element is the TSN Controller (TSNC), running

the CNC module that governs node configurations by interact-

ing with a TSN Agent (TSNA) deployed on the nodes. Con-

troller/Agent architectures are useful for abstracting resource

management on heterogeneous networks, being an appropriate

choice for the context of Ethernet/Wi-Fi TSNs [37]. NEs

can be a Router (A), Switches (B to E), Wireless Access

Points (F), Wired Nodes (G and H), or Wireless Clients (I

and J). If a NE requires fine-grained control (e.g., wired

node G in the figure), it must run an instance of the TSNA

to allow central coordination of PTP synchronization and

scheduling. Otherwise, as in the case of wired node H, if PTP

synchronization and scheduling are supported, they are not

managed by the TSNC, and any TSN-like control over the

traffic is done from node C onward. The WLAN domain is

based on openwifi TSN features [7], [8], [13].

CNC and TSNAs communicate through a logical control

network. The control plane uses IPv4 and the data plane uses

IPv6, as we use the IPv6 extension headers for In-band Net-

work Telemetry (INT) (detailed in Section V). Management

can be performed using different configuration protocols, e.g.,

NETCONF, RESTCONF, or a custom protocol (detailed in

Section IV-A). Message exchanges can be initiated by either

TSNC or TSNA, therefore, bidirectional sockets are required.

This approach allows TSNAs to immediately inform the CNC

when changes occur in link connectivity, data rate, or any other

relevant information, so the appropriate actions can be taken,

for example, by a control loop module. Different from other

approaches in the literature, the bidirectional connection brings

benefits such as reduced control overhead by avoiding periodic

polling, and faster detection of anomalies or topology changes.

The capacity to quickly notify the CNC about relevant events

is crucial for supporting TSN over Wi-Fi, as handovers might

require fast adaptation of schedules and other configurations.

4

TSN Controller

B

TSN
Agent

G

H
J

TSN
Agent

I
CNC

F

TSN

Agent

TSN
Agent

E

TSN Agent

D

TSN Agent

A

TSN Agent

TSN Agent

TSN Agent

C

Fig. 1: Network model considered in this work

A. TSNC Overview

Figure 2 shows the internal modules of the TSNC. The

base architecture is composed of the CNC, the Monitor,

and the Management Interface. The other modules provide

additional functionality that might be included as plug-ins

depending on the deployment requirements. These modules

are: the Scheduler for dynamic configuration of schedules;

a Control Loop for automated real-time management; and a

CUC for centralized user configuration and high-level network

orchestration.

User/Network
Interface

Internal
Interface

Management Interface

C
N

C

Southbound Interface

Communication Interface
RESTCONF NETCONFCUSTOM

TSN Controller

Node Manager Network Manager

Application
Registry

Network
Orchestrator

C
U

C

Scheduler

Rule Synthesizer

Route Planner

Solver

Monitor

Dashboard

Subscriber

Database

Control Loop

Telemetry
Analyzer

Control Engine

Fig. 2: TSNC Architecture

We define an abstraction layer for communication between

CNC and TSNAs, referred to as Communication Interface

in Figure 2. Although the current trend is to adopt Network

Configuration (NETCONF) protocol for configuration, along

with Yet Another Next Generation (YANG) data models

[38], [39], this modular architecture gives the flexibility for

different protocols, such as proprietary or in-house developed.

When a configuration has to be applied or retrieved from a

NE, the selection of the appropriate communication protocol

(i.e., NETCONF, RESTCONF, or a custom driver) for each

specific TSNA is abstracted by the Communication Interface

component. This allows multiple protocols to be transparently

supported by the CNC. Regardless of the communication

protocol (or Driver, as referred to in this architecture), our

design requires that both endpoints (CNC and TSNA) must

be able to initiate transmissions.

The next subsections detail the TSNC modules. For ob-

jectivity, we describe them based on our implementation.

For example, we rely on INT monitoring stack [40], [41]

and Wi-Fi scheduling implemented in openwifi [7]. Internal

communication between the TSNC modules uses the ZeroMQ

(ZMQ)3 messaging library which is available for over 20

programming languages, supports a variety of communication

patterns (e.g., Publish/Subscribe, Request/Reply), and shows

high performance with small messages such as the ones

generated by the TSNC modules [42]. We also use ZMQ

to implement the Custom Driver for communication between

TSNC and TSNAs. We encode the messages in JavaScript

Object Notation (JSON) in our custom driver, instead of XML

used by NETCONF. JSON has lower overhead in comparison

to XML, which results in lower network usage when messages

are exchanged between CNC and TSNAs.

B. Centralized Network Configuration – CNC

The CNC centralizes the operations on the TSNC in terms

of node and network management. The functions are split

into two classes: node management and network management.

As described in Section II, many software components must

be carefully coordinated on all nodes of a TSN network,

therefore, the operation of these processes on each node is

configured and tracked by the Node Manager of the CNC.

The node manager keeps track of the processes for PTP

synchronization, INT, and monitoring of interface states of a

node, as well as the current configuration state of a node. If the

node is restarted, the node manager is in charge of restoring

the last valid configuration of the node (e.g., schedules, IP

addresses, routes). The Network Manager keeps track of

network topology changes such as link speeds between nodes,

addition or removal of nodes, and handovers on Wi-Fi domain.

Figure 3 shows the message flow between CNC and TSNA

at different stages of network operation. On startup, a configu-

ration file is loaded with basic settings for nodes and the TSNC

itself, where each NE is identified by a Unique Identifier (UID)

(e.g., based on hostname, or MAC addresses). The CNC opens

a socket for TSNAs to connect. A TSNA connects announcing

its resources and its UID, and if there is an entry for that

UID in the configuration file, the specific configuration for

the NE is transmitted back to the TSNA, otherwise, a generic

configuration is used. New configurations can be transmitted

to the TSNAs at any moment. Relevant changes on node state

3https://zeromq.org/

5

(e.g., interface state, data rate) are reported immediately by

TSNAs to the CNC.

The CNC keeps a hash table with one entry per NE, holding

relevant information such as interface states, link data rates,

number of transmission/reception queues, state of processes

for PTP synchronization, and INT. The hash table stores the

latest information only, in order to avoid excessive memory

usage, while persistent and long-term records (e.g., change

of interface data rate over time) are recorded in the database

of the Monitor module. A node entry contains a Commu-

nication Interface object that abstracts the communication

protocol to the specific node. Thus, configuration changes and

information-gathering commands are properly translated by

this interface.

CNC TSNA

start
load config

open socket
start

{announce: {
 uid: <uid>,
 address: <ip>,
 port: <port>,
 node_type: <type>,
 resources: <rsrc_list>}}

start PTP
setup scheduling

start INT Stack

scan
resources

send
announceprocess

announce

detect
resource
changeprocess

changes

{set_config: {
 ptp: {...}, schedule: {...},
 network: {...}, int: {...},
 flow: {...}, telemetry: {...}}

{resource_update: {
 node: <uid>,
 changes: <list_of_changes>}}

{set_config: {
 <new_configuration>}}

process new
configuration
(if any)

set new
configuration

{set_config: {
 <new_configuration>}}

process new
configuration

confirm new
configuration

{<OK or error message>}

Fig. 3: Communication flow between TSNC and TSNA

Figure 4 illustrates the abstraction of communication meth-

ods provided by the Communication Interface. The TSNA of a

Node X announces itself using a specific Driver. After process-

ing the announce, the TSNC adds Node X to its hash table

and the CommIface object utilizes the corresponding driver

(Driver 2). When the configuration commands are issued to

the driver (e.g., set traffic filtering rules, set schedule), the

driver translates them internally to the method being used by

the node, such as NETCONF using YANG models.

C. Management Interface

The Management Interface is split into two components.

The UNI provides functions for Talkers and Listeners to

inform their network requirements to the controller. It also

offers functions for network operators to manage the TSNC

elements and the TSN network as a whole, being the single

point of access for user operation. Therefore, the UNI is also

responsible for user authentication and permission control.

DRIVER 1 :: LISTEN

DRIVER 2 :: LISTEN

DRIVER N :: LISTEN

. . .CNC

Comm. Interface TSNA
NodeX

Announce

Process announce

CNC eth0: {tx_queues: 8,
 speed: 100, ...},
 . . .
ComIface: {DRIVER 2}

Node 1:

Node X:

. . .
{Node 1 data}

. . .

Hash table

Send config.

CNC
DRIVER 2

YANG NTCNF

Set IP
Set schedule

Set telemetry
. . .

TSNA
NodeXAnnounce

Reply

DRIVER 2

DRIVER 2

(Driver-specific
commands)

(Driver-specific
commands)

Fig. 4: Driver management by the Communication Interface

Inter-module communication is done through the Internal

Interface. It validates the commands to be sent to the network

and provides a central point of intercommunication between

modules (i.e., CNC, CUC, Scheduler, Control Loop, Monitor).

Through this interface, the modules can request information

such as topology, link states, and installed schedules, and apply

configurations to NEs based on their UIDs. The Management

Interface is effectively part of the CNC, however, the coupling

between CNC and Internal Interface is higher than between

UNI and CNC.

D. Monitor

Monitoring is an essential task in most networks, especially

those supporting critical activities like TSNs. Information such

as link states is directly received by the CNC through notifi-

cation from TSNA and updated on the Database. On the other

hand, monitoring performed using INT such as delays (hop-

by-hop and end-to-end), Packet Loss Rate (PLR), throughput,

and others, are managed by an independent Monitor module.

The Monitor module is composed of a Subscriber that receives

monitoring data from NEs through publish/subscribe mecha-

nism. A Dashboard submodule is responsible for data filtering,

display, and setting alarms.

Despite already having communication sockets between

TSNAs and the CNC, through which network telemetry could

be transmitted, we define the socket to the monitor as an

independent socket to give the flexibility to deploy the Monitor

on a different node. This also allows monitoring to continue

as an independent service, and trigger alarms to the operator

even in face of a catastrophic failure of the CNC.

E. Centralized User Configuration – CUC

The CUC is responsible for high-level network coordina-

tion and registration of applications with strict performance

requirements executed in the TSN network. Applications are

registered with the specification of their traffic patterns, a

5-tuple for traffic identification, and the required network

performance between source and destination. This information

6

is used by the Scheduler to define routes and traffic shaping

rules to be applied on NEs, and by the Control Loop to monitor

and take control decisions in the network. The items of the

application specification may vary according to the use case.

The list presented here is sufficient for the use cases in the

projects we are involved in, however, it is not exhaustive. An

application is registered with the following elements:

• Application ID: the unique identifier of the application

in the network.

• Flow identification 5-tuple: Source IP, Destination IP,

Source Port, Destination Port, Protocol. IPs are IPv6

addresses, and Protocol refers to transport layer protocols.

• Application specification: each item is specified for

downlink (source to destination) and uplink (destination

to source).

– Transmission cycle (duration of a packet burst in ms)

– Frames per cycle

– Frame size (Bytes)

• Application requirements: each item is specified for

downlink (source to destination) and uplink (destination

to source). In addition, each value is specified as a tuple of

minimum and maximum tolerated values. For example,

the delay of an application can be specified as [10, 12]
to indicate that up to 12 ms is tolerable, or [10, 10] to

specify that the network delay must be exactly 10 ms.

– Throughput (bits per second)

– Delay (ms)

– Jitter (ms)

– Loss (percentage)

From the application registry, the Network Orchestrator

derives monitoring rules for In-band Telemetry and creates

a map between application ID and telemetry rules, in order

to simplify the process of matching application requirements

and the delivered network performance. The orchestrator also

interacts with the Scheduler and Control Loop to define a

configuration that complies with the requirements of all the

registered applications and defines rules for the continuous

monitoring of traffic flows. By means of the CUC we imple-

ment the Fully Centralized configuration model specified on

IEEE 802.1Qcc [19].

F. Scheduler

Defining a schedule for a TSN is a complex task, in

fact, it is equivalent to the bin-packing problem in the case

of time-based schedules, known to be NP-complete [43]. In

this sense, generating TSN schedules can demand significant

computational power, especially for networks with a large

number of nodes or flows. In our architecture, we specify

the Scheduler as an independent pluggable module as the

scheduling requirements on TSN networks vary significantly

according to the use cases. Small and static networks can

benefit from schedulers that employ exact solvers, as schedule

changes occur infrequently or might never occur. On the

other hand, networks with mobile NEs (e.g., with Wi-Fi

devices) might require frequent schedule changes, and can

benefit from faster but less accurate methods using AI or

genetic algorithms. Moreover, the Scheduler module can be

offloaded to more capable nodes, to avoid increasing the

resource requirements of the TSNC.

The information required by TSN schedulers existing in the

literature varies according to their objectives and complexity.

Below, we list the inputs required by three different TSN

schedulers [44]–[46] and which component of our architecture

provides such information:

• Network topology: provided by the CNC, either based

on information from the network configuration file or

by using Link Layer Discovery Protocol (LLDP). The

number of queues and link data rate of each interface

are also provided.

• Flows and application requirements: provided by the

CUC, based on the registered applications.

• Per-hop delay (comprising processing and propaga-

tion): provided through real-time in-band monitoring of

switch and router performance. This information depends

on telemetry services and can be retrieved by consulting

the database.

The output of the scheduler must be a set of parameters for

the configuration of the desired traffic scheduling mechanism,

along with routing instructions for a flow. This output can

be either a Gate Control List (GCL) compliant with IEEE

802.1Qbv [15] or a set of parameters (i.e., per-queue idle

slope, send slope, high credit, low credit) compliant with IEEE

802.1Qav [14]. For Wi-Fi nodes, the schedules must include

silent periods (when no queues are scheduled), taking into

consideration the shared nature of the medium, leaving time

for other nodes to access the spectrum. The scheduler module

must provide an interface for interaction with other nodes with

at least two capabilities: i) get current schedule: which returns

the schedule currently in force; ii) generate new schedule:

which calculates and returns a new schedule with a unique

identifier. This schedule can be retrieved by other modules

(such as the Control Loop) and validated before being applied

to the network.

G. Control Loop

The Control Loop is a module implementing automated real-

time control in the TSN. This module is in charge of assessing

the compliance of the network with the performance require-

ments registered for the applications in the CUC. To do so,

the control loop consults the telemetry reports in the monitor

database and compares the measured performance against the

KPIs specified for an application. Further information that

might be necessary, such as network topology and the state

of critical processes can be retrieved from the CNC.

Based on the gathered information, the control loop employs

algorithmic or AI-based control methods to generate new rules

(e.g., defining new routes, requesting new traffic shaping rules

to the Scheduler) and apply them in the network through

the CNC. While the scheduler module is also in charge of

generating routing/traffic shaping rules, the action of triggering

network reconfiguration during steady-state operation based on

real-time telemetry information is assigned to the control loop

module.

7

V. TSN AGENT

The TSN Agent (TSNA) is what enables the TSNC to

perform fine-grained control over NEs, interacting with the

CNC through the Communication Interface and a specific

Driver. The Communication Interface of the TSNA has a

similar operation to its counterpart on the CNC, i.e., to select

the appropriate driver to communicate with the CNC. Figure

5 shows the organization diagram of the TSNA.

Southbound Interface

TSN Agent

Data AggregatorData Filter

Telemetry Manager Communication
Interface

CUSTOM

REST/NETCONF

Resource Monitor

Hardware

Services Interfaces

Topology

Traffic Manager

TAS ModuleCBS Module

Traffic Filter / Classifier

INT Manager

Report
Module

Configuration
Module

Timing Manager

NTP
Module

PTP
Module

Fig. 5: TSN Agent submodules

The TSNA is initialized specifying the UID and type of

the NE. On startup, the TSNA scans the NE capabilities (e.g.,

network interfaces, number of transmit and receive queues,

link data rates, neighbor nodes), and announces itself to the

TSNC. All the NE information is transmitted in the announce

message. The CNC replies with the necessary configurations

to initialize the TSNA modules. Figure 3 illustrates the ini-

tialization process of TSNA and message flow with the CNC.

The reply message from the CNC contains the following

information:

• PTP configuration: determines the role of the NE for

time synchronization (e.g., GrandMaster (GM), Slave,

Boundary Clock (BC)), and the interfaces to be used.

• Schedule: gate control list for interfaces of the NE

(example shown on Figure 6) and the base time for the

schedule.

• Network configuration: defines IPv6 addresses for the

data plane, routes, and interfaces to be bridged.

• INT configuration: determines the interfaces that will

be capable of performing in-band telemetry. For more

information about the INT framework used in this work

we refer the reader to the work of Haxhibeqiri et al. [40].

• Flow configuration: defines rules to apply filtering and

policing for specific flows.

• Telemetry: defines what information should be reported

to the CNC, as well as rules for telemetry data filtering

and aggregation to reduce monitoring overhead.

A. Timing Manager

The Timing Manager controls the time synchronization

services on a NE. The Network Time Protocol (NTP) module

synchronizes the clock of the NE defined as PTP GM with a

global reference of time. Then, the PTP module synchronizes

the NEs of the TSN using the Precise Time Protocol. The PTP

module is based on linuxptp4 and is responsible for configuring

and running the ptp4l and phc2sys processes. The module

forwards reports synchronization state and accuracy reports

to the Telemetry Manager.

B. INT Manager

The INT manager builds on top of the In-band telemetry

framework presented by Haxhibeqiri et al. [40], implemented

using Click Router [47]. The framework adds telemetry

information into data packets to provide per-flow/per-hop

measurements of throughput, delay, jitter, and packet loss

ratio, allowing fine-grained monitoring of the performance of

network flows. INT is configured through the Configuration

Module, based on the application registration data stored in the

CUC. The configuration contains the Application ID, the Flow

Identification 5-tuple, and how often the telemetry information

should be added to packets (i.e., insert telemetry headers every

N packets to avoid excessive telemetry overhead).

The INT framework periodically generates reports about

flow performance, to be published to the TSNC (Monitor).

The Report Module performs a pre-processing of the raw

report that contains only counter values (e.g., packets trans-

mitted/received) and timestamps (i.e., the time at which a

packet traversed each node), and calculates Quality of Service

(QoS) information in terms of throughput, delay, jitter, and

packet loss ratio. The resulting report is sent to the Telemetry

Manager that can further filter and aggregate the reports before

transmitting them to the controller.

C. Resource Monitor

The resource monitor is responsible for constantly mon-

itoring the state of the NE in terms of services, network

interfaces, hardware, and topology changes. During the startup

of the TSNA, the resource monitor scans the node capabilities

and transmits them in the announce message. On steady-

state operation, the resource monitor keeps monitoring the

services/devices/topology, transmitting only the updates to the

controller.

In terms of services, the states of the following processes

are monitored:

• ptp4l: responsible for PTP synchronization.

• phc2sys: for synchronizing system and network clocks.

• Click: for INT and time-based scheduling on top of

openwifi.

• lldpd: for neighbor discovery and topology monitoring.

Regarding network interfaces, the resource monitor keeps

track of their state (up or down) and link speed. This works

in combination with the topology monitoring, detecting when

links between NEs change in terms of connection speed, or

when a link is broken. In the Wi-Fi domain, the topology

information includes data about associated clients. Finally,

the hardware monitoring comprises temperatures, voltages,

and other information that are reported when reaching critical

values.

4http://linuxptp.sourceforge.net/

8

D. Traffic Manager

Functions related to traffic classification, filtering, and shap-

ing are carried out by the Traffic Manager. This module

then defines how to apply them in the interfaces according

to interface type and capabilities. On wired interfaces, the

schedules are applied using the Traffic Control (TC) (tc-

taprio5) tool. For Wi-Fi interfaces, the schedule specification

is first converted to the format used in openwifi, and then

applied to the interface. This operation is transparent to the

controller – a benefit of the Controller/Agent architecture, as

the TSNAs abstract the specificity of different devices and

provide a homogeneous configuration interface.

The example in Figure 6 shows the configuration received

by a node with UID ap1, with a schedule to be applied on the

wired interface eth1 and on the Wi-Fi interface sdr0. Schedules

based on IEEE 802.1Qbv are received from the controller in

a standard format and defined as a GCL. The GCL specifies

the gates to be open at a given moment and the duration of a

slot in nanoseconds. The sum of times of all the GCL entries

is the cycle duration of the schedule. The GCL for Wi-Fi

interfaces must contain intervals where all gates are closed

(highlighted in bold in the figure), which determines that no

queue is served during these time slots. Due to the shared

nature of the wireless medium, these intervals are used either

by a client to transmit to the Access Point (AP) or as spare

periods that can be allocated to other flows.

Time-aware scheduling based on IEEE 802.1Qbv is con-

trolled by the Time-Aware Scheduling (TAS) Module, while

the shaping mechanism based on IEEE 802.1Qav is controlled

by the Credit-Based Shaper (CBS) Module.

"ap1": {

"schedule": [

{"interface": "eth1",

"gcl": [{"gate_mask": "0x80", "duration": 100000},

{"gate_mask": "0x40", "duration": 200000},

{"gate_mask": "0x3f", "duration": 700000}],

"base-time": <timestamp>

},

{"interface": "sdr0",

"gcl": [{"gate_mask": "0x00", "duration": 8000000},

{"gate_mask": "0x01", "duration": 8000000},

{"gate_mask": "0x00", "duration": 8000000},

{"gate_mask": "0x02", "duration": 8000000},

{"gate_mask": "0x00", "duration": 8000000},

{"gate_mask": "0x03", "duration": 8000000},

{"gate_mask": "0x00", "duration": 8000000},

{"gate_mask": "0x04", "duration": 8000000}],

"base-time": <timestamp>

}

]

}

Fig. 6: Example of schedule configuration for an Access Point

E. Telemetry Manager

The Telemetry Manager controls what information is re-

ported to the CNC, allowing telemetry reports to be filtered,

aggregated, or disabled. The data filter can be configured to

5https://man7.org/linux/man-pages/man8/tc-taprio.8.html

allow the transmission of telemetry reports only when the val-

ues exceed predefined thresholds. Data can also be aggregated

and transmitted as statistics over a time period (e.g., 99th

percentile of synchronization error in the last minute). This can

contribute to reducing the monitoring overhead in the network

but still allows telemetry reporting to be dynamically adjusted

for troubleshooting.

VI. EXPERIMENTAL SETUP

In order to report on the key performance indicators of our

implementation, we have carried out three sets of experiments.

The first set analyzes the performance of the controller for

networks with different numbers of nodes. The objective is

to understand the resource usage in terms of CPU, memory,

and network, giving a clear indication of the hardware re-

quirements to deploy the controller and its scalability. We

use a controlled wired setup with five nodes on the Virtual

Wall6 testbed: one operated as the TSNC (running the TSNC),

and the other four executed docker containers running the

TSNAs to emulate a network with a large number of NEs.

The four nodes shared the same link to the TSNC, allowing

us to monitor the network load generated by the TSNAs.

In the second and third sets of tests, we validate the architec-

ture by performing monitoring and control activities through

in-band telemetry, precise time synchronization, and dynamic

cross-domain scheduling. The second set of experiments uses

the topology from Figure 7, consisting of eight nodes on the

Virtual Wall testbed: four wired end nodes, three switches, and

one controller. The dashed lines represent logical connections

between the nodes and the controller. The dotted lines show the

traffic generated during our validation experiments. Two UDP

applications generated packets every 1 millisecond from PC1

to PC2, while from PC3 and PC4 we used iperf37 to generate

flooding traffic between PC3 and PC4. During the experiments,

we apply different scheduling and traffic classification rules on

PC1, SW1, SW2, and SW3 to give each flow different end-

to-end performance prioritization.

In the third set of experiments we used the topology

on Figure 8, deployed on w-iLab.t8, a large-scale open

Fed4FIRE+ [48] testbed intended for Wi-Fi and sensor net-

working experimentation. This setup has one wired node,

one switch, one Wi-Fi AP, and two Wi-Fi clients based on

openwifi. We generated UDP traffic from both clients to the

PC1, applying schedules with openwifi on both clients, the

AP, and SW1.

All nodes used on Virtual Wall consist of Intel(R)

Xeon(TM) CPU E5645, with 24GB of RAM, equipped

with Intel 82576 Gigabit Ethernet controllers. For each port,

the controller offers 8 transmission and 8 reception hard-

ware queues. The operating system used was Ubuntu 20.04

LTS with kernel 5.15.0. On w-iLab.t testbed the AP con-

sisted of a Zynq UltraScale+ MPSoC ZCU1029 board and

6https://doc.ilabt.imec.be/ilabt/virtualwall/
7https://iperf.fr/
8http://doc.ilabt.imec.be/
9https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

9

SW2SW1 SW3

PC3

CNC
PC2PC1

PC4

App 1

App 2

iperf

PTP GM

Virtual Wall Tesbed

Fig. 7: Wired testbed setup on Virtual Wall

AP

CNC

SW1

PC1

Client1

Client2
App 1

App 2

PTP GM

Client2
Client1

AP

SW1

PC1CNC

w-iLab.t TSN Testbed Setup

Fig. 8: Wi-Fi testbed setup w-iLab.t

AD-FMCOMMS2-EBZ10 radio frontend to communicate to

Clients 1 and 2. The clients were running on Zynq-7000 SoC

ZC70611 boards. The CNC and PC1 on w-iLab.t testbed are

Intel NUC nodes with Intel(R) Core(TM) i7 CPU and Intel

I219-V Ethernet controllers. The switch is an Evrtech KBOX-

3102 industrial switch with an Intel(R) Core(TM) i7 CPU and

Intel I211-AT Ethernet controller.

The CNC modules were created in Python 3 program-

ming language. We used the PostgreSQL12 as database, and

Grafana13 for the dashboard in the Monitor. The TSNA is also

10https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/eval-ad-fmcomms2.html

11https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
12https://www.postgresql.org/
13https://grafana.com/

based on Python 3. In the wired setup (Figure 7) we config-

ured the TSNC as GM, and the switches as BCs providing

synchronization to the PCs, which operated as PTP Slaves. In

the hybrid setup (Figure 8), PC1 was a GM, SW1 was con-

figured as a BC, and the AP using openwifi uses a particular

configuration: operates as a Slave on the wired interface, and

as a GM on Wi-Fi interface. PTP Hardware Clocks (PHCs) of

wired and wireless interfaces are synchronized using phc2sys

(from linuxptp package) to allow global time synchronization

of both LAN and WLAN domains. The two Wi-Fi clients

operate as PTP Slaves.

VII. RESULTS

In this section, we present the results of the experiments

showing the feasibility of our architecture. First, we show

results related to the performance of the TSNC (specifically,

the CNC module) when handling simultaneous requests from

many TSNAs, as well as CPU, Memory, and Network usage

footprints. These experiments are carried out using the TSNAs

running on docker containers. Then, we validate the proposed

controller by configuring and managing LAN and WLAN TSN

domains on Virtual Wall and w-iLab.t.

A. TSN Controller Performance

We first analyze the agent serving time when increasing

numbers of TSNAs try to connect to the CNC at the same time.

Each TSNA was executed in a docker container with a varying

number of virtual interfaces, and announcing themselves as

different NE types (i.e., router, switch wired node, AP, Wi-Fi

node). To avoid processing bottlenecks on the TSNA side we

executed up to 250 containers on each Virtual Wall node. We

measured the time difference between a TSNA announcing

itself, and receiving the announce reply from the CNC.

Results shown in Figure 9 indicate that the CNC was able to

process 200 simultaneous requests with a median time below

one second. For 10 simultaneous requests, the median was

25 milliseconds. In the case with 1000 simultaneous requests,

the median time was 6 seconds, with the longest serving

time observed at 11.8 seconds. The CNC showed sufficient

performance on agent serving time even for hundreds of

simultaneous requests. Considering that PTP synchronization

can take several seconds to converge to sub-microsecond

accuracy, the agent serving time of our CNC does not represent

a bottleneck for the TSN network bootstrap.

Figure 10 shows the memory footprint for an increasing

number of associated NEs. As the CNC keeps the internal

hash table with the information on NEs, it is expected that the

memory consumption increases as more NEs connect. Each

bar in the graph shows the base memory (used by the TSNC

before any TSNA associates) and the final memory usage after

all the TSNAs associate. For each run we restarted the TSNC,

therefore, minor oscillations of the base memory usage were

observed. Also, in all runs, the configuration file contained

entries for all the 1000 NEs that could connect to the CNC,

which also increases the base memory usage. In the scenario

with 1000 NEs, the total memory usage was 121 MB, which

represents approximately 123 KB of memory for each TSNA.

10

10 50 100 200 300 400 500 600 700 800 900 1000
Number of Nodes

101

102

103

104

T
im

e
(m

s)

Fig. 9: Agent serving time

These results show the low memory footprint of the CNC per

associated NE, leaving such resources to be allocated to more

complex modules like Scheduler and Control Loop.

10 50 100 200 300 400 500 600 700 800 900 1000
Number of Nodes

0

20

40

60

80

100

120

R
A

M
U

sa
g

e
(M

B
)

27 30
35

45

55
63

73
83

92
101

111
121

Base

Total

Fig. 10: TSNC memory usage per number of agents

In Figure 11 we show the CPU usage by the CNC while

processing the simultaneous association requests. We select

the results for 50, 100, 500, and 1000 NEs as they represent

cases with small (50 and 100), average (500), and high (1000)

amounts of requests. For 10 simultaneous requests, there was

no significant load. For 50 and 100 we observed a quick

increase to approximately 18 % of CPU usage. For 500 and

1000 requests the initial CPU usage is approximately 37 %,

followed by 5 and 10 seconds respectively of approximately

18 % load. CPU usage results show that the TSNC does not

need to run on powerful servers and that similarly to memory,

CPU resources can be allocated to more complex modules.

0 5 10 15 20 25
Time (s)

0

5

10

15

20

25

30

35

C
P

U
L

o
ad

(%
)

50 Agents

100 Agents

500 Agents

1000 Agents

Fig. 11: TSNC CPU usage during association of agents

Lastly, we show in Figure 12 the network input and output

traffic generated during association requests. Solid lines show

the traffic load for 50 agents, while dashed lines show the traf-

fic load for 1000 agents. Input traffic is higher at startup when

nodes transmit their capabilities during announce. However,

the output network load is higher and spans for a longer period

as the CNC transmits back the configuration for each NE,

including configuration files (e.g., for the INT framework).

0 5 10 15 20 25
Time (s)

0

2000

4000

6000

8000

10000

12000

N
et

w
o

rk
L

o
ad

(K
b

p
s)

50 Agents (Input)

1000 Agents (Input)

50 Agents (Output)

1000 Agents (Output)

Fig. 12: TSNC network traffic during association of agents

The performance evaluation shows that the CNC is capa-

ble of handling many simultaneous requests with low CPU,

memory, and network footprints, which allows resources to

be allocated to other more demanding services. However, the

agent serving time increases as more simultaneous requests

occur. Currently the CNC processes requests in a First In,

First Out (FIFO) scheme, however, the low CPU and memory

requirements indicate that further optimizations can be imple-

mented, such as performing parallel processing of requests.

B. Testbed Validation

We now show the validation results by building two different

TSN networks on distinct testbeds and managing TSN services

centrally from the controller. First, we show the synchroniza-

tion accuracy achieved on each testbed, as a common and

accurate reference of time is crucial for the operation of a

TSN network.

1) Synchronization: Synchronization results are described

in Table II. The values were obtained from linuxptp, which

returns estimates of clock offset from the GM (NEs operating

as GM are omitted on the table). The first column describes the

NE, the second column shows the median absolute offset, and

the third column shows the 90th percentile of absolute offset.

In Virtual Wall we observed lower offsets on the switches,

with medians between 213 and 255. The offsets on PCs were

significantly higher and with higher oscillation (ranging from

3µs to 15 µs in the median, with peaks of over 1 ms).

This variation is expected due to testbed setups: we do not

have control over which nodes of the testbed were allocated

for the experiment, and the testbed infrastructure contains

switches between the nodes that we cannot control. Thus,

synchronization errors can be introduced by the switches.

Also, the PCs are one hop farther from the GM and get

synchronization from the BCs. Therefore, higher offsets are

expected from the PCs.

11

TABLE II: PTP synchronization offset from GM (in nanosec-

onds) on testbeds

Node Median 90th Percentile

Virtual Wall

PC1 3055 9257

PC2 6835 97281

PC3 14965 49414

PC4 3535 8306

SW1 213 555

SW2 255 587

SW3 225 580

w-iLab.t

SW1 211 529

AP 939 1955

Client 1 1000 2500

Client 2 500 2500

In the Wi-Fi testbed the synchronization offset between

SW1 and GM had a median absolute offset of 211 ns, with

a 90th percentile of 529 ns. The wired interface of the AP

showed a median offset of 939 ns and a 90th percentile of

1955 ns. Synchronization errors between AP and clients were

in line with the results presented by Aslam et al. [13], with a

median of 1000 ns and 500 ns for Clients 1 and 2 respectively,

with a 90th percentile of 2500 ns.

2) Scheduling: In scheduling experiments, we demonstrate

fine-grained control over traffic by using the CNC to manage

the TAS parameters on NEs. We use two applications to

measure network performance and the effects of the applied

schedules. We use iperf to generate TCP traffic, and a custom

UDP traffic generator, in which a client tags packets with

the current timestamp and transmits them to the server in

predefined intervals. The server receives the packets, calculates

the one-way delay, generates statistics every second, and

publishes them to the Monitor module. As the NEs are PTP

synchronized, the one-way delay error is within synchroniza-

tion accuracy. We configured the UDP traffic generators (i.e.,

App 1 and App 2) to send packets every 1 ms.

Figure 13 shows the three schedules used for experiments

on the wired testbed. Each square represents a slot of 250 µs,

resulting in a cycle of 5 ms. Crossed squares are slots in which

all the gates are closed (there is no transmission during those

slots). Such slots can be allocated, for example, to new flows

being started on the network. PTP and best-effort traffic are

transmitted on queue 0, therefore, we allocate 30 % of the

cycle duration to queue 0, distributed during the cycle.

We assign iperf traffic to queue 1, App 1 to queue 2, and

App 2 to queue 3. Considering that all interfaces run at 1

Gbps, the expected theoretical throughput achieved by iperf

on Schedules 1 and 3 is 6.25 MB/s, as 1/20th of the 5 ms cycle

is reserved for queue 1 on both schedules. Schedule 2 adds

another slot to queue 1, doubling the throughput. Apps 1 and

2 start with the same priority, and on Schedule 3 we add one

more slot to App 1, giving it more transmission opportunities

in a cycle and reducing the end-to-end delay.

The results are reported in Figure 14, showing when each

schedule is in force. The one-way delay represents the 99th

percentile for packets received during the last second by the

Schedule 1

Schedule 2

Schedule 3

1 2 30 0 0 0 0 0

1 2 30 0 0 0 0 01

1 2 30 0 0 0 0 02

Fig. 13: Schedules for wired testbed experiments

UDP App server. Delay oscillations were caused by peaks of

synchronization error observed on PC2 during experiments.

The performance indicators were in line with the expected

behavior from the schedules. With a cycle duration of 5 ms,

and one slot per cycle allocated to Apps 1 and 2, most of

the packets being generated were buffered during the 19 slots

(4.75 ms) while their respective queues were not scheduled for

transmission. When one more slot is added to App 1 (schedule

2), the buffering time is at most 2.75 ms, in line with the

observed results. App 2 kept the same behavior during the

experiment, not being affected by schedule changes for other

flows, as its slot allocation was kept the same all the time. The

effective throughput achieved with iperf was also in line with

expectations, taking into consideration that the real throughput

is slightly lower than the theoretical and that other switches

exist between the nodes. Applying Schedule 2 we double iperf

throughput, but do not affect the one-way delay of the UDP

Apps. After applying Schedule 3, iperf returns to the initial

behavior, while App 1 gets higher priority than App 2, having

its packets delivered with a lower delay.

0

1

2

3

4

5

6

O
n

e-
w

ay
d

el
ay

(m
s)

Schedule 1 Schedule 2 Schedule 3

App 1

App 2

0 50 100 150 200 250 300

Execution time (s)

0

2

4

6

8

10

12

T
C

P
T

h
ro

u
g

h
p

u
t

(M
B

/
s)

Schedule 1 Schedule 2 Schedule 3

iperf3

Fig. 14: Effect of schedules on traffic performance on the

wired testbed with the topology from Figure 7

In the Wi-Fi testbed, we used the Schedules shown in Figure

15 to control uplink traffic from Clients 1 and 2 to PC1. The

Wi-Fi schedules are configured taking into account the shared

nature of the wireless medium, with silent periods to avoid

collisions between flows coming from different nodes, and at

the end of the cycle to allow association of new nodes [49].

12

In Figure 15 we describe the schedules for each device,

considering the path of the flows from the Wi-Fi clients to the

wired node. Each square represents a slot of 256 µs, resulting

in a cycle of 5.12 ms. We used two UDP App instances to

verify the effects of scheduling. App 1 was allocated to queue

1 and App2 was allocated to queue 2. Schedule 1 gives the

same number of slots to both queues. On Schedule 2 we add a

1 ms slot to queue 1 on SW1, while the AP and Wi-Fi clients

have a 2 ms slot at the end of the cycle allocated to queues

0, 1, and 3. Therefore, Schedule 2 gives more priority to App

1 than to App 2. The logic is inverted on Schedule 3, giving

more priority to App 2. App 1 traffic is generated at client 1

while the App 2 traffic flow is generated at Client 2 both with

a destination at PC1.

Schedule 1

SW1 2 12 1

AP 2 12 1 03 3

CL1 2 1 3 0

CL2 2 1 3 0

Schedule 3

2 1 3 0-2-3CL2

2 12 1 2SW1

2 12 1 3 3 0-2-3AP

2 1 3 0-2-3CL1

Schedule 2

2 1 3 0-1-3CL2

SW1 2 12 1 1

2 12 1 3 3 0-1-3AP

2 1 3 0-1-3CL1

Fig. 15: Schedules for Wi-Fi testbed experiments

Results for Wi-Fi scheduling are shown in Figure 16. Using

Schedule 1 (at the beginning and the end of the experiment),

both flows show the same delay pattern. Schedule 2 gives more

priority to App 1 with the additional slot, reducing the delay

from 5 ms to 3 ms. Schedule 3 gives more priority to App 2 on

Client 2, albeit with a larger variation. The variation is caused

by the number of slots between the two transmission chances

given to queue 1 and queue 2 on the Wi-Fi clients. While

queue 1 is not scheduled for at most 6 slots (on Schedule

2, CL1), queue 2 is not scheduled for 11 slots (on Schedule

2, CL2), forcing packets of App 2 to be buffered for longer

periods. Nevertheless, the results show that traffic scheduling

can be correctly performed and controlled by the CNC through

the specification of GCLs for wired and Wi-Fi devices.

VIII. CONCLUSION AND FUTURE WORK

In this work, we describe and implement a modular archi-

tecture for a multi-domain end-to-end TSN CNC. We identify

the technical details of the main modules required by the

TSN CNC, as well as by the agent that manages the NEs,

in order to efficiently support the tasks required by a TSN

network comprising wired and Wi-Fi NEs. We implement

the main modules, namely TSN Controller, Communication

Interface, a Custom Driver for communication, and the TSN

Agent that runs on NEs. By defining a Communication

Interface that abstracts the communication method used by

0 50 100 150 200 250 300 350
Execution time (s)

0

1

2

3

4

5

6

7

8

O
n

e-
w

ay
d

el
ay

(m
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1

App 2

Fig. 16: Effect of schedules on traffic performance on Wi-Fi

testbed with the topology from Figure 8

the TSN network devices, the CNC can support devices

that employ different mechanisms for device configuration,

either a proprietary driver or open standards like NETCONF.

Our architecture provides support for PTP synchronization,

bounded low latency, and resource management in an end-to-

end manner for both Wi-Fi and wired domains. We discuss on

the technical details and existing challenges of our proof-of-

concept implementation, evaluating its performance in terms

of scalability and demonstrating its end-to-end feasibility by

running experiments on two different testbeds. We set up wired

and Wi-Fi TSNs nodes in a joint manner, and demonstrate

the end-to-end precise time synchronization and fine-grained

traffic shaping achieved by the full setup.

Our work pushes further the existing research on TSN by

presenting a flexible and scalable platform that may serve as

the scaffolding for new end-to-end TSN solutions. Future work

should aim to leverage the flexibility of this CNC architecture

to fully automate, tentatively in an intelligent manner, the

TSN control on top of the existing functionalities to offer a

continuum TSN management in heterogeneous wired/Wi-Fi

networks.

ACKNOWLEDGMENT

This research is partially funded by the imec ICON

project VELOCe - VErifiable, LOw-latency audio Commu-

nication (Agentschap Innoveren en Ondernemen project nr.

HBC.2021.0657).

REFERENCES

[1] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 22–28,
2018. [Online]. Available: doi.org/10.1109/MCOMSTD.2018.1700076

[2] J. L. Messenger, “Time-Sensitive Networking: An Introduction,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, jun
2018. [Online]. Available: doi.org/10.1109/mcomstd.2018.1700047

[3] “Time-Sensitive Networking: A Technical Introduction,” Cisco Public

White Paper, 2017. [Online]. Available: www.cisco.com/c/dam/en/us/
solutions/collateral/industry-solutions/white-paper-c11-738950.pdf

[4] D. Cavalcanti, “Wireless TSN – Definitions , Use Cases & Standards
Roadmap,” Avnu Alliance, pp. 1–16, 2020. [Online]. Available:
avnu.org/wireless-tsn-paper/

13

[5] Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5G URLLC:
Design Challenges and System Concepts,” in 2018 15th International

Symposium on Wireless Communication Systems (ISWCS), 2018, pp.
1–6. [Online]. Available: doi.org/10.1109/ISWCS.2018.8491078

[6] T. Adame, M. Carrascosa, and B. Bellalta, “Time-Sensitive Networking
in IEEE 802.11be: On the Way to Low-latency WiFi 7,” dec 2019.
[Online]. Available: http://arxiv.org/abs/1912.06086

[7] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman,
“openwifi: a free and open-source IEEE802.11 SDR implementation
on SoC,” in 2020 IEEE 91st Vehicular Technology Conference

(VTC2020-Spring), 2020, pp. 1–2. [Online]. Available: doi.org/10.1109/
VTC2020-Spring48590.2020.9128614

[8] J. Haxhibeqiri, X. Jiao, M. Aslam, I. Moerman, and J. Hoebeke,
“Enabling TSN over IEEE 802.11: Low-overhead time synchronization
for Wi-Fi clients,” in ICIT2021, the 22nd International Conference

on Industrial Technology, 2021, pp. 1068–1073. [Online]. Available:
doi.org/10.1109/ICIT46573.2021.9453686

[9] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
[Online]. Available: doi.org/10.1109/JPROC.2019.2905334

[10] S. Waldhauser, B. Jaeger, and M. Helm, “Time Synchronization
in Time-Sensitive Networking,” no. April, pp. 2–7, 2020. [Online].
Available: doi.org/10.2313/NET-2020-04-1

[11] “IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,” IEEE Std

802.1AS-2020, pp. 1–421, 2020. [Online]. Available: doi.org/10.1109/
IEEESTD.2020.9121845

[12] M. Aslam, W. Liu, X. Jiao, J. Haxhibeqiri, J. Hoebeke, I. Moerman,
E. Municio, G. Miranda, P. H. Isolani, and J. M. Marquez-Barja, “High
Precision Time Synchronization on Wi-Fi based Multi-Hop Network,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). IEEE, 2021, pp. 1–2. [Online].
Available: biblio.ugent.be/publication/8709058/file/8709060.pdf

[13] M. Aslam, W. Liu, X. Jiao, J. Haxhibeqiri, G. Miranda, J. Hoebeke,
J. M. Marquez-Barja, and I. Moerman, “Hardware Efficient Clock
Synchronization across Wi-Fi and Ethernet Based Network Using PTP,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2021. [Online].
Available: doi.org/10.1109/TII.2021.3120005

[14] “Ieee standard for local and metropolitan area networks - virtual
bridged local area networks amendment 12: Forwarding and queuing
enhancements for time-sensitive streams,” IEEE Std 802.1Qav-2009,
pp. C1–72, 2010. [Online]. Available: doi.org/10.1109/IEEESTD.2009.
5375704

[15] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std 802.1Qbv-2015, pp. 1–57, 2016. [Online]. Available:
10.1109/IEEESTD.2016.8613095

[16] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 26: Frame Preemption,”
IEEE Std 802.1Qbu-2016, pp. 1–52, 2016. [Online]. Available:
doi.org/10.1109/IEEESTD.2016.7553415

[17] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing,”
IEEE Std 802.1Qci-2017, pp. 1–65, 2017. [Online]. Available:
doi.org/10.1109/IEEESTD.2017.8064221

[18] “IEEE Standard for Local and metropolitan area networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-2017,
pp. 1–102, 2017. [Online]. Available: doi.org/10.1109/IEEESTD.2017.
8091139

[19] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks – Amendment 31: Stream Reservation
Protocol (SRP) Enhancements and Performance Improvements,”
IEEE Std 802.1Qcc-2018, pp. 1–208, 2018. [Online]. Available:
doi.org/10.1109/IEEESTD.2018.8514112

[20] J. Haxhibeqiri, X. Jiao, E. Municio, J. M. Marquez-Barja, I. Moerman,
and J. Hoebeke, “Bringing Time-Sensitive Networking to Wireless
Professional Private Networks,” Wireless Personal Communications, pp.
1–17, 2021. [Online]. Available: doi.org/10.1007/s11277-021-09056-0

[21] S. B. H. Said, Q. H. Truong, and M. Boc, “SDN-Based Configuration
Solution for IEEE 802.1 Time Sensitive Networking (TSN),” SIGBED

Rev., vol. 16, no. 1, p. 27–32, Feb. 2019. [Online]. Available:
doi.org/10.1145/3314206.3314210

[22] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel,
and J. Jasperneite, “Configuration Solution for TSN-based Industrial
Networks utilizing SDN and OPC UA,” in 2020 25th IEEE

International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1. IEEE, 2020, pp. 1629–1636. [Online].
Available: doi.org/10.1109/ETFA46521.2020.9211897

[23] S. S. Andrej Friesen and A. Biendarra, “PROFINET
over TSN Guideline Version 1.1.” [Online]. Available:
www.profibus.com/technology/profinet

[24] K. A. Nsiah, K. Alkhouri, and A. Sikora, “Configuration of Wireless
TSN Networks,” in 2020 IEEE 5th International Symposium on Smart

and Wireless Systems within the Conferences on Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS-SWS), 2020,
pp. 1–5. [Online]. Available: doi.org/10.1109/IDAACS-SWS50031.
2020.9297066

[25] M. Böhm, J. Ohms, M. Kumar, O. Gebauer, and D. Wermser,
“Time-sensitive software-defined networking: a unified control-plane
for TSN and SDN,” in Mobile Communication-Technologies and

Applications; 24. ITG-Symposium. VDE, 2019, pp. 1–6. [Online].
Available: ieeexplore.ieee.org/abstract/document/8731777

[26] S. Bhattacharjee, K. Katsalis, O. Arouk, R. Schmidt, T. Wang, X. An,
T. Bauschert, and N. Nikaein, “Network Slicing for TSN-Based
Transport Networks,” IEEE Access, vol. 9, pp. 62 788–62 809, 2021.
[Online]. Available: doi.org/10.1109/ACCESS.2021.3074802

[27] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN networks,” in 2017 22nd

IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA), 2017, pp. 1–8. [Online]. Available:
doi.org/10.1109/ETFA.2017.8247597

[28] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling
Fog Computing for Industrial Automation Through Time-Sensitive
Networking (TSN),” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 55–61, 2018. [Online]. Available: doi.org/10.1109/
MCOMSTD.2018.1700057

[29] M. Pahlevan, J. Schmeck, and R. Obermaisser, “Evaluation of TSN
Dynamic Configuration Model for Safety-Critical Applications,” in 2019

IEEE Intl Conf on Parallel Distributed Processing with Applications,

Big Data Cloud Computing, Sustainable Computing Communications,

Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom),
2019, pp. 566–571. [Online]. Available: doi.org/10.1109/
ISPA-BDCloud-SustainCom-SocialCom48970.2019.00086

[30] M.-T. Thi, S. B. H. Said, and M. Boc, “SDN-Based Management
Solution for Time Synchronization in TSN Networks,” in 2020 25th

IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1. IEEE, 2020, pp. 361–368. [Online].
Available: doi.org/10.1109/ETFA46521.2020.9211923

[31] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer,
M. Seewald, and T. Sauter, “An introduction to OPC UA TSN for
industrial communication systems,” Proceedings of the IEEE, vol.
107, no. 6, pp. 1121–1131, 2019. [Online]. Available: doi.org/10.1109/
JPROC.2018.2888703

[32] U. Alliance, “Digital Enhanced Cordless Telecommunica-
tions (DECT) Ultra Low Energy (ULE).” [Online]. Avail-
able: www.etsi.org/deliver/etsi ts/102900 102999/10293901/01.03.01
60/ts 10293901v010301p.pdf

[33] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (TSSDN) for real-time applications,” in Proceedings

of the 24th International Conference on Real-Time Networks and

Systems, 2016, pp. 193–202. [Online]. Available: doi.org/10.1145/
2997465.2997487

[34] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL
research,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 88–145, 2018. [Online]. Available: doi.org/10.1109/COMST.2018.
2869350

[35] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and
R. Hummen, “How to Optimize Joint Routing and Scheduling Models
for TSN Using Integer Linear Programming,” 2021. [Online]. Available:
doi.org/10.1145/3453417.3453421

[36] J. Haxhibeqiri, A. Seferagic, R. V. Bhat, I. Moerman, and J. Hoebeke,
Tighter Application-Network Interfacing to Drive Innovation in

Networked Systems. New York, NY, USA: Association for Computing
Machinery, 2021, p. 53–57. [Online]. Available: doi.org/10.1145/
3472727.3472801

[37] S. Schriegel, T. Kobzan, and J. Jasperneite, “Investigation on
a distributed SDN control plane architecture for heterogeneous
time sensitive networks,” IEEE International Workshop on Factory

Communication Systems - Proceedings, WFCS, vol. 2018-June, pp.
1–10, 2018. [Online]. Available: doi.org/10.1109/WFCS.2018.8402356

14

[38] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
configuration protocol (NETCONF),” 2011. [Online]. Available:
www.hjp.at/doc/rfc/rfc6241.html

[39] J. Schönwälder, M. Björklund, and P. Shafer, “Network configuration
management using NETCONF and YANG,” IEEE Communications

Magazine, vol. 48, no. 9, pp. 166–173, 2010. [Online]. Available:
doi.org/10.1109/MCOM.2010.5560601

[40] J. Haxhibeqiri, P. H. Isolani, J. M. Marquez-Barja, I. Moerman,
and J. Hoebeke, “In-Band Network Monitoring Technique to Support
SDN-Based Wireless Networks,” IEEE Transactions on Network and

Service Management, vol. 18, no. 1, pp. 627–641, 2021. [Online].
Available: doi.org/10.1109/TNSM.2020.3044415

[41] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead, fine-
grained end-to-end monitoring of wireless networks using in-band
telemetry,” in 2019 15th International Conference on Network and

Service Management (CNSM). IEEE, 2019, pp. 1–5. [Online].
Available: doi.org/10.23919/CNSM46954.2019.9012678

[42] Z. Kang, R. Canady, A. Dubey, A. Gokhale, S. Shekhar, and
M. Sedlacek, “A Study of Publish/Subscribe Middleware Under
Different IoT Traffic Conditions,” in Proceedings of the International

Workshop on Middleware and Applications for the Internet of Things,
ser. M4IoT’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 7–12. [Online]. Available: doi.org/10.1145/
3429881.3430109

[43] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner,
“Scheduling Real-Time Communication in IEEE 802.1Qbv Time
Sensitive Networks,” in Proceedings of the 24th International

Conference on Real-Time Networks and Systems - RTNS ’16, vol.
19-21-Octo. New York, New York, USA: ACM Press, 2016, pp. 183–
192. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2997465.
2997470

[44] A. C. T. d. Santos, B. Schneider, and V. Nigam, “TSNSCHED:
Automated Schedule Generation for Time Sensitive Networking,” in
2019 Formal Methods in Computer Aided Design (FMCAD), 2019, pp.
69–77. [Online]. Available: doi.org/10.23919/FMCAD.2019.8894249

[45] N. G. Nayak, F. Durr, and K. Rothermel, “Incremental Flow Scheduling
and Routing in Time-Sensitive Software-Defined Networks,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075,
may 2018. [Online]. Available: doi.org/10.1109/TII.2017.2782235

[46] J. Falk, F. Durr, and K. Rothermel, “Exploring Practical Limitations
of Joint Routing and Scheduling for TSN with ILP,” in 2018 IEEE

24th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA). IEEE, aug 2018, pp. 136–146.
[Online]. Available: doi.org/10.1109/RTCSA.2018.00025

[47] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer Systems

(TOCS), vol. 18, no. 3, pp. 263–297, 2000. [Online]. Available:
doi.org/10.1145/354871.354874

[48] W. Vandenberghe, B. Vermeulen, P. Demeester, A. Willner,
S. Papavassiliou, A. Gavras, M. Sioutis, A. Quereilhac, Y. Al-
Hazmi, F. Lobillo et al., “Architecture for the heterogeneous federation
of future internet experimentation facilities,” in 2013 Future Network

& Mobile Summit. IEEE, 2013, pp. 1–11. [Online]. Available:
ieeexplore.ieee.org/abstract/document/6633558

[49] Avila-Campos, Pablo and Haxhibeqiri, Jetmir and Moerman, Ingrid
and Hoebeke, Jeroen, “Impactless Beacon-Based Wireless TSN
Association Procedure,” 18th IEEE International Workshop on Factory

Communication Systems - Proceedings, WFCS, 2022. [Online].
Available: doi.org/10.1109/WFCS53837.2022.9779186

Gilson Miranda Jr. holds B.Sc. and M.Sc. degrees
in Computer Science from Federal University of
Lavras (UFLA), Brazil. In 2017 started his PhD
in Computer Science at the Federal University of
Minas Gerais (UFMG), Brazil. Now is pursuing a
Joint PhD in Applied Engineering at the University
of Antwerp, Belgium, where he is carrying his
research with IDLab. His main research interests are
programmable Time-Sensitive Networks, wireless
networks, and machine learning applied to network
management.

Esteban Municio Esteban Municio received his
Ph.D. degree from the University of Antwerp and
imec (Belgium) in 2020. He then continued in imec
as postdoctoral researcher for two years. Since Jan-
uary 2022, he has been with i2CAT, where currently
he is senior researcher at the AI-driven Systems
group. His research interests are in the field of
programmable open networks, Time-Sensitive Net-
working and ultra-reliable Industrial IoT.

Jetmir Haxhibeqiri received the Masters degree
in Engineering (information technology and com-
puter engineering) from RWTH Aachen University,
Germany (2013). In 2019, he obtained a Ph.D. in
Engineering Computer Science from Ghent Univer-
sity with his research on flexible and scalable wire-
less communication solutions for industrial ware-
houses and logistics applications. Currently, he is
a senior researcher in the Internet Technology and
Data Science Lab (IDLab) of Ghent University and
imec. His current research interests include wireless

communications technologies (IEEE 802.11, IEEE 802.15.4e, LoRa) and
their application, IoT, wireless time-sensitive networking, in-band network
monitoring and wireless network management.

Jeroen Hoebeke is an associate professor in the
Internet Technology and Data Science Lab of Ghent
University and imec. He is conducting and coordi-
nating research on deterministic and time-sensitive
wireless communication, wireless network manage-
ment, tighter application-network integration, (in-
dustrial) IoT connectivity, and embedded commu-
nication stacks. This expertise has been applied in
various application domains such as logistics, Indus-
try 4.0, building automation, healthcare, and animal
monitoring. He is particularly active in nationally

funded projects as well as in defining, executing, and managing such projects.
He has also been involved in several EU research-funded projects and is the
author or co-author of more than 200 publications in international journals or
conference proceedings.

Ingrid Moerman received her degree in Electrical
Engineering (1987) and the Ph.D. degree (1992)
from the Ghent University, where she became a part-
time professor in 2000. She is a staff member at
IDLab, a core research group of imec with research
activities embedded in the universities of Ghent
and Antwerp. She coordinates the research activ-
ities on intelligent Wireless Networking (iWiNe)
at Ghent University, leading a team of more than
30 researchers. She is Program Manager of the
’Deterministic Networking’ track, part of the CON-

NECTIVITY program at imec, where she coordinates research activities on
end-to-end wired/wireless networking solutions for professional and mission-
critical applications. She has coordinated several FP7/H2020 projects (CREW,
WiSHFUL, eWINE, ORCA) and she is involved in many national and
H2020 and Horizon Europe projects related to connected vehicles and 5G/6G
(Smart Highway, CONCORDA, 5G-MOBIX, 5G-CARMEN, 5G-Blueprint,
DEDICAT-6G, HEXA-X II, TrialsNet and 6G-SHINE). She participated in
the prestigious DARPA Spectrum Collaboration Challenge (SC2) as the lead
of Team SCATTER. This team has been awarded two prizes of 750,000 USD
each in Phase 1 (2017) and Phase 2 (2018) of the DARPA SC2 competition
and was one of the 10 finalists at the DARPA SC2 championship event
organized at Mobile World Congress in Los Angeles (US) in October 2019
(https://www.darpa.mil/news-events/2019-09-10).

15

Johann Marquez-Barja is a Professor at the Uni-
versity of Antwerp (Rank 7th in the Times Higher
Education Under 50) and also a Professor in IMEC
Research Centre (Worldwide leading in Nanotech-
nologies and Digital solutions), Belgium. Currently,
he is leading the Flexible & Programmable Networks
Group at IDLab/imec Antwerp. Previously he led the
Wireless Cluster. He was/is involved in more than 20
European research projects ranging from long-range
to high-capacity radio and networking technologies.
He is currently the technical coordinator of the 5G

Blueprint project, which focuses on improved 5G cross-border networks
to enable the teleoperation of vehicles and vessels. He is a member of
IEEE Standards Association, Association for Computing Machinery (ACM),
a Fellow of European Association for Innovation (EAI), a Senior Member
of the IEEE Communications Society, IEEE Vehicular Technology Society,
and IEEE Education Society, where he participates on the board of the Stan-
dards Committee. His main research interests are 5G advanced architectures,
including edge computing; flexible and programmable 5G and 6G end-to-end
networks; IoT communications, and applications. He is also interested in smart
mobility and smart city deployments. He leads the Citylab Smart City testbed
and the Smart Highway testbed, located in Antwerp, Belgium. He is also
active in education development and actively involved in different research
actions to enhance engineering education, particularly remote experimentation
for online labs. He has given several keynotes and invited talks at various
major events, received 30 awards in his career so far, and co-authored more
than 200 articles. He is also serving as Editor and Guest editor for different
International Journals, as well as participating in several Technical Programme
and Organizing Committees for several worldwide conferences/congresses.

	Introduction
	Background
	Related Work
	TSN Controller Architecture
	TSNC Overview
	Centralized Network Configuration – CNC
	Management Interface
	Monitor
	Centralized User Configuration – CUC
	Scheduler
	Control Loop

	TSN Agent
	Timing Manager
	INT Manager
	Resource Monitor
	Traffic Manager
	Telemetry Manager

	Experimental Setup
	Results
	TSN Controller Performance
	Testbed Validation
	Synchronization
	Scheduling

	Conclusion and Future Work
	References
	Biographies
	Gilson Miranda Jr.
	Esteban Municio
	Jetmir Haxhibeqiri
	Jeroen Hoebeke
	Ingrid Moerman
	Johann Marquez-Barja

