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Optimizing Resource Allocation and VNF
Embedding in RAN Slicing

Tu N. Nguyen, Kashyab J. Ambarani, and My T. Thai

Abstract—5G radio access network (RAN) with network slicing
methodology plays a key role in the development of the next-
generation network system. RAN slicing focuses on splitting the
substrate’s resources into a set of self-contained programmable
RAN slices. Leveraged by network function virtualization (NFV),
a RAN slice is constituted by various virtual network functions
(VNFs) and virtual links that are embedded as instances on sub-
strate nodes. In this work, we focus on the following fundamental
tasks: i) establishing the theoretical foundation for constructing a
VNF mapping plan for RAN slice recovery optimization and ii)
developing algorithms needed to map/embed VNFs efficiently.
In particular, we propose four efficient algorithms, including
Resource-based Algorithm (RBA), Connectivity-based Algorithm
(CBA), Group-based Algorithm (GBA), and Group-Connectivity-
based Algorithm (GCBA) to solve the resource allocation and
VNF mapping problem. Extensive experiments are also con-
ducted to validate the robustness of RAN slicing via the proposed
algorithms.

Index Terms—RAN slicing, VNF embedding, resource alloca-
tion.

I. INTRODUCTION

A new network technology is critical to leverage high
demands for diverse vertical industry applications growing
rapidly. In recent years, Radio Access Network (RAN) slicing
has become one of the most promising architectural tech-
nologies for the forthcoming 5G era [1], [2]. RAN slicing
completely overturns the traditional model of a single owner-
ship of all network resources and brings a new vision where
the physical infrastructure resources are shared across many
RAN slices. Each slice built on top of the underlying physical
RAN (substrate) is a separate logical mobile network, which
delivers a set of services with similar characteristics and
is isolated from others [3], [4], [5]. Leveraged by network
function virtualization (NFV), a RAN slice is constituted by
various virtual network functions (VNFs) and virtual links that
are embedded as instances on substrate nodes [6], [7]. RAN
enforcement mechanisms enable a highly efficient resource
management service and maximizes the resources configured
[8]. Efficient resource allocation and VNF embedding serve
as one of the critical aspects in RAN slicing technologies [9],
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[10]. The resource allocation and VNF embedding problem is
considered under a variety of constraints [8], [11].

Motivation. Due to the complexity of the RAN slicing,
existing configuration schemes1 in RAN slicing just focus
on resource allocation [12], [13], [14]. However, a RAN
enforcement problem, in fact, cannot be addressed by only
considering the resource allocation but also needs to consider
the relation between the substrate nodes. The relations between
VNFs decide the ways in which the VNFs will be mapped
into the substrate nodes. In addition, because of the connection
between VNFs, then bandwidth requirement of the virtual links
between VNFs [15], [16] needs to be considered as well. None
of existing work fully considers above factors nor do they
attempt to consider the interdependency property to mitigate
the impact of the configuration process on the entire network.

Contributions. In this work we propose a new RAN
enforcement, namely RAN slicing-configuration (RS-
configuration) that overcomes the drawbacks of the existing
works to provide an optimal mapping plan for VNFs onto
the substrate network. In particular, the RS-configuration will
provide an ordered set of mappings of VNFs onto substrate
nodes. The RS-configuration will consider not only availability
of substrate’s resources but also the interdependence between
all possible mappings. Specifically, this paper focuses on the
following aspects: i) we propose to develop the theoretical
model for constructing a RS-configuration for VNF mapping;
ii) designing algorithms needed for mapping VNFs efficiently;
and iii) conducting extensive experiments to validate the
performance of the proposed model and algorithms.

Organization: We organize the paper as follows. In §II, we
introduce the background of RAN Slicing. In §III, the network
model as well as the research problem are presented. Details
of the proposed resource allocation algorithms are shown in
§IV. In §VI, we discuss the experiment results. Finally, we
make key concluding remarks in §VII.

II. RAN SLICING AND CURRENT CHALLENGES

In order to focus on discussing the involved algorithmic
problems, we present a generic architecture that is depicted in
Fig. 1. The architecture in the figure shows the interactions
of one (or more) mobile network operator(s) (MNOs) with
multiple enterprises. The key aspect of RAN slicing is that
the role of the MNO is to coordinate and allocate resources
of the substrate network to ensure the harmonic coexistence
of multiple RAN slices, while the role of the enterprise is
to place slice requests and then manage the provided slices

1Some other works refer to them as RAN enforcement.
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Fig. 1: A high-level architecture for RAN slicing.

[17], [18], [19], [6]. In particular, to prepare for a new slice
initialization, the enterprise must first determine the required
slice functionality and resources needed for VNFs of the
requested slice. It is envisioned that slice templates will be
available for the most common types of services [20], [21],
[22]. Thus, the enterprise may select the slice template that
fits its purpose and parameterize it according to its needs.
More specifically, a RAN slice that is independent from others
consists of a set of VNFs. Upon receiving requests from
the enterprise, the MNO works with the “RS-configuration”
(RAN enforcement) to allocate the substrate network resources
(e.g., resource blocks in long-term evolution (LTE)) to VNFs
and virtual links between VNFs, and provide an appropriate
mapping plan, according to the proffered demand, RAN policy,
connectivity, and available spectrum resources of the substrate
nodes, also called resource blocks (RBs).

There have been efforts to design algorithms for the RAN
resource allocation problem that tend to consider only the
available resources of the substrate network to design a map-
ping plan and disregard the VNF connectivity and bandwidth
requirements [23], [24], [25], [26]. Again, a mapping plan
for VNFs will not only hinge on substrate nodes resource
allocation but also rely on the VNF connectivity requirement
and bandwidth requirements of the VNF links [15], [16], [27],
[28] (see §III-A for the details). In order to be able to support
novel services in a large-scale system, a more flexible and
comprehensive RAN configuration scheme is needed to embed
VNFs in the substrate nodes.

Unfortunately, existing works [12], [13], [14], [29] consider
constructing mapping plans for VNFs by considering only
available resources, and this may cause an internal fragmen-
tation in the available resources of the substrate network. In
other words, available resources are sufficient but not eligible
for mapping more VNFs onto the substrate nodes due to not
meeting the bandwidth and connectivity requirements [30],
[31]. This step requires considerations of the interdependency
property in the RAN slicing and efficient algorithms for
mapping VNFs onto the substrate nodes. The algorithmic
considerations of this step are described in the following
sections of this paper. Based on the solution to this problem,
the MNO can embed more VNFs in the substrate network
using SDN and NFV technology [6], [32].

III. NETWORK MODEL AND RESEARCH PROBLEM

In the following sections, the basic mathematical notations
are initially introduced and simple examples are used to
present the key ideas behind the proposed RS-configuration
paradigm and illustrate its advantages over the conventional
resource allocation-based enforcement algorithm in §III-A. We
then provide a general problem formulation and highlight the
major objectives of the proposed paradigm in §III-B.

A. Network Model: Basic Notations and Illustration

Given a substrate network GS = (NS , ES), let NS and
ES denote the set of substrate nodes and links, respectively.
Considering a node s ∈ NS , the total available resources at
node s is defined as Rs. Namely, any node s in NS can
allocate a maximum amount Rs of resources to VNFs. A
VNF in a specific slice is not available and accessible by other
network slices for the isolation purpose [33], [34], [35].

Let GV be the set of RAN slices running over the substrate
network GS , where GV = {GV1 , GV2 , . . . , GV`}. For empha-
sis, we will denote a single RAN slice as GVi (1 ≤ i ≤ `)
and drop i when the context is clear. We define a RAN slice
GVi = (NVi , EVi) ∈ GV , where NVi and EVi are the set of
VNFs and the set of virtual links between VNFs, respectively.

For any VNF u ∈ NV , it needs an amount <u of available
resources at a substrate node to be embedded. For any virtual
link (u, v) ∈ EV , it requires a bandwidth b(u,v) for data
flows between VNF u and VNF v. Likewise, instead of
making the entire substrate network GS available for routing
traffic of all data flows, we consider a more general case: we
are restricted to the substrate network GS with an available
capacity constraint matrix C for all substrate links (s, t) ∈ ES ,
which specifies the maximum bandwidth C(s,t) that can be
allocated to all virtual links mapped onto (s, t). We introduce
a binary mapping variableMu

s to indicate the decision that the
VNF u is mapped onto the substrate node s when Mu

s = 1,
and Mu

s = 0 otherwise.
In the first place of setting up the network, all VNFs must

be mapped (embedded) onto substrate nodes. To ensure that
all VNFs will be embedded, the value of the binary mapping
variable can be obtained as follows:

∑
s∈NS

Mu
s = 1 for all

u ∈
⋃̀
i=1

NVi . However, due to the limited capacity at substrate
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nodes (available resources) and links (maximum bandwidth),
a VNF u can actually be mapped onto a substrate node s
if the available resources at s are sufficient (<u ≤ Rs) and
meet bandwidth and connectivity conditions such that b(u,v) ≤
C(s,t), (s, t) ∈ ES for all s, t ∈ NS , v ∈ Nu, and φvt = 1,
where Nu is the set of VNF u’s neighbors. In addition, we use
a variable ψ(u,v)

(s,t) to represent a simultaneous mapping of two
VNFs u and v onto two substrate nodes s and t, respectively.
In particular, Mu

s +Mv
t − ψ

(u,v)
(s,t) ≤ 12.

Fig. 2(a) shows an example of VNFs embedded in substrate
nodes of the RAN slicing. The substrate network consists
of five base stations (BSs). Each BS provides four resource
blocks (RBs) (two frequency units during two-time slots) to
RAN slices. In the figure, there are also two RAN slices,
and each consists of various VNFs. Both slices utilize the
same substrate cellular network resources. We consider the
VNF’s resource requirement, as each needs a certain amount of
resources at a substrate node to be embedded, where Ru1

= 2
RBs, Ru1 = Rp2 = Rp3 and Rp2 = 1 RB (25% resources of
a substrate node). In other words, if a VNF requires 25% of
the spectrum resources, the substrate node should make 25%
of the RBs to the VNF. In the figure, the solid link between
any two VNFs in a slice indicates that they are neighbors
(e.g., (u1, u2), (p1, p2), (p1, p3) and (p2, p3)). Such a relation

as above implies that for any VNF u ∈
⋃̀
i=1

NVi , the target

substrate nodes that the VNFs can be embedded in must be the
substrate nodes OR one of the neighbors of the substrate nodes
on which the VNFs neighbors are embedded. This connectivity
constrain make the VNF u1 cannot be embedded in the
substrate node s1 even though there are sufficient available
resources.

As illustrated by the simple example above, existing works
[36], [37], [38] that focus on mapping VNFs by considering
only the available resource of substrate nodes may fail to fully
embed all VNFs. Moreover, they cannot leverage the maxi-
mum number of VNFs embedded, resulting in malfunction in
RAN slices. Therefore, it is vital to come up with efficient
algorithms to handle this resources allocation and embedding
processes. The resources allocation algorithms will allow us
to attain higher flexibility and embedding performance simul-
taneously, without needing further resources. To illustrate how
resources allocation are handled in this case, consider again
the simple example in Fig. 2(b) with a mapping plan to embed
VNFs following a strict order. The result is that all VNFs are
successfully embedded in the substrate network. We remark
that the embedding algorithm should guarantee that all mapped
VNFs meet the bandwidth and connectivity requirements.

B. RS-Configuration: Research Problem

Clearly embedding VNF strategy will not only hinge on sub-
strate nodes resource allocation but also rely on the substrate
connection set ES of the substrate network and the bandwidth
requirement of the virtual links between VNFs. This is a key
research challenge we will tackle in this paper. In particular,
for an RS-configuration in a cellular network, we would like

2Such relations help avoid the quadratic constraint.
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Fig. 2: Resources allocation and embedding VNFs in a RAN
slicing with a) a random mapping and b) RS-configuration
algorithms (best viewed in color).

to explicitly account for the mapping plan of VNFs, with the
goal of providing a high performance for RAN slicing-based
applications in terms of resources allocation for embedding
VNFs in substrate node. A high performance in this stage
is reflected through the number of successfully embedded
VNFs. This is in contrast to many existing studies where no
recoverable and stable performance is assured under failures
for RAN slicing-based applications, nor is any attempt made
to mitigate the impact of the RAN configuration process on the
entire network. We observe that, in general, the enhanced em-
bedding performance is achieved at the expense of increased
configuration units (more mappings) of the substrate network
resources for all RAN slices.

INSTANCE: Suppose we are given a substrate network
GS = (NS , ES) with a set of substrate nodes and links,
respectively. Each substrate node s ∈ NS can allocate to
VNFs an amount Rs of resources. We consider a general
case: we are restricted to the substrate network GS with an
available capacity constraint matrix C for all (s, t) ∈ ES ,
which specifies the maximum bandwidth C(s,t) that can be
allocated to all virtual links mapped onto (s, t). Also, a set
of RAN slices GV = {GV1 , GV2 , . . . , GV`} is running over
the substrate network GS . For any VNF, u ∈ NVi requires
an amount <u of available resources at a substrate node to
be embedded. For any virtual link (u, v) ∈ EVi , it requires a
bandwidth b(u,v) for data flows between two VNFs u and v.

QUESTION: Does a mapping plan (MP) for all VNFs
exist in the RAN slicing, such that the number of successfully
embedded VNFs is not less than k? Mathematically, we for-
mulate the following RS-configuration optimization problem:

maximize
Mu

s

∑
s∈NS

∑
u∈⋃̀

i
NVi

Mu
s (1)

Here, the set of variables MP = {Mu
s} represents one

possible mapping/embedding plan solution for VNFs in the
RAN slicing. The objective function is to maximize the total
number of mappings of VNFs, which means that the number of
VNFs embedded is maximized. In addition, to ensure that one
VNF can only be mapped onto at most one substrate node, they
must meet the mapping convergence constraint at the first end
s,
∑
t

∑
v
ψ
(u,v)
(s,t) =Mu

s , at the other end t,
∑
s

∑
u
ψ
(u,v)
(s,t) =Mv

t ,
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and at both ends simultaneously,Mu
s +Mv

t −ψ
(u,v)
(s,t) ≤ 1, for

all s, t ∈ NS , u, v ∈ NVi , and Mu
s ,Mv

t , ψ
(u,v)
(s,t) ∈ {0, 1}.

Apart from enhancing the embedding performance, we
believe that latency is another key performance metric that
must be accounted for in the design of the mapping plan for the
RS-configuration. For example, delayed packets can cause the
TCP timeout, resulting in unnecessary packet retransmissions,
thus reducing overall application throughput. We, therefore,
desire to bound the bandwidth variability3 in the mappings
of VNFs as follows:

∑
u,v∈GV |Mu

s=Mv
t=1

b(u,v) ≤ C(s,t) for

all (s, t) ∈ ES . Namely, the total allocated bandwidth on a
substrate link does not exceed its link capacity. Likewise, the
available resources at any substrate node s must be sufficient,
that is,

∑
u∈GV |Mu

s=1

<u ≤ Rs for all s ∈ NS . On the other

hand, to conserve the virtual connection between VNFs, the
mapping must also meet the connectivity constraint in which
for any mapping of a VNF u onto a substrate node s and
the other VNF v onto the other substrate node t, for all
(u, v) ∈ EV , s and t must be physically connected in the
substrate network, that is, (s, t) ∈ ES . Thus, the mapping plan
achieves the goal of providing a good embedding performance
for RAN slicing.

C. The Hardness of the RS-configuration Problem
In this section, we show the hardness of the RS-

configuration problem by first showing that a sub-problem
of the RS-configuration, referred to as the Reduced RS-
configuration (RRS-configuration) problem, is NP-hard. The
RRS-configuration is the RS-configuration with ` = 1 that is
there is only one network slice in the network, and |NS | = 1
that is there is only one substrate node in the network. The
problem is illustrated as follows:

INSTANCE: Given a substrate node s that can allocate to
VNFs an amount Rs of resources. Also, a RAN slice {GVi

is running over the substrate node s. For any VNF, u ∈ NVi

requires an amount <u of available resources at a substrate
node to be embedded.

QUESTION: Does a mapping plan (MP) for all VNFs
exist in the RAN slicing, such that the number of successfully
embedded VNFs is not less than k?

Lemma 1 is used to show that the RRS-configuration
problem is NP-hard. We first use the knapsack problem [39]
to show the hardness of the RRS-configuration problem. Then,
the hardness of the RS-configuration problem is provided in
Theorem 1. The knapsack problem is illustrated as follows:

INSTANCE: Given a set n items; each item i (i = 1, . . . , n)
has a value ci > 0 and a weight ai > 0, and a knapsack with
capacity b.

QUESTION: Does the knapsack can be filled with items
so as to maximize the total value of the items included in the
knapsack?

Lemma 1: The RRS-configuration problem is NP-hard.
Proof: In the knapsack problem, each item i can be

treated as a VNF u ∈ NVi ; the value ci can be considered

3Bounded bandwidth and bandwidth variability would help the end host at
the network layer to reorder packets before passing to the transport layer.

as the value < of each VNF; the knapsack with a capacity b
is treated as the substrate node s with the capacity Rs in the
network; and if we consider each item i has a weight ai = 1,
the knapsack problem is also a RRS-configuration problem.
We have that the knapsack problem is a sub-problem of the
RRS-configuration problem. Because the knapsack problem is
NP-hard [39], the RRS-configuration is also NP-hard. This
completes the proof.

Theorem 1: The RS-configuration problem is NP-complete.
Proof: By Lemma 1, because the RRS-configuration

problem, which is a sub-problem of the RS-configuration prob-
lem, is NP-hard, the RS-configuration problem is, therefore,
NP-hard. In addition, it is clear that the RS-configuration
problem belongs to the NP class. We therefore have that the
RS-configuration problem is NP-complete.

IV. RESOURCE ALLOCATION ALGORITHMS

Equation 1 lays out the RS-configuration optimization prob-
lem thereby giving a better understanding of the design of
the resource allocation algorithms which achieve the given
optimization. Since the RS-configuration optimization problem
is NP-complete (shown in section III-C), we propose two
heuristic frameworks to solve the investigated problem: 1)
we focus on leveraging a good embedding efficiency while
maintaining the lowest possible time complexity, and 2) we
consider the embedding efficiency as the vital requirement,
and then try to maximize the number of embedded VNFs re-
gardless the time complexity. In the following sections, the first
two algorithms (i.e. the Resource-based Algorithm (RBA) and
Connectivity-based Algorithm (CBA)) follow the first heuristic
class given above. On the other hand, the Group-Connectivity-
based Algorithm (GCBA) and Group-based Algorithm (GBA)
seek to maximize the embedding performance without being
subject to a specific time constraint function, thereby falling
into the category of the second class of heuristic approaches.
As part of each algorithm subsection, an overview and pseu-
docode are provided, along with a detailed description of the
key idea behind the designed algorithms for the orderings and
metrics involved.

A. Resource-based Algorithm (RBA)

Given a substrate network GS = (NS , ES), the major
challenge becomes how to select available resources and
allocate them to suitable VNFs to achieve the highest number
of embedded VNFs. In this section, we propose the Resource-
based Algorithm (RBA), which addresses the RS-configuration
optimization problem (equation 1) using a heuristic approach.
The main idea is to generate a mapping plan MP which
provides good embedding efficiency while achieving low com-
putational complexity. RBA achieves the heuristic by taking
a greedy approach and prioritizing the embedding of VNF u
based on resources (from highest to lowest) <u ∀ u ∈ NVi ,
to the substrate node with the highest available resources
Rt | Rt ≥ <u ∀ t ∈ NS . The key idea behind this approach
is to iteratively select the most demanding VNF (in terms of
resources) and find the substrate node which can host it.
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Algorithm 1 Resource-Based Algorithm
Input: GS ,GV
Output: MP

1: Initializing an empty set of mappings: MP = ∅.
2: Constructing a descending-order set LS of substrate nodes

based on the available resource value Rt′ ∀ t′ ∈ NS .
3: Constructing a descending-order set LV of VNFs on the

basis of Resources <u′ ∀ u′ ∈ NVi .
4: while LV 6= ∅ do
5: Let u be an element in LV with highest value <u

6: EmbeddingVNF(u, LS , MP)
7: LV = LV − {u}
8: end while
9: return MP

Given the substrate network GS and a set of RAN slices
GV , we follow the RBA with three main steps for generating
the mapping plan MP as follows:

1) We first construct the prioritized set of VNFs LV based
on the required resources (from highest to lowest).

2) We then construct the descending-order set of substrate
nodes LS based on available resources.

3) We finally generate the mapping planMP for embedding
all VNFs in LV to the substrate nodes in LS .

As indicated in the algorithm 1, we first initialize the
MP set, the prioritized set of VNFs LV , and construct
the descending-order set of substrate nodes LS in the first
three lines of the pseudocode. The procedure EmbeddingVNF
handles step 3 i.e. the embedding process, and is described
in detail from lines 3–16. For a VNF u and a substrate node
t such that u ∈ LV and t ∈ LS , the embedding process is
separated into two cases, 1) VNF u has no neighbor which is
currently embedded onto a substrate node (lines 3–7), and 2)
VNF u has at least one neighbor which is currently embedded
onto a substrate node (lines 8–14).

The motivation behind the separation of the embedding
process into different cases is due to the different embedding
constraints imposed upon a VNF in both cases. In the case
one, the VNF u is only subject to the resource constraint
Rt ≥ <u. This is because there are no existing neighbors
embedded onto the substrate network for the VNF u to ensure
connectivity and bandwidth constraints for. Upon checking
for the satisfaction of the resource constraint in line 4, the
embedding process is completed and the mapping variable
Mu

t is added to the mapping plan set MP (lines 5–6). In
case two i.e. when u has at least one neighbor embedded onto
a substrate node, the connectivity and bandwidth constraints
need to also be satisfied to embed a VNF onto a substrate
node. Firstly, the connectivity is achieved by constructing the
descending-order set LNu

S+ , containing the substrate nodes onto
which the neighbors of u (Nu), and the common neighbors of
nodes in Nu are hosted (line 9). The representation of the set
LNu

S+ is expressed by the following mathematical relation:

LNu

S+ = {si, . . . , sj}
⋃
{Nsi

⋂
. . .

⋂
Nsj} | Mup

sq = 1 (2)

where Rsi ≥ Rsj for all up ∈ Nu and sq ∈ {si, . . . , sj}.
Once the set LNu

S+ has been constructed, we select the first
substrate node ti in LNu

S+ , which satisfies the resource and
bandwidth constraint to host the VNF u (line 10). If the
substrate node ti exists, VNF u is embedded onto ti and
Mu

ti is added to MP (lines 11–13). Hence, VNFs within
RAN slices are embedded onto the substrate network and the
mapping plan MP is determined.

B. Connectivity-based Algorithm (CBA)

Algorithm 2 Connectivity-Based Algorithm
Input: GS ,GV
Output: MP

1: Initializing an empty set of mappings: MP = ∅.
2: Constructing a descending-order set LS of substrate nodes

based on the available resource value Rt′ ∀ t′ ∈ NS .
3: Constructing a descending-order set LV of VNFs on the

basis of degree |Nu′ | ∀ u′ ∈ NVi .
4: while LV 6= ∅ do
5: Let u be an element in LV with highest value |Nu|
6: EmbeddingVNF(u, LS , MP)
7: LV = LV − {u}
8: end while
9: return MP

While the set MP is obtained by RBA, we consider a
second algorithm, Connectivity-based Algorithm (CBA) that
can be done with the same computational complexity as well
as can provide a better embedding performance. The essential
idea behind CBA is to consider the set of VNF LV based on
the degree value |Nv| of all VNF v ∈ NVi . This allows the
VNF v′ with the highest degree value |Nv′ | to be embedded
onto the substrate node s which has the highest available
resources Rs ∀s ∈ NS . The newly ordered set LV would
increase the possibility of VNFs in the set Nv′ to be embedded
onto the substrate node set Ns+ , where Ns+ denotes the set of
substrate node s and its neighbors Ns such that Ns+ = s

⋃
Ns

In algorithm 2, to obtain the mapping planMP the process
is still hinged on the three main steps we presented in the
previous section. However, we try to improve the performance
of the matching of the VNFs and substrate nodes by using
a different metric. Specifically, we construct the descending-
order set LV based on the degree value |Nv| of every VNF
v ∈ NVi rather than the resource value <v (line 3 in the
pseudocode of the algorithm 2). The following steps are
similar to the algorithm 1, the construction of the descending-
order set of substrate nodes LS is executed in line 2 while
the procedure EmbeddingVNF determines the mapping plan
set MP .

C. Group-Connectivity-based Algorithm (GCBA)

In the later section (§VI) we test the performance of all
proposed algorithms and it will be verified that the algorithm
1 and algorithm 2 provide a good embedding efficiency within
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1: procedure EMBEDDINGVNF(u, LS MP)
2: Let t be an element in LS with highest value Rt

3: if Mv
s = 0 ∀ v ∈ Nu, s ∈ NS then

4: if Rt ≥ <u then
5: Rt = Rt −<u

6: MP =MP
⋃
{Mu

t }
7: end if
8: else
9: Constructing LNu

S+ , representing the descending-
order set of substrate nodes and their common neighbors,
based on the available resource value, onto which the
substrate nodes are hosting v ∀ v ∈ Nu

10: Let ti be the first element in LNu

S+ | b(u,u′) ≤
C(ti,tj) and <u ≤ Rti ,∀ u′ ∈ Nu, tj ∈ Nt+i

, where
Nt+i

denotes the set of ti’s neighbors and itself.
11: if ∃ ti then
12: Rti = Rti −<u

13: MP =MP
⋃
{Mu

ti}
14: end if
15: end if
16: return MP
17: end procedure

a fair time complexity. However, the RS-configuration’s objec-
tive function is not completely optimized due to the heuristic
for the RBA and CBA being subject to the constraint of a low
computational complexity. In this section we propose a high
performance algorithm, referred to as Group-Connectivity-
based Algorithm (GCBA) to attain the highest number of
embedded VNFs, without being subject to the computational
complexity constraint. GCBA achieves a good performance by
considering VNFs in a specific list of clusters, namely LV . We
then find the best matching substrate group for a cluster set
Nu+

i
(refer to §IV-B) ∀ Nu+

i
∈ LV

Algorithm 3 Group-Connectivity-Based Algorithm
Input: GS ,GV
Output: MP

1: Initializing an empty set of mappings: MP = ∅.
2: Constructing a descending-order (based on the size of each

set) list of clusters LV , where LV = {Nu+
i
, . . . ,Nu+

j
}

such that Nu+
i

⋂
Nu+

j
= ∅.

3: while LV 6= ∅ do
4: Let Nu+

i
be the first element in LV

5: for u ∈ Nu+
i

do
6: EmbeddingGroup(u,MP)
7: end for
8: LV = LV − {Nu+

i
}

9: end while
10: return MP;

To embed the VNFs in a given cluster set (Nu+
i

) onto the
appropriate substrate node, GCBA performs the three step
MP set generation process as follows:

1) Firstly, we construct the descending-order list of VNF

cluster sets LV based on the size of each cluster set.
2) We then construct the ordered-set of substrate nodes LS

per VNF u such that Rt ≥ <u ∀ t ∈ LS and u ∈ LV .
3) Finally, we embed the mutually exclusive cluster sets in
LV to the substrate network.

As specified in algorithm 3, we construct the list of VNF
cluster sets in line 2. This process is carried out by the iterative
addition of the VNF cluster head v followed by its respective
neighbor set Nv . The representation of the set LV is expressed
by the following mathematical relation:

LV = [{vi
⋃
v′i}, {vj

⋃
v′j}, . . . , {vk

⋃
v′k}] (3)

where |Nvi | ≥ |Nvj | ≥ |Nvk | ∀ v′i ∈ Nvi , v
′
j ∈ Nvj ,

and v′k ∈ Nv+k We construct the set of substrate nodes
LS , containing the substrate nodes which satisfy the resource
constraint Rt ≥ <u ∀ t ∈ NS and u ∈ LV . To optimize
the embedding performance, we define the neighborhood
resource cumulative property x(T ) for all VNFs and substrate
nodes in order to improve the selection process of the best
possible substrate node. Given a VNF v and a substrate node
s ∀ v ∈ LV and s ∈ LS , the x(T ) property for v and s is
computed as follows:

v(T<) = <v +
∑

v′∈Nv

<v′ ,

s(TR) = Rs +
∑

s′∈Ns

Rs′

(4)

In equation 4, the replacement of x in x(T ) with v and s
along with addition of < and R as subscripts to T , allows
for greater clarity while determining which element the x(T )
property is being computed for. In procedure Embedding-
Group, we evaluate the x(T ) property (lines 3–4) after the
embedding process is separated into two cases. For each case,
the substrate node is picked based on x(T ).

Specifically, we first compute the difference s(TR)−v(T<)
(lines 6 and 11), after that the substrate node s, with the
positive difference value closest to 0 is selected. In the case of
only negative differences, the substrate node with the smallest
negative difference is selected for embedding. The idea behind
this metric (computing the difference) is to find the substrate
node s with the highest probability of supporting the VNF u as
well as the neighbor set Nu. We select the substrate node with
the difference value closest to 0 to minimize the possibility of
the available resources being wasted. In addition, prioritizing
the positive difference ensures maximum embedding (based
on the resource constraint) of all the VNFs u′ in Nu+ ,
for all Nu+ ∈ LV . Finally, if LV consists of substrate
nodes producing solely negative differences, the substrate node
with the smallest difference is chosen so as to increase the
probability of the maximum number of VNFs being embedded.
The three steps to obtain the optimal MP set are therefore
completed, thereby determining MP .

D. Group-based Algorithm (GBA)

Similar to the algorithm 2’s improvement in the embedding
efficiency as compared to the algorithm 1, can we achieve
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Algorithm 4 Group-Based Algorithm
Input: GS ,GV
Output: MP

1: Initializing an empty set of mappings: MP = ∅.
2: Evaluate the value v(T<) for all VNFs v in NVi

3: Constructing a descending-order (based on the value of
v(T<)) list of clusters LV , where LV = {Nu+

i
, . . . ,Nu+

j
}

such that Nu+
i

⋂
Nu+

j
= ∅.

4: while LV 6= ∅ do
5: Let Nu+

i
be the first element in LV

6: for u ∈ Nu+
i

do
7: EmbeddingGroup(u,MP)
8: end for
9: LV = LV − {Nu+

i
}

10: end while
11: return MP;

a greater optimization over the objective function in the RS-
configuration (equation 1) in comparision to the algorithm 3?
We propose the Group-based Algorithm (GBA) to further en-
hance the optimization. To achieve the enhanced optimization,
we chance the basis of ordering the set of VNFs LV . Instead of
ordering the VNF cluster sets based on the basis of the degree
of cluster heads, descending-order cluster sets are constructed,
based on the the neighborhood resource cumulative value
(x(T )) of the cluster heads. In doing so, the cluster sets
with the greatest isolation of resources are embedded onto
the substrate layer first.

As shown in the algorithm 4, the step one (line 2) shows
the improvement of GBA comparing to GCBA. Steps two and
three, similar to the algorithm 3, are carried out with the help
of the procedure EmbeddingGroup. The following steps are
strictly followed the three steps of the embedding process
we discussed in the earlier section. Hence, the MP set is
obtained.

V. TIME COMPLEXITY

Theorem 2: The time complexity of the procedure Embed-
dingVNF is bounded in O(|NVi | × |NS |) +O(|EVi | × |ES |)

Proof: In the procedure EmbeddingVNF, the maximum
number of VNF u’s neighbors is |NVi |− 1, so that it requires
O(|NVi |) to determine if the VNF u has a neighbor already
embedded onto a substrate node. If the VNF u has at least one
already embedded neighbor, the maximum number of substrate
nodes we have to check for satisfaction of the connectivity
constraint is |NS |. Therefore, obtaining the substrate nodes in
the set LNu

S+ requires O(|NVi |2×|NS |), since we consider each
of the neighbors of the VNF u (|NVi | − 1), the links between
the VNF u and the neighbors of u (|NVi |−1), and the substrate
nodes which satisfy the connectivity constraint for the VNF
u and it’s neighbors (|NS |). To achieve the descending-order
sorting of the set LNu

S+ , we utilize the MergeSort mechanism
that requires O(|NS |×log |NS |) (best-worst case) to construct
the set LNu

S+ . Likewise, it requires O(|EVi |× |ES |) for check-
ing the satisfaction of the bandwidth constraint. Finally, for

1: procedure EMBEDDINGGROUP(u, MP)
2: Constructing a set LS of substrate nodes such that
Rt′ ≥ <u ∀ t′ ∈ NS .

3: Evaluate the value s(TR) for all substrate nodes s in
LS

4: Evaluate the value u(T<)
5: if Mv′

t′ = 0 ∀ v′ ∈ Nu, t
′ ∈ NS then

6: Let t be a substrate node in LS with the minimum
difference s(TR)− u(T<) ∀ s ∈ LS

7: Rt = Rt −<u

8: MP =MP
⋃
{Mu

t }
9: else

10: Constructing LNu

S+ , representing the set of substrate
nodes in LS and their common neighbors, onto which the
substrate nodes are hosting v′ ∀ v′ ∈ Nu

11: Let ti be a substrate node in LNu

S+ with the
minimum difference s′′(TR) − v(T<) and b(u,v′) ≤
C(ti,tj) ∀ s′′ ∈ L

Nu

S+ , v ∈ Nu+ , v′ ∈ Nu, tj ∈ Nt+i
, where

Nt+i
denotes the set of ti’s neighbors and itself.

12: if ∃ ti then
13: Rti = Rti −<u

14: MP =MP
⋃
{Mu

ti}
15: end if
16: end if
17: return MP;
18: end procedure

determining the substrate node which satisfies the resource re-
quirement, O(|NS |) is required. Hence the time complexity of
the procedure is given as O(|NVi |2×|NS |)+O(|EVi |×|ES |).

Theorem 3: The time complexity of the RBA is bounded
in O(|NVi | × ((|NVi | × |NS |) +O(|EVi | × |ES |)))

Proof: In the RBA, the descending-order sorting of the
set of substrate nodes LS requires O(|NS | × log |NS |).
Similarly, to construct the descending-order set of VNFs
LV , requires O(|NVi | × log |NVi |). Finally, the while loop
iterates over the VNFs in LV , and for each iteration, the
procedure EmbeddingVNF is executed. Considering that the
number of VNFs in LV is |NVi |, the while loop requires
O(|NVi |× ((|NVi |× |NS |)+O(|EVi |× |ES |))) to determine
the mapping plan. Hence, the time complexity of the RBA is
given as O(|NVi | × ((|NVi |2 × |NS |) + (|EVi | × |ES |))).

Theorem 4: The time complexity of the CBA is bounded
in O(|NVi | × ((|NVi | × |NS |) +O(|EVi | × |ES |))).

Proof: In comparison to the theorem 3, the distinct
preliminary step within the CBA is the metric, based on which
the set of VNFs LV are sorted. Regardless of the different
metric, O(|NVi | × log |NVi |) is still required to construct
the set LV . The set of substrate nodes LS also requires
O(|NS |× log |NS |) to be constructed. Finally, the while loop
(similar to the theorem 3) requires O(|NVi |×((|NVi |×|NS |)+
O(|EVi |×|ES |))). Therefore, the time complexity of the CBA
is given as O(|NVi | × ((|NVi |2 × |NS |) + (|EVi | × |ES |))).

Theorem 5: The time complexity of the procedure Embed-
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dingGroup is bounded in O(|NVi |2×|NS |)+O(|EVi |×|ES |).
Proof: In the procedure EmbeddingGroup, we first con-

struct the set of substrate nodes LS which satisfy the resource
constraint, requiring O(|NS |). To evaluate the s(TR) property,
we require to traverse through a maximum of |NS | substrate
nodes, and for each substrate node the cumulative of |NS |
substrate nodes (at maximum) requires to be computed. There-
fore, we require O(|NS |2) to compute the s(TR) property for
each substrate node in LS . Likewise, to evaluate the u(T<)
property for the VNF u, we require O(NVi). As shown in
theorem 2, we require O(|NVi | to determine whether the VNF
u has a neighbor already embedded. Computing the differences
of the x(T ) property’s of the substrate nodes in LS and
the VNF u along with finding the substrate node t with the
minimum difference would require O(|NS |). To construct the
set LNu

S+, O(|NVi |2 ∗ |NS |) would be required (similar to 2).
Lastly, we consider the substrate node ti in LNu

S+, with the
minimum difference of the x(T ) property’s of the substrate
nodes (in LNu

S+) and the VNF u, and satisfies the band-
width constraint. To obtain the substrate node ti, we require
O(|EVi |×|ES |)+O(|NS |). Hence the time complexity of the
procedure is given as O(|NVi |2 × |NS |) + O(|EVi | × |ES |).

Theorem 6: The time complexity of the GCBA is bounded
in O(|NVi |2 × ((|NVi |2 × |NS |) + (|EVi | × |ES |))).

Proof: In the GCBA, to construct the set of VNF cluster
sets LV , requires O(|NVi | × log |NVi |) + O(|NVi |2). The
while loop iterates over the VNF cluster sets in LV , and
each iteration executes the for loop which iterates through the
cluster sets Nu+

i
. The procedure EmbeddingGroup is called

within each iteration of the for loop, thereby resulting in the
requirement of O(|NVi |2×((|NVi |2×|NS |)+(|EVi |×|ES |))).
Therefore, the time complexity of the GCBA is given as
O(|NVi |2 × ((|NVi |2 × |NS |) + (|EVi | × |ES |))).

Theorem 7: The time complexity of the GBA is bounded
in O(|NVi |2 × ((|NVi |2 × |NS |) + (|EVi | × |ES |))).

Proof: In comparison to the theorem 6, GBA performs the
sorting of the VNF cluster sets based on the x(T ) property
of the cluster heads. Even with the change in the metric of
sorting, the requirement O(|NVi | × log |NVi |) + O(|NVi |2)
remains. The nested loop structure in the GBA requires
O(|NVi |2×((|NVi |2×|NS |)+(|EVi |×|ES |))). Therefore, the
time complexity of the GBA is given as O(|NVi |2×((|NVi |2×
|NS |) + (|EVi | × |ES |))).

VI. PERFORMANCE EVALUATION

In this section, we present simulations to demonstrate
our approaches’ efficiency by firstly implementing the pro-
posed algorithms for constructing a embedding plan for RS-
configuration through simulations. It is expected that the
advantage of the algorithms will be manifested when the
number of successfully embedded VNFs is significant high.

We consider the RAN slicing consisting of one substrate
network and a variety of network slices. The number of
network slices and the number of VNFs on each slice are
randomly generated depending on the test case (we will
present the details of setting in the following sections). The

substrate network is composed of a random number of sub-
strate nodes representing the number of data centers. Each is
initialized with an amount of resources. It is feasible to create
different embedding scenarios in the simulations and validate
the simulation results. The first case is to test the feasibility of
the proposed algorithms under the normal network condition
that can provide reasonable resources for embedding VNFs
into the substrate network, referred to as the normal case.
In this case, we generate the number of substrate nodes from
the interval [60, 100], each is initialized with an amount of
resources selected from the interval [4, 8]. In terms of the
network slice, the number of network slices is randomly
generated from the interval [2, 10] and the number of VNFs
on each slice is also randomly chosen based on the number
of network slices from the interval [10, 100].

In the second case, we generate the network topology with
limited resources that can test the performance of the proposed
algorithms under the resource shortage condition, referred to as
the shortage case. In this case, network resources are strictly
controlled as follows: for the number of substrate nodes, from
the interval [60, 100]; for the number of resources for each
substrate node, from the interval [2, 4]; for the number of
network slices, from the interval [2, 10]; and for the number of
VNFs on each slice, from the interval [1, 10]. In the following
sections, Fig. 3 and Fig. 5 show the results in the “normal
case” test, and Fig. 4 and Fig. 6 show the results in the
“shortage case” test.

A. Embedding Performance

We first test the embedding performance of the proposed
algorithms by comparing the results in both normal and
shortage case. Fig. 3 and Fig. 4 show the performance of the
proposed algorithms in terms of number of embedded VNFs
in the normal and shortage case, respectively.

Fig. 3(a) shows comparisons of the number of embedded
VNFs when the number of substrate nodes ranges from 60
to 140. In the figure, GBA and GCBA provide the best
performance with a higher total number of embedded VNFs.
During the embedding process, GBA and GCBA consider not
only the required resources of a single VNF but also we take
into account of the required resources of a cluster of VNFs. In
addition, in the GCBA, we also consider the degree of VNFs
(number of neighbors) when determining the mapping plan.
The concept of cluster (interdependency) makes the GBA and
GCBA to be the best in performing embedding VNFs. The
differences are reflected through the neighborhood resource
cumulative property x(T ) considered in both GBA and GCBA.

In Fig. 3(b) we test the performance of the proposed
algorithms when the number of VNFs ranging from 160 to
240. The results are similar to the Fig. 3(a) as GBA and
GCBA still demonstrate a better performance than the CBA
and RBA in terms of the total number of embedded VNFs.
We realize that the higher the VNFs in the substrate network,
the higher the number of VNFs is successfully embedded into
the substrate network. It indicates that the algorithms perform
more efficiently when having more resources in the network
(higher number of VNFs).
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Fig. 3: Normal Case: total number of embedded VNFs when
a) the number of substrate nodes ranging from 60 to 140, b)
number of VNFs ranging from 160 to 240, c) k-connected
substrate network with degree (k) ranging from 2 to 10 per
substrate node, and d) k′-connected RAN slice with degree
(k′) ranging from 2 to 10 per VNF.
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Fig. 4: Shortage Case: total number of embedded VNFs when
a) the number of substrate nodes ranging from 60 to 140, b)
number of VNFs ranging from 160 to 240, c) k-connected
substrate network with degree (k) ranging from 2 to 10 per
substrate node, and d) k′-connected RAN slice with degree
(k′) ranging from 2 to 10 per VNF.

Fig. 3(c) shows comparisons of the test performance of the
algorithms proposed for k, where k denotes the degree of every
substrate node in the substrate network, which ranges from 2
to 10. In the figure, GBA and GCBA demonstrate a better
performance with a higher total number of embedded VNFs
when comparing to CBA and RBA. We also observe that the
higher the degree of substrate nodes, the higher the number of
VNFs embedded in the substrate network. In addition, there is
higher efficiency in performance when the degree of substrate
nodes is increased.

In the Fig. 3(d) we analyze comparisons of the capability of
the proposed algorithms with different k

′
, in which k

′
denotes

the degree of VNFs in RAN slices ranging from 2 to 10. GBA
and GCBA continue to perform better when comparing CBA
and RBA with the total embedded VNFs. We can evaluate
that the lower the degree of VNFs in a RAN slice, the higher
the number of VNFs successfully embedded in the substrate
network. If the VNFs have a higher degree of VNFs, they
demonstrate a lower embedding performance. In summary, the
results in Fig. 3 show the performance of all algorithms in
the “normal case” test. We test the proposed algorithms using
different metrics, including varying the number of substrate
nodes, changing the number of VNFs, adjusting the degree of
substrate nodes (k) and the degree of VNF (k′).

In Fig. 4 we test the performance of the proposed algorithms
in the “shortage case” test to see how the shortage resource
condition impacts to the number of VNF embedded in the
network. Specifically, in Fig. 4(a) we compare the embedding
performance of the proposed algorithms to that the number
of substrate nodes ranging from 60 to 140. As shown in the
figure, GBA and GCBA have the best efficiency performance
with a higher total number of embedded VNFs. As mentioned
in the previous analysis, both GBA and GCBA consider the
neighborhood resource cumulative property x(T ). In addition,
in GBA we evaluate the x(T ) for both virtual networks and
substrate network while only the substrate network is evaluated
with the x(T ) in GCBA. These metrics make GBA and GCBA
perform better than CBA and RBA. In contrast, using CBA
and RBA, the embedding performance is lower with a lower
number of embedded VNFs. Note that for CBA and RBA,
all VNFs are scheduled to be embedded by considering only
the embedding status of the individual VNFs resource or
connectivity constraint.

Fig. 4(b) shows the impact of the number of embedded
VNFs with respect to the number of VNFs ranging from
160 to 240. The total number of VNFs embedded in the
substrate network is higher in GBA and GCBA. Therefore,
the efficiency of RBA and CBA is lower as the total number
of embedded VNFs is lower in the substrate network. As the
algorithms demonstrate a greater efficiency performance when
number of VNFs is increased. In the Fig. 4(c) we analyze
comparisons of the algorithms of number of embedded VNFs
capability to k, where k denotes the degree of each substrate
node, which ranges from 2 to 10. GBA and GCBA exhibits
a greater efficiency performance with a higher total number
of VNFs embedded in the substrate network whereas, RBA
and CBA have a lower total number of VNFs embedded in
the substrate network. We observe that the greater the degree
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of substrate nodes, the better the number of VNFs embedded
in the substrate network. It indicates that there is a greater
efficiency performance when the degree of substrate nodes is
greater. Fig. 4(d) shows comparisons of the total number of
embedded VNFs to each (k

′
). The number of VNFs connected

per RAN slice is denoted by k
′
, ranging from 2 to 10. GBA

and GCBA show a higher total number of embedded VNFs
in the substrate network. In contrast, RBA and CBA have a
fewer total number of embedded VNFs as they have a lower
embedding efficiency. In addition, the proposed algorithms
demonstrate a lower embedding performance when the degree
of VNF is higher.

B. Resource Utilization Efficiency
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Fig. 5: Normal Case: total amount of available resources in
the substrate network when a) the number of substrate nodes
ranging from 60 to 140, b) number of VNFs ranging from
160 to 240, c) k-connected substrate network with degree (k)
ranging from 2 to 10 per substrate node, and d) k

′
-connected

RAN slice with degree (k
′
) ranging from 2 to 10 per VNF.

In this section we conduct simulations to evaluate the
algorithms in terms of the resource utilization efficiency in
both scenarios (normal case in Fig. 5 and shortage case in
Fig. 6). Fig. 5(a) shows comparisons of the amount of re-
maining resources of the substrate network (GS) after finishing
the embedding process when the number of substrate nodes
increasing from 60 to 140. The figure illustrates that RBA
and CBA have a lower amount of remaining resources while
committing a higher embedding performance as demonstrated
in Fig. 3. As explained in the Fig. 3 and Fig. 4, both RBA and
CBA consider the cluster of VNFs and substrate nodes during
the embedding process that helps leverage of not only embed-
ding performance but also resource utilization performance. In
addition, CBA and RBA provide a fair performance in terms
of resource utilization with a lower time complexity.
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Fig. 6: Shortage Case: total amount of available resources in
the substrate network when a) the number of substrate nodes
ranging from 60 to 140, b) number of VNFs ranging from
160 to 240, c) k-connected substrate network with degree (k)
ranging from 2 to 10 per substrate node, and d) k′-connected
RAN slice with degree (k′) ranging from 2 to 10 per VNF.

Fig. 5(b) shows the impact of remaining resources of the
substrate node (Gs) with respect to the number of VNFs
ranging from 160 to 240. As expected, GBA and GCBA
continue to show better embedding performance as seen in
Fig. 3 while still consuming minimal amount of resources. In
contrast to, CBA and RBA, which have a slight decrease in
the embedding efficiency even though, both algorithms utilize
high resources to embed VNFs to the substrate network.

Fig. 5(c) shows comparison of the remaining resources of
the substrate node (GS) with respect to k where k denotes
the degree of each substrate node in the substrate network,
ranging between 2 to 10. In the figure, GBA and GCBA
still show superior performance invariably compare to CBA
and RBA. Moreover, Fig. 5(c) illustrates that as the degree
of substrate node increases, the number of embedded VNFs
increases in the algorithms GBA and GCBA, with still having
a high amount of resources remaining, on the other hand RBA
and CBA consume high amount of resources, but still result
in lower performance efficiently.

Fig. 5(d) we analyze the comparisons of the proposed
algorithms with different k

′
with respect to the remaining

resources of each substrate node , which k
′

denotes the degree
of VNFs in RAN slices ranging from 2 to 10. GBA and GCBA
continue to perform better when comparing with CBA and
RBA. As shown in Fig. 5(d) when the degree per substrate
node is 2 GBA and GCBA embed VNFs with as lower as
204 remaining resources, but this not the case with RBA and
CBA as both algorithms even after having to consume 254
total resources still embed VNFs at a lower efficiently with
comparison to GBA and GCBA.



11

Fig. 5 shows comparisons of the amount of remaining
resources of the substrate network (GS) after finishing the
embedding process when the number of substrate nodes in-
creasing from 60 to 140. The figure illustrates that GBA and
GCBA have a higher amount of remaining resources while
committing a higher embedding performance as demonstrated
in Fig. 3. As explained in the Fig. 3 and Fig. 4, both GBA
and GCBA consider the cluster of VNFs and substrate nodes
during the embedding process that helps leverage of not only
embedding performance but also resource utilization perfor-
mance. In addition, CBA and RBA provide a fair performance
in terms of resource utilization with a lower time complexity.

Fig. 6(a) illustrates comparisons of the amount of remaining
resources of the substrate network (GS) after completing the
embedding process when the number of substrate nodes are
increased from 60 to 140. The figure demonstrates that GBA
and GCBA have a higher amount of remaining resources while
committing a higher embedding performance efficiency as
shown in Fig. 6(a). As described in the Fig. 3 and Fig. 4, both
GBA and GCBA during the embedding process consider not
only the required resources of a single VNF but also take into
consideration of the required resources of a cluster of VNFs.
GBA and GCBA, therefore, provide a better performance in
terms of resource utilization with a fair time complexity.

In the Fig. 6(b) we analyze comparisons of the algorithms
capability in terms of the remaining resources in the substrate
node (GS) with respect to the number of VNFs ranging from
160 to 240. As expected both GBA and GCBA still continue
to show better performance efficiency while embedding the
VNFs with high remaining resources. In contrast to CBA and
RBA performing slightly towards the lower end in terms of the
embedded VNFs, on the other hand consuming high resources
to embed the VNFs.

Fig. 6(c) shows the performance of the proposed algorithms
when varying the amount of remaining resources in the
substrate nodes (GS) with respect to K which denotes the
degree of the substrate node in the substrate network from 60
to 140. The performance of GBA and GCBA still shows a
higher result, when compare to both CBA and RBA having
a lower performance efficiency. Moreover, we can see that
the higher the amount of remaining resources in the substrate
network, higher is the embedding performance of GBA and
GCBA while having the amount of remaining resources high.

Fig. 6(d) shows comparisons of the remaining resources in
the substrate network (GS) with respect to k

′
, which denotes

the degree of VNFs in an RAN slice, ranging from 2 to 10.
GBA and GCBA show a higher total number of embedded
VNFs in the substrate network. In contrast, RBA and CBA
have a lower number of total embedded VNFs. As expected
by this mechanism, GBA and GCBA embed more VNFs with
still having high remaining resources, on the other hand CBA
and RBA while taking more resources to embed have a lower
embedding efficiency. In summary, Fig. 6 evaluations show
that the comparisons of shortage case in Fig. 6(a) – Fig. 6(d)
in terms of amount of remaining resources in the substrate
network(GS) when varying the substrate nodes, VNFs, k, and
k

′
. GBA and GCBA consistently provide a better performance

in terms of amount of resource utilization than RBA and CBA.

VII. CONCLUSION

In this paper we have established the theoretical foundation
for using RS-configuration to construct a VNF embedding
plan for the RAN slicing. We have formulated the efficient
resource allocation as an essential problem with the objective
to maximize the total number of embedded VNFs. To solve the
RS-configuration problem, we have introduced four efficient
algorithms (RBA, CBA, GCBA and GBA) and show theoret-
ical analyses to demonstrate the efficacy of the algorithms.
Extensive simulation results have been provided to evaluate
the performance of the proposed algorithms using different
metrics in terms of the embedding performance and resource
utilization performance. We have created different scenarios to
test the algorithms, including considering the network under
the normal condition (normal case) and under the resource
shortage condition (shortage case). Through the results of
the simulations, GBA and GCBA consistently demonstrate a
better performance for both embedding VNFs and utilizing
the network’s resources when comparing to RBA and CBA.
However, in terms of the time complexity RBA and CBA
demonstrate as faster algorithms with lower time complexity
while remaining fair embedding VNFs and resource utilization
performances.
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