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Abstract—Network monitoring data generally consists of hun-
dreds of counters periodically collected in the form of time-series,
resulting in a complex-to-analyze multivariate time-series (MTS)
process. Traditional time-series anomaly detection methods target
univariate time-series analysis, which makes the MTS analysis
cumbersome and prohibitively complex. We present DC-VAE
(Dilated Convolutional - Variational Auto Encoder), a novel
approach to anomaly detection in MTS data, leveraging con-
volutional neural networks (CNNs) and variational autoencoders
(VAEs). DC-VAE detects anomalies in MTS data through a single
model, exploiting temporal information without sacrificing com-
putational and memory resources. In particular, instead of using
recursive neural networks, large causal filters, or many layers,
DC-VAE relies on Dilated Convolutions (DC) to capture long
and short-term phenomena in the data. We evaluate DC-VAE on
the detection of anomalies in the TELCO TELeCOmmunication-
networks dataset, a large-scale, multi-dimensional network moni-
toring dataset collected at an operational mobile Internet Service
Provider (ISP), where anomalous events were manually labeled
by experts during seven months, at a five-minutes granularity.
We benchmark DC-VAE against a broad set of traditional time-
series anomaly detectors from the signal processing and machine
learning domains. We also evaluate DC-VAE in open, publicly
available datasets, comparing its performance against other
multivariate anomaly detectors based on deep learning generative
models. Results confirm the advantages of DC-VAE, both in terms
of MTS data modeling, as well as for anomaly detection. For the
sake of reproducibility and as an additional contribution, we
make the TELCO dataset publicly available to the community
and openly release the code implementing DC-VAE.

Index Terms—Anomaly Detection, Deep Learning, Multivari-
ate Time-Series, Variational Auto Encoder, Dilated Convolution,
TELCO Open Dataset

I. INTRODUCTION

Network monitoring data often consists of hundreds or
thousands of variables periodically measured and analyzed
in the form of time-series, resulting in a complex-to-analyze
multivariate time-series (MTS) process. Real-time anomaly de-
tection in such MTS processes is a key ingredient for network
management, particularly to detect performance degradation
and service disruption events that might strongly impact end
customers or failures impacting the network’s health. There
is a vast literature on the problem of anomaly detection in
time-series using traditional statistical models [1]–[5]; due to
the non-stationary, non-linear, and high-noise characteristics
of network monitoring data, traditional models have diffi-

culty predicting these time-series with high precision. Hence,
modern approaches to time-series anomaly detection based
on deep learning technology have flourished in recent years
[6]. Most approaches in the literature address the problem
by either focusing on univariate time-series modeling and
analysis – running an independent detector for each time-
series, or by considering multi-dimensional input data with
short-term memory analysis, to avoid the scalability limitations
introduced by very deep architectures or the complexities and
delays introduced by recurrent topologies.

Despite the broad literature, detecting anomalies in time-
series data through machine-learning remains a highly arduous
task [1], [6], and it has re-gained strong attention in recent
years. Some of the ever-present challenges to deal with include
the lack of labels and the contamination of normal operation
data with anomalies, the high imbalance between normal
and anomalous data, and the occurrence of so-called concept
drifts [7]–[9], referring to changes in the underlying statistical
properties of the analyzed data and prediction targets. By
definition, anomalies are rare and sporadic-in-time events;
thus, there is generally little information on them for deeper
characterization and eventual future detection. This lack of
insights into anomalies makes it generally difficult to employ
supervised techniques fingerprinting different anomalous be-
haviors. On top of this, the characterization of an anomaly
is typically bound to a certain time-period, which might not
necessarily represent what could happen in the future. These
challenges have led to a rise in the application of unsupervised
learning-based approaches to time-series anomaly detection.
Unsupervised learning certainly copes with many flagged
challenges, although purely unsupervised approaches tend to
realize significantly high false-alarm rates. The availability
of partially labeled anomalies can alleviate this problem,
enabling weakly-supervised anomaly detection approaches [6],
to the detriment of inaccurate or imprecise ground-truth, which
introduces a further challenge for model generalization.

Another challenge we deem relevant is the benchmarking
of time-series anomaly detection approaches through open
datasets of questionable quality. Most of the recent papers
in the topic test on one or more of a handful of popular
benchmark datasets, including Yahoo [10], Numenta [11],
[12], NASA [13], and more. Recent studies [14] have shown
that these datasets have flaws that make them unsuitable
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for evaluating anomaly detection algorithms, making it even
harder to assess the goodness of recent contributions in the
domain.

In this paper, we conceive a novel approach for MTS
anomaly detection, tackling many of the aforementioned chal-
lenges. We introduce DC-VAE, a deep-learning-based, un-
supervised, and multivariate approach to real-time anomaly
detection in MTS, based on popular Variational Auto-Encoders
(VAEs) [15]. VAEs are a generative version of classical
auto-encoders, with the advantage of producing as output
prediction not only an expected value but also the associated
standard deviation, corresponding to the distribution the model
understands (i.e., has learned) generated the corresponding
input. This automatically defines a normality region for each
independent time-series, which can then be easily exploited
for detecting deviations beyond this region. Using VAEs as an
underlying approach allows the user to visualize the region of
normal behavior in an interpretable way, enabling fine-grained,
per univariate time-series anomaly detection.

To exploit the temporal dependencies and characteristics of
time-series data in a fast and efficient manner, we take a Di-
lated Convolutional (DC) Neural Network (NN) as the VAE’s
encoder and decoder architecture. DCNNs have shown excel-
lent performance for processing sequential data in a causal
manner [16], i.e., without relying on recursive architectures,
which are generally less time-efficient and more difficult to
train (e.g., gradient exploding/vanishing problems). Compared
to normal convolutions, dilated convolutions improve time-
series modeling by increasing the receptive field of the neural
network, reducing computational and memory requirements,
and enabling training – and detection – on longer-in-the-past
temporal sequences.

The main properties and contributions of DC-VAE can be
summarized as follows: (i) single model for MTS analysis:
DC-VAE learns the behavior of the complete MTS process
within a single model parametrization, avoiding per-time-
series learning and fitting, and further exploiting the richness
of the multidimensional process; (ii) real-time operation: the
model architecture is fully causal, and provides instantaneous
predictions for each independent time-series at each new
time-step, using a sliding window of past measurements;
(iii) efficient temporal-memory representation: the VAE
encoder/decoder architecture based on dilated convolutions
permits to efficiently process temporal sequences of longer
length, making detection more robust; (iv) self-supervised
baseline modeling: by conception, auto-encoders are self-
supervised models, because the model trains itself to learn the
main features of the input from the very same input samples,
and ground-truth labels are only needed for tighter calibra-
tion of detection thresholds – nevertheless, in the absence
of ground-truth, DC-VAE still estimates a normal operation
region, indirectly providing a detection threshold; (v) com-
pact deep-learning architecture: the structure and number
of layers in DC-VAE’s architecture is defined by a single
parameter 𝑇 , representing the length of the temporal sliding-
window of past measurements used as input; (vi) independent,
per time-series detection: VAEs provide an estimation of the
expected value and its associated standard deviation for each

independent time-series, which provides further flexibility
and detail to the monitoring process; (vii) detection results
are visually interpretable: predictions provided by DC-VAE
define a continual and dynamically adapted normality region,
independently for each time-series, making it visually easy to
interpret the occurrence of an anomaly.

We apply DC-VAE to a MTS dataset arising from the mon-
itoring of an operational mobile ISP, detecting anomalies of
very different structural properties. Referred to as the TELCO
dataset [17], this large-scale – about 750 thousand samples,
long time-span – seven months’ worth of measurements col-
lected at a five-minutes scale, multi-dimensional – twelve
different metrics (time-series), network monitoring dataset
includes ground-truth labels for anomalous events at each
individual time-series, manually labeled by the experts of the
network operation center (NOC) managing the mobile ISP. We
benchmark DC-VAE against a broad set of 18 different time-
series anomaly detectors coming from the signal processing
and machine learning domains, individually testing on each
time-series – to keep the scope of the comparative analysis,
15 of these traditional models are combined into a powerful
ensemble detector. In addition, we evaluate DC-VAE in an
open, publicly available dataset commonly used in the liter-
ature – the SWaT dataset [18], and compare its performance
against other MTS anomaly detectors based on deep learning
generative models, which have become very popular in recent
years. For the sake of reproducibility and as an additional
contribution, we make the TELCO dataset publicly available
to the community, and openly release the DC-VAE’s code
(https://github.com/GastonGarciaGonzalez/DC-VAE).

We note that this work is an extension of a recently pub-
lished study [19]; the novel contributions of current paper with
respect to [19] are as follows: (i) a comprehensive state of the
art in the problem of machine learning for time-series anomaly
detection; (ii) a more elaborated presentation of the theoretical
foundation behind DC-VAE; (iii) a more exhaustive perfor-
mance benchmarking against a much broader set of state-of-
the-art detectors, as well as against newer deep-learning-based
MTS detectors leveraging Generative Adversarial Networks
(GANs) [20]–[22]; (iv) the evaluation of DC-VAE in the open
SWaT dataset; (v) a deeper analysis of DC-VAE’s operation
through controlled tests; (vi) the description and release of the
TELCO mobile ISP dataset.

The remainder of the paper is organized as follows: Section
II presents a comprehensive overview of the related work. In
Section III we describe the DC-VAE model in detail. Section
IV presents the TELCO mobile ISP dataset collected for
evaluation, and briefly describes the SWaT dataset. Section
V reports the results obtained with DC-VAE on the detec-
tion of anomalies in TELCO, additionally benchmarking its
performance against other approaches in both TELCO and
SWaT. Through the testing on synthetic anomalies, Section
VI presents a deeper analysis of DC-VAE’s response when
confronted with different temporal and spatial behaviors such
as concept drifts, multidimensional anomalies, and strong
outliers. Finally, Section VII concludes the paper.
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Fig. 1. Variational autoencoder and the re-parameterization trick.

II. RELATED WORK

There are multiple surveys on general-domain anomaly
detection techniques [1]–[3] as well as on network anomaly
detection [4], [5]. The diversity of data characteristics and
types of anomalies results in a lack of universal anomaly
detection models. The temporal nature of a very large spectrum
of data problems has led to a strong development of the
particular field of time-series anomaly detection [1], [23].
It is common to find open libraries implementing the most
traditional approaches in the literature – a notable example
we use in this study is the python ADTK open library
(https://github.com/arundo/adtk/). As noted in [1], most of the
methods for unsupervised anomaly detection in univariate and
multivariate time-series consist of predicting an expected value
based on past information and finding a decision threshold to
decide whether the prediction matches the observation. The
automatic and adaptive computation of detection thresholds
remains an open research problem.

Modern approaches to time-series anomaly detection based
on deep learning technology have flourished in recent years
[6], [24], [25]. Due to their data-driven nature and achieved
performance in multiple domains, generative models such as
VAEs [15], and GANs [26] have gained relevance in the
anomaly detection field [20], [21], [27]–[31]. VAEs [15], [32],
[33] represent a powerful and widely-used class of models to
learn complex data distributions. Unlike GANs, a potential
limitation of VAEs is the prior assumption that latent sample
representations are independent and identically distributed.
While this is the most common assumption followed in the lit-
erature, there is ongoing research on the benefits of accounting
for covariances between samples in time and between time-
series to improve model performance [34]–[37]. For example,
while the original work [15] assumes that the prior over
the parameters and latent variables are centered isotropic
Gaussian and the true posteriors are approximately Gaussian
with approximately diagonal covariance, [36] proposes an
approximation capturing temporal correlations, by considering
a Gaussian process prior in the latent space.

Modeling data sequences through a combination of vari-
ational inference and deep learning architectures has been
vastly researched in other domains in recent years, mostly
by extending VAEs to Recurrent Neural Networks (RNNs),
with architectures such as STORN [38], VRNN [39], Omni-
Anomaly [40], and Bi-LSTM [41] among others. Convolu-
tional layers with dilation have also been incorporated into
some of these approaches [42]–[44], allowing to speed up the

training process based on the possibilities of parallelization
offered by these architectures. Transformers [45] is another
popular architecture recently showing great performance in
sequential data processing; previous work on anomaly de-
tection using transformers and VAEs [46] improves training
speed as compared to the state of the art, additionally out-
performing standard baseline methods. In particular, the paper
improves over [40], considered a reference work in the area.
Transformer-based anomaly detection in MTS data is indeed
a promising research direction.

Few papers on deep learning-based detectors have addressed
the problem of real-time detection. In [47], authors consider
the alert delay in detecting so-called range-anomalies – i.e.,
contiguous anomaly segments, and evaluate their models based
both on 𝐹1 scores and on average alert delay. The idea of
range-anomaly detection is appealing in practice; in real-world
applications, the operator generally does not care about point-
wise anomalies, and it is acceptable for an algorithm to trigger
an alert for any sample in a contiguous anomaly segment, as
far as the detection delay is bounded to a certain max-delay
threshold. The work in [48] generalizes the classic measures
of Recall, Precision, and F1-score for range-anomalies. We
consider these extended performance metrics when evaluating
DC-VAE in TELCO.

The last topic we overview relates to evaluating and bench-
marking model performance through in-the-wild data time-
series, using expert domain knowledge for data labeling.
Most proposals in the literature have been analyzed on public
datasets, such as the well-known Yahoo [10], Numenta [11],
[12], NASA [13], or others, where operating conditions are
unrealistic, anomalies might be trivial, and labels are poorly
assigned in the labeling process [14]. Getting access to datasets
labeled by domain experts in an operational environment is
irreplaceable for the realistic evaluation of algorithms.

This work has its origins in our previous paper on generative
models for network anomaly detection in MTS data [21],
where we conceived Net-GAN, an architecture based on
GANs and RNNs, where Long Short-Term Memory networks
(LSTMs) were employed as both generator and discriminator
models to capture temporal dependencies in the data.

III. ANOMALY DETECTION WITH DC-VAE

Sequential data such as time-series is generally processed
through sliding windows, condensing the information of the
most recent 𝑇 measurements. Let us define 𝒙 as a matrix
in R𝑀×𝑇 , where 𝑀 is the number of variables in the MTS
process, i.e., defines the dimension of the problem. We also
define 𝑥(𝑡) ∈ R𝑀×1 as an 𝑀-dimensional vector, representing
the MTS at a certain time 𝑡, and 𝑥𝑚 (𝑡), with 𝑚 ∈ {1, . . . , 𝑀},
as the value of the 𝑚-th time-series at time 𝑡.

As depicted in Figure 1, for a given input 𝒙, the trained
VAE model produces two different predictions, 𝝁𝑥 and 𝝈𝑥 –
matrices in R𝑀×𝑇 , corresponding to the parametrization of the
probability distribution which better represents the given input.
If the VAE model was trained (mainly) with data describing
the normal behavior of the monitored system, then the output
for a non-anomalous input would not deviate from the mean

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3340146

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ANII. Downloaded on December 13,2023 at 15:24:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/arundo/adtk/


4

1

0

TS1

1

0

1
TS3

1

0

1 TS5

1

0

1 TS7

09:00
11:00

13:00
15:00

17:00

1

0

1 TS9

09:00
11:00

13:00
15:00

17:00

0.5

0.0
TS11

1

0

TS2

1

0

1 TS4

1

0

1 TS6

1

0

1 TS8

09:00
11:00

13:00
15:00

17:00

1

0

1 TS10

09:00
11:00

13:00
15:00

17:00

0.5

0.0

0.5 TS12Variable
x

x

1

0

TS1

1

0

1
TS3

1

0

1 TS5

1

0

1 TS7

09:00
11:00

13:00
15:00

17:00

1

0

1 TS9

09:00
11:00

13:00
15:00

17:00

0.5

0.0
TS11

1

0

TS2

1

0

1 TS4

1

0

1 TS6

1

0

1 TS8

09:00
11:00

13:00
15:00

17:00

1

0

1 TS10

09:00
11:00

13:00
15:00

17:00

0.5

0.0

0.5 TS12Variable
x

x

(a) Prediction of time-series TS3. (b) Prediction of time-series TS5.
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Fig. 2. Example of time-series analysis through DC-VAE, for the TELCO
dataset. The normal-operation region is defined by 𝝁𝒙 and 𝝈𝒙.

𝝁𝑥 more than a specific integer 𝜶 times the standard deviation
𝝈𝑥 . On the contrary, if the input presents an anomaly, the
output would not belong to the region determined by the
predicted mean and standard deviation. For reference, Figure
2 presents the main ideas behind the usage of VAEs for time-
series anomaly detection, in this case portraying the results
obtained in the analysis of the TELCO dataset, which is fully
described in Section IV. For each of the displayed time-series
TS𝑖 – the TELCO dataset corresponds to twelve time-series
TS1 to TS12, its real value 𝑥𝑖 , along with the outputs of the
VAE 𝜇𝑥𝑖 and 𝜎𝑥𝑖 , are reported.

In the VAE model, observations 𝒙 are assumed to depend
on a random variable 𝒛 that comes from a lower-dimensional
latent space. The objective is to maximize 𝑃(𝒙), the probabil-
ity of the observations through the model. Similar to 𝒙, 𝒛 will
also be a sequence of length 𝑇 , but with a smaller number
of dimensions 𝐽 < 𝑀 , 𝒛 ∈ R𝐽×𝑇 . In formal terms, given
an input sample 𝒙 characterized by an unknown probability
distribution 𝑃(𝒙), the objective is to model or approximate the
data’s true distribution 𝑃 using a parametrized distribution 𝑝𝜃
with parameters 𝜃. Let 𝒛 be a random vector jointly-distributed
with 𝒙, representing the latent encoding of 𝒙. We can express
𝑝𝜃 (𝒙) as:

𝑝𝜃 (𝒙) =

∫
𝒛
𝑝𝜃 (𝒙, 𝒛) 𝑑𝒛, (1)

where 𝑝𝜃 (𝒙, 𝒛) represents the joint distribution under 𝑝𝜃 of
the observable data 𝒙 and its latent representation or encoding
𝒛. According to the chain rule, the equation can be rewritten
as:

𝑝𝜃 (𝒙) =

∫
𝒛
𝑝𝜃 (𝒙 |𝒛)𝑝𝜃 (𝒛) 𝑑𝒛 (2)

In the vanilla VAE, 𝑝𝜃 (𝒙 |𝒛) is considered a Gaussian
distribution, and therefore, 𝑝𝜃 (𝒙) is a mixture of Gaussian
distributions. The computation of 𝑝𝜃 (𝒙) is very expensive and,
in most cases, even intractable. To speed up training and make

it feasible, it is necessary to introduce a further function to
approximate the posterior distribution 𝑝𝜃 (𝒛 |𝒙), in the form
of 𝑞𝜙 (𝒛 |𝒙) ≈ 𝑝𝜃 (𝒛 |𝒙). In this way, the overall problem can
be easily translated into the autoencoder domain, in which the
conditional likelihood distribution 𝑝𝜃 (𝒙 |𝒛) is performed by the
probabilistic decoder. In contrast, the approximated posterior
distribution 𝑞𝜙 (𝒛 |𝒙) is computed by the probabilistic encoder,
cf. Figure 1.

As in every deep-learning problem, it is necessary to define
a differentiable loss function to update the network weights
through backpropagation. In VAEs, the idea is to jointly
optimize the generative model parameters 𝜃 to reduce the
reconstruction error between the input and the output of the
network and the parameters 𝜙 of the approximated posterior
distribution to have 𝑞𝜙 (𝒛 |𝒙) as close as possible to the real
posterior 𝑝𝜃 (𝒛 |𝒙). The Evidence Lower Bound Loss (ELBO)
loss function is generally considered for this task. In the case
of VAEs, the ELBO loss function 𝐿 𝜃,𝜙 can be written as
follows:

𝐿 𝜃,𝜙 = − log(𝑝𝜃 (𝒙)) + 𝐷𝐾𝐿
(
𝑞𝜙 (𝒛 |𝒙) ∥ 𝑝𝜃 (𝒛 |𝒙)

)
(3)

= −E𝒛∼𝑞𝜙 (𝒛 |𝒙) [log 𝑝𝜃 (𝒙 |𝒛)] + 𝐷𝐾𝐿
(
𝑞𝜙 (𝒛 |𝒙) ∥ 𝑝𝜃 (𝒛)

)
where 𝐷𝐾𝐿 is the Kullback-Leibler divergence, which here

basically measures the information loss when using 𝑞 to
approximate 𝑝. To train the autoencoder and make the ap-
plication of backpropagation feasible, a so-called reparame-
terization trick is generally introduced. The main assumption
on the latent space is that it can be considered as a set of mul-
tivariate Gaussian distributions, and therefore, 𝒛 ∼ 𝑞𝜙 (𝒛 |𝒙) =
N(𝝁𝒛 ,𝝈𝒛

2). Given a random matrix 𝜺 ∼ N(0, 𝑰) and ⊙
defined as the element-wise product, the reparameterization
trick permits to explicitly define 𝒛 = 𝑔(𝝁𝒛 ,𝝈𝒛) = 𝝁𝒛 + 𝝈𝒛 ⊙ 𝜺.
Thanks to this transformation, the variational autoencoder is
trainable. The probabilistic encoder has to learn how to map
a compressed representation of the input into the two latent
vectors 𝝁𝒛 and 𝝈𝒛 . At the same time, the stochasticity remains
excluded from the updating process and is injected in the latent
space as an external input through 𝜺. Under the Gaussian
assumption, the ELBO loss function 𝐿 𝜃,𝜙 can be explicitly
re-written as:

𝐿 𝜃,𝜙 =
1

2 × 𝑇 × 𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

[
𝑀∑︁
𝑚=1

( (
𝑥𝑚 (𝑡) (𝑛) − 𝜇𝑥𝑚 (𝑡) (𝑛)

)2

(𝜎𝑥𝑚 (𝑡) (𝑛) )2 + log(𝜎𝑥𝑚 (𝑡) (𝑛) )2

)
(4)

−
𝐽∑︁
𝑗=1

(
1 + log(𝜎𝑧 𝑗 (𝑡) (𝑛) )2 − (𝜇𝑧 𝑗 (𝑡) (𝑛) )2 − (𝜎𝑧 𝑗 (𝑡) (𝑛) )2

) ]
At each iteration, the loss is calculated for a batch of size 𝑁;

recall that 𝑚 indicates the variable (time-series) in the space
of 𝒙, and 𝑗 the variable in the space of 𝒛, whereas 𝑡 represents
the specific time instant.

To exploit the temporal dimension of the input time-series,
we proposed an encoder/decoder architecture based on pop-
ular CNNs, using Dilated Convolutions (DCs) [16]. DC is a
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Fig. 3. Using CNNs with causal filters requires large filters or many layers to
learn from long sequences. Dilated convolutions improve time-series modeling
by increasing the receptive field of the neural network, reducing computational
and memory requirements, enabling training on long sequences.

technique that expands the input by inserting gaps between
its consecutive samples. In simpler terms, it is the same as a
normal convolution, but it involves skipping samples so as to
cover a larger area of the input. Figure 3 explains the basic idea
behind DCs. The convolutions must be causal, so that detection
can be implemented in real-time. Because such architectures
do not have recurrent connections, they are often much faster
to train than RNNs and do not suffer from complex-to-tame
gradient exploding/vanishing problems. Using DCs instead
of standard convolutions has several advantages for real-
time analysis: (i) they increase the so-called receptive field,
meaning that longer-in-the-past information can be fed into the
detection; (ii) DCs are computationally more efficient, as they
provide larger coverage at the same computation cost; (iii) by
using DC, the pooling steps are omitted, thus resulting in lesser
memory consumption; (iv) finally, for the same temporary
receptive field, the resulting network architecture is much more
compact.

Figure 4 depicts the encoder architecture used in DC-VAE.
The network architecture must be such that the output values
depend on all previous input values. The length 𝑇 of the sliding
window plays a key role here, as it must ensure that the output
at 𝑡 depends on the input at that time and at {𝑡−1, 𝑡−2, . . . , 𝑡−
𝑇 + 1}. The simplest way to achieve this is to use filters of
length 𝐹 = 2 and DCs with dilatation factor 𝑑 = 𝐹ℎ, which
grow exponentially with the layer depth ℎ ∈ [0, 𝐻 −1], where
𝐻 is the number of layers of the network. Subsequently, 𝐻 is
the minimum value that verifies: 𝑇 ≤ 2∗𝐹𝐻−1. In the example,
the window length is 𝑇 = 8, and the target is achieved by
taking 𝐻 = 3 layers. This direct relationship between 𝑇 and
the network architecture has a strong practical impact, making
it easy to construct the encoder/decoder based on the desired
temporal-depth of the analysis.

Note that the dilation process allows doubling 𝑇 with each
added layer. Consequently, a large temporal receptive field of
past measurements can be achieved without further deepening
the network. The encoder and decoder are symmetric in
architecture, both in the number of filters and applied dilations.
In the encoder model, the idea is to reduce or maintain
layer output dimensions with network depth. The opposite
for the decoder is increasing or maintaining the dimension

𝒙

M

𝝁𝒛

J

T

Input

Hidden layer 0
Dilation = 1

Hidden layer 1
Dilation = 2

Hidden layer 2
Dilation = 4

Output

𝝈𝒛

Fig. 4. Encoder architecture using causal dilated convolutions, implemented
through a stack of 1D convolutional layers.

until reaching the observations’ dimension. In both cases, the
sequence length 𝑇 is always maintained.

Model training is conducted on top of normal-operation data
to capture the baseline for anomaly detection. Once trained, the
detection process runs continually, rolling the sliding window
of length 𝑇 by a unitary-time step. At each time 𝑡, the DC-
VAE model takes as input the matrix 𝒙 ∈ R𝑀×𝑇 , constructed
out of the last 𝑇 samples observed in the MTS, and produces
as output matrices 𝝁𝒙 and 𝝈𝒙 – for notation brevity, we
define 𝝁 = 𝝁𝒙 and 𝝈 = 𝝈𝒙. From these two output matrices,
the anomaly detection only considers their values at time 𝑡,
corresponding to two vectors 𝜇(𝑡) and 𝜎(𝑡). For each of the
univariate time-series 𝑚, an anomaly is detected at time 𝑡 if its
value 𝑥𝑚 (𝑡) falls outside the normal-operation region, defined
by 𝜇𝑚 (𝑡) and 𝜎𝑚 (𝑡). More precisely, an anomaly in time-series
𝑚 is declared at time 𝑡 if:

|𝑥𝑚 (𝑡) − 𝜇𝑚 (𝑡) | > 𝛼𝑚 × 𝜎𝑚 (𝑡), (5)

where 𝜶 = (𝛼1, . . . , 𝛼𝑚, . . . , 𝛼𝑀 ) is a vector of 𝑀 detection
sensitivity threshold, where each 𝛼𝑚 can be set independently
for each time-series, allowing for fine-grained, per time-series
calibration of the detection process.

Regarding the calibration of 𝜶, and despite being DC-
VAE an unsupervised system, we acknowledge that these
thresholds are set relying on annotated anomalies. Inevitably
in any anomaly detection problem, it is necessary to set an
operating point. This must be set by an expert operator in
the system, who knows the behavior of the data and the
cost of false detections, both positive and negative. In all
sets for anomaly detection, this knowledge is in the labels
provided by the experts. There are different techniques to
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Fig. 5. Snapshots of the TELCO MTS. For each time-series, the region of normal operation is depicted, as estimated from DC-VAE predictions 𝝁𝑥 and 𝝈𝑥 .

TABLE I
TELCO DATASET. SEVEN-MONTHS WORTH OF MEASUREMENTS,

MANUALLY LABELED FOR TWELVE DIFFERENT METRICS.

dataset # samples duration # anomalous samples

training 310,974 3 months 5,672 (1.8%)
validation 103,680 1 month 385 (0.4%)
testing 317,953 3 months 3,080 (1.0%)

total 732,607 7 months 9,137 (1.2%)

define thresholds automatically from the data [49], but all are
applicable for the detection of outliers (i.e., values far from
normal behavior). In the problem we are dealing with, the
interest is to detect anomalies which are often difficult to
differentiate from normal behavior, so the calibration stage
inevitably must be supervised.

IV. THE TELCO MOBILE ISP DATASET

A. TELCO – A New Open Dataset Released to the Community

A recent study [14] alerts on the limitations of evalu-
ating anomaly detection algorithms on popular time-series
datasets such as Yahoo, Numenta, or NASA, among oth-
ers. In particular, these datasets are noted to suffer from
known flaws such as trivial anomalies, unrealistic anomaly
density, mislabeled ground truth, and run-to-failure bias.
For this reason, we decided to evaluate DC-VAE in a
proprietary MTS dataset, corresponding to real measure-
ments collected at an operation mobile ISP – note that
we are publicly releasing this dataset to the commu-
nity (https://iie.fing.edu.uy/investigacion/grupos/anomalias/en/
telco-dataset-2/downloads/). The TELCO dataset [17] corre-
sponds to twelve different time-series, with a temporal gran-
ularity of five minutes per sample, collected and manually
labeled for a period of seven months between January 1 and

July 31, 2021. This temporal length is seldom available in
other publicly available datasets of this nature and is highly
relevant and useful to allow for long-term seasonal behavior
analysis.

Each time-series corresponds to aggregated data from dif-
ferent sources; to keep business confidentiality, we do not
specify the exact data type reflected by each time-series. The
twelve time-series are typical data monitored in a mobile ISP,
including the number and amount of prepaid data transfer fees,
number and cost of calls, the volume of data traffic, number
of SMS, and more.

Figure 5 depicts daily snapshots of the complete TELCO
MTS. For each time-series, the region of normal operation is
depicted, as estimated from DC-VAE predictions 𝝁𝑥 and 𝝈𝑥 .
Different time-series expose different behaviors, e.g., some
of them are noisier (TS3), others have lower dynamic ranges
(TS11), and some others show a smoother evolution (TS2). To
appreciate the strong seasonality component of the time-series,
Figure 6 depicts the TELCO MTS for a period of four days,
covering weekdays and weekends.

Table I presents the main details of the dataset. Note in
particular, how strongly imbalanced the dataset is in terms
of normal-operation and anomalous samples, which is the
typical case for real network measurements in operational
deployments. By definition, anomalies are rare events. We
split the full dataset in three independent, time-ordered sub-
sets, using measurements from January to March for model
training, April for model validation, and May to July for
testing purposes. For the sake of completeness, Table II reports
normal-operation and anomalous samples per individual time-
series, for the training, validation, and testing sub-sets. The
share of anomaly samples is low and significantly different
for some of the time-series, adding richness and complexity
to the dataset; for example, time series TS1, TS4, TS9, and
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TABLE II
DISTRIBUTION OF ANOMALY SAMPLES IN THE TELCO DATASET, PER TIME-SERIES AND PER TRAINING, VALIDATION, AND TESTING SUB-SETS.

THE SHARE OF ANOMALY SAMPLES IS LOW, AND SIGNIFICANTLY DIFFERENT FOR SOME OF THE TIME-SERIES.

training validation testing total
TS ID normal anomalous % normal anomalous % normal anomalous % normal anomalous %

TS1 24,731 1,183 4,6% 8,628 12 0,14% 26,084 412 1,6% 59443 1607 2,6%
TS2 25,713 201 0,8% 8,629 11 0,13% 25,995 501 1,9% 60,337 713 1,2%
TS3 25,784 130 0,5% 8,636 4 0,05% 26,358 138 0,5% 60,778 272 0,4%
TS4 24,464 1,450 5,6% 8,636 4 0,05% 26,317 179 0,7% 59,417 1,633 2,7%
TS5 25,840 74 0,3% 8,637 3 0,03% 26,390 106 0,4% 60,867 183 0,3%
TS6 25,850 64 0,2% 8,639 1 0,01% 26,390 107 0,4% 60,879 172 0,3%
TS7 25,793 127 0,5% 8,638 2 0,02% 26,227 269 1,0% 60658 398 0,7%
TS8 25,787 127 0,5% 8,640 0 – 26,229 267 1,0% 60,656 394 0,6%
TS9 25,287 627 2,4% 8,508 132 1,53% 25,932 564 2,1% 59,727 1,323 2,2%
TS10 24,558 1,356 5,2% 8,463 177 2,05% 25,995 501 1,9% 59016 2,034 3,3%
TS11 25,725 189 0,7% 8,601 39 0,45% 26,475 21 0,1% 60,801 249 0,4%
TS12 25,770 144 0,6% 8,640 0 – 26,481 15 0,1% 60,891 159 0,3%

TS10 have a total share of anomaly samples above 2% or 3%.
While the TELCO dataset used in this paper and released to

the community has a seven-month time span, we acknowledge
that the complete dataset we have collected has almost two
years of duration. We have decided to work only on these
seven months because it corresponds to the the data for which
expert operator annotated labels are available. Although DC-
VAE trains in a self-supervised fashion, a fair comparison
with supervised methods as the one we do in the evaluations
requires that all methods share the same training, validation,
and test sets.

Nevertheless, and for the sake of completeness, we investi-
gated the impact on DC-VAE’s baseline modeling performance
when training with longer time-spans, without labels. Figure
7 reports the average log-likelihood E𝒛∼𝑞𝜙 (𝒛 |𝒙) [log 𝑝𝜃 (𝒙 |𝒛)]
in the reconstruction of TELCO in the testing dataset, using

different temporal spans for self-supervised model training.
Interestingly, improvements are rather marginal when con-
sidering up to 18 months of training data, suggesting that
manually labeling a longer time-span for TELCO might not
actually provide a richer dataset. In any case, we are working
with the expert annotators to release a newer version of
TELCO in the near future, covering more than one year of
labeled time-series.

B. The SWaT Open Dataset for Cybersecurity Analysis

While the core of the evaluations and benchmarking is
conducted on the TELCO dataset, we also evaluate DC-VAE
in the Secure Water Treatment (SWaT) dataset [18], an open,
publicly available dataset commonly used in the literature for
cybersecurity analysis. The SWaT dataset consists of 51 time-
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series of data collected over eleven days in 2015-2016, on a
water treatment operational test-bed, which represents a small-
scale version of a large modern cyber-physical system. The
dataset contains two sub-sets temporally split; the first week is
anomaly free and is considered as the training dataset, whereas
the last four days of data contain 36 attacks of different
nature and duration (from a few minutes to an hour), and
is meant for testing purposes. The total number of anomaly
samples accounts for about 5.8% of the total measurements.
As an example of the kind of patterns observed in the
SWaT MTS, Figure 8 depicts four of the time-series under
normal operation. Different from TELCO, which represents a
real operational network and anomaly labels are provided by
manual inspection on individual time-series, anomaly labels
in SWaT correspond to temporal ranges in which the attacks
were executed under a controlled environment.

We acknowledge that the SWaT dataset is far from rep-
resenting a real cyber-physical system and is not perfect
as benchmark for anomaly detection, presenting significant
trivial anomalies and unrealistic anomaly density, as well as
some mislabeled ground truth and missed anomalies in the
data (https://mlad.kaspersky.com/swat-testbed/). Nevertheless,
there are two main reasons for testing DC-VAE in SWaT: (i)
firstly, despite its deficiencies, the SWaT dataset is widely used
in the state of the art as benchmark for multivariate time-series
anomaly detection, and this allows us showing that DC-VAE
provides similar, or even better performance, than other similar
systems in a well-known dataset; (ii) secondly, using SWaT
lets us testing the modeling capabilities of DC-VAE in a dataset
with a broader variety of variables – 51 time series in this case.

V. DC-VAE EVALUATION AND BENCHMARKING

A. DC-VAE Architecture Calibration

The first step before evaluation of DC-VAE is to calibrate
the model. As explained in Section III, the length 𝑇 of
the sliding window plays a major role in the architecture
of DC-VAE. Given the usage of the dilated convolutions, 𝑇
determines the number of encoder and decoder layers (cf.
Figure 4). The dimension 𝐽 of the latent space is the other
relevant parameter to set; while it must be smaller than the
MTS dimension 𝑀 , it must also be big enough to capture
the most relevant information of the MTS process. We test

TABLE III
GRID OF HYPERPARAMETERS USED IN THE MODEL CALIBRATION.

Hyperparameter Grid Best

𝑇 {8, 16, 32, 64, 128, 256, 512, 1024} 512
𝐽 {1, 2, 4, 8} 4
𝛾 {10−3, 10−4} 10−3

𝑚 {32, 64} 32
𝑓 {8, 16, 32} 16

different values for the sequence length 𝑇 to show how this
affects the performance of the model. In particular, we test
𝑇 = 1, 8, 16, 32, 64, 128, 256, 512, 1024 samples, considering
the average of the mean absolute error (MAE) between 𝑥𝑚
and 𝜇𝑥𝑚 , for each time-series 𝑚. Sequence length 𝑇 = 1
corresponds to a standard VAE model with only snapshot-
like inputs; to avoid an excessively compressed model for this
sequence length, we consider here an architecture with three
fully-connected layers.

Besides the reconstruction MAE, we also compute the so-
called explained variance or variance score Varscore, which
compares the variance of the reconstruction error and the
variance of the input signal:

Varscore (𝒙(𝑡), 𝝁𝒙 (𝑡)) = 1 − Var (𝒙(𝑡) − 𝝁𝒙 (𝑡))
Var(𝒙(𝑡)) (6)

The value of Varscore is between [0, 1], where 1 represents
the ideal case. Figure 9 reports the (a) MAE and (b) Varscore for
each sequence length 𝑇 and corresponding model architecture,
in both cases obtained as the average value across all the time-
series, for the TELCO validation set. Latent space dimensions
𝐽 = 4, and 𝐽 = 8 are considered in the analysis. The MAE
varies considerably for the proposed range, with 𝑇 = 512
providing the smallest reconstruction error, almost identical
for both latent space dimensions. Similarly, for the Varscore,
𝑇 = 512 results in the highest score, for both latent space
dimensions.

Another relevant hyperparameter is the number of filters
𝑓 for each hidden convolutional layer, which together with
the number of layers and the input and output dimensions
define the size of the architecture in terms of the number
of trainable parameters. Also, hyperparameters typical of the
training stage, such as the learning rate 𝛾 and the mini-batch
size 𝑚, are key to find the optimal solution. To find the
best combination of these hyperparameters, we use the Tree-
structured Parzen Estimator (TPE) approach [50]. In total, 50
attempts were tested on the grid shown in table III, where
the hyperparameters for which the model showed the smallest
validation loss are reported in the last column.

The hyperparameter search stage for a deep learning model
is one of the most important and most expensive steps, since
it involves training many models until the optimal values
are found. Therefore, lowering the times of this stage is
paramount. To evaluate the time gained by using a fully
parallelizable compact architecture such as the one proposed in
DC-VAE, as compared to traditional recurrent architectures, we
created another architecture by replacing all layers with RNNs.
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Fig. 9. Calibration of DC-VAE in TELCO. 𝑇 = 512 provides the smallest
reconstruction error and the highest variance score.

To search for the hyperparameters, we define another grid that
includes the previous one, adding the number of hidden layers:
ℎ = {2, 4}. It is worth remembering that for DC-VAE, defining
the length of the 𝑇 sequences automatically sets the number
of layers, and thus, this value varies between [3, 10]. Gated
Recurrent Units (GRU) were the type of layer used in the
RNNs, as they showed the highest convergence stability in
terms of vanilla RNN and LSTM models.

Table IV reports the comparative times taken for hyper-
parameter search and model training for both architectures,
i.e., DC-VAE and the RNN-based one. Tests are performed
on standard GPU hardware, using a Nvidia GTX 1060 GPU.
The fully causal architecture proposed by DC-VAE is more
compact and can be optimized and trained much faster than

TABLE IV
TEMPORAL COMPLEXITY FOR ARCHITECTURE OPTIMIZATION AND

MODEL TRAINING (HARDWARE REFERENCE: GPU NVIDIA GTX 1060).

DC-VAE RNN

Hyperparameter search (hours) 15 37
Training best model (minutes) 10 15

traditional, recursive architectures. In particular, hyperparam-
eter search takes less than half the time, and model training
is at least 33% faster.

B. Anomaly Detection Results in TELCO

We go back to Figure 6 to show DC-VAE in action, using
a sliding-window of length 𝑇 = 512 samples. DC-VAE can
properly track different types of behavior in the time-series,
including the strong seasonal daily component, but also the
operation during weekdays and weekends, clearly visible in
TS2 and TS11, among others. In this example, time-series TS3
and TS9 are noisier than time-series TS5 and TS12, which
justifies the need for different sensitivity thresholds 𝛼𝑚 to
address the underlying nature of each monitored metric. Note
in addition how different periods of time-series variability
result in more or less tight normal-operation regions estimated
by DC-VAE, as defined by 𝜎(𝑡). Figure 10 extends the
predictions of DC-VAE to a longer time-span, considering
two weeks of measurements, for time-series TS2 and TS11.
While both time-series have a strong seasonal component, with
marked differences in behavior on weekdays and weekends,
TS11 has a decreasing trend on the second week, which can
be properly tracked by DC-VAE.

To apply DC-VAE for anomaly detection, we have to
calibrate the sensitivity thresholds 𝜶, which is usually done
in a supervised manner, relying on the labeled anomalies
available in the training and validation datasets. This step is
the only one that requires a certain level of “supervision” (in
the sense of ground-truth availability), but could also be done
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Fig. 11. Examples of real anomalies present in the analyzed dataset, and their
identification by DC-VAE.

in a self-supervised manner, by labeling anomalies through
outlier detection techniques. In our specific problem, each
sensitivity threshold 𝛼𝑚 is calibrated on a per time-series basis,
by maximizing the 𝐹1 score over the training and validation
datasets, doing a grid-search of integer values from 1 to 5. In
a nutshell, we decide how many standard deviations 𝜎𝑚 shall
be considered as tolerance for the normal-operation variability
of the data.

Figure 11 reports some examples of real (i.e., labeled)
anomalies present in the TELCO dataset, in particular for time-
series TS2, TS4 TS6 and TS9, along with their corresponding
identification by DC-VAE, where sensitivity thresholds 𝜶 were

TABLE V
SET OF BENCHMARK TIME-SERIES ANOMALY DETECTORS USED IN

TELCO AGAINST DC-VAE.

ENS-15

Local Outlier Factor (LOF)
Isolation Forest (IF)
Double Roll. Aggregate with Interquartile Range (DRA-IR)
Quantile Detector (QQ)
Interquartile Range Detector (IR)
Generalized Extreme Studentized Deviate Test (G-ESDT)
DRA with Single Change-Point Detection (DRA-CP)
Level Shift Detector (LS)
Volatility Shift Detector (VS)
Seasonal Decomposition with Exp. Smoothing (SD-ETS)
Time-Series Seasonality Detector (TSS)
Autoregressive Detector (AR)
Linear Regression Detector (LR)
PCA Detector (PCA)
K-means Clustering Detector (K-means)

S-EXPS Seasonal Exponential Smoothing
ARIMA Auto Regressive Integrated Moving Average
S-VAE Standard vanilla VAE, equivalent to DC-VAE with 𝑇 = 1

calibrated as mentioned before. DC-VAE can detect different
types of anomalies present in the data, of a more transient
and spiky nature in the case of TS6 and TS9, or on a more
structural basis in the case of TS2 and TS4. Note also how
some of the actual measurements fall significantly outside the
normal-operation region – e.g. in Figure 11(c), but still these
were not labeled as anomalous by the expert operator. Whether
this is a false-positive produced by DC-VAE, or a non-labeled
anomaly missed by the expert operator is difficult to know.
It is important to note that anomalies in real, operational
measurements, as labeled by the expert operator, do not always
translate into clear outliers in the data; the contrary is also true,
meaning that typical outliers in the data might not correspond
to actual anomalies in the eyes of the expert operator. Manual
data labeling by experts is prone to human error, many times
due to a lack of conclusive information for the operator to take
a proper decision. These observations are paramount when
evaluating anomaly detectors with real, in-the-wild data.

We run a quantitative performance analysis of DC-VAE
in the testing dataset (cf. Table I), benchmarking its perfor-
mance against a broad set of more traditional detectors. As
performance metrics, we consider an elaborated version of the
traditionally used, per-sample evaluation metrics, to consider a
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TABLE VI
ANOMALY DETECTION PERFORMANCE BENCHMARKING IN TELCO, COMPARING DC-VAE AGAINST S-EXPS, ARIMA, S-VAE, AND AN ENSEMBLE OF

15 TRADITIONAL DETECTORS (ENS-15). FIRST AND SECOND HIGHEST 𝐹1 SCORES ARE MARKED IN RED AND BLUE, RESPECTIVELY.

ENS-15 S-EXPS ARIMA S-VAE DC-VAE
TS ID 𝑅𝑟 𝑃𝑟 𝐹1𝑟 𝑅𝑟 𝑃𝑟 𝐹1𝑟 𝑅𝑟 𝑃𝑟 𝐹1𝑟 𝑅𝑟 𝑃𝑟 𝐹1𝑟 𝑅𝑟 𝑃𝑟 𝐹1𝑟
TS1 45% 50% 48% 45% 88% 60% 64% 92% 75% 23% 56% 32% 58% 71% 64%
TS2 37% 100% 54% 70% 96% 81% 59% 95% 73% 16% 92% 27% 74% 20% 67%
TS3 78% 33% 47% 78% 58% 67% 78% 46% 58% 71% 50% 59% 86% 47% 60%
TS4 75% 59% 66% 67% 41% 51% 58% 38% 46% 63% 25% 36% 63% 21% 32%
TS5 73% 73% 73% 45% 63% 53% 64% 64% 64% 50% 20% 29% 75% 50% 60%
TS6 88% 62% 72% 63% 63% 63% 75% 50% 60% 14% 100% 25% 57% 83% 68%
TS7 77% 63% 69% 69% 53% 60% 69% 46% 56% 45% 100% 63% 72% 90% 80%
TS8 67% 44% 53% 56% 36% 43% 56% 56% 56% 57% 35% 43% 44% 80% 57%
TS9 10% 17% 12% 5% 5% 5% 19% 9% 12% 6% 4% 4% 17% 11% 13%
TS10 8% 18% 11% 48% 44% 46% 48% 38% 42% 39% 81% 52% 52% 59% 55%
TS11 58% 21% 31% 50% 32% 39% 67% 26% 37% 67% 17% 27% 100% 25% 40%
TS12 0% 0% 0% 100% 67% 80% 100% 24% 38% 0% 0% 0% 100% 11% 22%

mean 51% 45% 45% 58% 54% 54% 63% 49% 51% 38% 48% 33% 67% 47% 52%
median 63% 47% 51% 60% 55% 57% 64% 46% 56% 42% 43% 31% 68% 49% 59%

TABLE VII
ANOMALY DETECTION PERFORMANCE BENCHMARKING AGAINST

DEEP-LEARNING GENERATIVE MODELS IN SWAT.

Detector 𝑅 𝑃 𝐹1

Auto Encoder 53% 73% 61%

EGAN 68% 41% 51%

NET-GAN-(G)enerator 65% 98% 78%
NET-GAN-(D)iscriminator 65% 29% 40%

MAD-GAN-P (best precision) 55% 100% 70%
MAD-GAN-R (best recall) 100% 12% 22%
MAD-GAN-F1 (best F1 score) 64% 99% 77%%

DC-VAE 67% 94% 78%

more natural and practical approach for real anomaly detection
applications, evaluating detection performance in the form of
anomaly temporal-ranges. Traditional metrics can make sense
for point anomalies where a true positive corresponds to a
correct detection at the precise point in time. However, as
shown for example in Figure 11(b), many anomalies occur in
the form of multiple, consecutive point anomalies, defining
an anomaly range. In such scenarios, it could be already
enough to have a partial overlap between the real anomaly
range and the predicted anomaly interval to consider a correct
detection. Previous papers have considered these observations
[11], [47], [48], defining new metrics which prioritize early
or delayed detection, or focusing mainly on range anoma-
lies. Therefore, we take the extended definitions of recall
and precision as defined in [48] to generalize for ranges of
anomalies, considering a correct detection if at least one of the
samples between the start and the end of the actual anomaly
is flagged by the model. We refer to these extended, range-
based metrics as 𝑅𝑟 , 𝑃𝑟 , and 𝐹1𝑟 , for recall, precision, and
F1-score, respectively. More precisely, given a set of 𝜆 Real
Anomaly ranges 𝑅𝐴 = 𝑅𝐴1 . . . 𝑅𝐴𝜆 and a set of 𝛿 Predicted
Anomaly ranges 𝑃𝐴 = 𝑃𝐴1 . . . 𝑃𝐴𝛿 :

𝑅𝑟 (𝑅𝐴, 𝑃𝐴) =

𝜆∑
𝑗=1

𝑅𝑟 (𝑅𝐴𝑖 , 𝑃𝐴)

𝜆
(7)

𝑃𝑟 (𝑅𝐴, 𝑃𝐴) =

𝛿∑
𝑗=1

𝑃𝑟 (𝑅𝐴, 𝑃𝐴𝑖)

𝛿
(8)

𝐹1𝑟 = 2 × 𝑅𝑟 × 𝑃𝑟

𝑅𝑟 + 𝑃𝑟
(9)

In a nutshell, an intersection between an anomaly interval
and the whole set of predictions is enough to set 𝑅𝑟 (𝑅𝐴𝑖 , 𝑃𝐴)
to one. 𝑃𝑟 (𝑅𝐴, 𝑃𝐴𝑖) is determined in its dual form. To
consider the manual labeling uncertainty in the real anomaly
location [51], we run a preprocessing on the real anomaly
regions, convolving the series with a rectangular window, to
obtain better-defined anomaly ranges.

Table V summarizes the different anomaly detection ap-
proaches considered in the benchmark against DC-VAE. Most
of these approaches correspond to univariate detection meth-
ods (except S-VAE), largely studied in the signal processing
domain. A broad set of 15 univariate detectors are integrated
into a single ensemble detector, referred to as ENS-15. The
ensemble includes regression models, change-point detectors,
outliers detectors, dimensionality reduction, clustering, and
more. The aggregation corresponds to a majority voting
strategy, where each detector is independently calibrated in
the training and validation datasets, and a voting threshold
maximizing 𝐹1 validation scores is computed. In TELCO,
ENS-15 detects an anomaly if at least four ensemble models
detect it. We also consider well-established time-series de-
tectors, such as Seasonal Exponential Smoothing (S-EXPS)
and the standard Auto-Regressive Integrated Moving Average
(ARIMA) model. These approaches base the detection on
the prediction of 𝜇𝑥 and 𝜎𝑥 for each time instant, making
them particularly interesting to compare against DC-VAE. To
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show the advantages of DC-VAE as compared to the usage of
standard, vanilla VAEs for anomaly detection in time-series,
we define the Standard-VAE (S-VAE) as a snapshot-input-
based anomaly detection model, where the encoder/decoder
architecture is based on a standard 3-layers, fully connected
feed-forward neural network, and the input corresponds to the
MTS at the specific time of detection – i.e., 𝑇 = 1 in S-VAE.
The comparison against S-VAE serves to demonstrate the
advantages of DC-VAE temporal-aware architecture, through
the dilated convolutions. Finally, evaluations are reported
independently for each to the twelve time-series TS𝑚 in the
TELCO dataset.

Table VI reports the corresponding results in the testing
dataset, independently for each time-series, and as an average
value. The first observation is that achieved results are in
general rather poor, achieving 𝐹1𝑟 scores around 60% for eight
out of the twelve time-series, and below for the rest. This is
highly in contrast with the high 𝐹1 scores usually reported in
the literature, when dealing with simulated or flawed datasets
[14]. Indeed, as we explained before, dealing with in-the-wild
measurements and human-labeled, highly-imbalanced datasets
is more complex than what the results in the literature usually
report – real, in practice MTS anomaly detection is highly
complex. Performance is significantly different for some of
the time-series, which corresponds to the different nature
and underlying behavior (cf. Figure 6) and the fraction of
anomalies (cf. Table II). While DC-VAE’s performance as
compared to S-VAE is outstanding, results show that no single
approach is superior to the rest in all the time-series. DC-VAE’s
performance is similar, on average, to S-EXPS and ARIMA.
Still, among those already mentioned, the main advantage of
DC-VAE remains its multivariate operation and the overall
MTS modeling within a single learning step.

C. Benchmarking DC-VAE in the SWaT Open Dataset

For the sake of completeness and to provide a stronger
and more comprehensive benchmarking, we compare DC-
VAE against other deep-learning-based MTS anomaly detec-
tors in SWaT. As discussed in the related work, GAN-based
MTS detectors are very popular in the literature, given their
flexibility to model a complex MTS process without making
any assumptions on the underlying distributions. GANs are a
powerful approach to learning the underlying distributions of
data samples, in a purely data-driven, model-agnostic manner.
Such models can be used in the practice to construct better
normal-operation baselines, improving the identification of
instances that deviate from this baseline. We, therefore, com-
pare DC-VAE against three GAN-based detectors proposed
in recent years, including EGAN [22], MAD-GAN [20], and
our previous work on GAN-based MTS anomaly detection,
referred to as NET-GAN [21].

To train DC-VAE in SWaT, we take an architecture using
𝐽 = 16 as the dimension of the latent space, and a sequence
length 𝑇 = 128, both parameters calibrated in the same way
we did it in TELCO (cf. Figure 9). We train both DC-VAE and
NET-GAN in the SWaT training dataset, using a small share of
samples from the attacks for calibration. Regarding EGAN and

Fig. 12. A strong outlier in TS11 results in poor prediction for TS4, with
sequence length 𝑇 = 32. This effect is mitigated with longer lengths 𝑇 .

MAD-GAN, we decided to report here the results obtained by
the authors in [20], which would generally correspond to the
best performance which could be achieved by these methods.
Finally, we also include a standard Auto Encoder (AE) model
as the simplest approach comparable to DC-VAE.

Table VII reports the results obtained in the testing dataset
in terms of recall, precision, and 𝐹1 scores. We fall back to
the standard evaluation on point anomalies instead of range
anomalies, to be consistent with the results obtained in SWaT
as reported in the literature. We consider two variations of
NET-GAN detectors [21], one using the generator function
(NET-GAN-G), and the other one the discriminator function
(NET-GAN-D). We also consider three different variations of
MAD-GAN, optimized for best precision (MAD-GAN-P), re-
call (MAD-GAN-R), and 𝐹1 score (MAD-GAN-F1). DC-VAE
results are comparable to those obtained with NET-GAN-G
and MAD-GAN-F1, and significantly better than EGAN or the
AE model. In addition, absolute results are also significantly
better than those obtained in TELCO, helping us demonstrate
that anomaly detection in real data as the one in TELCO,
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(a) S-VAE under univariate anomalies. (b) S-VAE under multivariate anomalies. (c) DC-VAE under multivariate anomalies.

Fig. 13. S-VAE and DC-VAE response to univariate and multivariate anomalies. The simultaneous modeling of the full MTS process adds regularity and
stability to the detection.
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Fig. 14. DC-VAE and ARIMA response to range and point anomalies. The lower image is always a close-up view of the upper one. Being univariate and
with a small temporal window makes ARIMA less robust for MTS anomaly detection, and missing anomalies.

dealing with the error-prone process of human labeling, is
much more complex than what the literature usually reports
on such benchmarks. To sum-up, we can claim that DC-VAE
realizes state-of-the-art detection performance, while again,
flagging its underlying advantages.

VI. TEMPORAL AND SPATIAL RESPONSE OF DC-VAE

The visual exploration of DC-VAE predictions and detec-
tions in TELCO revealed certain behaviors of the model
when confronted with different temporal and/or spatial patterns
which are worth studying. In particular, the impact of the
sequence length 𝑇 on the reaction of the model to certain
phenomena is relevant. Next, we present different prototypical
examples of simulated anomalies and their impact on DC-
VAE predictions, using S-VAE and the ARIMA models for
comparison, when applicable.

1) Impact of strong outliers: the processing of the com-
plete MTS simultaneously has evidenced, and in particular
for simpler versions of the model with shorter sequence
lengths 𝑇 , that coarse outliers affecting a single time-series
can affect the predictions for other time-series, generating
false detections. Figure 12 shows how a major outlier in
TS11 strongly perturbates predictions for TS4, especially for
sequence length below 32 in this example. This effect can be
partially mitigated by taking longer sequences at the input. As
a lesson learned, using longer sequences improves the filtering
of strong outliers from the data.

2) Multivariate model properties: besides being more scal-
able in production, having a single model for the analysis
of the complete MTS also improves detection. Figure 13(a)
shows S-VAE model predictions for two highly correlated
time-series, TS1 and TS2. An artificial univariate anomaly
in TS1, emulating a period where the time-series is constant
(e.g., no incoming measurements), has a contained impact
on the rest of the time-series predictions, as reflected in the
predictions of 𝝁𝑥 and 𝝈𝑥 for TS2. As the S-VAE model has no
temporal information (i.e., 𝑇 = 1), predictions are influenced
by the fact that the rest of the time-series remained unchanged.
Nevertheless, in this example, the anomaly introduced in TS1
would be clearly detected.

3) Temporal model properties: we now apply the previous
anomaly to all the time-series in the same period and verify
how the VAE-based models exploit temporal correlations
among time-series. Figure 13(b) shows that this time, the S-
VAE model predictions perfectly follow the anomaly, making
it go completely undetected. The result is totally different for
DC-VAE; as shown in Figure 13(c), the predictions of a DC-
VAE model with a sequence length of 𝑇 = 512 tend to follow
the past behavior, and take longer to track the anomaly pattern,
effectively detecting it.

Similar to DC-VAE, the ARIMA detection model enables
the visualization of the normal-operation region. However, as
we show in Figure 14, being univariate and with a small
temporal window makes ARIMA less robust for MTS anomaly
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Fig. 15. DC-VAE response to univariate concept-drift: a gradual linear fall of the values during the day without affecting night behavior. While the drift does
not affect the predictions on the other time-series, it becomes easily detectable at the corresponding time-series.

detection. In the figure, model predictions are depicted in
green for ARIMA and in orange for DC-VAE, and red dots
indicate real (i.e., labeled) anomalies. Figures 14(a) and 14(b)
show that the value of 𝜎𝑥 for the ARIMA model is constant
over time, but dynamically adapts in DC-VAE, providing a
better, more accurate normal-operation region. This is a strong
advantage of DC-VAE, since it adapts to the noise variations
that these time-series generally present.

The same happens to the estimations of 𝜇𝑥 . While the
estimation of the signal through the ARIMA model closely
follows the time-series, even in the occurrence of real anoma-
lies – and thus the model misses detection, the estimation
provided by DC-VAE maintains a normal behavior in the face
of the anomalies, allowing to properly detect them. The bigger
spatial (𝑀) and temporal (𝑇) ranges of DC-VAE add robustness
to the anomaly detection process.

4) Concept drift response: the ability to detect Concept
Drift (CD) in time-series data is a paramount property [8].
The CD can manifest itself as a shift in the mean, an increase
or decrease in the variance, or both changes simultaneously,
which may be imperceptible for many methods [9]. These
CD changes may be related to important trends in the data,
requiring proper detection. We simulate a univariate CD in one
of the time-series, and check the outputs of DC-VAE. Figure
15 shows an example of CD, where a gradual change in the
interval indicated as the CD zone is simulated in TS5. The
daily values of the time-series are reduced linearly, starting
at 80% (beginning of the CD zone) up to 40% (end of the
CD zone). This change does not only affect the mean value of
the time-series, but also its variance. Interestingly, predictions
of the DC-VAE follow the past behavior learned as normal,
allowing the CD event to be detected.

VII. CONCLUDING REMARKS

DC-VAE is a novel approach to anomaly detection in
multivariate time-series, leveraging dilated convolutional neu-
ral networks and variational autoencoders. DC-VAE detects
anomalies in multivariate time-series, exploiting temporal
information without sacrificing computational and memory
resources. In particular, instead of using recursive neural
networks, large causal filters, or many layers, DC-VAE re-
lies on dilated convolutions to capture long and short-term
phenomena in the data, avoiding complex and less-efficient
deep architectures, simplifying learning. Applying DC-VAE to
real measurements collected at a mobile ISP showed that its
underlying architecture is better than traditional, vanilla VAEs
regarding time-series anomaly detection. The parameterization
of DC-VAE’s architecture is defined by a single parameter,
namely the length of the sliding window used for temporal
analysis, and the normal operation region can be easily adapted
on a per time-series basis by adjusting a single integer value,
all of these important advantages in practice.

The performance analysis shows that DC-VAE has good
properties for its implementation in production: scalability,
easy adjustment of the normal-operation region, robustness
against anomalies in other time-series, as well as against
concept drift, which can also be detected. The application
of DC-VAE in the TELCO and SWaT datasets shows the
complementarity with other detection methods and the on-par
performance with state-of-the-art MTS anomaly detectors in
the literature. The quantitative and qualitative advantages of
DC-VAE concerning S-VAE evidenced the contribution of the
convolutional layers in capturing a longer time horizon.

The open release of the TELCO dataset offers a real,
more representative environment to assess and benchmark
anomaly detectors, providing a solid contribution to advance
the domain.
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