Abstract:
The advancement of Internet of Things (IoT) technology has significantly transformed the dynamic between humans and devices, as well as device-to-device interactions. Thi...Show MoreMetadata
Abstract:
The advancement of Internet of Things (IoT) technology has significantly transformed the dynamic between humans and devices, as well as device-to-device interactions. This paradigm shift has led to profound changes in human lifestyles and production processes. Through the interconnectedness of numerous sensors and controllers via networks, the IoT facilitates the seamless integration of humans with diverse devices, leading to substantial economic advantages. Nevertheless, the burgeoning IoT industry and the rapid proliferation of various IoT devices have also introduced a multitude of security vulnerabilities. Cyber attackers frequently exploit cyber attacks to compromise IoT devices, jeopardizing user privacy and property security, thereby posing a grave menace to the overall security of the IoT ecosystem. In this paper, we propose a novel IoT Web attack detection system based on a joint embedded prediction architecture (JEPA), which effectively alleviates the security issues faced by IoT. It can obtain high-level semantic features in IoT traffic data through non-generative self-supervised learning. These features can more effectively distinguish normal data from attack data and help improve the overall detection performance of the system. Moreover, we propose a feature interaction module based on a dual-branch network, which effectively fuses low-level features and high-level features, and comprehensively aggregates global features and local features. Simulation results on multiple datasets show that our proposed system has better detection performance and robustness.
Published in: IEEE Transactions on Network and Service Management ( Volume: 21, Issue: 6, December 2024)