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Decision-making model for adaptive impedance
control of teleoperation systems

Javier Corredor, Jorge Sofrony, Angelika Peer

Abstract—This paper presents a haptic assistance strategy for teleoperation that makes a task and situation-specific compromise
between improving tracking performance or human-machine interaction in partially structured environments via the scheduling of the
parameters of an admittance controller. The proposed assistance strategy builds on decision-making models and combines one of
them with impedance control techniques that are standard in bilateral teleoperation systems. Even though several decision-making
models have been proposed in cognitive science, their application to assisted teleoperation and assisted robotics has hardly been
explored yet. Experimental data supports the Drift-Diffusion model as a suitable scheduling strategy for haptic shared control, in which
the assistance mechanism can be adapted via the parameters of reward functions. Guidelines to tune the decision making model are
presented. The influence of the reward structure on the realized haptic assistances is evaluated in a user study and results are
compared to the no assistance and human assistance case.

Index Terms—Haptics, shared control, decision-making, assistance, telerobotics, drift-diffusion model

F

1 INTRODUCTION

A teleoperation system allows a human operator to per-
form a task remotely. Ideally this should permit the

operator to perform the task as if s/he conducted it directly
without any teleoperation system involved. Although hu-
man operators have the ability to abstract new information,
learn and make decisions in unexpected situations, when
they perform a task using teleoperation systems, their skills
are not fully transferred to the remote site. This is mainly
due to technical limitations in the telerobotic system, such
as changes introduced in the visual feedback, delays in the
signals exchanged between the operator and the remote
site and restrictions of the robotic devices that complicate
the interaction such as a restricted workspace or a limited
number of degrees of freedom.

A way of reducing the effect of the aforementioned
limitations is to provide assistance to the user performing
the task. Typical challenges in this context are the selection
of a proper assistance strategy and the finding of a suitable
function that allows varying the level of the provided assis-
tance between completely human-driven task execution and
purely autonomous operation [1]. In this paper, we propose
a haptic assistance mechanism that incorporates a decision-
making model which varies the level of the provided as-
sistance based on a compromise between improving track-
ing performance or human-machine interaction in partially
structured environments.
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The remainder of this paper is organized as follows:
Section 2 provides a brief description of related work in
the fields of haptic assistance and decision making models.
This section is followed by the problem statement and an
introduction to the newly proposed shared control approach
based on decision-making models in Section 3. Next, Sec-
tion 4 discusses the implementation of the haptic assistance.
Section 5 presents the experimental setup and Section 6
summarizes results. Finally, in Section 7 conclusions are
drawn on different parametrizations of the decision-making
model and its relation to human and no assistance.

2 RELATED WORK

In robotics, autonomy can be defined in terms of a sys-
tem’s ability to function effectively without human inter-
vention [2]. However for complex tasks, the system’s im-
plementation may be overly complicated and thus require
task execution by humans. When such tasks are performed
at distance, factors like fatigue may negatively affect the
response and thus create the need for providing assistance.

The assistance strategy needs to be able to determine to
what degree an autonomous agent should intervene to suc-
cessfully execute the task. In human-robot interaction this
mechanism is called assistance or arbitration, and allows to
vary the authority or autonomy of task execution and is
generally implemented as shared control strategy.

In this article we include models developed in the
cognitive sciences field into a shared control scheme for
teleoperation tasks in order to share the autonomy of task
execution through the haptic channel. This section briefly
presents relevant work in the haptic assistance and decision
making model literature.

2.1 Haptic assistance
The haptic assistance term explicitly refers to the use of
haptic cues to assist the human operator. These cues corre-
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spond to forces generated artificially, which guide the user
to successfully execute the task. These forces enable or pre-
vent human movements in certain areas of the task space.
Haptic assistance has been successfully implemented in
many areas of physical human-machine interaction, includ-
ing computer games [3], [4] or driver assistance systems [5].
Haptic assistance has been also implemented in mobile
robots commanded at distance [6], [7], [8], [9], teleoperation
interfaces [10], [11], haptic devices for training [12], [13],
[14], and joint human-robot object transportation [15], [16],
[17].

These studies commonly present human-machine inter-
action in structured environments, in which following a
known path is usually the task at hand; this approach may
be extended by including an estimation of the path [18],
but in general the environment is assumed to remain
unchanged. High-performance haptic interaction can be
achieved by means of a constant assistance when the im-
provement of one objective is required [1]. Nevertheless,
a constant assistance level (eg. [6], [12].) may not function
well in partially structured environments because it does
not adapt to unexpected situations. If a high assistance level
is presented, the user may perceive a lack of control. On the
other hand, if a low assistance level is presented, the user
has more authority, but at the cost of less assistance.

Throughout this paper, the term nominal task is used to
refer to the task description that can be modeled and thus
a plan can be designed before its execution; the real task
includes elements that can not be anticipated or modeled.

The trade-off between performance and control effort
must be considered in the design of an optimal assistance
mechanism in unstructured or partially structured environ-
ments [1], [5], [19], [20], [21]. In order to solve this trade-
off, varying the assistance level is proposed as a mechanism
to improve multiple design objectives. Reed et.al. [22] have
shown that a specialization of roles is assumed between
humans in tasks with haptic feedback and that these roles
change during task execution. Thus, incorporating such
varying strategies in a human-robot interaction may lead
to a more intuitive and human-like interaction [19].

The level of authority may be established by trial and
error, or by means of pilot experiments with several subjects
to determine the parameters of the assistance. For instance,
the parameters may be determined by optimizing one de-
sign objective e.g. task performance [23], or by solving a
multi-objective problem e.g. task performance, comfort and
effort [1].

On-line adaptation of the assistance level has been pro-
posed in [20] by heuristics implemented as state machines;
in [4], [5], [17], [21] the construction of a scheduling function
is reported. This function, commonly noted as α, estimates
the assistance level based on metrics of task performance [1],
interaction with the user [9], [21] or any other task informa-
tion [6], [14], [17]. Recently, concepts borrowed from game
theory have been proposed in [15] to give the robot a more
human-like reaction.

The benefits of having varying assistance schemes over
constant schemes (or non-assisted configurations) are ex-
plored in [1], [5], [16], [24]. They conclude that incorporating
assistance improves task performance compared to no assis-
tance, but this is only true when the human operator agrees

with the proposed assistance strategy. On the other hand,
varying assistance improves task performance compared to
constant assistance, but the users adapt better to constant
assistance [1], [16].

2.2 Decision-making Models (DMM)

Providing the robot with human-compatible representations
and reasoning mechanisms, may help improve human-
robot interaction as the human may find the robot behavior
more predictable and thus, perceive the interaction as more
natural. Although decision making in general is a very
active research area, the usage of decision-making models
to provide more natural human-robot interaction in shared
control tasks is still in its early attempts.

So far, few concepts borrowed from game theory have
been successfully applied to coordinate human and robot
movements via the haptic channel. In [15] authors formu-
late a common cost function for task performance and an
optimal control law for position and force based on Nash’s
equilibria. When human and robot disagree, the control law
is adapted to minimize the error between the force exerted
by the user and the optimal force, which allows the system
to adapt to unexpected situations. Oguz et al. [3] proposed
three negotiation models (also borrowed from game theory)
considering concession, competition and tit-for-tat to solve
collaborative but also conflictive situations in haptic inter-
action.

Haptic assistances must work under real conditions with
high uncertainty, complexity, and in rapidly changing envi-
ronments. As noted by Busemeyer et al. [25] a utility-based
approach as adopted by methods based on Game Theory
may become overly complex in such situations. An alter-
native approach consists of understanding the underlying
decision mechanism, which may lead to a simpler and more
coherent representation. Moreover, humans may diverge
from utility functions, adopting non-optimal behavior.

In Cognitive Science strategies for decision making are
studied as a sequence of interdependent decisions (de-
cisions that are interrelated) [26], [27], [28] and human
decision-making mechanisms are understood as making a
choice when sufficient evidence is accumulated favoring
one alternative over other possible choices [29]. Decision-
making has been studied intensively using the so called Two-
Alternative Forced-choice Task (TAFCT), which requires choos-
ing between two options. Performed experiments show that
humans adopt a sub-optimal strategy called the “matching
point”, at which both choices result in the same reward
(payoff) (cf. (mp) in Fig. 1). Only few subjects find the
optimal sequence that achieves better performance.

Several reward functions have been proposed to isolate
and test specific behaviors such as exploring or exploiting
resources in human decision-making experiments (Fig. 1
shows e.g. the matching shoulder structure) [26]. Please note
that in these functions the matching point and the global
optimum not necessarily coincide.

As a result of aforementioned experiments three differ-
ent categories of models have been proposed to characterize
human decision-making mechanisms. The first assumes that
decisions are taken based on patterns observed over past
rewards, see e.g the WSLS rule in [26] that evaluates the
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Fig. 1. Matching shoulders reward structure (fA, fB) [30]. In cognitive
studies, the reward (r) is calculated based on the amount of times
an option was chosen in the last n decision making situations. Thus,
Perfn = #A′s/n, where “A” is the decision just made. If the human
chooses option A, the reward is calculated based on fA, otherwise, the
reward is calculated based on fB .

last two rewards received to take a decision on whether to
keep the current selection or to change it. The second model
assumes decisions to be taken based on the current reward
and information such as the impact of the actual decision
on future rewards and/or further attributes of choices. The
most common attribute is the reward; but this approach
may also include other attributes to make decisions e.g.
expectations, beliefs or any kind of known information
about alternatives. Thus, this kind of model can be seen as a
model of the deliberation process1, see e.g. a Markov model
approach in [32] or neural networks in [25]. The third model
assumes that past rewards (evidence) are accumulated to
determine the probability of future rewards for the various
possible options and decisions to be taken on that basis to
maximize the intake, an approach that has been shown to be
used by humans when exploring unknown environments,
see e.g. [33].

Among the models in the last category the DD model
is popular because of its simplicity and success in fitting
behavioral and neuronal data in several human studies
(see [29] and references therein). The Drift-diffusion model
fits the human behavior for experimental situations like
interrogation and free response. In fact different models
proposed in the cognitive sciences field adopt this behavior
for parameters that reduce to the DD model [33].

The Drift-Diffusion (DD) model was included already in
the supervision process of a team of robots by a human
operator [30], [34] where the human changes his/her deci-
sions in order to exploit or/and explore an environment.
But, beside our own previous work [35] the DD model has
not yet been explored in haptic shared control scenarios,
which is the main purpose of this work.

3 PROBLEM STATEMENT AND APPROACH

Haptic assistance mechanisms help humans to improve task
performance while guaranteeing a stable and transparent
human-system interaction. Nevertheless, for high assistance
levels, task performance is expected to be improved when
the human agrees with the provided assistance. On the other
hand, for low assistance levels little support is received
making it easy to overrule the assistance and therefore task
performance may decrease [5], [21].

1. Here deliberation is described as in [31] as the evolution of relative
preference to options over time, then the decision rule can be thought
of as a threshold level of preference required to stop deliberating and
making a choice.

(1) (4)
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Fig. 2. The strength of the assistance is calculated based on the prob-
ability to improve some human-system performance metric, either TP
or IP . The probability is a function of the accumulated evidence (∆)
of current and past rewards (r(t)). Each block shows its corresponding
equation number, namely: The reward structure (1), a reinforcement rule
to accumulate the evidence (4), the drift-diffusion model (3) and the
decision-making rule (5)

Haptic assistance design is a task-specific decision pro-
cess, and may vary from task to task. We used a generic
path-following task (the nominal task) with obstacles (un-
modeled situations) in order to explore how the result-
ing haptic assistance varies when model parameters are
changed. This approach allows understanding the impor-
tance of each parameter and its effects on human-robot
interaction. This generic scenario underlies a series of real-
life teleoperation applications (e.g. [18], [24]), but also other
scenarios in physical human-robot interaction (consider e.g.
a mobility assistant [36], human-robot collaborative ma-
nipulation [15], [16], rehabilitation [37]) or training with a
haptic aid [38]. While in our considered scenario we assume
the path to be known to the assistance, in reality this can
be easily realized using a path planning algorithm and a
map of the environment. The known obstacles represent
obstacles that can be detected by the robot and that can
consequently be considered in the path planning algorithm,
while unknown obstacles represent situations in which the
sensor system fails, e.g. due to changing lightning condi-
tions.

The assistance strategy proposed builds on studies in
the field of decision-making models and combines one of
them with impedance control techniques that are standard
in bilateral teleoperation systems. Having a minimum and a
maximum strength for a haptic assistance is quite common
and our proposed decision-making model helps taking a
decision on the specific level of assistance provided by
making a task-specific compromise between various per-
formance measures. Trading-off between providing low or
high assistance in haptic shared control tasks may namely be
considered to follow similar decision-making mechanisms
as used by humans in two-forced choice scenarios. In such
scenarios the accumulated evidence for either choice is
considered to be build on the actual and past rewards (r(t))
with the evidence fluctuating until sufficient evidence is
accumulated in favor of one of the alternatives. Since the
probability of choosing a particular alternative depends on
the accumulated evidence in favor of that alternative, we
take advantage of this mechanism to vary the assistance
level as function of this probability.

The purpose of this section is to review the components
of the DMM negotiation strategy: the reward structure (1)
and (2), the drift-diffusion model (3), the evidence accumu-
lation (4) and the decision-making rule (5).
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3.1 The reward structure

In cognitive experiments different reward structures are
designed to provoke certain human behaviors in decision-
making processes (e.g. exploit or explore). In our work, the
reward structure is influenced to provide different assis-
tance behaviors.

Although several reward functions have been proposed
in cognitive science, a matching shoulder structure (see
Fig. 1) has been chosen for our purposes to represent
the known trade-off between task and interaction perfor-
mance measures observed in the two situations with and
without obstacles, representing modelled and unmodelled
situations, see [1]. Although this trade-off may be also
represented by non-linear functions as chosen by [36] and as
observed e.g. by [1] for a task similar to the one studied in
this manuscript, a linear approximation with contradicting
slopes as in the original matching shoulder structure has
been selected to simplify the design of the decision making
mechanism built into the realized assistance function.

The reward functions are calculated based on human-
system interaction metrics given by Perfn ∈ [TP IP ], where
TP is a measurement of nominal task execution (i.e. nom-
inal path tracking) and IP is an interaction performance
measurement which represents the additional physical ef-
fort experienced when human-system disagreement occurs.
Assume that the reward r(t) is given by

r(t) =

{
rI(IP ) if z(t) = I,

rT (TP ) if z(t) = T,
(1)

where z(t) is the decision made at time t, z(t) ∈ [T, I], T and
I are the choices of improving nominal task performance or
interaction performance, respectively. Variable rT and rI are
the task and interaction reward functions (reward structure),
respectively. The matching shoulder reward-type structure
is given by

rI = kIIP + IP0,

rT = kTTP + TP0,
(2)

where kT and kI are the ratios of change (slope) in the
rewards over the change in the performances, TP0 is the
highest task reward and IP0 is the lowest interaction re-
ward. Functions rT and rI map the normalized perfor-
mances to the rewards (for detail cf. Fig. 1 and Sec. 4.4.1).
Generic examples for nominal task performance (TP ) and
interaction performance (IP ) are considered in this paper,
but can be customized when applying the approach to a
specific application (for details see Sec. 4.3).

3.2 The decision-making model

The DD model makes decisions based on the accumulated
evidence in favor of assisting the human to improve either of
the proposed objectives, i.e. interaction or task performance.
The soft-max model represents the DD behavior and is given
by [39]

pI(t+ 1) =
1

1 + exp−µ(wI−wT )
, (3)

where pI is the probability to assist the human operator
to improve human-system interaction in unmodeled situ-
ations, µ is the slope of the sigmoidal function and wI

and wT the evidence to improve interaction (I) or task
performance (T ), respectively. The evidence in favor of a
specific performance measure (e.g. interaction) is noted as
∆w = wI − wT .

The evidence in the DD-model-based assistance takes
into account task and interaction performances. Therefore
the (dynamic) rule for updating the evidence of the haptic
assistance is given by

wz(t+ 1) = wz(t) + λ(rz(t)− wz),
w∼z(t+ 1) = λr∼z(t),

(4)

where λ ∈ [0, 1] is the learning rate and the symbol ∼
denotes the “not” operator. Parameter λ represents the
memory in the DD model: if λ is small, the model takes
into account more history, this is, more memory; on the
other hand, a larger λ means less memory, so the model
takes into account only the most recent rewards to make the
decision. The rule to update the weights (4) is inspired by
the reinforcement rule equation in [39].

To evaluate the weight wz , a choice has to be made based
on some thresholding technique. The decision making rule
is given by

z(t+ 1) =

{
I if pI > 0.5,

T otherwise.
(5)

Note that ∆w > 0 indicates evidence in favor of I ,
while ∆w < 0 indicates evidence in favor of T . Since the
decision follows the softmax rule (3) (pI), the threshold for
the decision corresponds to pI = 0.5.

The assistance level depends on the probability of im-
proving one of the two performances (cf. (3)). Therefore,
a scheduling function for the strength of the assistance
α ∈ [0 1] may be given by

α(pI) =
1

2
+

1

2
tanh

(
pI − φ
ϕ

)
, (6)

where, φ is the switch point and ϕ is the smoothing level,
both are user-defined parameters.

The α-function maps the probability pI to the assistance
strength, noted as k. A linear homotopy is proposed to
allocate the assistance levels,

k⊥ = α klow + (1− α) khigh. (7)

The assistance varies the associated parameter to the
assistance strength as a function of the probability (α(pI)).
Therefore, the assistance level can be adapted in a smooth
and continuous fashion.

4 ONLINE ADAPTIVE ASSISTANCE

4.1 Control system architecture

The teleoperation setup and control system considered in
this paper are standard (Fig. 3). A position-based admit-
tance controller is used as the main mechanism to vary the
assistance level perceived by the human operator (Fig. 4). It
is assumed beforehand that the admittance-parameter varia-
tion is bounded and stable (cf. [35]). In order to present the
proposed DD-model-based assistance behavior, a tracking
task with unforeseen obstacles has been implemented. In
the proposed task, the user has to track a desired path as
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Fig. 4. Scheme of the decision-making assistance. The assistance
consists of the decision-making model (DMM) and the guidance virtual
fixtures (GVFs).

accurately as possible i.e. the nominal task (Fig. 3). The
desired path is the only information from the environment
that is available to the assistance; there is no available
information about the location or dimensions of the obsta-
cles. The operator receives additional visual information via
video-link.

4.2 Implementation of the haptic assistance

The assistance is implemented as Guidance Virtual Fixtures
(GVFs) [40] that force the system to stay on the desired path.
The decision-making model varies the stiffness of the master
admittance in the perpendicular direction of the desired
path (Y⊥) as depicted in Fig. 4. Movements in the parallel
direction were not constrained as the user should have full
control over the task in this direction. A virtual fixture in
this direction would drag or push the user, which would
not be beneficial for task execution as task completion time
plays no role in our task. Only some damping was added in
order to prevent sudden movements.

The force measured at the tip of the master (fm) can be
decoupled as

fm = f‖ + f⊥, (8)

where f is the force, indices ‖ and ⊥ represent the direction
of application in the parallel and perpendicular direction of
the desired path, respectively.

The admittance in the parallel direction (Y‖) and perpen-
dicular direction (Y⊥) are given by

f‖ = m‖ẍ‖ + b‖ẋ‖, (9)
f⊥ = m⊥ẍ⊥ + b⊥ẋ⊥ + k⊥x⊥, (10)

where x is the desired position, m, b and k are the mass,
damping and stiffness parameters, respectively. The desired
position of the master is given by

xdm = x‖ + x⊥. (11)

4.3 Performance measures
Performance measures are calculated in the perpendicu-
lar direction of the path over an observation window of
n = 100 ms. In the normalization process, the maximum
value for each observation window is updated during the
interaction process. Nominal task performance is measured
as the position error between the desired path and the
current position of the master. The normalized version of
the task performance measurement is given by,

TP,n =
meann(e)

max(e)
,

where TP,n is the normalized measurement and e is the
tracking (position) error.

The interaction performance is defined by an agreement
measure. The agreement is related to the internal forces
between human and assistance, that when constrained to
one degree of freedom, is given by

fi =


f⊥ if sign(f⊥) 6= sign(fa⊥) ∧ ‖f⊥‖ ≤ ‖fa⊥‖,
−fa⊥ if sign(f⊥) 6= sign(fa⊥) ∧ ‖f⊥‖ > ‖fa⊥‖,
0 otherwise,

(12)
where fi is the internal force, f⊥ is the force exerted by the
operator and fa is the force exerted by the assistance. The
normalized version of the internal forces (fin ) is given by

fin =
meann(‖fi‖)
max(‖fi‖)

.

Because high internal forces mean low agreement, the agree-
ment measurement is defined as

IP,n = 1− fin . (13)

Note that a similar result can be obtained by directly
considering the internal forces (fin ) as an interaction perfor-
mance (IP,n) i.e. calculating IP,n as function of disagreement
(fin ) instead of an agreement measure (1−fin ). For this, the
reward rI has to be redefined in (2), e.g. kI = −0.5 and
IP0 = 1.

4.4 The Drift-Diffusion (DD) model parameters
Since an optimal choice of the involved parameters may be
difficult to achieve, we will give some general guidelines
on how to choose the parameters involved in the matching
shoulder structure (i.e. slope and off-set of the reward func-
tions) and the certainty-parameter µ based on our selected
generic example. Based on this generic example we explore
how the resulting haptic assistance varies when changing
model parameters giving the reader a better understanding
of the importance of each parameter and its effects on
results. When using the DD model for a specific application,
the presented information can be used to customize an
application-specific assistance.

Please note that the matching shoulder parameters,
kT , kI , TP0 and IP0 in (2), regulate the rate of evidence
accumulation, and the µ-parameter in (3) configures the
degree of certainty to improve a certain performance. The
memory-parameter in the DD model (3) is assumed con-
stant throughout (λ = 0.7), hence reducing the number of
parameters to be analyzed.
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Fig. 5. Response to the Drift-Diffusion model-based assistance for a typical interaction with a human (see Subsection 5.1 for experimental setup).
(a) For large µ the user experiences a sudden change of stiffness, cf. (3). (b) For small µ a smoother transition of stiffness; both (a) and (b) with
values kT = −1, kI = 1, TP0 = 1 and IP0 = 0. (c) The evidence (∆w) to choose a stiffness that improves interaction performance (pI ) is low,
cf. (2) with values, kT = −1, kI = 0.5, TP0 = 1 and IP0 = 0. (d) The evidence to assist in the interaction is high (∆w), so the probability to assist
the operator to improve the interaction is also high, cf. (2) with values kT = −0.5, kI = 1, TP0 = 0.5 and IP0 = 0. Responses are recorded in the
perpendicular direction of the desired path.

4.4.1 Matching shoulder parameters
These parameters, cf. (2), influence the decision-making
process of the haptic assistance. Note that equal slopes
configure no preference (nP ) on any particular performance
(kI = kT ) as both measures equally contribute to the
accumulation of the reward. If the slope of the interaction
reward function is reduced (e.g. kI = 0.5, kT = 1 in Fig. 5c)
the evidence in favor of interaction performance is accumu-
lated at a lower rate compared to task performance; thus,
a preference on task performance is configured. Likewise,
to give weight to interaction performance, the slope for
the reward of improving task performance is reduced (e.g.
kI = 1 and kT = 0.5 in Fig. 5d).

When the task is preferred (Tk) and the user moves on
the path, the agreement and the tracking error accumulate
evidence to assist in task performance. On the other hand,
when the user moves off the path (cf. marked time window
in Fig. 5c), the evidence to assist in improving interaction
performance (agreement) increases slowly, as well as the
probability pI . When the user moves on the path s/he
feels a higher level of assistance and when s/he moves
off the path the stiffness decreases slowly, but generally the
stiffness level remains quite high in favor of improving task
performance.

If interaction is preferred (In) and the user moves on
the path, the agreement and the tracking error accumulate
evidence to assist in improving interaction performance as
evidence for improving task performance is accumulated
at lower rate. When the user moves off the path (marked
time window in Fig. 5d), the agreement decreases and the
probability pI is reduced because the evidence ∆w is accu-
mulated at a slow rate. The user feels a lower stiffness when
s/he moves on the path while the stiffness slightly increases
when the user moves off the path. The stiffness in aver-
age remains at low level in favor of improving interaction
performance. Low assistance levels keep human-assistance
agreement and the users easily adapt their movements to
the proposed assistance.

4.4.2 The µ parameter
In general, the µ-parameter adapts the degree of certainty
to improve a certain performance index. A large certainty

parameter (µ-parameter) may configure the transition be-
havior as a switching mechanism between overassisted or
underassisted in case the task demands such behavior. In
the conducted experiment, a large certainty to improve in-
teraction performance means that small movements outside
the path are associated with a fast change in the levels of
assistance (cf. marked time windows in Fig. 5a).

Such fast changes may be desirable when the operator
requires to maintain control of the robot in the light of
sudden changes in the remote environment; quick changes
in the assistance level though may feel unnatural to the user,
hence the user comfort may be reduced. On the other hand,
if µ is reduced to lower values (Fig. 5b), the operator does
not experience sudden changes in the level of assistance,
and the interaction may be perceived as more natural.

5 EXPERIMENT

We validate the DD-model-based assistance by studying
the effects of different reward structure conditions on the
assistance mechanism and by comparing their performance
to human and no assistance. Our main hypotheses are:

H1. DD-model-based assistance improves task perfor-
mance compared to no assistance.

H2. The DD-model-based assistance reproduces different
assistance policies by means of the reward structure
setup, resulting in:
Tracking error: Tk < nP < In
Interaction performance: In < nP < Tk
Physical dominance difference: In < nP < Tk
Physical effort: In < nP < Tk
where Tk, nP and In represent the reward setup
for task preference, no preference and interaction
preference, respectively.

H3. One of the 3 configured variants of the DD-model-
based assistance Tk, nP and In setting different
priorities for improving task or interaction perfor-
mance should show more similarity with outcomes
achieved by human assistance then others in terms
of task performance, interaction performance, phys-
ical dominance and physical effort indicating that
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Obstacles

Start

paths to overcome
the obstacle

desired path

22 cm

11
cm

1.5 cm 0.5 cm

Fig. 6. Desired path indicated as solid line. A loop begins and ends at
the point indicated with ‘Start’. The suggested path to overcome the
obstacle is shown.

humans may have adopted a similar policy for col-
laboration.

5.1 Apparatus and Experimental Setup

The assistance based on the decision-making model was im-
plemented on a real teleoperation system with haptic feed-
back devices, see DeKiFeD and DeKiToP systems in [41].
The teleoperation system consists of an admittance-type
haptic feedback device and teleoperator with four DOF;
to validate the proposed assistance only three DOFs were
used (z-direction is constrained and 3 planar joints are
used to move device in horizontal plane keeping orienta-
tion of end-effector constant). The kinematics and technical
specifications of the teleoperator are the same as the ones
of the haptic input device, and a six DOF force/torque-
sensor (JR3) was mounted at the tip of the manipulators
to measure interaction forces with the human operator or
the environment.

To determine a suitable virtual fixture admittance a
task-dependent process is required [14]. The upper and
lower bounds were determined in pilot experiments: a
high level of assistance to reduce the nominal task error
(khigh = 1000 N/m) and a low level of assistance to
reduce the disagreement when the user avoids the obstacles
(klow = 100 N/m). These parameters represent lower and
upper bounds because the DD-model adjusts the actual
assistance strength based on pI (3). The assistance is im-
plemented using the following parameters,

m‖ = 5 kg, b‖ = 10 Ns/m,

m⊥ = 5 kg, b⊥ = 200 Ns/m, k⊥ = 100-1000 N/m.

The operator was asked to follow a desired path which was
drawn on a piece of paper placed at the remote site and
within the workspace of the slave (Fig. 6). Obstacles were
added to the path to simulate unmodelled elements for the
haptic assistance, while they are considered known to the
human operator as a consequence of the visual feedback
provided. The user was asked to avoid these obstacles
following one of the two possible trajectories (passing the
obstacle left or right, Fig. 6). No specific preference was
induced for either of the two options. Participants were
instructed to minimize the overall position error without
paying attention to time. The introduced obstacles force the
human to deviate from the original planned path (nominal
task), which triggers the decision-making model of the
haptic assistance as task performance and/or interaction
performance suddenly change.

5.2 Measures
The effect of the DD-model-based assistance is evaluated by
the Root-mean-square deviation (RMS) of the tracking error
as task performance measure; the interaction is evaluated
by the agreement of human and assistance and the physical
dominance on task execution; as well as a power-based
effort measure is considered to evaluate the effort of the
dyad.

5.2.1 Tracking error
The root-mean-square of the tracking error (RMS(e)) is
considered as task performance measure for the interaction
sequence. We analyzed movements on (nominal task) and
off (unmodeled situations) the desired path separately. Do-
ing so, a better understanding for the DD-model-based
assistance behavior in these two situations can be gained.

The RMS is defined by,

RMS(e) =

√∑N
k=1 (xn,k − xm,k)

2

N
, (14)

where k is the sample (k = [1, . . . , N ]), xn,k is the desired
position defined in the nominal task description, xm,k the
actual position of the master device and N the number of
samples in the examined interaction sequence.

5.2.2 Internal forces
Internal forces were calculated as already defined in (12),
Sec. 4.3. The mean of internal forces describes the disagree-
ment between human and assistance. Again, we analysed
movements on and off the path separately.

5.2.3 Physical Dominance Difference
The partner in a dyad who applies higher manipulation
force commands the object movement to a higher degree
and can thus be considered dominant [19].

Internal forces (fi) occur when the two partners do not
apply forces in the same direction. These forces are related
to no-work forces [19]. On the other hand, the physical
dominance of partner 1 over 2 (PD12) is defined by the
external force which generates work as follows [19],

PD12,k =
fe1,k
fsum,k

,

where fsum,k is the sum of external forces and fe1,k is the
external force exerted by partner 1, which can be calculated
by

fe1,k = f1,k − fi1,k, (15)
fsum,k = fe1,k + fe2,k, (16)

= f1,k + f2,k,

where f1,k is the force exerted by partner 1, fi1,k the internal
force, and (16) implies that fi1,k ≡ −fi2,k.

A partner is absolutely dominant with a value of one,
and absolutely non-dominant with a value of zero and
PD12 ∈ [0, 1] and PD12 + PD21 = 1. The amount of
dominance difference (PDdiff) means the amount to which
one partner dominates the other and is derived by [19],

PDdiff = |PD12 − PD21|,
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where · is the symbol of the mean. A value of zero of PDdiff
means that no-dominant partner exists in the interaction.
On the other hand, a non-zero value means that a dominant
partner exists.

Note that internal forces represent an interaction mea-
sure in which no movement of the object is produced.
Besides, physical dominance involves the external forces
that generate movement and thus, determine the control of
the jointly handled object. Both measures complement the
analysis in a joint dyadic haptic interaction task.

5.2.4 Power-based effort
Higher energy flows correlate with a higher physical effort.
Thus, the effort measure is calculated as a function of the
power P∗ exchanged

P∗ = ẋ f∗

where P∗ is the power from partner ‘∗’ to the environment
(including the assistance), ∗ ∈ [1, 2], ẋ the velocity of the
object and f∗ is the force applied by the partner ‘∗’. The
velocity is equivalent for both partners when they hold on
to the same interaction point.

A positive energy flow, i.e. energy injection to the system
(e.g. by accelerating the virtual object) causes physical effort
for the operator, but also a negative energy flow results
in physical effort as energy needs to be dissipated (e.g. by
decelerating the virtual object).

Our effort measure captures the total effort of human
and assistance and can be calculated by [19],

MAPT = MAP1 +MAP2 =
1

N

N∑
k=1

|P1,k|+
1

N

N∑
k=1

|P2,k|

(17)
where, P1,k and P2,k are the energy flows at the respective
interface points at a given time step k.

5.3 Conditions
As the principal goal is the evaluation of the DD model
in the haptic assistance scenario, three different conditions
which explore the influence of the matching shoulder re-
ward structure parameters in the haptic assistance were
considered: 1) nP , the decision-making model has no pref-
erence for any performance measure, kT = 1, kI = 1, TP0 =
1, IP0 = 0; 2) Tk, task performance is favored, kT =
−1, kI = 0.5, TP0 = 1, IP0 = 0; and 3) In, interaction per-
formance is favored, kT = −0.5, kI = 1, TP0 = 0.5, IP0 = 0.
In order to compare with human-like execution schemes, we
further introduced a condition 4) Ha, with an expert oper-
ator haptically coupled with the tested subject, cf. e.g. [42]
and a condition 5) Na, with one operator performing the
task alone and without any assistance. Although human-
human interaction in a teleoperation task may produce
larger position errors compared to natural human-human
interaction, we propose such a comparison as it presents
a possible reference for designing more natural interaction
strategies [19].

The expertise level of the users in interacting with a
haptic assistance while carrying out this particular task may
change the outcome of the experiment as it may affect
the performance level and ability to adapt to a provided
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Fig. 7. Boxplot for the RMS of tracking error (samples divided for on and
off path). No significant differences between groups are marked by ‘ns’
meaning p > 0.05. All other non-marked comparisons are significant on
a p = 0.05 level.

assistance. Hence, in order to reduce this bias unexperienced
test subjects not having performed the particular assisted
task before were chosen. An expert user though having
practiced the task beforehand in interaction with other train-
ing persons not participating in the experiment takes the
role of the haptic assistance in the human-human condition.

5.4 Participants and procedure
Twelve healthy subjects were tested and asked to perform
the same task under the five aforementioned conditions.
Two operators consider themselves to have an excellent ex-
perience in the use of teleoperation systems, four operators
a good experience, four operators a regular experience and
two operators admitted no experience. However none of the
operators had previous experience with the interface.

At the beginning of the experiment, the operator exe-
cuted a trial run in order to get familiar with the teleop-
eration interface. Then, five different assistance strategies
were presented to the operator in random order to reduce
learning effects. The operator was unaware of the current
conditions presented, except when the Ha assistance was
selected. In the Ha assistance, the operator was informed
that the expert partner has the same degree of expertise to
avoid taking him/her a preference on a passive role in the
execution of the task.

6 RESULTS AND DISCUSSION

Since performance measures were not normally distributed
(according to the Kolmogorov Smirnov test), a non-
parametric one factorial repeated-measurements analysis of vari-
ance (ANOVA) was performed (namely the Friedman test),
and significant differences were evaluated at p = 0.05
level. In addition, all post-hoc tests were conducted using a
Wilcoxon test with Holm-Bonferroni correction; the p-values
for these tests are presented in Tables 1, 2, 3 and 4. For
selected comparisons we also performed a two one-sided
test for similarity2 with Holm-Bonferroni correction.

Tracking error: When the user moves on the path (Fig. 7a
and Table 1), the DD-model-based assistance conditions
improve task performance compared to Na (p < 0.05),
except for In (p = 0.081).

Further, the DD-model-based assistance improves nomi-
nal task performance compared to Ha (p < 0.05); except for
In (p = 0.62). A similarity test between Ha and In turned
out to be significant (p < 0.05, ε = 0.01).

2. see R-package ‘equivalence’ command rtost
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TABLE 1
p-value (p) and effect size (r) for RMS error when human moves on and

off the path

nP Tk In Ha
p r p r p r p r

On

Tk 0.185 0.330 - - - - - -
In 0.007 0.436 0.005 0.731 - - - -
Ha 0.049 0.495 0.005 0.801 0.622 0.130 - -
Na 0.015 0.778 0.005 0.849 0.081 0.530 0.017 0.660

Off

Tk 0.068 0.306 - - - - - -
In 0.005 0.625 0.129 0.259 - - - -
Ha 0.005 0.813 0.005 0.601 0.037 0.460 - -
Na 0.005 0.837 0.006 0.778 0.017 0.707 0.037 0.554
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Fig. 8. Boxplot for the internal forces. No significant differences between
groups are marked by ‘ns’ meaning p > 0.05. All other non-marked
comparisons are significant on a p = 0.05 level.

Comparing the DD-model-based assistances, we ob-
served that nP and Tk show the best task performance
behavior when the user moves on the path (Fig. 7a). In ad-
dition, In assistance achieves the lowest task performance
among all DD-model-based-assistances for “on path”.

When the user moves off the path we found that the
position error is larger for Na compared to all other condi-
tions, followed by Ha (Table 1 and Fig. 7b). For nP and Tk
no significant differences with respect to task performance
were found when the user moves off the path (p = 0.068);
neither between In and Tk (p = 0.129).

Internal forces: In both movements, on and off the
path, the DD-model-based assistance reduces internal forces
compared to Ha (Table 2 and Fig. 8).

Regarding the on-path movements, no significant dif-
ference was found in terms of agreement between nP and
Tk. Furthermore, statistically the lowest internal forces were
presented for In assistance (Table 2 and Fig. 8a). When the
user moved off the path, internal forces kept low values
for DD-model-based assistance. The results show that the
lowest internal forces were obtained for In, followed by nP
and Tk (Table 2 and Fig. 8b).

TABLE 2
p-value (p) and effect size (r) for internal forces (fi) when the user

moves on and off the path

nP Tk In
p r p r p r

On
Tk 0.424 0.153 - - - -
In 0.003 0.742 0.024 0.365 - -
Ha 0.003 0.849 0.003 0.849 0.003 0.849

Off
Tk 0.037 0.354 - - - -
In 0.034 0.625 0.003 0.849 - -
Ha 0.037 0.377 0.092 0.200 0.034 0.636

Physical Dominance Difference: Statistical evidence on
physical dominance difference measures reveals differences
between Ha and nP (p = 0.003), between Ha and In
(p = 0.003), as well as between Tk and In (p = 0.003).
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Fig. 9. Boxplot for the dyadic power-based effort and physical domi-
nance difference. Significant differences between groups are shown with
a (*) corresponding to p = 0.05 level of significance.
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Fig. 10. Boxplot and values for each dyad for the dynamic time warping
(DTW) distance between the Ha and DD-model-based assistances for
physical dominance of human over assistance (PD12).

Furthermore, no-differences were found between Ha and
Tk (p = 0.081), between nP and Tk, nor nP and In (Fig. 9a
and Table 3).

TABLE 3
p-value (p) and effect size (r) for physical dominance difference (PDdiff)

nP Tk In
p r p r p r

Tk 0.081 0.448 - - - -
In 0.176 0.153 0.003 0.577 - -
Ha 0.003 0.754 0.081 0.460 0.003 0.849

Power-based effort: In terms of dyadic effort In exhib-
ited a reduction compared to Tk (p = 0.021). On the other
hand, no differences were found between nP and In, nor
between nP and Tk (Table 4 and Fig. 9b). Comparisons
between DD-model-based assistances and Ha showed no
significance, but a similarity test between Ha and Tk re-
sulted to be significant (p = 0.005, ε = 0.05).

We further included the condition Na, an individual
case, with the purpose of comparing the effort exerted by the
user with no assistance and with the proposed assistances
(Fig. 9b). The Na condition presents the lowest effort, but
also the lowest task performance compared with the dyadic
assistances (p < 0.01).

TABLE 4
p-value (p) and effect size (r) for power-based effort (MAPT )

nP Tk In Ha
p r p r p r p r

Tk 0.170 0.165 - - - - - -
In 0.467 0.141 0.021 0.318 - - - -
Ha 0.388 0.424 0.467 0.259 0.081 0.495 - -
Na 0.005 0.766 0.005 0.837 0.005 0.790 0.005 0.849

Time series analysis: Since a times series analysis may
provide deeper insight into the similarity of DD-model-
based assistances and the human assistance condition (Ha),
we implemented the Dynamic Time Warping (DTW) algo-
rithm [43] to compare the physical dominance of the user
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over the assistance (PD12). We evaluated the similarity of
the Ha condition with the three conditions nP , Tk, and In,
see Figure 10 for results.

A one way repeated measures ANOVA with Holm-
Bonferroni correction, showed no significant differences be-
tween the DTW-distance measures comparing the Ha and
the DD-model-based assistance schemes. Figure 10 further
illustrates the DTW-distance measures obtained for individ-
ual dyads and for the three conditions nP , Tk, and In.

6.1 Discussion
H1. DD-model-based assistance improves task perfor-
mance compared to no assistance
In the on-path movements the low assistance level in In
cannot provide the required assistance level to improve
nominal task performance compared to Na. In contrast, nP
and Tk provide a high assistance level in the nominal task
and thus, task performance is improved compared to Na.

In off-path situations all DD-model-based assistances
improve task performance with respect to Na, but at dif-
ferent rates with nP performing best. Further, in off-path
situations the RMS value of the error across all conditions
is greater than the dimensions of the obstacle3, this suggests
that users, on average, avoid successfully the obstacles in all
conditions.

Thus, H1 can be partially confirmed. Despite nP and
Tk improve task performance compared to Na in on-path
situations, In fails to show any improvement compared to
Na. In off-path situations all DD-model-based assistances
improve task performance with respect to Na.

In telerobotics, Boessenkool et.al [24] reported that hap-
tic assistance improves task performance compared to no-
assistance in a structured environment; in our case a similar
result is obtained but extended to a partially structured
environment.

H2. DD-model-based assistance reproduces different
assistance policies depending on reward structure
setup
Regarding task performance in on-path movements, Tk and
nP set the best task performance, while for In the configu-
ration of the reward function provides low assistance levels
allowing the user to adopt free movements.

When the human moves off the path using either In
or Tk assistance strategies, the control authority is handed
to the user but at different rates. For instance, In provides
low assistance as the reward structure has been designed
to favor interaction performance, hence the user can freely
choose with what distance he/she passes obstacles. In the
Tk condition, higher assistance levels were provided, and
therefore the human had to fight against the assistance while
circumventing obstacles, leading to the effect that users tried
to keep some safety distance to obstacles. Only, when both
criteria were balanced as in the nP condition, users passed
obstacles very closely.

Results further show that Tk produced higher internal
forces compared to nP (Table 2 and Fig. 8b), irrespective of

3. The perpendicular dimension of the obstacle is 0.5 cm. On average,
the error when the user moves off path for each condition is grater than
0.9 cm, cf. Fig. 6

whether the user moved on or off the path. This suggests
that task performance is improved, while the agreement
is decreased in the Tk condition, while exactly the reverse
could be observed for the In condition.

The high assistance level in Tk causes that the user inter-
acts actively with the proposed assistance leading to a more
equal share of the workload. On the contrary, low assistance
levels in the In condition, give task control to the user, see
(Fig. 9a and Table 3), while nP can be found inbetween. This
suggests that the reward functions successfully allocated the
physical dominance in the DD-model-based assistances.

Regarding physical effort, condition In with its low
assistance level leads to the least effort among the three
tested DD-model-based assistances, because the user does
not have to fight against the assistance. The Tk condition
leads to the highest effort and the nP condition can be found
somewhere inbetween.

Thus, overall we can confirm H2 and with it the influ-
ence of the reward structure on the haptic assistance as
their effect on task performance, interaction performance,
physical dominance and physical effort is as expected.

H3. One of the DD-model-based assistances shows
higher similarity to human assistance than others
Regarding task performance (in on-path movements) In
performs similar to Ha (Fig. 7a), while nP and Tk signifi-
cantly improve this metric with respect to Ha. Regarding
off-path movements all DD-model-based assistances per-
form better in terms of task performance than Ha.

While all DD-model-based assistances successfully re-
duced internal forces compared to Ha in the on-path condi-
tion (Fig. 8b), for Tk no significant difference compared to
Ha could be found for off-path conditions.

In general, physical dominance is shared between hu-
man and assistance in all conditions – the PDdiff value
is less than 0.5. Nevertheless, Ha is clearly the condition
with the most equal physical dominance strategy, and it
is naturally adopted by the users. This can be explained
by the collaborative strategy adopted by the collaborator,
and may also suggest that the user participates actively
in task execution, either to collaborate or fight against the
collaborator. Furthermore, high assistance levels in the Tk
condition also let on average to a rather equal distribution
of dominance. This might suggest that dominance in the
Tk assistance is shared between user and assistance in the
sense that, the human avoids obstacles while Tk tries to
maintain the movements on the path. It is also interesting
to note that no statistical difference was found between the
Ha condition and any of the DD-model-based assistances
in terms of physical effort, while similar performance was
found between Ha and Tk.

Overall, H3 cannot be confirmed based on results rep-
resenting means over all subjects. Significant differences
between Ha and DD-model-based assistances were found
for task performance, interaction performance, and dom-
inance difference. The Tk condition performed closest to
the Ha condition in terms of interaction performance and
physical dominance difference, while the In condition per-
formed closest for task performance. Considering the anal-
ysis based on means collaborating humans in the Ha con-
dition achieved an overall more balanced physical domi-
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nance, used higher interaction forces and achieved a worse
task performance compared to the realized DD-model-based
assistances. Only in terms of effort Ha and Tk showed
similarities. Thus summarizing, on average the realized
DD-model-based assistances seem to be more compliant
than the average human collaborator as they leave more
physical dominance with the user and thus, allow achieving
an overall better task performance. Efforts spend in the
Ha condition on fighting with the collaborator, seem to
be invested in the DD-model-based assistance into the im-
provement of task performance. This provides evidence that
a slightly unequal dominance distribution as realized in the
DD-model-based assistances may benefit task performance.

A more detailed analysis involving a time-series analysis
on individual dyad level and involving similarity measures
by applying Dynamic Time Warping of observed outcomes,
provides a deeper insight and shows slightly different re-
sults. While the mean over all DTW-distance measures does
again not provide further insight, looking at the similarity
measures of individual dyads indicates that they may have
adopted different policies resulting in different dominance
patterns (most of them adopting a policy that resulted in
dominance measures most similar to the Tk condition)
making an interpretation based on means difficult. This,
highlights the need for a time-series analysis on individual
level as analyzing means over dyads can hide effects if they
behave differently.

7 CONCLUSION

We have proposed a novel haptic assistance that enhances
tracking performance and human-machine interaction in a
teleoperation setup via the scheduling of admittance con-
trol parameters when unmodeled situations occur in the
nominal task. The Drift-Diffusion Model was included in
the haptic assistance as the decision-maker of the specific
sharing strategy. Our results show that the Drift-Diffusion
model is a suitable scheduling strategy for haptic shared
control or other control allocation tasks as demonstrated
by experimental data. All implementations were found to
improve performance over the no assistance case. Further-
more, the parameters of the reward structure were found
to influence the decision making process, which in turn
adapts the assistance for different task requirements. How-
ever, significant differences between the performance of
the Drift-Diffusion-model-based assistances and the mean
performance of dyads was observed that were found to
operate at rather equal physical dominance levels, indi-
cating that the dominance distribution plays an important
role and an unequal distribution may benefit overall task
performance. The large variance in measures, however, also
indicated that a more detailed analysis on individual dyad
level and involving similarity measures was required to
provide a deeper insight. Analyzing the dominance distri-
bution, dyads were found to adopt different policies, most
of them applying a policy resulting in outcomes showing
most similarity with the task-performance optimizing im-
plementation of the DD-model-based assistance.

Although path following and obstacle avoidance may
be considered generic tasks, the proposed decision making
algorithm has to be adjusted to the particular application

by properly selecting reward functions and their parame-
ters. While in this manuscript we have provided general
guidelines on how to decide on reward functions and their
parametrization, more formal algorithms for either extract-
ing adopted policies and their parametrization from obser-
vation of human-human collaboration or their optimization
based on optimization routines or reinforcement learning
approaches may be investigated in future work.

Further, future work may focus on adapting the level of
assistance based on an online adaptation of the slope of the
matching shoulder structure depending on new incoming
information on the task or user, the scheduling between
more than two levels by including voting mechanisms as
well as the exploration of alternative decision-making mod-
els that e.g. include decision making processes of the partner
into the assistance mechanism.
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