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SwarmTouch: Guiding a Swarm of
Micro-Quadrotors with Impedance Control using

a Wearable Tactile Interface
Evgeny Tsykunov, Ruslan Agishev, Roman Ibrahimov, Luiza Labazanova, Akerke Tleugazy, and Dzmitry

Tsetserukou, Member, IEEE

Abstract—To achieve a smooth and safe guiding of a drone formation by a human operator, we propose a novel interaction strategy for
a human-swarm communication which combines impedance control and vibrotactile feedback. The presented approach takes into
account the human hand velocity and changes the formation shape and dynamics accordingly using impedance interlinks simulated
between quadrotors, which helps to achieve a natural swarm behavior. Several tactile patterns representing static and dynamic
parameters of the swarm are proposed. The user feels the state of the swarm at the fingertips and receives valuable information to
improve the controllability of the complex formation. A user study revealed the patterns with high recognition rates. A flight experiment
demonstrated the possibility to accurately navigate the formation in a cluttered environment using only tactile feedback. Subjects stated
that tactile sensation allows guiding the drone formation through obstacles and makes the human-swarm communication more
interactive. The proposed technology can potentially have a strong impact on the human-swarm interaction, providing a higher level of
awareness during the swarm navigation.

Index Terms—Human-robot interaction, tactile display, wearable computers
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1 INTRODUCTION

NAVIGATION of quadcopters with a remote controller
is a challenging task for many users. In order to

intuitively operate a single drone, hand commands were
proposed in [1]. For immersive drone control with hand
gestures, Rognon et al. [2] developed a soft upper body ex-
oskeleton with goggles for the first-person view. However, it
is known that, in many cases, a group of robots can perform
much better than a single robot due to its scalability and
robustness [3].

For many types of missions, autonomous formation
flight is suitable. However, for some specific applications,
fully or partially guided groups of robots are the only
possible solution. The operation of swarm is a significantly
more complicated task as a human has to supervise several
agents simultaneously. In order for the human to work with
the drone formation side by side, robust and natural inter-
action techniques have to be developed and implemented.
Human-swarm interaction (HSI) combines many research
topics, which are well described in [4], and could vary from
communication channels to a level of swarm autonomy. The
authors in [5] presented a multimodal interaction strategy
between a human and a formation of drones for search
and rescue operations. Gestures and speech recognition
along with a tablet allowed the user to control the fleet of
quadrotors. In this paper, we focus on the interface (control
and feedback) between a human operator (leader) and a
swarm of robots, addressing the nascent and dynamic field
of HSI.
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Institute of Science and Technology, Moscow, Russian Federation.
E-mail: {Evgeny.Tsykunov, Ruslan.Agishev, Roman.Ibrahimov,
Luiza.Labazanova, Akerke.Tleugazy, D.Tsetserukou}@skoltech.ru

Fig. 1: Human operator manipulates the formation of three
quadrotors.

For cases in which a human controls a swarm directly,
standard control techniques have been developed in the
last few decades. Applications include the interaction be-
tween a human and a single-robot or multi-robot systems.
Multi-robot formations can be controlled through a central
station (centralized control) or, each agent can rely only
on local information for making control decisions [6]. To
make human-swarm interaction natural and safe, we have
developed impedance interlinks between the agents. In con-
trast to the traditional impedance control [7], we propose to
calculate the external force, applied to the virtual mass of the
impedance model, in such a way that it is proportional to
the human hand velocity. The impedance model generates
the desirable trajectory which reacts to the human hand

ar
X

iv
:1

90
9.

02
29

8v
1 

 [
cs

.R
O

] 
 5

 S
ep

 2
01

9



2

Fig. 2: (a) Position based impedance control, (b) PID position controller. Subscription ”h” stands for human.

motion in a compliant manner, avoiding rapid acceleration
and deceleration.

The human operator must be aware of changes in the
formation (e.g., extension and contraction). The importance
of this fact increases with the number of robots. Although
visual channels often suffer from poor quality, direct visual
feedback or visual information presented with displays [8]
are common ways to deliver information about the forma-
tion to the operator. On the other hand, haptic feedback
can also improve the awareness of drone formation state, as
reported in [9], [10], and [11]. S. Scheggi et al. [12] proposed
a haptic bracelet with vibrotactile feedback to inform an
operator about a feasible way to guide a group of ground
mobile robots in terms of motion constraints. An arm-worn
tactile display for presentation of the collision of a single
flying robot with walls was proposed in [13]. Vibrotactile
signals improved users’ awareness of the presence of ob-
stacles. Aggravi et al. [14] developed a wearable haptic
display capable of providing a wide range of sensation by
skin stretch, pressure, and vibrotactile stimuli. The authors
evaluated the proposed device for the control of a fleet of ten
simulated quadrotors. Haptic feedback delivered the infor-
mation about the navigation directions and the connectivity
(squeeze) of the fleet. This haptic feedback improved almost
all metrics of the experiment.

In contrast to the discussed works, this paper presents
a vibrotactile glove for the interaction of the human with
a real swarm of aerial robots by providing an intuitive
mapping of the formation state to the human finger pads.
It is often easier to estimate the parameters of the whole
formation (e.g., dimensions, velocity) rather than to map all
environment where the formation is operating. The main
novelty of this paper is that we propose to deliver the
tactile feedback about the state of the swarm rather than
about the distance to obstacles or the desired direction of
motion. We designed tactile feedback to convey information

about parameters of the formation that are hard to estimate
from the visual feedback, i.e., formation state (extension,
contraction, and displacement) and state propagation di-
rection (increasing or decreasing drone-to-drone distance).
Therefore, tactile cues could effectively supplement the vi-
sual channel, making the swarm control more immersive.
Cutaneous feedback could play a key role in enhancing the
performance of the swarm navigation in the unstructured
environment, such as cities.

2 FORMATION CONTROL

2.1 Approach

To implement adaptive manipulation of a robotic group by a
human operator, such as when the inter-robot distances and
formation dynamics change in accordance with the operator
state, we propose a position-based impedance control [15].

In our impedance model, we introduce mass-spring-
damper links between each pair of agents and between
the human and agent formation as shown in Fig. 2(a). The
novelty of our impedance model is that we calculate the
external force, applied to the virtual mass of each impedance
model, in such a way that it is proportional to the operator
hand velocity. The target impedance trajectory is processed
by PID control which allows high precision positioning
and maintains the rhombic shape and orientation of the
formation.

While the operator is guiding the formation in space,
impedance models update the goal positions for each flying
robot, which changes the default drone-to-drone distances
Lij , for (i,j=1,2,3,4). As a result, the operator pushes or
pulls virtual masses of inter-robot impedance models, which
allows the shape and dynamics of the robotic group to be
changed by the human hand movement. Each robot relies
on the local position information coming from neighbor
vehicles and, at the same time, the human operator affects
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all vehicles globally. Such an adaptive control could lead to
a natural multi robot-human interaction.

2.2 Math

In order to calculate the impedance correction term for the
robots’ goal positions, we solve a second-order differential
equation (1) that represents the impedance model. To move
in three-dimensional space, we have to solve three differen-
tial equations for every impedance link:

Md∆ẍ+Dd∆ẋ+Kd∆x = Fext(t) (1)

where Md is the desired mass of the virtual body, Dd is the
desired damping, and Kd is the desired stiffness, ∆x is the
difference between the current xcimp and desired xdimp posi-
tion, and Fext(t) is an external force, applied to the mass.
It is well known that by selecting the desired dynamics
parameters for the impedance model, we can achieve vari-
ous behavior of the oscillator, described by (1), undamped,
underdamped, critically damped, and overdamped. State
space representation of (1) has the form:[

∆ẋ
∆ẍ

]
= A

[
∆x
∆ẋ

]
+BFext(t), (2)

where A =

[
0 1
−Kd

Md
−Dd

Md

]
, B =

[
0
1
Md

]
. In discrete time-

space, after integration, we write the impedance equation in
the following way:[

∆xk+1

∆ẋk+1

]
= Ad

[
∆xk
∆ẋk

]
+BdF

k
ext (3)

where Ad = eAT , Bd = (eAT − I)A−1B, T is the sampling
time, I is the identity matrix, and eAT is the state transition
matrix. The impedance model, as a second order differential
equation, can be classified by the shape of the step response,
which depends on the poles. The poles are the roots of the
characteristic equation:

s2 + 2ζωns+ ω2
n = 0, (4)

ωn =

√
Kd

Md
, ζ =

Dd

2
√
MdKd

(5)

In order to have a critically damped response, ζ must
equal 1. As a result, poles p1, p2 of (4) and the eigenval-
ues λ1, λ2 of matrix A must be equal, real, and positive
λ1 = λ2 = p1 = p2. The challenging part in (3) is to compute
the term eAT . The matrix exponential is fined form Cayley-
Hamilton theorem, according to which every matrix satisfies
its characteristic polynomial. Using those statements, we can
find:

Ad = eλT
[
(1− λT ) T
−bT (1− λT − aT )

]
, (6)

Bd = −c
b

[
eλT (1− λT )− 1
−bTeλT

]
, (7)

where λ is the eigenvalue variable of the matrix A, a =
−Dd

Md
, b = −Kd

Md
, c = 1

Md
. Ad and Bd matrices can be used to

calculate the current xcimp position of the impedance model
using equation (3).

To allow the human operator to change the formation
shape and dynamics while navigating, the external force
term Fext(t) is a function of some human state parameter.
We propose to calculate the external force as a function of
the human hand’s velocity:

Fext(t) = Kvvh(t), (8)

where Kv is a scaling coefficient, which determines the
effect of the human hand velocity vh(t) on the formation. To
be able to estimate the velocity of the human hand, we make
an assumption that it is possible to track the hand motion
with some positioning system. During the experimental
evaluation we used the Vicon motion capture system.

The method described above is used to calculate the
impedance correction vector

[
ximp, yimp, zimp

]T
or the cur-

rent position of the virtual body of each impedance model.
In order to demonstrate the performance under assumption
on the boundedness of the external inputs, the impedance
terms are limited with the maximum values:ximpyimp

zimp

 ≤
ximp limit

yimp limit

zimp limit

 , (9)

where the right side represents the safety thresholds that
prevent an overrun of the impedance model.

Finally, the goal positions along X , Y , and Z-axis of
each quadrotor are determined as follows (see the structure
presented in Fig. 2(a)):

x1 g

x2 g

x3 g

x4 g

 =


xh − Lh1
x1 − L12

x1 − L13
x2+x3

2 − L34

−
 |ximp h1|

|ximp 12|
|ximp 13|

|ximp 24 + ximp 34|

 (10)

y1 g

y2 g

y3 g

y4 g

 =


yh

y1 +H12

y1 −H13
y2+y3

2

+

 yimp h1

yimp 12

yimp 13

yimp 24 + yimp 34

 (11)

z1 g

z2 g

z3 g

z4 g

 =


zh
z1
z1

z2+z3
2

+

 zimp h1

zimp 12

zimp 13

zimp 24 + zimp 34

 (12)

where ximp ij , yimp ij , and zimp ij for i, j = h, 1, 2, 3, 4 are
corresponding impedance correction terms, Lij for i, j =
h, 1, 2, 3, 4 are displacements for the quadrotors, as could be
seen in Fig. 2(b), and xi, yi, zi for i = 1, 2, 3, 4 are the actual
positions of UAVs.

Equations (10) to (12) consist of two parts. The first part
determines the default geometrical shape of the formation
(rhombus which is placed in the XY plane in this case),
and the second describes the impedance interlinks between
the agents. Both parts of the equations are independent
and could be designed separately, following the specific
application needs. Although in this paper we consider the
rhombic shape, the formation could have an arbitrary ge-
ometry, which is defined in the first part of (10) to (12). The
number of UAVs also could be arbitrary. Given some shape,
the impedance connections could be designed in such a way,
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that they do not have to replicate the geometry. We select the
impedance links based on the behavior we want to achieve.
For example, if we want the distance between Drone 2 and
Drone 3 to increase when the formation is moving in the Y
direction, then we could introduce an additional impedance
interlink between Drone 2 and 3, see Fig. 2.

One of the ideas behind the proposed impedance control
is safer operation when the distances between the agents are
increasing with increasing velocity. In particular, when the
formation is moving fast, we want the drones to always
split apart in the negative direction of the X axis (from
the human), that is why we subtract the absolute values
of impedance terms in (10). On the other hand, considering
motion in the Y and Z axes, the formation has to be shifted
in different directions, with respect to the human motion. If
the human starts to move in the left direction, the robotic
swarm, following the human, has to shift to the right,
demonstrating a ”tail” behavior, as shown in Fig. 5. Based on
the presented discussion, we conclude that the developed
impedance control introduces a directional behavior - from
the human to the last quadrotor. Thus, the set of impedance
links represents a connected directional graph.

As can be seen in (10) to (12), each agent relies on
local information about the distances to neighbor vehicles
(geometrical part of the equations), and at the same time
on the state of local impedance models. The human affects
all impedance interlinks globally. The computation could be
done onboard or on the ground station with corresponding
advantages and disadvantages of both approaches. For the
experiment, we used the ground-based Linux Computer
to compute all trajectories for each drone in real time.
Each drone received its next waypoint through the radio
link (communication bandwidth increases linearly with the
number of robots). Decentralized onboard computation is
also an option, which requires additional setup. The velocity
of the human hand has to be measured and broadcasted to
each drone using a simplex radio channel. We used a Vicon
motion capture system for human positioning. Alternative
approaches to tracking the position of the human hand
which allow for more varied applications are discussed in
Section 6. In addition to the position of the human hand,
each agent has to know the distances to the neighbors
according to (10-11). The experimental setup in this paper
does not support measuring relative distances with onboard
sensors. However, it is possible to achieve this with vision-
based methods as shown in [16]. Another option is to set
up communication channels between the closest neighbors.
Computational complexity coming from (1) increases lin-
early with the number of impedance links.

2.3 Verification

We used a formation of four Crazyflie 2.0 quadrotors to
perform the verification flight tests. To get the high-quality
tracking of the quadrotors and human glove during the
experiments, we used Vicon motion capture system with
12 cameras (Vantage V5) covering a 5 m 5 m 5 m space. We
used the Robot Operating System (ROS) Kinetic framework
to run the development software and ROS stack [17] for
Crazyflie 2.0. The position and attitude update rate was 60
Hz for all drones. Before conducting any type of experiment,

we ensured that we were able to perform a stable and
smooth flight, following the desired trajectory. In order to
do so, all PID coefficients for position controller were set
to default values for Crazyflie 2.0, according to [17] (for
x,y-axis kp=40, kd=20, ki=2; for z-axis kp=5000, kd=6000,
ki=3500).

As a preliminary experiment, the selection of the
impedance parameters was carried out. First, Md, Dd, and
Kd coefficients of the impedance model were set in order to
get a critically damped response, which would be smooth
and comfortable for a human. To archive this, ζ must equal
1 in (4). Therefore, based on (5), the following condition
has to be satisfied D2

d − 4KdMd = 0. Making sure that it
is true, we selected arbitrary desired dynamic coefficients
(Md = 1.9, Dd = 12.6,Kd = 21.0).

Second, human velocity coefficient Kv , used for force
calculation in (8), was selected. We assume that the
impedance correction of the goal position has to be no
more than 30-50% of the distances to the neighbors Lij
and Hij (which is 0.5 meters in this case). We also esti-
mated that the normal human hand velocity, which was
estimated from a set of consecutively measured positions
provided by a motion capture system, does not go over
1.5m/sec while manipulating the formation. Based on this,
we selected Kv to be −7Nsec/m. A negative Kv value is
used because when the human is moving in one direction,
drones retreat towards the opposite direction (see Section
2.2). Finally, for safety reasons, we set the threshold limit of
impedance correction term ximp limit to be 0.25 meters for
the experiments. For simplification purposes, we used the
same dynamic parameters for all impedance models in the
experiment.

After the selection of all impedance parameters, we
checked the single drone behavior, while being guided by
the human operator with the proposed impedance con-
troller. To do so, we took Drone 1 and the human wearing a
glove, as seen in Fig. 2. We present the values along Y -axis.
Human hand velocity vh(t) used in (8) and the impedance
correction term yimp h1 used in 11 are shown in Fig. 3. From
Fig. 3 it can be seen that the impedance model changes its
state smoothly in accordance with human hand movement.
Due to the negative velocity coefficient Kv , human velocity,
and impedance term are moving in opposite directions. It
is also possible to notice (for the time range 8.5-9 seconds
in Fig. 3), that the safety threshold yimp limit helps to
prevent dangerous behavior due to high values of the input
parameter (human velocity vh(t)).

Fig. 4 shows the actual position of the human hand
along with goal and actual positions of Drone 1 (along Y -
axis). According to Fig. 2(b), Y -coordinates of the human
and Drone 1 goal position have to be equal, in the case of
a simple PID controller. However, due to the impedance
correction of the goal position in (11), in Fig. 4 it can be
seen that the Drone 1 goal position is slightly behind the
human position (this difference is equal to the impedance
term yimp h1). The result could be represented as a sort of
filtering of the robot goal position, which leads to smoother
drone guidance, especially in the case of extreme external
inputs. Afterward, the Drone 1 goal position is provided
to the positional PID controller. A delay occurs between a
human command and a drone reaction, which is expected
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Fig. 3: Human hand velocity (blue) and impedance correc-
tion term (orange) versus time. Movement is along Y -axis.

Fig. 4: Human hand position while guiding the drone (blue),
drone goal position while following the human (orange),
drone actual position (gray) versus time. Along Y -axis.

due to the nature of the impedance controller.
The next step is to demonstrate the performance of the

proposed algorithm for the formation guidance. We refer
to Fig. 5, where a human guides four quadrotors with
the control structure presented in Fig. 2(a). An operator
moves their hand towards the negative Y and the positive
X direction. This figure presents an interesting feature of
the impedance control, which was mentioned before in
Section 2.2. While the human starts to move fast enough, the
formation immediately spreads along the direction, which
is opposite to the human motion. When the human hand
velocity starts to decrease, the formation contracts back to its
initial shape. The axis, along which the formation changes
its shape, coincides with the human velocity vector. Fig. 6
shows the distance along the Y -axis between Drone 1 and
Drone 4, which are placed in accordance with Fig. 2(a).
The displacement between drones is presented in Fig. 7.
Here could be seen that the magnitude of the displacement
is increasing for drones farther away from the human.
To address this issue, in future work, the stability of the
proposed method will be considered with the increased
number of drones. The proposed control algorithm could
be used not only for human-swarm interaction (HSI) but
also for obstacle/collision avoidance.

2.4 Collision Avoidance
Apart from internal factors that affect the swarm state, such
as mass-spring-damper links between the drones, there also
could be external reasons which could cause the formation

Fig. 5: Formation of four drones (red arrows) following a
human hand (yellow arrow). The beginning of the yellow
arrow represents the humans actual position and the begin-
ning of red arrows represents the quadrotor goal positions.
The orientation of the arrows represents the orientation of
drones and the human hand. The magnitude of the arrows
has no significance.

to change, e.g., obstacles. We assume that, within the swarm,
every agent decides where to go next using both the local in-
formation about surroundings and the global goal (direction
and velocity of motion). In this scenario, each quadrotor can
plan its obstacle avoidance while considering the position
of the nearest obstacles and neighbor agents. The planning
algorithm is described below.

The location of drones and obstacles is defined by a
Vicon motion capture system, as described in Section 2.3.
Each quadrotor is aware of the position of local obstacles.
Additionally, each obstacle has a safety zone around its
center, which is defined as a cylinder (a circle for planar
motion) with the predefined radius.

Every controlled robot in the swarm should not only
be aware of static obstacles on the map but also take into
account moving obstacles, such as humans and other agents
in the formation. Collision avoidance method based on the
artificial potential field method, [18], was applied in this
paper to ensure safe real-time robots swarm navigation
in a dynamic environment. The basic idea of the obstacle
avoidance algorithm is to construct a smooth function over
the extent of robot’s configuration space which has high
values when the robot is near to an obstacle and lower
values when it is further away. This function should have
the lowest value at the desired location of the robot. If such
a function is constructed, its gradient can be used to guide
the drone to the goal configuration. Typically this function
consists of two components, attractive and repelling.

In our case, the artificial potential affects a robot’s motion
in X- and Y - directions. An attractive potential function,
Ua(x, y), can be constructed by considering the distance
between the current position of the robot, p = [x, y]T , and
the desired goal location, pg = [xg, yg]

T , as follows:

Ua(x, y) = ξ||p− pg||2 (13)

Here ξ is the constant scaling parameter.
A repulsive potential function in the plane, Ur(x, y), can

be constructed based on the distance, ρ(x, y), to the closest
obstacle from a given point, [x, y], in configuration space.

Ur(x, y) =

{
η( 1
ρ(x,y) −

1
d0 )2 if ρ(x, y) < d0

0 if ρ(x, y) ≥ d0
(14)
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Fig. 6: The blue line represents human hand velocity versus
time, the orange line represents distance between Drone 1
and Drone 4. Along Y -axis.

Fig. 7: Actual positions of Drone 1 (blue), Drone 4 (orange),
human hand (gray) versus time. Along Y -axis.

Here η is simply the constant scaling parameter, and d0 is a
parameter that defines the influence radius of the repulsive
potential.

Once the combined potential, U(x, y) = Ua(x, y) +
Ur(x, y) is constructed, a robot’s desired velocity can be
estimated as v ∝ −∇U(x, y).

In our case of the human-guided swarm, a point of
attraction, pdg , (goal location) is assigned to every drone,
d, relative to the leader-drone position with a prescribed
geometrical shape.

HSI could significantly benefit if we couple the described
control methods with tactile feedback, forming an interface
(control and feedback) between a human and a formation.
Informing a human operator about the dynamic formation
state (extension or contraction, for example) at the current
time could potentially improve controllability.

3 SWARMGLOVE: VIBROTACTILE WEARABLE
GLOVE

3.1 Technology

The wearable tactile displays, e.g., LinkTouch can represent
multimodal information at the fingertips, i.e. force vector,
vibration, and contact state [19]. However, vibration motors,
which are easy to control, are widely applied in Virtual
Reality [20], [21]. We applied eccentric rotating mass (ERM)

Fig. 8: (a) - wearable tactile display, (b) - tactile device
diagram.

vibration motors which deliver the dynamic state of the
swarm in the form of tactile patterns.

We have designed a prototype of the tactile display with
five ERM vibrotactile actuators attached to the fingertips,
as shown in Fig. 8(a). The vibration motors receive control
signals from an Arduino UNO controller. The unit with
Arduino UNO and battery are worn on the a wrist as a
portable device. Infrared reflective markers are located on
the top of the unit. The frequency of vibration motors is
changed according to the applied voltage. The haptic device
diagram is shown in Fig.8(b). The glove microcontroller
receives values of the formation state parameters from the
PC. The Bluetooth and USB communications between the
computer and haptic device were presented in the previous
research of the authors in [19]. The approach in [19] is
limited in working distance and mobility. Therefore, we
implemented a radio frequency connection through XBee
Pro s2b radio modules due to its robustness and high
speed of data exchange. After the Arduino UNO gets the
information about the current swarm state, it applies an
appropriate vibration pattern.

3.2 Tactile Patterns
We designed eight tactile patterns for presenting the feeling
of the swarm behavior at the operator’s fingertips. Our
motivation for the selection of the particular tactile pattern
was to bring valuable information that potentially can im-
prove the quality (speed, safety, precision) of operation of
the swarm in a complex outdoor environment.

During swarm manipulation by the operator, the for-
mation can change its shape, becoming contracted or ex-
tended (Fig. 9(a, b, c). Therefore, the operator should take
this information into account, since it contributes to better
swarm operation in a cluttered environment. For instance,
if the swarm gets too contracted, there is a risk of a collision
between the drones. On the other hand, while guiding the
formation through the obstacles, the extended state of the
swarm can also lead to the collision or to a separation of
the swarm to two groups. However, in many cases, the
formation state is changing dynamically. In such a scenario,
additional real-time information on state propagation direc-
tion could be provided to the human operator, in particular,
whether the drones are flying away from each other (dis-
tance between agents is increasing) or the drones are flying
toward each other (distance is decreasing).
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Fig. 9: The information to be presented with the wearable
tactile interface. Contracted (a), regular (b), extended (c)
state of the formation, and displacement of the formation
(d).

The dynamic change of distance is presented by the
tactile flow propagation, e.g., if the distance is increasing,
the flow goes from the middle finger to the outer fingers
(Fig. 10(a, c, e)), otherwise, the flow goes from the outer
fingers to the middle one (Fig. 10(b, d, f)).

The distance between drones is presented by the gra-
dient of the tactor vibration intensity. If the formation is
extended, then side vibration motors have a higher intensity
than the middle one, see Fig. 10(a, b).

The other swarm state that we propose to present to
the operator is the displacement of the center of mass of
the swarm to the right or to the left in respect to the
direction of motion (Fig. 9(d)). Due to external factors as
obstacles or wind, the swarm could move from the desired
direction of motion. The swarm could separate into two
groups while avoiding obstacles, which would also lead
to the displacement of the center of mass. The direction
of displacement is presented with the direction of tactile
flow propagation, e.g., when the center of mass is moved
to the right with respect to the overall direction of motion,
the tactile flow moves from the left finger to the right as
shown in Fig. 10(g).

4 EXPERIMENT FOR RECOGNITION OF TACTILE
PATTERNS

4.1 Participants
Twenty-two right-handed volunteers (18 males and 4 fe-
males, aged 17-36) participated in the experiment. They

Fig. 10: Tactile patterns for representing the state of the
formation in terms of drone-to-drone distance and swarm
displacement. Each circle represents finger of a right hand
(view from the dorsal side of the hand). The gray scale color
represents the intensity of tactor vibration.

were given a period for training (5-10 minutes) so that they
could get used to the sensations and learn to recognize the
signals. All participants positively responded to the device
convenience and level of perception.

4.2 Experiment Condition
Optimal sensitivity of the skin is achieved at frequencies
between 150 and 300 Hz [22]. Therefore, for 3 vibration
levels, we assigned average frequency values: 150 Hz, 200
Hz, 250 Hz (refer to three grayscale colors shown in Fig.
12). Tactile pulses lasted for 200 or 300 ms depending on the
pattern, since distinguishing tactile patterns is easier with
stimulus duration in the range of 80 to 320 ms [22].

4.3 Detection of Multi-modal Patterns
The experiment was devoted to the detection of multi-
modal patterns. The change of distance between drones was
modulated by the vector of propagation of tactile stimuli
(e.g., if the swarm is extending, firstly the third finger is
activated, then, after shut down of the motor on the third
finger, the second and fourth fingers are activated, and
finally only the first and the fifth ones are vibrating, see
Fig. 12(a) for reference). The state of the formation was
mapped by the gradient of the vibration intensity (e.g., if
the swarm is extended, side fingers have a higher intensity,
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see Fig. 10(a,b) for reference). To emphasize the direction
of the gradient, we introduced different duration of the
tactile stimulus. The duration of the tactile pulse in the
case of low (150 Hz) and middle (200 Hz) intensity was
200 ms, meanwhile, the duration of the tactile pulses with
high (250 Hz) intensity was 300 ms. There was no time
interval between the tactile pulses within the same pattern.
The total duration of tactile patterns is presented in Fig. 12
and ranged from 600 ms up to 1000 ms.

During the experiment, each pattern was repeated once,
and the subject was asked to enter the number of experi-
enced stimuli. Each of the subjects experienced 64 stimuli
(8 patterns were repeated 8 times in random order). Time
of user response was also recorded. The results of the
user study for the experiment are listed in Table 1. The
name of the patterns goes as follows: Extended state, In-
creasing distance (EI) Fig. 12(a); Extended state, Decreasing
distance (ED) Fig. 12(b); Regular state, Increasing distance
(RI) Fig. 12(c); Regular state, Decreasing distance (RD) Fig.
12(d); Contracted state, Increasing distance (CI) Fig. 12(e);
Contracted state, Decreasing distance (CD) Fig. 12(f); Right
displacement (R) Fig. 12(g); Left displacement (L) Fig. 12(h).
The diagonal term of the confusion matrix indicates the
percentage of the correct responses of participants.

The results of the experiment revealed that all designed
tactile patterns were detected by users with an average
recognition rate of 76.8%. Table 1 shows that the distinctive
patterns EI, ED, RI, R, and L have higher percentages of
recognition and therefore are recommended for the usage
in the flight experiment. On the other hand, patterns RD,
CI, and CD have lower recognition rates. One common
feature of CI and CD patterns is that they have low vibration
intensity of the side fingers. Therefore, the intensity of the
vibration of the fingers number 1 and number 5 (Fig. 8) (side
fingers) plays a key role in the higher recognition rate. It can
be seen that participants mostly confused patterns CD with
RD and patterns CI with RI, while other patterns are distin-
guished in majority cases. Therefore, it is required to design
more distinctive tactile stimuli to improve the recognition
rate in some cases. It is important to notice that the direction
of tactile flow propagating was distinguished in most cases,
both in cases middle-side/side-middle (EI, ED, RI, RD, CI,
CD) or left-right/right-left (R, L) direction. Patterns R and
L demonstrated the best recognition rates. One reason is
that the direction of the tactile flow propagation is easy to
recognize. Another potential reason is that patterns R and
L have the longest duration. Finally, patterns R and L have
a completely different structure - propagation from side to
side, apart from all other patterns. Therefore, having six
patterns, that have a similar structure (propagation in the
middle-side/side-middle direction), could lead to a reduc-
tion of the recognition rate.

In order to evaluate the statistical significance of the
differences between patterns, we analyzed the results of the
user study using single factor repeated-measures ANOVA,
with a chosen significance level of p < 0.05. According
to the ANOVA results, there is a statistically significant
difference in the recognition rates for the different patterns,
F (7, 168) = 22.2, p = 4.3 · 10−21 < 0.05. The ANOVA
showed that the type of patterns significantly influences the
percentage of correct responses.

TABLE 1: Confusion Matrix

EI ED RI RD CI CD R L
EI 89.8 1.1 4.0 0.0 1.7 1.1 0.0 2.3
ED 1.1 93.2 0.0 1.7 0.0 2.3 0.6 1.1
RI 14.8 0.0 76.1 1.1 5.1 1.1 0.6 1.1
RD 0.0 21.6 1.1 68.8 1.1 4.5 0.6 2.3
CI 3.4 0.6 38.1 1.7 53.4 1.7 0.0 0.0
CD 1.7 1.7 2.8 48.3 0.6 40.3 1.1 0.0
R 0.6 0.0 2.8 0.6 0.0 0.0 95.5 0.6
L 0.0 0.6 0.6 0.6 0.0 0.0 0.6 97.7

TABLE 2: Average Time of Recognition Response

EI ED RI RD CI CD R L
Time, s 3.55 3.47 3.56 4.58 3.81 4.58 3.12 2.92

The paired t-tests showed statistically significant differ-
ences between most patterns. For example, there are signifi-
cant differences between patterns EI and RI (p = 0.023625 <
0.05), EI and RD (p = 0.000643 < 0.05), EI and CI (p =
7.53 · 10−5 < 0.05), EI and CD (1.05 · 10−6 < 0.05), EI and
R (p = 0.029266 < 0.05), EI and L (p = 0.003584 < 0.05),
ED and RI (p = 0.007042 < 0.05) and others. However,
the results of paired t-tests between patterns EI and ED,
ED and R, ED and L, RI and RD, R and L did not reveal
any significant differences, so these patterns have nearly the
same recognition rate.

The average time of response, which is the time between
the end of pattern execution and the moment when the key
is pressed on the keyboard, is slightly different for each
participant. From Table 2, we can conclude that participants
in the experiment have spent less time to guess pattern R
and pattern L. Based on average recognition time, we could
conclude that patterns R and L could contribute to more
fast and intuitive immersion into the control process, which
makes them good candidates for the verification during the
flight experiment. The longest time was 8.92 seconds for
Pattern EI. On the other hand, 1.72 seconds is the shortest
time period for Pattern R. On average, 3.53 seconds have
been spent to response for pattern recognition.

5 FLIGHT EXPERIMENT WITH THE SWARMGLOVE

To estimate the performance of the SwarmGlove, we set up
the flight experiment, in which the user has to navigate the
fleet of three Crazyflie 2.0 drones through the obstacles.

5.1 Role of Tactile Feedback
As discussed above, the proposed tactile interface could be
helpful when the visual feedback of the fleet operator has
a poor quality or overloaded with information. On the one
hand, communication problems or limited field of view of
onboard sensors could lead to the degradation of the visual
channel. Additionally, the limited cognitive abilities of the
human operator, prevent the user from fully understanding
the state of the fleet, especially when the number of drones
is high. In such cases, the tactile interface could supplement
or even replace the visual feedback.

Considering small size drones, such as Crazyflie 2.0
which can move fast, and a limited flight space (5 m x
5 m x 5 m), the state of the fleet could be changed in a
fraction of a second during the experiment. To operate the
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formation in such an environment, the visual feedback is
sufficient, because it is fast and can cover all flight space.
Supplementing the visual feedback with the tactile feedback
is inefficient in our experimental conditions since it takes
up to one second to execute a tactile pattern. We conducted
several preliminary flights, providing both visual and tactile
feedback to the subjects, but the users relied only on the
visual channel. The other option is to completely replace the
visual channel with a tactile sensation. It could be useful
when the fleet flies through the areas where it is impossible
to acquire or transfer high quality visual information. For
this reason, we conducted a flight experiment with only
visual feedback and with only tactile feedback. Our hypoth-
esis is based on the assumption that the developed tactile
interface could help to navigate the fleet through the blind
zones with no visual feedback.

Current experimental conditions do not allow to supple-
ments the visual channel with tactile, due to the reasons
discussed above. However, in real life applications, the size
of the operational area could be big enough to prevent visual
observation of the whole space, and the size of the robots
and the size of the formation could lead to a relatively slow
change in the fleet state. In such a case, developed tactile
feedback could effectively contribute to the visual feedback,
by not only replacing but also by supplementing it.

5.2 Information to be Presented to the Operator

The next decision that was made was about the parameters
of the fleet that have to be reported to the human operator
through the tactile interface. As discussed before, for the
flight experiment, we use small quadrotors and limited
flight space. In such an operational condition, change of
the formation shape (increasing or decreasing drone-to-
drone distance) could happen very fast, and therefore, it is
inefficient to provide slow tactile feedback about it.

On the other hand, contracted (Fig. 11(a)) or extended
(Fig. 11(b)) state of fleet could last for seconds, which makes
them applicable candidates for the flight verification. For
the experiment, we assume that the formation has a default
configuration of the equilateral triangle. We decided that if
the area of triangle or distance between any pair of drones
is more than 10% bigger or 10% less than the default value,
then the formation is considered to be in the extended or
contracted state, respectively.

Along with the contracted or extended state, it is reason-
able to provide the direction of fleet center of mass (CoM)
displacement. CoM displacement could happen in both
extended or contracted state. For example, in the contracted
state shown in Fig. 11(a), CoM moves to the left with respect
to the direction of motion, as far as drone1 and drone2
move to the left from their default positions. Considering
the extended state, as shown in Fig. 11(b), CoM moves to
the right as far as the drone2 avoiding the obstacle over the
right side.

The displacement direction in the contracted state (Fig.
11(a)) is straightforward from the operator point of view,
as all drones move collinear with CoM displacement (in
Fig. 11(a) drone1 and drone2 move to the left and the CM
displaces to the left as well). On the other hand, the displace-
ment direction in the extended state is more complicated

Fig. 11: Information to be presented to the human operator.
Drones avoid obstacles.

to understand, see Fig. 11(b), since the CoM moves on the
right, but the majority of the drones go around the left side
of the obstacle (the overall goal is to keep the default shape
to be able to complete a successful flight mission, formation
division is not allowed). To address this complication, we
designed tactile feedback patterns to be more intuitive for
the operator. To avoid misunderstanding from the user,
for the experiment we designed the patterns to inform the
user about the recommended direction of hand motion to
minimize CoM displacement, rather than the displacement
of the CoM itself.

5.3 Simplified Patterns for the Flight Experiment

For the next step, we selected which patterns to use to
represent contraction, extension, and displacement. Initially,
we designed the system to be applied for outdoor operation
in unstructured environments such as cities, where the
fleet moves slowly and the distances are much bigger than
indoors. Considering the small flight facilities that were
available for this study (5 m x 5 m x 5 m size room), the
state of the fleet of three Crazyflies could change rapidly.
Therefore, we decided to upgrade the high-quality patterns
(EI, ED, R, and L from Section 4.3) and design faster and
simpler versions of them for indoor flight test.

Our goal was to design patterns which will present two
types of information: extension/contraction and the direc-
tion of motion to prevent the center of mass displacement.
Developed multi-modal patterns are presented in Fig. 12
(CR Contracted state, Right Direction; CL Contracted
state, Left Direction; ER Extended state, Right Direction;
EL Extended state, Left Direction;). For the contracted state,
we use three middle fingers (2, 3, 4) and for the extended
state, we use side fingers (1 and 5). For the contraction,
the direction of the displacement is shown with the tactile
flow propagation. For the extension, the direction of the dis-
placement is shown with the right or left finger. Presented
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Fig. 12: Simplified tactile patterns for representing the state
of the formation in terms of drone-to-drone distance and
fleet displacement. Designed for the flight experiment.

patterns are easier to recognize and several times faster than
the patterns shown in Fig. 10. The recognition rate is 100%
(based on 160 trials among 8 participants).

In the case of CR or CL pattern, the best decision is to
move the fleet towards the direction of the pattern. For the
ER or EL patterns, the best strategy is to move a little bit
back (to prevent separation of the fleet) and then move
towards the vibrating finger. All of these strategies were
presented to the subjects during the training of the user
study experiment. As discussed at the end of Section 5.2,
the center of mass displacement correlates differently with
the proper direction of safety movement. That is why for the
patterns CR or CL, the direction of displacement is collinear
with the displacement of the center of mass, while for the
ER or EL patterns, it is the opposite.

5.4 Experimental Methodology
Six right-handed male users (22 to 28 years old) took part in
the flight experiment where they were asked to navigate the
formation of three Crazyflie 2.0 drones through a labyrinth
with obstacles (Fig. 1) using either only visual or only tactile
feedback. The state of the formation could be changed due
to obstacle avoidance or impedance interlinks as described
in the upper sections. The motion is constrained to be two-
dimensional on the same height. In order to remove the
sound of the drone motors, subjects wore noise-canceling
headphones playing white noise. Each participant wore
safety glasses. The protocol of the experiment was approved
by a Skolkovo Institute of Science and Technology review
board, and all participants gave informed consent.

The obstacles used were vertical columns with unlimited
height. Participants were not aware of the configuration of
the labyrinth beforehand. The main goal for the participants
was to avoid the non-default states of the formation, such
as contraction or extension. To complicate the visual trial,
the obstacles were placed below the flying altitude of the
drones and were virtually extended to an unlimited height,
thus making it more difficult to visually approximate the
distance between a drone and an obstacle.

Training included learning patterns presented in Fig. 12.
All possible decision strategies regarding different tactile

TABLE 3: Parameters of the Fleet Performance

Feedback type
Parameters Tactile Visual
Mean centroid length of a path, m 6.00 3.76
Mean centroid velocity, m/s 0.08 0.23
Mean centroid acceleration, m/s2 0.16 0.31
Mean centroid jerk, m/s3 1.03 1.92
Mean of area error, m2 0.01 0.007
Mean std. deviation of area error, m2 0.009 0.006
Mean maximum of area error, m2 0.039 0.028

patterns were presented to the users during the training pe-
riod. Training also included guiding the formation through
the maze with only tactile feedback first, and with only vi-
sual feedback after. Regarding the tactile trial, in the default
state, no tactile patterns were provided, which meant that it
was possible to move forward.

After training, for the experiment, users overcame two
different unknown configurations of obstacles, first with
tactile and then with visual feedback (two trials with tactile
and two with visual feedback in total).

5.5 Flight Experiment Results
The initial hypothesis was confirmed. It is possible to nav-
igate the fleet of drones in a cluttered environment using
only tactile feedback about the state of the fleet. Users
successfully completed the labyrinth in 12 trials, and only
two collisions between drones occurred (collision cases were
not considered in the statistical analysis presented in Table
3; in the case of collision the experiment was repeated).

As discussed in Section 5.1, for the current experimental
conditions, performance with visual feedback is better than
with tactile feedback. We compare some of the parameters to
understand the behavior of participants better in both cases.
The mean values of parameters over all participants are
presented in Table 3. The mean path length of the formation
centroid is almost two times longer for the tactile feedback,
which indicates that with tactile feedback subjects explore
the space more actively. The mean velocity with visual
feedback is three times faster. Considering the acceleration
and jerk of the centroid, it could be included that with tactile
feedback, the fleet is guided more smoothly. One of the main
metrics is the area of the triangle (formed with actual drone
positions) while going through the labyrinth. It is interesting
that tactile and visual performance do not differ much in
this metric. Therefore, the developed tactile interface does
not only allow the possibility to navigate the fleet through
cluttered environments but also to do so in a precise manner,
maintaining the desired geometry of the formation.

Considering more closely the behavior of the users with
respect to the executed patterns, we investigated the fleet
behavior right after the patterns were executed (see Fig.
13). In the example of state change shown in Fig. 11(a) for
example (contraction and displacement to the left), the user
receives a CL pattern (Fig. 12). Then, as the formation is
guided to the left the fleet centroid should move to the left
and the area should increase back to the default value. We
compared the area and centroid displacement at the current
time (for the time interval 0-3300 ms after the start of each
pattern execution) with the corresponding values at the time
when the pattern started. Creating such comparisons for all
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Fig. 13: Percentage of proper correction (returning area to
the default value and decrease of displacement) of fleet state
after the start of pattern execution.

patterns helped us to evaluate the correctness and duration
of human operator response. The evaluation was performed
for all participants. It is possible to see from Fig. 13 that,
in general, the correctness of operator decisions reaches
75-80% after 2-3 seconds after pattern execution. CR/CL
patterns work better for the displacement, and the overall
performance of CR/CL is higher than ER/EL. It might be
because of a more simple behaviour strategy for CR/Cl
patterns (discussed in Section 5.3).

Example of trajectories during the experiment are shown
in Fig. 14. Drones trajectories (dashed lines) are represented
in XY -plane (from the top view). The fleet flies among
obstacles (small red squares). Each of the obstacles is sur-
rounded by the yellow cylindrical safety zone. The union
of all these cylindrical obstacles vicinity defines the area,
where drones cannot fly. The solid blue line represents the
fleet central point path.

It could be noticed in the left column of Fig. 14 (tactile
trial) that centroid trajectory has several turns near the
obstacle vicinities. At these moments a human operator
receives tactile patterns that help him to understand that
the fleet is located near the obstacles and also provides
information on how to control drones in order to avoid
collisions and reach the finish point.

6 CONCLUSION AND FUTURE WORKS

We have proposed a novel system SwarmTouch which in-
tegrates impedance control and a tactile glove for intuitive
swarm control by an operator. The impedance links between
agents and an intelligent obstacle avoidance algorithm allow
the swarm to not only generate a safe trajectory but also
to perform a smooth motion. We also designed the tactile
patterns for the glove and conducted experiments to de-
termine more recognizable patterns. The flight experiments
demonstrated accurate guidance of the swarm using tactile
sensation, which is close to visual feedback navigation in
terms of geometry maintenance. The experimental data are
available at http://doi.org/10.5281/zenodo.3256614.

To track positions of quadrotors with Global Navigation
Satellite System (GNSS) is accurate enough in most cases.
However, it could be hard to track small hand motions with
GPS. Therefore, the current work could be extended towards
the development of the local positioning system for hand

Fig. 14: A top view of trajectories of drones and centroid
while being manipulated thought the maze. Left column
of two pictures (a-b) represents formation of three drones
navigation with the help of pure tactile feedback. Two pictures
on the right (c-d) - navigation with pure visual feedback.
Solid line is the trajectory of the fleet centroid. Dashed
lines are actual drones trajectories. Red squares represent
real obstacles with yellow safety zones. Formation shape is
depicted with blue triangle.

tracking. The other option is to replace the hand position
and velocity as a control input with something else. The
alternative method could be to use an inclination of hand
(standard inertial-measurement unit (IMU) could measure
all necessary information) instead of the hand position for
the control input. It is also possible to use a joystick, rather
than a glove, as a control input device.

Due to its mobility and spatial distribution, the fleet
of quadrotors could be the first responder for different
kinds of emergencies, such as fire, earthquake or flood. To
gather information about a suffering area is a crucial task
for first responders. Monitoring of the progress of disaster
recovery is also important because an emergency can have a
dynamically changing environment. Navigation of a swarm
in a city environment, with multi-story buildings or even
skyscrapers could be a challenging task. Maintaining the de-
fault geometry of the formation is a reasonable requirement
for real-life applications when data must be gathered evenly
or communication within the formation is necessary. As a
result, SwarmTouch could contribute to a faster response to
high risk and uncontrolled situations and a higher level of
awareness of a swarm’s surroundings for the operator.

http://doi.org/10.5281/zenodo.3256614
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