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Abstract—Whenever we touch a surface with our fingers, we
perceive distinct tactile properties that are based on the
underlying dynamics of the interaction. However, little is known
about how the brain aggregates the sensory information from
these dynamics to form abstract representations of textures.
Earlier studies in surface perception all used general surface
descriptors measured in controlled conditions instead of
considering the unique dynamics of specific interactions,
reducing the comprehensiveness and interpretability of the
results. Here, we present an interpretable modeling method that
predicts the perceptual similarity of surfaces by comparing
probability distributions of features calculated from short time
windows of specific physical signals (finger motion, contact force,
fingernail acceleration) elicited during unconstrained finger-
surface interactions. The results show that our method can
predict the similarity judgments of individual participants with a
maximum Spearman’s correlation of 0.7. Furthermore, we found
evidence that different participants weight interaction features
differently when judging surface similarity. Our findings provide
new perspectives on human texture perception during active
touch, and our approach could benefit haptic surface assessment,
robotic tactile perception, and haptic rendering.

Index Terms—Texture perception, machine learning, finger-
surface interaction, predicting human tactile perception, proba-
bilistic representation.

I. INTRODUCTION

WHEN humans touch a surface with their fingers, they

feel a rich array of tactile cues revealing the physical

properties of the surface, such as friction, roughness, and

deformability. The spatio-temporal fingertip deformations

activate several types of mechanoreceptors, which send sig-

nals to connected tactile afferents, transmitting information to

the central nervous system [1]. The skin deformations that

occur depend on the material properties and geometry of the

finger and the surface [2], [3], normal force [4], and speed [5],

and they can vary substantially even for the same person

exploring the same texture [6]. Little is known about how the

brain distills the information needed to evaluate textures from

the combination of skin deformation and exploratory motion.

A common approach to determining the fundamental fac-

tors underpinning texture perception is conducting psycho-

physical experiments in which participants rank the similarity

of surfaces or give ratings for their specific features (e.g., hard-

ness, roughness). The results are typically analyzed by a

dimensional reduction technique such as multidimensional

scaling (MDS) or principal component analysis (PCA), which

reveals a compact representation of a resultant perceptual

space. In this perceptual space, similarly rated stimuli cluster

and dissimilar stimuli separate. The reader can refer to [7], [8]

for more details. The current consensus in the literature [7],

[9], [10] is that tactile perception of surfaces can be com-

pressed down to three to five perceptual dimensions, with axes

roughly aligned with the rating dimensions of micro and

macro roughness/smoothness, hardness/softness, stickiness/

slipperiness, and coldness/warmness. The perceptual dimen-

sions obtained for any particular study, however, depend

highly on the selected set of surfaces.

Although the above approach gives a general understanding

of how humans make perceptual judgments about surfaces, it is

inadequate to explain the fundamental relationship between the

tactile information elicited from the finger-surface interaction

and the resulting perception. Revealing this relation is also cru-

cial for many applications, such as robot perception [11], [12],
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[13], product design [14], and haptic rendering [15], [16], [17].

Despite the rich, complex, and unique information available

from finger-surface interaction, the existing literature has gen-

erally forgone interaction-specific analysis in favor of general

surface descriptors: most studies have sought correlations

between the derived perceptual space and each surface’s physi-

cal features (e.g., power spectral density, friction coefficient,

average power, spectral centroid, and compressibility) mea-

sured in a controlled condition (fixed speed and force) [18],

[19], [20], [21]. This approach oversimplifies the complex fin-

ger-surface interaction depending on user exploration, as peo-

ple modify their exploratory movements depending on both the

perceptual task and scanned texture to make better perceptual

judgments [22]. More importantly, some studies [18], [20],

[23] overlooked the importance of finger properties during

interaction and focused on surface properties measured via a

tool or specific machinery when correlating with a perceptual

space that was obtained via free finger exploration.

Here, we aim to understand the fundamental relationship

between the tactile information obtained from unconstrained

finger-surface interaction and human perception. Specifically,

we are interested in which of and to what extent common signal

features (e.g., average power, spectral centroid, friction coeffi-

cient) calculated from free finger-surface interactions play a

role in human perceptual judgments. Since the values of these

features change with normal force and scanning speed [15],

relating them to perceptual judgments is not straightforward for

free exploration. To address this challenge, we first propose a

methodology that enables both the conversion of finger-surface

interaction signals into a distribution of features and the calcula-

tion of the distances between feature distributions from differ-

ent surfaces based on perceptual similarities rated by humans.

Then, based on this methodology, we present general and par-

ticipant-specific models that can predict the perceptual similar-

ity of two surfaces from their corresponding finger interaction

signals. The model parameters and predictions suggest relevant

physical features and their weighted roles in human texture

perception.

The results indicate that our model is able to predict

the perceptual judgments for surface dissimilarities with

moderate accuracy despite the great variety in the measured

fingertip-surface interactions for the same surface, person,

and interaction. We also found evidence that people weigh

features differently, suggesting they employ individual men-

tal models when distinguishing surfaces.

II. METHODS

We tested our approach on perceptual and interaction data

collected from a previous study by Vardar et al. [21]: human

participants explored pairs of textures drawn from a set of ten

and rated each pair’s similarity while their finger-surface inter-

action data were recorded (Section II-A). First these signals

were segmented into the two key exploratory procedures used

by participants, tapping and sliding. Then, we partitioned

these segmented physical signals into overlapping windows

and extracted simple features from each window, resulting in

feature distributions for each surface (Section II-B). Finally,

we projected these features into a low-dimensional space such

that the distances between pair-wise feature distributions

match the perceived surface-pair dissimilarities (Section II-

C); the models and optimization procedure were implemented

in PyTorch (Section II-D).

A. Data Collection

The data were collected via psychophysical experiments

whose details were previously described [21]. As the physical

data presented in this study were not analyzed before, we sum-

marize the details of the experiments in this section.

Seven women and three men with an average age of 28.5

years (SD: 4.14) participated in the experiments. The experi-

mental procedures were approved by the Ethics Council of the

Max Planck Society. All participants gave informed consent.

The ones who were not employed by the Max Planck Society

were compensated at a rate of 8 EUR per hour.

Ten surfaces from the Penn Haptic Texture Toolkit [24]

were used as stimuli; the selected surfaces vary in material

properties, resulting in a haptically diverse stimulus set

(Fig. 1). During the experiments, the participant sat in front of

two surfaces (Fig. 2(a)). A black divider was placed between

the participant and the surfaces, and the participant wore

noise-canceling headphones to mask auditory cues. These

interventions ensured that the participants used only haptic

cues during the experiment. Each surface was placed on top of

a force sensor (Nano 17 Titanium, ATI Inc.). The contact

force vector, contact torque vector, and finger acceleration

vector were measured during experiments. The force and tor-

que data were collected by a data acquisition board (PCIe

6323, NI Inc.) with a sampling rate of 10 kHz. Two custom-

built digital accelerometer boards (MPU-9250, Invensense

Inc.) were placed on the index fingernails of both hands of the

participant. The accelerometer data were collected via a

micro-controller (ATmega32U4, Atmel Inc.) with a sampling

rate of 4 kHz. The scene was recorded from above by a high-

resolution camera (C920, Logitech Inc.)

In the experiment, each surface pair was placed on the force

sensors by taping them to the holders at the edges. After this

preparation, the participant was alerted with a sound. They

then freely explored the two surfaces for 5 seconds using only

their index fingers. Another sound indicated it was time to

remove their fingers from the surfaces. Then, the participant

Fig. 1. The ten surfaces used for the study.
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rated the similarity of the pair of surfaces using a nine-point

scale. All 45 possible pairs of surfaces were presented twice,

with each surface in the pair appearing once on the left and

once on the right. Each participant touched the pairs in a dif-

ferent random order. Before each experiment, the participants

were given instructions and asked to complete a training ses-

sion. The training session included one very similar pair (stone

tile and leather), one very dissimilar pair (metal foil and car-

pet), and three random pairs. The very similar and dissimilar

pairs were selected based on preliminary experimental results.

In total there were 95 trials (5 training + (45 pairs � 2 loca-

tions)). Each participant completed the experiments in two

sessions separated by a ten-minute break. The duration of the

experiment was about 90 minutes.

B. Fingertip Interaction Features

As opposed to previous studies [18], [19], [20], [21], [25],

[26], which represented textures as average features calculated

from data collected in controlled conditions, we parse the

interaction signals collected in each trial into smaller segments

and then calculate features from them. As a result, we obtain a

fine-grained distribution of features representing the interac-

tions of each participant with each surface.

1) Segmentation: We compute two types of segments cor-

responding to the two key exploratory procedures used by par-

ticipants: tapping and sliding. We define a tap as the moment

when contact is initiated between the fingertip and surface, and

we define a slide as a period of sustained tangential movement

by the fingertip on the surface. To compute the tapping and slid-

ing segments, we first transform the raw force-torque data into

position and velocity (Fig. 2(b)) by assuming each fingertip

made point contact with the surface. The same technique was

used in previous studies [27], [28] to estimate the contact loca-

tion of a fingertip or a tool on a surface. Before the position was

computed, the force and torque signals were down-sampled to

2 kHz using MATLAB’s downsample function. They were

then low-pass filtered using a third-order Butterworth filter with

a cut-off frequency of 20 Hz to capture hand motions [15]. The

fingertip velocity vectors were calculated by taking the time

derivative of the fingertip position vectors. Given the filtered

velocity signals, we use MATLAB’s findpeaks function to

select potential taps. Only a peak that immediately follows a

region of no contact (exactly zero velocity) is considered a tap

peak.

We use the tap peaks to partition 2 kHz down-sampled force

and acceleration signals into tap segments and sliding regions

(Fig. 2(c)). The tap segment is defined as a 320 sample

(0.16 s) window starting from 19 samples before the peak.

These values were determined by preliminary screening of the

interaction data. Considerably shorter segments would not

have captured all the relevant information from a tap interac-

tion, whereas longer ones would have blended tap and sliding

interaction data. After computing tap segments, all remaining

non-zero velocity regions of the interaction are considered

sliding regions. Segments are extracted from slide regions by

scanning a 320 sample window (equal size to tap segments)

directly after tap segments until the end of the sliding region.

Each sliding segment was overlapped 90% with the previous

one.

2) Feature Calculation: Select features were calculated

from each segment of the 2 kHz signals to represent the three

fundamental perceptual dimensions of surfaces: hardness/soft-

ness, roughness/smoothness, and friction (sometimes called

stickiness/slipperiness) [9], [19]. Features describing surface

roughness/smoothness and friction were extracted from slide

segments, whereas a feature representing hardness/softness

was extracted from tap segments.

Our rationale behind choosing our particular set of features

is as follows: previous studies [29], [30] provide evidence

that the roughness dimension is composed of both macro and

micro roughness, and perceived roughness of the surfaces is

related to the intensity and spectral content of the vibrations

induced during fingertip sliding [11]. Hence, two metrics

were selected to represent the roughness dimension during

sliding segments: spectral centroid and vibration power.

These two metrics were computed for both the force sensor

and the fingernail-mounted accelerometer to enable compari-

sons between these distinct sources of information. The

three-axis force and three-axis acceleration signals were first

Fig. 2. (a) The experimental setup for data collection. A participant touches a pair of surfaces. The finger-surface interaction data is collected via force sensors
placed under each surface and accelerometers (indicated by “Accel.”) attached to each index fingernail. A camera records the scene from above. (b) Example of
calculated fingertip positions of one participant in one trial. The positions are calculated from the force-torque sensor data assuming each finger makes point con-
tact with its surface. (c) Segmentation process. The force (and simultaneously collected acceleration) data are partitioned into tap and sliding regions based on the
velocities of each finger. Each region consists of 320 samples, and each sliding segment overlaps with the former one 90%.
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each combined into one axis using the discrete Fourier trans-

form 3-to-1 (DFT321) method [31]. The spectral centroid

was computed by band-pass filtering the compressed signal

between 5 Hz and 400 Hz and then taking the fast Fourier

transform. For the vibration power, we further filtered the

same signals between 20 Hz and 400 Hz and then calculated

their average power.

The kinetic friction coefficient was selected as the metric to

represent slipperiness. For each slide segment, the kinetic fric-

tion coefficient was calculated by fitting a Coulomb friction

model to the unfiltered normal and tangential forces.

It has been previously shown that people can discriminate

the hardness of a surface from the vibration that occurs after

tapping on it with a tool [32]. Because the spectral centroid of

this vibration increases with the stiffness of the surface [15],

we chose it to represent hardness. Unlike the centroid

described above, this spectral centroid was computed during

tap segments from the force signal normal to the surface.

In summary, each sliding segment was represented by seven

features: finger speed (v), normal force (Fn), kinetic friction

coefficient (mk), and sliding power (P�) and spectral centroid

(C�) calculated from force sensor (�f ) and accelerometer (�a)
data, whereas each tapping segment was represented by one

feature: tap spectral centroid (Ctap) obtained from force sensor

data. Therefore, the interaction data collected from one finger

in each trial was reduced to the collection of seven þ one dif-

ferent features calculated from each sliding or tapping seg-

ment of the entire interaction.

C. Modeling Framework

Our method aims to learn the relationship between the fea-

tures extracted from the segments of raw tactile data and the

perceptual similarity ratings provided by the participants.

We do this by considering the set of segments extracted from

the left- and right-handed interactions as two discrete proba-

bility distributions. We learn a mapping from feature space

into a lower-dimensional embedding space such that the

distances between the pairs of embedded distributions agree

with the corresponding similarity ratings. We will first intro-

duce the problem definition and give a general overview of

the entire modeling pipeline in Section II-C1. We then

describe the details of the individual components of the pipe-

line. Fig. 3 shows a summary of the full pipeline.

1) Learning Problem: Let the set of all trials be denoted S
and the set of corresponding similarity ratings be denoted Y.
Given a single trial s 2 S with rating ys 2 Y, the left- and

right-handed interactions Ls and Rs with ls and rs segments,

respectively, can be represented by matrices XL;s 2 Rls�8 and

XR;s 2 Rrs�8, where 8 is the total number of features. Each

row of a matrix X contains the features calculated from a sin-

gle segment of that interaction and can be written as

XðiÞ ¼ fv; Fn;mk; Pf ; Pa; Cf ; Ca; Ctapg; (1)

where i denotes an arbitrary segment. If i is a sliding segment,

the feature Ctap (last vector element) is assigned zero. Other-

wise, the other seven features are assigned zero. Note that

interaction matrices X can have different numbers of rows/

segments.

Additionally, to learn a compact representation of the fea-

tures that more closely represents the human perceptual space,

we define a mapping function F : Rm 7!Rn from the

m-dimensional fingertip interaction feature space to an

n-dimensional embedding space. We will describe this map-

ping function in greater detail in Section II-C3. This mapping

function FðXÞ embeds each row of X as a unique point in Rn.

The projections of the left- and right-handed interactions

ðFðXL;sÞ; FðXR;sÞÞ can be represented as discrete probability

distributions gs and hs, with

gs ¼
Xls

i¼0

gidFiðXL;sÞ and hs ¼
Xrs

i¼0

hidFiðXR;sÞ; (2)

where g and h are non-negative vectors summing to 1 and

dFið�Þ is the Dirac delta function centered at the point indicated

Fig. 3. An arbitrary trial s is comprised of left- and right-handed interactions with different surfaces. The recorded 3D force (shown) and acceleration signals
are parsed into many segments over time. Features are then extracted from each of these segment such that each segment is represented as a single point XðiÞ

�;s 2
X�;s in multidimensional feature space. The two sets of points fXL;s;XR;sg are then mapped via the function F into an embedding space. The point sets are then
converted to probability densities gs and hs by assigning probability mass to each embedded point. The optimal transport distance W�

p ðgs; hsÞ is computed
between the left- and right-handed densities. Finally, the resulting distance ŷs is ranked relative to the distances of all other trials and compared to rankings of
the human similarity ratings. The functionF is optimized to maximize the Spearman’s correlation between distances and rankings.

708 IEEE TRANSACTIONS ON HAPTICS, VOL. 15, NO. 4, OCTOBER-DECEMBER 2022



by the i-th row of FðXÞ. Then, ŷs 2 Ŷ :¼ fŷs 8 s 2 Sg is

defined as the distance between probability distributions gs

and hs for the specific trial s. Specifically, we use the Wasser-

stein distance function, which we describe in Section II-C2.

Given this notation, the learning problem can generally be

described as optimizing a parameterized mapping function F
that maximizes the correlation between Y and Ŷ. Because Lik-
ert scales provide qualitative, ordinal data, we are specifically

interested in maximizing the rank correlation between Y and

Ŷ. This is called the Spearman’s correlation, and it can be

defined specifically for this problem as

rspðŶ;YÞ ¼
covðrgŶ; rgYÞ

srg
Ŷ
srgY

; (3)

where rgŶ and rgY are the rank variables of Ŷ and Y,
covðrgŶ; rgYÞ is the covariance of the rank variables, and srg

Ŷ
and srgY are the standard deviations of the rank variables. We

implement a differentiable ranking function that is described

in Section II-D.

2) Regularized Wasserstein Distance: To compute the

distance between probability distributions, we use the

p-Wasserstein distance, which is the solution to the tradi-

tional optimal transport problem and essentially measures

the minimum cost of transporting the mass from one proba-

bility distribution to another in a metric space [33]. Although

there are other popular methods of measuring the similarity

between probability distributions, such as the Kullback–Lei-

bler (KL) and Jensen-Shannon divergence, we chose the

Wasserstein metric because it is symmetric (unlike KL-

divergence), can be computed on distributions that do not

share a support set, and has usable gradients over the entire

support set [34]. This distance can be extremely costly to

compute for both continuous and discrete distributions.

Thus, we use the entropy-regularized p-Wasserstein distance,

which approximates the true Wasserstein distance but admits

a simpler solution that can be computed orders of magnitude

faster using GPUs [35]. Given two discrete measures g and h

with G and H (in our case ls and rs) support points,

respectively, the discrete, entropy-regularized p-Wasserstein

distance with regularization parameter � is defined as

W�
p ðg; hÞp ¼ min

T�0
trðDp T>Þ � 1

�
hðT Þ

s.t. T1 ¼ g; T>1 ¼ h;

with hðT Þ ¼ �
XG

i¼1

XH

j¼1

Ti;jlogðTi;jÞ: (4)

Dp 2 RG�H
þ is a matrix of distances with Dp

ij ¼ dðxi; yjÞp ¼
jjxi � yjjjpp and T 2 RG�H

þ is the discrete transport plan with

Tij the probability mass transported from gi to hj [35], [36].

T1 ¼ g and T>1 ¼ h are the marginal constraints on T . The
optimal T can be solved for using Sinkhorn’s fixed point itera-

tion. The black lines between points in Fig. 4 display the ele-

ments Tij of an example transport plan with a single element

highlighted in orange. More information about optimal transport

and the Wasserstein distance can be found in [33], and specific

details about the discrete Wasserstein distance with entropic reg-

ularization appear in [35], [36].

Given this probability metric, ŷs ¼ W�
p ðgs; hsÞ, where gs

and hs from Eq. (2) are the discrete probability distributions

defined over the embedding space for trial s.
3) Mapping Functions: We use two different types of

mapping functions F in our experiments to embed the features

extracted from the tactile data: affine maps and fully con-

nected neural networks. These two choices represent two dif-

ferent levels of embedding complexity, with the affine maps

having the simpler, more constrained embedding resulting

from fewer degrees of freedom compared to the neural net-

works. For the affine maps,

FafðXÞ ¼ uX> þ b; (5)

where u 2 Rm�n are the linear mapping parameters and b 2
Rn are the biases.

For the neural network, we employ a single hidden-layer

architecture with rectified linear unit (ReLU) activation func-

tions. The general structure is then

FnnðXÞ ¼ uðoÞ � ReLUðuðhÞX> þ bðhÞÞ þ bðoÞ; (6)

where uðhÞ 2 Rm�k and bðhÞ 2 Rk are the weights and biases

of the hidden layer with output dimension k and uðoÞ 2 Rk�n

and bðoÞ 2 Rn are the weights and biases of the output layer

with dimension n.

D. Implementation

All optimization of the parameters u of F was performed

using stochastic gradient descent and back-propagation with a

loss function of

LðuÞ ¼ 1� rsp; (7)

where rsp is the Spearman’s correlation from Eq. (3).

Fig. 4. Example transport plan between two sets of embedded points
ðFðXL;sÞ; FðXR;sÞÞ in 2D space. Two example points FðXðiÞ

L;sÞ and FðXðjÞ
R;sÞ

and their corresponding transport plan Tij are highlighted in orange. The
underlying probability mass distributions are shaded by blue and red behind
the individual points.

RICHARDSON et al.: LEARNING TO FEEL TEXTURES: PREDICTING PERCEPTUAL SIMILARITIES FROM UNCONSTRAINED FINGER-SURFACE INTERACTIONS 709



One difficulty of implementing this loss function is that com-

puting rank variables (e.g., rgŶ and rgY) is typically non-differen-
tiable. To address this issue, we use a regularized, differentiable

soft-rank function that approximates exact rankings [37]. The

soft-rank function uses regularization to trade off between a

more accurate ranking (smaller regularization) and a more

strongly convex (and continuously differentiable) optimization

(larger regularization).

The full optimization procedure was implemented in Python

and PyTorch. The built-in Adam optimizer was used with a

learning rate of 0.01 and default values for the remaining

parameters. The ranking of the Wasserstein distances was per-

formed using the soft-rank PyTorch implementation from

Blondel et al. [37] with a regularization of 0.1, a value which

provided a reasonable trade off between accuracy and convex-

ity in preliminary experiments.

We used the regularized 1-Wasserstein distance (with the

distance function dðxi; yjÞ the L1 norm) and computed it using

the auto-differentiable Sinkhorn implementation by Gabriel

Peyr�e1 with a regularization of 0.1 chosen from preliminary

experiments. Additionally, the two weight vectors g and h
from Eq. (2) were defined such that probability mass was dis-

tributed uniformly across all points in an interaction. That is,

for trial s with ls and rs segments, gs ¼ 1=ls and hs ¼ 1=rs.

III. MODELING PROCEDURE AND COMPUTATIONAL

EXPERIMENTS

Computational experiments were conducted to both evalu-

ate the performance of the method and to learn more about the

perceptual models of individual participants. As such, it was

important to balance model interpretability with performance.

With this goal in mind, we first compared the performances

of more complex, non-linear models with simpler affine mod-

els across a variety of embedding dimensions, demonstrating

that simpler, more interpretable models were sufficient.

We then trained simple models to test the generalizability of

the method to unseen participants and fine-tuned those general

representations to individual participants. We analyze and

compare the model structures to try to understand differences

between the general, “average” representations and the repre-

sentational perceptual structures of the individual participants.

Additionally, this analysis allows us to look at differences

between individual participants.

A. Constructing General Models

General models were trained in two distinct ways. First, we

ran a preliminary experiment to compare the performance of

neural networks and affine maps as a function of the embed-

ding dimension. We trained both types of models on data from

all participants. We used a small neural network architecture

of one hidden layer with eight nodes. We found that larger net-

works with a variety of regularization schemes and nonlinear

activation functions did not outperform the smaller models

(details shown in Section S1).

Second, we trained general affine map models on data from

a subset of participants and evaluated those models on unseen

participants. We did not perform this second training proce-

dure with neural networks because the neural networks’ slight

edge in performance in the first experiment did not outweigh

the greater interpretability of the affine maps. This finding is

explained in greater detail in Section IV-A.

1) Model Comparison: For the first case, five-fold nested

cross-validation was used to train preliminary comparison

models. To form the folds, the samples from each participant

were partitioned into five equally-sized, stratified groups, with

each group having a roughly equal distribution over the rat-

ings. Then, each of the five groups was added to a separate

fold. A single fold was held out of the training process for test-

ing, and a model was trained and evaluated on every possible

three-one split of the remaining four folds. Thus, there were

four models trained for each hold-out. Each fold was held out

as a test set, yielding a total of 20 trained models (4 per fold �
5 folds). For each training run the features were mean-cen-

tered for each participant independently using the data in the

three training folds.

2) General Affine Models: For the training procedure of

the general affine models, there were ten folds with each fold

containing all the data from a different participant. The same

process described above was performed, yielding a total of 90

trained models (9 per fold � 10 folds). In this case, the fea-

tures for each participant were independently mean-centered

using all their data.

In all cases, models were trained with a batch size of 180 for

200 epochs. The model state with the best validation perfor-

mance over the 200 epochs was kept. Additionally, the loss

was calculated on a per-participant basis and then averaged

over participants. The participant-wise loss differs slightly

from Eq. (7) and can be formulated as

LðuÞ ¼ 1� 1

jJj
X

j2J
rspðŶj;YjÞ; (8)

where J is the set of participants and Ŷj � Ŷ and Yj � Y are

the subsets of distances and ratings, respectively, for

participant j. That is, the Spearman’s correlation rsp was cal-

culated independently for each participant.

B. Participant-Specific Modeling

To measure how the perceptual representations of individ-

ual participants differed from the generalized representations

trained on other participants, we tuned general models to spe-

cific participants instead of training participant models from

random initial conditions. Specifically, the participant-specific

models for a particular participant were initialized using the

best-performing (on the validation set) of the nine general

models that were trained with that participant held out. To

train the participant-specific models, a participant’s data were

split into the same five folds used in the comparison model

training. The models were trained for 100 epochs instead of

200 while the rest of the training, validation, and testing1 https://github.com/gpeyre/SinkhornAutoDiff
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procedure remained the same. Features were mean-centered

using the data in the training folds.

IV. RESULTS

A. Model Type and Embedding Dimension

To measure the modeling performance as a function of

model type and embedding dimension, we trained and evalu-

ated neural networks and affine map models with outputs from

one to five dimensions using five-fold nested cross-validation,

as described in Section III-A1. Four models were trained for

each testing fold, and of those four models, the one that per-

formed the best on the validation set was then evaluated on

the test set. Thus, for every full training procedure, five mod-

els were evaluated, one for each fold. To account for the ran-

dom initialization of model parameters, the full modeling

procedure described above was performed ten times for each

embedding dimension and each model type. Thus, there are a

total of 50 (5 folds � 10 random model seeds) evaluated mod-

els of each type (neural net and affine map) for each embed-

ding dimension. The means and standard deviations of these

test set evaluations are shown in Fig. 5. To make the results

clearer, we show 1� LðuÞ instead of LðuÞ, which represents

the Spearman correlation r between the predictions and psy-

chophysical ratings. The baseline represents the loss on the

original features with no mapping, i.e., F ¼ 1.
As can be seen in Fig. 5, the ability to train an additional,

low-dimensional embedding represents a considerable increase

in performance for all values of embedding dimensionality.

Furthermore, the neural network models marginally outperform

the affine models, especially for a low embedding dimensional-

ity of 1. However, there seems to be no additional benefit of

adding further dimensions for neural network mappings. Given

that affine maps in general are more interpretable compared to

neural networks and that their performance saturates at an

embedding dimension of three, we exclusively learned affine

map models into three dimensions for our remaining

experiments.

B. Generalizability

To test the generalizability of the modeling method to

unseen participants, we trained affine maps into three dimen-

sions on a subset of participants and evaluated them on unseen

participants, as described in Section III-A2. Again, we analyze

the performance of the best models by evaluating only the best

validation model on the associated test fold (remember, each

fold is a single participant). However, evaluating only the top-

performing models could introduce bias if particular valida-

tion sets were always modeled more accurately than others.

Thus, we also measure the ensemble performance of all the

models trained for each test fold. Specifically, we compute Ŷ
for each of the nine models, normalize each Ŷ so that all dis-

tances are between 0 and 1, take the average across all Ŷ, and
then compute the Spearman’s correlation between the aver-

aged distances and the corresponding similarity ratings.

As above, we repeat the full modeling process ten times to

account for randomness in the initial model parameters. The

mean performances of the best validation models (G_best)

and the ensembles (G_ensemble) are shown in Fig. 6, with

error bars indicating the standard error of the mean.

Although the generalization performance differs substan-

tially by participant, the average performance across all partici-

pants is very similar to the performance of the 3D affine model.

Additionally, there is little change in performance between the

best and ensemble predictions. Participants 3, 7, and 10 are

modeled fairly well, whereas participant 6 is almost completely

unpredictable. This finding suggests that much of the informa-

tion about how most participants rated similarity is either not

captured by the model or not contained in the data at all.

Fig. 5. Mean and standard deviation of model performance vs. embedding
dimension by model type. The neural networks all have one hidden layer with
eight nodes. The baseline loss on the dataset with no feature mapping is indi-
cated by the solid black line.

Fig. 6. Means and standard errors of the best general (G_best), general
ensemble (G_ensemble), best participant-specific (P_best), and participant-
specific ensemble (P_ensemble) models.
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C. Participant-Specific Model Tuning

From each of the ten randomized runs, the best general

affine model for each participant hold-out was used as the

starting configuration to train participant-specific models.

Using this method, we can make direct comparisons between

the tuned models and the original general models. We measure

performance in the same way as above, evaluating both the

best validation model for each test fold and the ensemble pre-

dictions. The mean performances of the best tuned models

(P_best) and the ensembles (P_ensemble) are shown side by

side with the general model performance in Fig. 6.

In general, there is an improvement in performance when

the models are individually tuned to individual subjects, par-

ticularly for participants 4, 7, 9, and 10. The performance for

participant 3 is still relatively good, although there is no

increase in accuracy. While there is a minor improvement for

participant 6, the performance is still particularly poor. Again,

there is little difference between the accuracy of the best and

the ensemble models in most cases.

D. Model Analysis for Perceptual Characterization

One method of analyzing a simple affine model is to project

the original feature axes into the embedding space and mea-

sure the relative scales of the axes. Because the Wasserstein

distance depends on the distances between points in the metric

space, a feature axis with a larger scale contributes more to

the overall Wasserstein distance than a feature axis with a

smaller scale.

To compute the relative axis scales for a single model, the unit

vector along each feature axis can be projected into the embed-

ding space. The projected vector lengths can all be divided by

the magnitude of the longest vector to scale them between zero

and one. Different models can be compared by normalizing the

projected vector lengths for all models. This process was per-

formed for the general models trained with participant holdouts

and for the models that were tuned to specific participants. Fig. 7

shows the density estimates of the relative axis lengths by partici-

pant for the general (purple) and participant-specific (green)

models. We show the results for the ensemble of models as

Fig. 7. Distributions of normalized feature axis lengths by participant. Purple regions show distributions of normalized axis lengths for the trained general mod-
els by participant holdout. Dark green shows the distributions of normalized axis lengths for the fine-tuned participant models.
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opposed to only the best performing models. These are the same

models whose performance is plotted in dark purple and dark

green in Fig. 6.

There are some observable patterns across subjects and dif-

ferent modeling scales. Clearly, the tap spectral centroid

(Ctap) is consistently one of the largest embedded feature

dimensions, meaning it contributes more to the overall Was-

serstein distance than other dimensions. Conversely, the aver-

age vibration powers measured from both the force sensor

(Pf ) and accelerometer (Pa) are the smallest feature dimen-

sions. Thus, the average vibration power does not greatly con-

tribute to the Wasserstein distance. Additionally, for both

pairs of features that were computed from both sensors, the

feature computed from the accelerometer is always smaller

than the corresponding feature computed from force data.

Interestingly, the models seem to get less consistent when

they are tuned. For many features, the spread (height of the

densities) actually increases from the general to the tuned

models. This trend is most clearly demonstrated by the friction

coefficient (mk) and force sensor slide spectral centroid (Cf ).

V. DISCUSSION

In this paper, we tried to solve the unique problem of pre-

dicting human perception from individual haptic experiences

by aiming to understand the physical factors governing these

perceptual judgments. Specifically, we proposed a method

that predicts the perceived similarity of two surfaces from the

features extracted from the physical signals elicited during the

interaction. The results demonstrate that this method some-

what works on both general and participant-specific levels.

General representations learned on a subset of participants can

partially predict the perceptual similarities of unseen partici-

pants with accuracies ranging from low to high depending on

the participant. Analysis of the model structures provides a

method to interpret the weights of different haptic properties

in the perceptual similarity judgments of different people,

albeit with limited confidence due to the model performance.

A. Complex Versus Simple Models

A key question about this method is whether a simple model

is sufficient to capture the relationships between the tactile

features and similarity ratings. The results shown in Fig. 5

answer this question, demonstrating that simple affine models

are comparable in performance to more complex neural net-

works despite having fewer than half the parameters; the addi-

tional experiments in Section S1 confirm this finding. The

neural network models do perform marginally better, but the

small improvement demonstrates that the method is not pri-

marily limited by the model type, at least for this particular

dataset and choice of features.

The consistent performance as a function of the number of

embedding dimensions, particularly for neural networks, pro-

vides additional evidence that the performance limitations are

not due to the model architectures and that the Wasserstein

metric has large representational capacity across a number of

embedding dimensions.

Overall, the average performance reaches “only” levels of

r ¼ 0:4. One reason behind this moderate performance could

be the significant noise in the participant ratings. The partici-

pant agreement can be measured by computing the Spearman’s

correlation for each pair of participants over all 90 trials and

averaging, yielding an inter-rater agreement of 0.707 [21].

Thus, the consistency of ratings across participants likely pro-

vides an approximate upper bound on the modeling perfor-

mance. It is possible but highly unlikely that all the rating noise

can be explained by the data contained in each interaction, as

humans are imperfect perceptual machines subject to inconsis-

tency, distraction, and fatigue. Additionally, finding strong cor-

relations between surface properties and human perception has

been proven to be difficult. For example, Bergmann Tiest and

Kappers [38] had subjects order a set of surfaces by roughness

and found Spearman’s correlations from 0.4 to 0.8 (depending

on the subject) between the perceptual orderings and the physi-

cal roughness measures of the surfaces.

Another underlying reason for the moderate prediction per-

formance of our model could be its use of selected features.

Although we included the most common physical factors men-

tioned in the literature, the ones that we did not consider (e.g.,

thermal conductance, spatial finger deformation, or skewness

and kurtosis of the segments) may have significant effects on

similarity judgments. It is also possible that human tactile pro-

cesses do not estimate physical quantities but seek to estimate

statistical variations in the tactile signals. This hypothesis has

also been proposed for visual [39], [40] and audio [41] senses.

In a recent study [42], Metzger and Toscani trained a deep

neural network with unsupervised learning to reconstruct

vibratory signals elicited by human exploration of surfaces

using a tool. They found that the learned latent space could

classify different material categories similar to perceptual dis-

tances rated by human participants. If this is the case, it would

be advantageous to construct a mapping from this latent space

to the perceptual space without segmenting and calculating

physical features from the original tactile signals. This study

omitted that option as we wanted to find relations between

physical factors and perception.

B. Generalization and Specialization

By training models on subsets of participants and testing the

performance on unseen participants, we demonstrate that our

method can find an average perceptual representation across

multiple people that can reasonably predict the perceptual

similarity judgments of unseen participants. Tailoring these

general representations to individual participants suggests that

the perceptions of each participant differ uniquely from the

average but mostly can be captured by the tuned models.

Figure 6 demonstrates that the general models perform quite

differently depending on the participant. They perform excep-

tionally well for participants 3, 7, and 10, but perform terribly

for participant 6. This difference in performance likely indi-

cates that there is some consistency across participants in how

they judge similarity, but there are many differences that can-

not be explained in an average model. However, it is possible
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that participants 3, 7, and 10 all employ a more similar rating

strategy than the rest of the participants.

When the models are tuned, the accuracy improves most

significantly for participants 4, 7, 9, and 10. Participant 3 still

performs well even though the tuned models are not more

accurate. This result provides evidence that, at least for these

participants, a large part of their perceptual similarity judg-

ments can be explained by the simple models and features that

we used. It is particularly interesting that participants 4 and 9

improve quite clearly. It is possible that each of them relies

primarily on the features that we included, but they treat them

differently from all the other participants.

There are a variety of possible explanations for the compar-

atively worse performance on the other participants. For

example, they may have relied more heavily on tactile signals

that were not captured in our small feature set. As mentioned

before, one feature in particular that was not included was the

thermal conductivity of the surfaces. Temperature perception

could have been a dominant cue in many cases, particularly

for surface pairs that included aluminium [43]. Other explana-

tions could be that these participants used unique strategies to

determine similarity or were inconsistent in applying their

strategy. An example strategy could be to consider a surface

pair very dissimilar if it differs dramatically in only a single

dimension. An alternative strategy could be to consider a sur-

face pair as similar unless it dramatically differs across multi-

ple dimensions. Our method does not currently account for the

use of different strategies, although we will discuss how this

might be addressed in Section V-D.

C. Inferring Perceptual Structure

The main benefit of using affine maps instead of neural net-

works is that their simplicity allows us to interpret the learned

models and draw inferences about the participants’ tactile per-

ceptual representations. We focus on comparing the relative

scales of the original feature axes projected into the learned

embedding spaces. Despite the large amount of variance in

perception that is not captured by our models, we propose that

the larger features can be interpreted as more perceptually rel-

evant. Given this assumption, it is immediately clear that,

overall, the tap spectral centroid (Ctap) is a relevant feature.

There are typically many fewer tap segments than slide seg-

ments, which means that much less probability mass is

assigned to the tap segments overall. The large relative scale

of Ctap demonstrates that despite the low mass, the tap seg-

ments provide unique information and are very important in

modeling similarity. This holds true across all participants in

both the general and tuned models. Considering the large vari-

ety in hardness of the selected surfaces (Fig. 1) and that every

trial started with a tap, it is indeed reasonable that hardness-

relevant cues played an important role in similarity judgments.

Friction (mk) and the slide spectral centroid (Cf ) are also

relatively important compared to other features. Interestingly,

a recent study [17] also found these features correlated with

the two main axes in the perceptual space of fine textures cre-

ated on friction modulation displays. Hence, the results

suggest that friction and the slide spectral centroid could be

relevant physical parameters for surface perception via direct

fingertip touch.

On the other hand, both average vibration power features

(Pf and Pa) are consistently the smallest of the features, with

Pa being especially small. This means that these features did

not contribute substantially to the distance between surface

pairs. Thus, it is unlikely that the participants considered

vibration power a relevant cue when measuring the similarity

of the selected surfaces. Nonetheless, earlier studies [18], [19]

found that vibration power correlated with one of the main

perceptual dimensions. A likely reason for this discrepancy is

the difference in data collection. In both of these earlier stud-

ies, the physical interaction data was collected via a tool,

whereas we analyzed data that occurred during finger-surface

interactions. The variety of selected surfaces and the range of

motions used could also contribute to this discrepancy.

Interestingly, both features computed from the accelerometer

(Pa and Ca) are typically smaller than their counterparts com-

puted from the force sensor (Pf and Cf ). This likely means that

the force sensor mounted rigidly to the surface more accurately

captured the fingertip-surface interaction than the accelerome-

ter mounted to the fingernail; it is possible that the accelerome-

ter data is even confounding. Due to the complex mechanical

properties of the human finger and the fact that vibrations do

not travel well from the fingerpad to the fingernail [44], [45],

the vibrations transmitted to the accelerometers likely differed

substantially from those measured at the force sensors. Addi-

tionally, the limited sensitivity and noise susceptibility of the

fingernail-mounted accelerometers compared to the force sen-

sor could cause this discrepancy in sensor relevance.

For many features, the height of the densities (i.e., the spread

of relative feature scales) actually increases from the general to

the tuned models. However, we believe that the increase in

spread is caused by the much smaller amount of data on which

the tuned models are trained and the high variance in the data

across folds. With more training examples for individual partic-

ipants, the models would likely become more uniform and the

feature densities narrower.

There is visible variability in the features that different par-

ticipants relied on when making similarity judgments (Fig. 7).

For example, participant 4 seems to consider friction (mk) as

highly relevant compared to the other participants. Addition-

ally, the narrower densities of many features in the tuned mod-

els could explain why the performance increases dramatically

from the general to those tuned models; participant 4 models

similarity in a predictable way, but somewhat differently from

all the other participants. Participant 9 also has tuned model

distributions that differ substantially from the general models,

particularly with regard to the velocity (v) and slide spectral

centroid (Cf and Ca). On the other hand, participants 3, 7, and

10 have tuned model distributions more similar to the corre-

sponding general model distributions, meaning that the gen-

eral model was able to explain these participants’ perceptual

similarity judgments as well as possible with the given data.

Nonetheless, it is difficult to conclude much about the par-

ticipants for which the modeling does not perform well. The
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predicted models of these participants could be accurate repre-

sentations of their perceptual structure within the limitations

of the used dataset. The poor prediction performance of their

models could be explained by their inconsistent rating strate-

gies among different surfaces. It is also possible that they

relied on other tactile cues not presented in the data (e.g., ther-

mal conductivity, stickiness, absorbency).

D. Limitations, Future Directions, and Potential Applications

Our method performed moderately for predicting general

perceptual representations and better for some individual par-

ticipants. This work has several limitations and sources of var-

iability that we believe limited the potential performance;

many of these factors could be individually addressed in future

experiments.

The dataset has a limited number of participants who each

made a limited number of surface comparisons. Likely, with

more participants, more surfaces, and more surface compari-

sons, there would be less noise in the similarity ratings, and it

would be possible to learn more predictive models. Addition-

ally, the participants never compared two of the same surface.

Comparing identical surfaces could provide valuable informa-

tion about the consistency of user ratings as well as a powerful

comparison that the model might have been able to use to

more strongly cluster similar surfaces.

We used a limited set of haptic features to represent the fin-

ger-surface interactions. While these features do correspond to

primary tactile perceptual dimensions, it might be that second-

ary properties also contribute to similarity perception. As men-

tioned earlier, surface thermal conductivity was not included.

There are additional vibration-related features, such as the

spread or skewness of the frequency spectrum [12], that we did

not include, and that could be included in future studies. Addi-

tionally, there is some evidence that not only temporal but also

spatial features of surfaces play a role for perception during

both static and dynamic exploration [5], [46]. As explained ear-

lier, it is also possible that human similarity judgments do not

rely on estimation of physical quantities but rather solely on

statistical variations in the tactile signals [39], [42]. In the

future, this hypothesis can be tested by implementing unsuper-

vised learning methodologies on unsegmented tactile signals

elicited from finger-surface interactions.

Our method did not account for the possibility that people

can use varying strategies to judge surface similarity. However,

we believe that with minor changes this method could be

extended to account for at least some strategic variance. The

opportunity to provide strategic diversity lies in how probabil-

ity mass is assigned to individual interaction segments, specifi-

cally how the vectors g and h are defined in Eq. (2). As

described in Section II-C2, we assigned mass uniformly across

all segments. Because segments are sampled using discrete

time windows, this means that low-velocity regions of the inter-

actions automatically have a higher concentration of probabil-

ity mass than high-velocity regions and thus contribute more to

the Wasserstein distance. As a strategy, this could be described

as participants weighing regions of low-velocity more heavily

than others. However, normalizing the probability mass assign-

ment by velocity (low-velocity segments have lower mass and

high-velocity segments have higher mass) represents a differ-

ent strategy where unique regions of the feature space are

weighed independently of the velocity. These are just two

examples, but there are many more strategies that can be cap-

tured by modifying the probability mass assignment.

Overall, our method was able to model similarity judgments

of many participants with moderate accuracy. The general

model performances demonstrate that similarity judgments are

extremely complex, and more information and method flexibil-

ity are necessary to capture judgments more accurately. How-

ever, even with our limited number of features, small model

size, and simple mass-assignment strategy, we did find some

consistent patterns explaining similarity judgments. By tuning

models to specific participants, we found that the judgments can

be explained more accurately in many cases. We believe these

initial results are promising for the utility of this method to

explain complex perceptual processes and how different people

weigh various tactile features; future experiments could more

precisely test how individual participants use different features.

Moreover, given surface-finger interaction data or computed

features from two different surfaces, our model can give a good

approximation of the perceived similarity of these two surfaces

without the need for time-intensive perception experiments.

In general, we believe our approach can help derive a deeper

understanding of human tactile perception that can be applied

across multiple domains. For example, by considering which

tactile properties are relevant in an individual’s texture preferen-

ces, recommender systems could suggest particular clothing or

other textured objects. These properties could be captured by a

haptic robot that learns what exploratory procedures most effi-

ciently elicit the relevant data. Alternatively, haptic rendering

systems could generate more realistic virtual textures by altering

specific characteristics of the haptic output to better match the

patterns seen in real textures over short time windows.
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