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Wrapping Haptic Displays Around Robot Arms to Communicate Learning
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Abstract—Humans can leverage physical interaction to teach
robot arms. As the human kinesthetically guides the robot
through demonstrations, the robot learns the desired task. While
prior works focus on how the robot learns, it is equally important
for the human teacher to understand what their robot is learning.
Visual displays can communicate this information; however, we
hypothesize that visual feedback alone misses out on the physical
connection between the human and robot. In this paper we
introduce a novel class of soft haptic displays that wrap around the
robot arm, adding signals without affecting that interaction. We
first design a pneumatic actuation array that remains flexible in
mounting. We then develop single and multi-dimensional versions
of this wrapped haptic display, and explore human perception
of the rendered signals during psychophysic tests and robot
learning. We ultimately find that people accurately distinguish
single-dimensional feedback with a Weber fraction of 11.4%, and
identify multi-dimensional feedback with 94.5% accuracy. When
physically teaching robot arms, humans leverage the single-
and multi-dimensional feedback to provide better demonstra-
tions than with visual feedback: our wrapped haptic display
decreases teaching time while increasing demonstration quality.
This improvement depends on the location and distribution of
the wrapped haptic display.

Index Terms—Haptic Display, Learning from Demonstration,
Tactile Devices

I. INTRODUCTION

Imagine teaching a rigid robot arm to clean objects off a
table (see Figure 1). One intuitive way for you to teach this
robot is through physical interaction: you push, pull, and guide
the arm along each part of the task. Of course, the robot may
not learn everything from a single demonstration, and so you
show multiple examples of closing shelves, removing trash,
and sorting objects. As you kinesthetically teach the robot you
are faced with two questions: i) has the robot learned enough
to clear the table by itself and ii) if not, what features of the
task is the robot still uncertain about?

While existing work enables robots to learn from physical
human interaction [1]–[4], having the robot effectively pro-
vide real-time feedback to human teachers remains an open
problem. Ideally, this feedback should not be cumbersome or
distracting (i.e., the human must be able to focus on guiding
the robot) and should be easily interpretable (i.e., the human
must be able to clearly distinguish between signals). These
requirements present a tradeoff for haptic feedback as human
fingertips provide the densest mechanoreceptors, but placing
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Uncertain (inflate)

Confident (deflate)
How do I 

do this

part of the 

task?

Figure 1. Human physically teaching a robot arm. We wrap a soft pneumatic
display around the arm and render haptic signals by controlling the pressure
of the display. The robot learner leverages this haptic display in real-time to
communicate the parts of the task that it is confident about, as well as the
parts where it is uncertain and needs additional guidance.

rigid devices at the hand will impact task performance. Re-
cent research has created communication channels by instead
wrapping haptic devices around the human’s arm [5]–[7], but
locating feedback at unrelated locations on the human’s body
can create a disconnect with the task.

Our insight is that — instead of asking the human teacher
to wear a feedback device or watch a computer monitor —

We can take advantage of the preexisting physical contact
between the human and robot through slim form-factor soft

haptic displays that wrap around the robot arm.

Accordingly, in this paper we develop and analyze wrapped
haptic displays for communicating robot learning based on soft
robotic principles. We distribute these soft displays along rigid
robot arms so that the human can physically interact with the
robot to demonstrate a task while simultaneously perceiving
the robot’s feedback. We actively control the pressures of
the pneumatic display to render where in the task and what
features of the task the robot is uncertain about: the display
inflates for regions and features of the task where the robot
is unsure about its actions (and needs additional human
teaching), and deflates where the robot is confident about
the task (and does not need any additional human guidance).
Our hypothesis is that — because the soft wrapped display
creates a channel for communication on any surface without
impacting the task — humans will be able to more intuitively
and robustly use this feedback with a greater level of focus
compared to other feedback modalities. We experimentally
demonstrate that this pressure-based feedback enables humans
i) to determine whether the robot has learned enough to be
deployed and ii) to identify parts of the task where kinesthetic
teaching is still required. Additionally, we demonstrate the
importance of the location and distribution of the feedback on
the robot arm for creating this improvement. An interface that
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provides such intuitive and robust feedback about a robot’s
latent state in real time could potentially be introduced to
factory settings that feature learning systems. Such displays
would allow everyday workers with no programming or robot-
related training to interact with learning systems.

Parts of this work were previously published in [8], which
presented the experimental results for our one degree-of-
freedom (DoF) haptic display. This current paper builds on that
initial research by demonstrating the design, analysis, and ap-
plication of multi-DoF spatial signals localized or distributed
along the robot arm, as well as a follow-up analysis of the
1-DoF device. Overall, we make the following contributions:

Developing Wrapped Haptic Display. We design and build
a compliant pneumatic haptic device that wraps around and
conforms to the robot, providing haptic stimuli that are local-
ized to the robot arm and distributed along its geometry. This
device is manufactured using soft, flexible pouches that render
haptic signals through pressure.

Measuring User Ability to Perceive Wrapped Displays. We
perform a psychophysics study to find the range of pressures
that humans can distinguish. We report the just noticeable
difference (JND) for pressures rendered by the soft display.

Applying Wrapped Displays to Communicate Learning.
We ask participants to kinesthetically teach a robot arm while
the robot provides real-time feedback about its learning. We
map the robot’s uncertainty to the pressure of our wrapped
display. Compared to a graphical user interface, wrapped
haptic display feedback leads to faster and more informative
human teaching, and is subjectively preferred.

Extension on Wrapped Displays to Multiple Degrees of
Freedom. We generalize the wrapped display design to create
multi-degree of freedom displays. These displays can be
configured to fit different robotic manipulator geometries and
to change the interconnections between pouches.

Measuring Effect of Display Distribution on User Percep-
tion. We perform a psychophysics study to understand how
the spatial distribution of the wrapped haptic display signals
affects the accuracy and speed of signal identification. We
demonstrate a tradeoff between speed of identification and
accuracy as signals are spread further apart.

Measuring Effect of Display Distribution of Multi-Degree
of Freedom Displays for Communicating Learning. We
repeated the kinesthetic teaching task with three degree of
freedom displays, confirming that users still improve demon-
strations over baseline as signal complexity increases. When
comparing different options to distribute feedback in 3-DoF
displays, users performed better with and subjectively pre-
ferred wrapped display layouts where all feedback was dis-
played the small area where contact was already occurring
instead of distributed in larger areas along the robot arm.

II. RELATED WORK

In this paper we introduce a wrapped haptic display for
communicating robot learning in real-time during physical
human-robot interaction. We build on previous research for
kinesthetic teaching, haptic interfaces, and soft displays.

Kinesthetic Teaching. Humans can show robot arms how to
perform new tasks by physically demonstrating those tasks
on the robot [1]–[4]. As the human backdrives it, the robot
records the states that it visits and the human’s demonstrated
actions at those states. The robot then learns to imitate the
human’s actions and perform the task by itself [9]. One
important output of the learning process is the robot’s un-
certainty about the task. The uncertainty can be measured
as the robot’s overall confidence in what to do at different
states [10], [11], or also measure the robot’s confidence on
how to perform the task [12]–[15]. In this paper we explore
how robots should communicate their learning uncertainty
back to the human teacher. Keeping the human up-to-date
with what the robot has learned builds trust and improves
teaching [16]. Outside of physical human-robot interaction,
prior research has developed multiple non-haptic modalities
to communicate robot learning and intent: these include robot
motion [17], graphical user interfaces [18], projections into
the environment [19], and augmented reality headsets [20].
Within a teleoperation domain, our recent work suggests that
haptic interfaces are particularly effective at communicating
low-dimensional representations of robot learning [6]. Here
we will leverage these results to develop a real-time feedback
interface specifically for kinesthetic teaching.

Haptics for Information Transfer. When using haptics to
communicating features of robot learning, the type of infor-
mation being transferred is important to consider. While haptic
devices have a general goal of stimulating the human sense
of touch, haptics has also been applied to communicate robot
intent or similar social features. For instance — when studying
how humans and robots should interact in shared spaces —
prior works have used haptics to explicitly convey the robot’s
intended motion or actions [5], [21]–[23]. Recent work has
shown that, given appropriate context, complex human-to-
human social touch signals, like stroking [24], [25], hugging
[26], dancing [27], and emotional communication [28]–[30],
can be replicated and understood in a wearable format. Some
other work has shown the use of haptic interfaces for high
information tasks, like assisting navigation through rendering
patterns with a certain meaning [31] or using haptic signals
to reduce the distraction from visual displays in human-
robot collaborative task scheduling [32]. Lastly, work has
shown communicating alerts with different urgency levels in
car driving [33], [34] and communicating contact events in
teleoperation and AR/VR through hand-held haptic devices
[35], [36]. These past works suggest that a wide range of
social and collaborative information can be transferred using
haptics with appropriate design of the interface and signals.

Soft Haptic Devices. Soft haptic devices offer an attractive op-
tion for human-robot communication due to their compliance
and adaptability, through the flexibility of the interface or the
compliance of the actuators. A range of compliant actuation
types have been use for haptic devices: pneumatic actuation
[37]–[39], shape memory alloys [25], dielectric elastomers
[40], and fluidic elastomers [41]. Soft wearable fingertip
devices have targeted a range of stimuli in the skin [42], such
as vibrations [43]–[45], indentation [46]–[48], skin-stretch
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[49], [50], or combinations of those [51]–[54]. Soft haptic
approaches scale easily to increased areas of stimulation;
haptic surfaces using arrays of actuators and sensors show
scaling to fit varied areas. These developments have typically
used rigid elements, such as NFC electronics [55], thin-film
strain sensors [56], and piezo films [57], embedded in cloth
and silicone layers to create bi-directional interfaces. These
rigid elements can limit the flexibility of the device, and lead to
issues with wear over time and comfort. Some tabletop haptic
displays have used pneumatically actuated soft composite
materials [58] or pneumatic actuation with particle jamming
[59] to control the shape and mechanical properties of surfaces,
leading to complex signals and comfortable interaction.

Soft haptic interfaces also support a range of device types
distinguished by method of interaction: graspable, wearable,
or touchable [60]. This method can have a large impact on the
usability of the devices. Fingertip worn devices provide high
fidelity and interpretable signals [42], [45], [51]. These devices
are popular for virtual reality where physical contact with the
real world is unlikely; in other applications they can reduce
the user’s ability to use there hands. This motivates wearable
devices for other body areas, such as hand dorsal [61], [62],
wrists/forearms [25], [37], [38], or gloves that cover the whole
hand [63]. Our recent work has demonstrated the use of inflat-
able pouches to create wearable haptic interfaces that provide
feedback to humans in the form of distributed spatial inflation
[39]. Placing haptic signals directly on the human body enables
the human to move about the space while receiving real-time
feedback; but, as feedback is moved away from the fingertip
and physically separated from the task, it potentially requires
additional mental energy to decode the intended message.
A different approach has focused on developing touchable
haptic surfaces consisting of arrays of actuators and sensors
[55]–[57]. These devices use the fingertip mechanoreceptors
without burdening the user’s hands. Soft touchable displays
allow installation of haptic interfaces in common touch areas,
like car steering wheels [33]. While not a haptic display, recent
work showed pneumatic actuators wrapped around robot arms
to visualize the weight load carried by the robot [64]. Based on
this past work, we target a touchable device placed at the point
of human-robot interaction, and use soft pneumatic actuation
to maximize the flexibility and transparency of the display.

III. DEVELOPING A WRAPPED HAPTIC DISPLAY

We first aim to design a soft haptic display that can wrap
around a robot arm, conforming to the surface and adding
a haptic interface to existing points of contact between the
human and robot. This section describes the identification of
three critical requirements (low volume, fast inflation, and
textured surface). With these requirements, we outline two
designs built on the same underlying principle: a 1-DoF
display with a large contact area and a N-DoF design with
multiple, reduced-width, "ring" sleeves. Finally, we describe
the how these wrapped haptics displays were implementated.

A. Requirements
While designing the wrapped haptic display concept we

considered three key requirements to improve operation and

the haptic sensation: low volume, fast inflation, and textured
surface. First, the display should function without using large
volumes of air or static materials, keeping the display flexible
enough to easily wrap around objects like the robot arm.
Limiting the volume of air also aids in fast inflation and
deflation, allowing faster changes in the produced signals.
Additionally, we aimed to create an inflatable surface with
textured tactile sensations. We believe that a textured surface
helps users to quickly identify pressure changes in the display
by exploring surface features.

B. Soft Haptic Display Concept

To address these requirements, we use thin, heat-sealable,
and inextensible materials that are formed into air-tight
pouches and heat-sealed with patterns. The heat sealed patterns
subdivide the bag, limiting the volume, adding texture, and
keeping the surface flexible when inflated. The final design
consists of an array of 2.54 cm square-shaped cells patterned
into a low-density polyethylene (LDPE) plastic tube, sealed
using a linear heat sealer (H-89 Foot-Operated Impulse Sealer,
ULINE). A repeated and homogeneous pattern with gaps in the
seals between cells allows for smooth and fast inflation. The
square-array design is shown in Figure 2 in two form factors.
The dimensions and shape of the display can be varied to fit
different applications and surfaces. A unit of a soft wrapped
haptic display consists of one or more pouches attached to the
same pressure source, forming a degree of freedom (1-DoF).
Multiple degrees of freedom can be attached together to form
an N degree of freedom (N-DoF) display. Given this general
description of the soft haptic display, we will next describe
the specific 1-DoF and 3-DoF displays used in testing.

C. Large Surface Display

The 1-DoF soft wrapped haptic display was made from a
set of three connected pouches made from a 10.16 cm flat-
width LDPE tube (S-5522, ULINE). The LDPE tube matched
the length of one section of a UR-10 robotic arm (40.64 cm).
The heat-sealed lines are 1.27 cm long, alternated in rows and
columns to create the 2.54 cm-squares (Figure 2(a)). Through-
wall straight connectors (5779K675, McMaster-Carr) were
attached to one side of each bag strip to allow for individual
inflation. The display was made of three bags taped together
using viscoelastic adhesive tape (MD-9000, Marker Tape) to
construct a sleeve that matched, and entirely wrapped, the
cylindrical surface (Figure 2(a)-(c)). The bags were connected
using tee-adapters and inflated using a single pressure line (i.e.
a 1-DoF soft wrapped haptic display). The 1-DoF soft wrapped
haptic display can be inflated quickly; pressures above 1.5
psi (10.43 kPa) inflate in 0.86 seconds, the pressure can be
changed from 1 to 3 psi (6.89 to 20.68 kPa) in 0.72 seconds,
and deflate back to 1 psi in 0.18 seconds. The display can
operate to a maximum of 3.5 psi (24.13 kPa). Above that
pressure the heat-sealed edges begin to tear, producing leaks.

D. Multi-Degree of Freedom Display

We next increased the signal complexity while maintaining
the design requirements by building on the 1-DoF design. We
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Figure 2. Overview of the soft wrapped haptic display design. (a) Detailed view of square-cell array implemented in the 1-DoF sleeve display. The thick
lines indicate places where the LDPE plastic tube was heat-sealed. The sleeve is composed of 3 pouches taped together to form a sleeve with circumference
2πR. The sleeve display is shown (b) deflated and (c) inflated. (d) Detailed view of the square-cell array implemented in the 1-DoF ring display. Grouping
multiple individually-actuated pouches, placed side by side, forms a N-DoF wrapped haptic displays. A 3-DoF ring display is shown in two states: (e) deflated
and (f) one of the DoF (center) is actuated, while the others are deflated.

grouped multiple, individually-actuated pouches to form a N-
DoF wrapped haptic display, as shown in Figure 2(d)-(f). Each
pouch consisted of a 2.54 cm flat-width LDPE tube (S-11155,
ULINE), cut to fit the circumference (2πR) of a segment on
a robot arm and form a ring-shaped haptic display. Grommets
were placed in the ends of the displays, and elastic bands
tied the device around the cylindrical surface.The pattern is
modified from the 1-DoF displays to better fit the LDPE tub-
ing. The 2.54 cm square cell grid was achieved by heat sealing
1.7 cm long lines across the length of the tube, alternating sides
(Figure 2(d)). Silicon tubing (0.66cm OD) was attached to an
end of the individual ring display to inflate. For the studies in
Sections VI and VII, three ring displays were placed side by
side. Separation between pouches (1.9 cm) is added to assist in
making the identification of each DoF easier. Since the N-DoF
display segments cover a smaller area, it is easier to mount
them in different places of the robot arm. Additionally, since
the width of these displays is smaller than the 1-Dof sleeve
design, they have smaller volume when inflated and resist
higher pressures, producing faster inflation/deflation speeds.
These ring-shaped soft wrapped haptic displays can be inflated
to pressures above 1.5 psi (10.43 kPa) in 0.55 seconds, and
withstand a maximum of 5 psi (34.48 kPa). Switching from 1
to 3 psi (6.89 to 20.68 kPa) occured in 0.38 seconds, and the
display deflate back to 1 psi in 0.12 seconds.

E. Implementation

The haptic displays were mounted on cylindrical surfaces
for the studies outlined in the following experiments, either
sections of the robot arms or a PVC pipe acting as a stand-
in. The mounting arrangements fixed the wrapped display in
place, restricting it to 10% contraction. The basic pneumatic
control systems used to actuate the wrapped haptic displays
consisted of: (1) a pressure regulator that supplied an elec-
tronically controlled pressurized-air supply and (2) a pres-
sure release feature for deflating the displays. Two different
pressure regulators were used. A pressure regulator with built
in sensor and exhaust (QB3, Proportion-Air, McCordsville,
Indiana) was used for the studies outlined in Sections IV and
VI and was controlled using an Arduino Uno via MATLAB.

A different pressure regulator (550-AID, ControlAir, Amherst,
New Hampshire) was used for the remaining experiments,
controlled using the UR-10’s I/O controller (Section V) or
an Arduino Uno (Section VII). For this pressure regulator, the
inflation pressure was measured using an electronic pressure
sensor (015PGAA5, Honeywell Sensing, Gold Valley, Min-
nesota). If faster switching between inflation and full deflation
is needed, on-off solenoid valves can be implemented. It is
important to note that each 1-DoF device was connected to an
individual pressure supply. For the case of the 3-DoF display,
one can configure the device to effectively act as a 1-DoF
device by connecting the individual rings to a single pressure,
or have 3-DoF control if three pressure regulators are used.

IV. MEASURING HUMAN PERCEPTION OF 1-DOF
WRAPPED HAPTIC DISPLAYS

Understanding the human sensory perception of the soft
display, especially compared to rigid haptic displays, is essen-
tial in applying and controlling the wrapped haptic display.
To that end, we first conducted a psychometric user study to
measure the ability to distinguish display signals outside of the
context of the target scenario. Participants physically interacted
with the 1-DoF display and were asked to distinguish between
pairs of pressures. We studied the user’s ability to differentiate
inflation levels in the display to understand what pressure dif-
ferences produce clear signals. This experiment was previously
featured in greater detail in our previous work [8].

A. Experiment Setup

The 1-DoF inflatable haptic display was mounted on a PVC
pipe matching the diameter of the UR-10 (Section V), and
the pipe was secured flat to the table. A curtain blocked the
user’s vision, and users wore hearing protection to ensure the
perception study focused on tactile sensations (Figure 3).

The study was conducted as a forced-choice comparison
where participants were asked to identify the higher of two
pressures. Pressures were shown in pairs (i.e., reference pres-
sure, Po, vs. test pressure, P ), distinguished as “Pressure
1” and “Pressure 2”. We selected 2 psi (13.79 kPa) as the
reference pressure, and the test pressure values of 1.5, 1.75,
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Figure 3. Experimental Setup. The participants were instructed to sit at the
desk right in front of the curtain and put on hearing protection headphones.

1.875, 2.0, 2.125, 2.25, and 2.5 psi (10.34, 12.07, 12.93, 13.79,
14.65, 15.51, and 17.93 kPa). These pressures are within a safe
operating range for the display. We randomized the order in
which the pairs were shown to the participant, as well as the
order of reference and test pressure in each pair. As a note, in
some pairs the reference pressure and test pressure were both
2.0 psi to measure bias in participants’ choices when guessing.

The participants sat at the desk, and, before beginning the
experiments, we demonstrated the display function, allowing
participants to interact with it. Each experimental trial began
by inflating the display to “Pressure 1”. The participants were
told to interact with the display for an unrestricted period of
time and then release it. Then, the display was inflated to
“Pressure 2,” and the participants were asked to interact again.
Once they interacted with both pressures, we asked which one
felt like a higher inflation pressure. The subjects were not told
the correct answers. This procedure was repeated ten times
each for the seven test pressures. After completing the inter-
action portion, the participants were given a post-experiment
questionnaire asking about their overall study experience and
their previous experiences with haptic technology, robotics,
etc. The entire experiment took approximately 35 minutes,
with an optional break.

B. Results

A total of 10 participants (4 female, 1 non-binary, 5 male,
average age 20.6 years, age range 18− 23 years) participated
in this experiment after giving informed consent. Out of
the group, 9 participants were right-handed, and 1 was left-
handed. The Purdue Institutional Review Board approved the
study protocols. Figure 4 shows the subjects’ responses to
the experiment. Each dot shows the percentage of times the
test pressure was selected as higher when compared to the
reference pressure. The just noticeable difference (JND) was
calculated by first fitting a sigmoid function to the data:

q =
100

1 + e−k(P−Po)
(1)

where q is the modeled percentage of times the user chose the
test pressure (P ) as higher, k is the steepness factor for fitting
a sigmoid curve, P is the test pressure, and P0 is the reference
pressure. Using this fit, the JNDs are calculated by finding the
pressure value corresponding to the 75% threshold, P75, and

Subject responses
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Overall Sigmoid Fit
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Figure 4. Raw data and sigmoid function fit for the collection of responses
(orange) and each subject (grey). The percentages represent the proportion
of times subjects selected the test pressure, P , as higher. The JNDs were
calculated using the sigmoid function to solve for the pressure value corre-
sponding to the 75% threshold and subtracting it from the reference pressure.
The dots represent percentages associated with individual subject responses.
The k steepness factor for the overall sigmoid fit was 4.678, giving a JND
of 0.235 psi. The individual steepness factors ranged 2.477-11.15, with JNDs
varying between 0.099 and 0.444 psi (0.68-3.06 kPa).

subtracting the reference pressure, P0:

JND = P75 − Po = −1

k
ln

(
100

75
− 1

)
(2)

The sigmoid function was fit for each of the subjects, as well
as for the collection of responses from all subjects.

C. Analysis

The experimental results show that the k steepness factor
for the overall sigmoid fit (the orange line in Figure 4) was
4.678, with 95% confidence bounds between 3.605 and 5.751,
giving a JND of 0.235 psi (1.62 kPa). Individual JNDs ranged
0.099-0.444 psi (0.68-3.06 kPa). The mean JND was defined
as the mean of the values obtained for all participants, which
was found to be 0.228 psi (1.57 kPa) with a standard deviation
of 0.109 psi (0.75 kPa). The Weber fraction (WF), calculated
as the ratio of the JND and the reference pressure, ranged
between 4.9% and 22.2%, with a mean value of 11.4%.
Although there was no restriction on how the user could
interact with the display, multiple users reported using active
interaction to explore the display. This means that participants
used reactive force sensing to explore the dynamics of inflation
and determine how much pressure was used. Additionally,
users reported mainly using their fingertips. Previous studies
on fingertip psychophysics tests show similar results. Frediani
and Carpi [65] conducted psychophysical tests for a fingertip-
mounted pneumatic haptic display, reporting JNDs of 0.12-
0.33 psi (0.8-2.3 kPa) for pressures between 0.58 and 2.90 psi
(4 and 20 kPa), yielding a WF of 15%. A study evaluating
a haptic jamming display found fingertips WF to be 16%
(σ = 7.4%) and 14.3% (σ = 2.6%) for stiffness and size
perception, respectively [66]. A different study testing stiffness
perception for a rigid vibrotactile, fingertip-mounted haptic
device reported WF between 17.7 and 29.9% [67]. The JNDs
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and WFs obtained in this study show that our wrapped haptic
display produced detectable signals and matched previously
found psychometric baselines.

As mentioned in Section IV-A, the reference pressure was
shown against itself 10 times to measure subject’s bias. Sub-
jects overall showed unbiased behavior, choosing “Pressure 1”
45% of the time and “Pressure 2” 55% of the time. However,
two subjects had a large preference for choosing “Pressure 2”
(80% of the time when guessing). These subjects also scored
the highest WF, which may explain their higher bias when
guessing compared to the complete participant pool.

The qualitative data from the post-experiment questionnaire
shows that, besides the participants already mentioned (who
had the highest WF), no other participants struggled to identify
the pressures. A majority of the participants (7 out of 10)
agreed that they could detect the differences and that they were
sure about their answers. It is also worth noting that subjects
with the highest performance reported dexterity-related skills,
such as playing string musical instruments, piano, knitting, and
American Sign Language proficiency.

This study shows that the sensations produced by our
wrapped haptic display match the psychometric measures for
other haptic devices. Both quantitative and qualitative results
show that users were able to distinguish pressure changes over
time without a specific task context. Overall, we demonstrated
that the soft-wrapped haptic display can perform as well as
other haptic devices in displaying tactile signals.

D. Follow-Up Study

As timing became a significant factor during the later studies
in Sections V-VII, a follow-up study was conducted, replicat-
ing the experimental procedure with the addition of a graphical
user interface (GUI). The purpose of the GUI was to enable
participants to control the pace of the experiment without the
influence of the experimenter and to allow accurate recording
of the time spent exploring each pressure. By evaluating time,
we can better understand later result on timing and difficulty
of interpreting haptic signals.

A total of 12 participants (6 female, 0 non-binary, 6 male,
average age 21.9 years, age range 21− 23 years) participated
in the follow-up experiment after providing informed consent.
Due to technical difficulties in data collection, 2 participants
were removed from the study. 1 additional participant was
excluded from analysis as an outlier (performance equivalent
to guessing). Of the remaining 9 participants, 7 were right-
handed, and 2 were left-handed.

The results show a JND of 0.279 psi (1.923 kPa). Individual
JNDs ranged 0.114-0.674 psi (0.788-4.650 kPa), with a mean
JND of 0.310 psi (2.136 kPa) and standard deviation of 0.173
psi (1.195 kPa). The WF ranged between 5.7% and 33.7%,
with a mean value of 15.5%, consistent with the initial study.

Participants spent an average of 13.84 s on the first pressure
(σ = 7.323 s), and an average of 11.27 s on the second
pressure (σ = 5.746 s), for an average of 25.11 s per pair (σ =
10.855 s). By one-way ANOVA, total time spent per pair was
found to significantly impact correctness (p = 0.024). Subjects
spent significantly more time assessing the haptic device when

answering incorrectly (26.84 s) than when answering correctly
(24.56 s). Notably, mean time itself did not have a significant
influence on overall accuracy (p = 0.973).

V. APPLYING WRAPPED HAPTIC DISPLAYS TO
COMMUNICATE 1-DOF ROBOT UNCERTAINTY

So far we have studied the precision with which humans can
perceive the 1-DoF wrapped haptic display. Next, we apply
this display to convey robot learning from physical interac-
tions. Section V presents a condensed version of the robot
experiments in [8], excluding some details on tasks, metrics,
and procedure. In this experiment participants kinesthetically
taught a UR-10 robot arm to perform cleaning tasks. We
applied an existing learning algorithm to measure the robot’s
uncertainty [11] and then conveyed that uncertainty back to the
human in real-time. We highlight two key differences from the
experiment in Section IV: here the robot arm is moving during
interaction (i.e., the wrapped haptic display is not stationary),
and the haptic display now conveys a specific signal that the
human must interpret and react to during interaction.

Independent Variables. We compared three different types of
feedback (see Figure 5):

• A graphical user interface (GUI) that displayed the
robot’s uncertainty on a computer monitor.

• Our soft haptic display placed Flat on the table.
• Our proposed approach where we Wrapped the haptic

display around the robot arm.
All three types of feedback showed the same information but
used different modalities. In the GUI baseline we displayed
uncertainty on a computer screen in front of the user. Here
uncertainty was shown as a percentage, where numbers close
to 100% indicated that the robot was uncertain at the current
state. The Flat and Wrapped interfaces used the 1-DoF soft
haptic display from Section III. Uncertainty was linearly scaled
from 1 − 3 psi (6.89 − 20.68 kPa). Here 1 psi (deflated
bags) corresponded to 0% uncertainty and 3 psi (inflated bags)
corresponded to 100% uncertainty. The Flat haptic display
was placed in a designated area next to the human, such that
participants could periodically touch it during the experiment.

Experimental Setup. Participants completed three different
tasks with each of the three feedback conditions (i.e., nine total
trials). Tasks involved pushing, grasping, and moving objects
around a table and drawers. Figure 5 shows an example task.

Before conducting any experiments we first initialized the
robot’s uncertainty. We collected five expert demonstrations
of each task and trained the robot with a behavior cloning
approach [11]. This approach outputs the robot’s uncertainty
at each state (i.e., uncertainty was a function of the robot’s
joint position). We purposely removed segments of the expert’s
demonstrations from the training set: specifically, we trained
the robot without showing it how to perform either the first
segment or the last segment of the task. As a result, when
participants interacted with the robot, the robot was uncertain
about either the start or the end of the task.

For each trial the participant provided two demonstrations.
First, the participant kinesthetically guided the robot through-
out the entire task while receiving real-time feedback from
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Figure 5. Participant kinesthetically teaching the robot arm the Cleaning task.
(Top) We compared our proposed approach (Wrapped) to two alternatives.
GUI displayed the robot’s uncertainty on a screen, while in Flat we placed
the haptic display on table. (Bottom) We initialized the robot with data from
known segments. During their first demonstration the human attempted to
identify the region where the robot was uncertain (i.e., the new segment).
The human then gave a second demonstration where they only guided the
robot through the region(s) where they thought it was uncertain.

GUI, Flat, or Wrapped. Based on this feedback, the partic-
ipant attempted to identify the region of the task where the
robot was uncertain (and needed additional teaching). During
the second demonstration, the human only taught the segment
of the task where they believed the robot was uncertain
(i.e., the region they identified in the first demonstration).
If the feedback is effective, participants should only reteach
segments where the robot is confused without repeating parts
of the task that the robot already knows.
Participants. We recruited 10 participants from the Virginia
Tech community to take part in our study (5 female, 0 non-
binary, 5 male, average age 22.9, age range 19− 26 years).
Dependent Measures. To measure how the robot’s feedback
affected the human’s teaching, we focused on the second
demonstration (i.e., the demonstration where users retaught the
uncertain part of the task). We recorded the time users spent on
this second demonstration (Teaching Time) and the percentage
of this second demonstration that overlapped with the segment
where the robot was actually uncertain (Correct Segment).
Offline, we retrained the robot using the participant’s second
demonstration. We then measured the percentage reduction in
uncertainty due to the user’s demonstration (Improvement).
Finally, we also measured how users subjectively perceived
each feedback method using a 7-point Likert scale survey.

Hypotheses. We had two hypotheses for this user study:
H1. Participants will most efficiently teach the robot
with wrapped haptic displays.
H2. Participants will subjectively prefer our
wrapped haptic display over other methods.

Results. We summarize our aggregated results in Figure 6.
We first ran a repeated measures ANOVA, and found that the

robot’s feedback type had a statistically significant effect on
Teaching Time, Correct Segment, and Improvement. Post hoc
analysis revealed that participants spent less time teaching the
robot with Wrapped than with either GUI or Flat (p < .05).
Participants also better focused their teaching on the region
where the robot was actually uncertain: Wrapped resulted
in a higher Correct Segment than Flat (p < .05). However,
here the differences between Wrapped and GUI were not
statistically significant (p = .287).

Recall that Improvement captures how much more confident
the robot is about the task after the participant’s demonstration.
This metric is especially important: we want to enable humans
to teach robots efficiently, and Improvement quantifies how
much the robot learned from the human’s teaching. We found
that the robot’s confidence improved the most in the Wrapped
condition as compared to either GUI or Flat (p < .05).
Overall, these results support H1: when users get real-time
feedback from a haptic display wrapped around the robot
arm, they provide shorter duration kinesthetic demonstrations
that more precisely hone in on the robot’s uncertainty and
efficiently correct the robot.

We next analyzed our Likert scale survey to understand
how users perceived each type of feedback. After confirming
that our six scales were reliable (using Cronbach’s α), we
grouped these scales into combined scores and ran a one-
way repeated measures ANOVA on each resulting score. Post
hoc analysis showed that participants thought that Wrapped
was more informative, easier to interact with, less distracting,
and more intuitive than either one or both of the alternatives
(p < .05). Participants also indicated that they preferred
Wrapped over GUI and Flat. When explaining this prefer-
ence, one participant said, “I definitely prefer Wrapped over
other methods. I was able to clearly focus and the other
methods were distracting.”. Our subjective results support H2,
and indicate that users perceived wrapped haptic displays as
preferable when compared to alternatives like visual interfaces.
We also note that the overall results from videos, user ratings,
and teaching time indicate that participants were able to detect
Wrapped feedback during their kinesthetic demonstrations,
i.e., in Wrapped users did not need to stop moving, explore
the pouches, and then resume their demonstration.

VI. MEASURING HUMAN PERCEPTION OF 3-DOF
WRAPPED HAPTIC DISPLAYS

Having explored the human perception and application of
the 1-DoF wrapped haptic display in the shape of a sleeve, we
next pursue a study that will help us understand how the spatial
distribution of displays affects the perception of both 1-DoF
and multiple-DoF soft haptic displays. Both temporally and
spatially varying signals can help us add complexity when we
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Figure 6. Objective and subjective results when communicating 1-DoF robot uncertainty in real-time with GUI, Flat, and Wrapped feedback. Participants
taught the robot three tasks; we here report the aggregated results across tasks. Error bars show standard error of the mean (SEM), and ∗ indicates statistically
significant comparisons (p < .05). (Left) Wrapping the haptic display around the robot arm caused participants to spend less time teaching the robot, focused
their teaching on regions where the robot was uncertain and improved the robot’s understanding of the task after the human’s demonstration. (Right) Participants
thought that the wrapped display best enabled them to focus on the task, and they preferred this feedback type to the alternatives.

need to communicate multiple haptic signals within the space
that a human might contact. We also seek to understand how
the spatial distribution of signals might affect the effectiveness
of the display in terms of accuracy of identification and the
time needed to identify signals. To do so, we conducted
a user study to measure the ability to distinguish haptic
signals in different spatial distributions and outside of the
context of the target application scenario. We select pressure
levels considering the psychometric baselines (JNDs) obtained
in Section IV, and designed a study in which participants
physically interacted with 3-DoF displays. The displays were
arranged in two ways: (1) a 3-DoF ring display placed in a
single location, and (2) three 1-DoF displays made up of three
rings each (by interconnecting the individual rings) and placed
at three different locations. We called these arrangements
Global (for the 3-DoF display), meaning all information
was available at the single point of contact, so it would be
"globally" available, and Local (for the three 1-DoF displays),
meaning the information for each degree of freedom was only
available locally. In each display, the user was asked to identify
the signal with the highest pressure out of the three, and we
hypothesized that the distribution of the signals (whether three
in a single location or spread over a distance) would affect
performance. As a note, these same methods are later used in
the experiment in Section VII, but there three of the Global
displays are used instead of one to keep the total area of
the display on the robot constant. This also allows different
users to contact the robot arm at different locations based on
preference while still receiving the same feedback.

A. Experiment Setup and Procedure
The 3-DoF wrapped haptic displays were mounted on

passive stand-ins. For the Local method, three stand-ins with
three ring displays configured as 1-DoF displays each were
placed on the table, with a separation in between each. For the
Global method, a single stand-in with a 3-DoF display was
used. Both methods essentially have 3-DoF, but the difference
is the spatial distribution of each of the degrees of freedom; for
Global, all signals are located in a small space, while for Local
the signals are distributed in a 1 m space. The three degrees
of freedom were named Left, Center, and Right, for both
methods. The setups are illustrated in Figure 7. Participants

Global

Local
L C

15.5 cm

100 cm

15.5 cm

R

C
R

L

L C R

23 cm

Figure 7. Experimental Setup. (Top) The Local setup consists of three sets of
3-DoF displays configured as 1-DoF each, with a separation in between each.
(Middle) The Global setup consists of a single 3-DoF display. Both methods
essentially have 3-DoF, but the difference is the spatial distribution of each
of the DoF. The three DoF were named Left, Center, and Right, for both
methods. (Bottom) Participants were instructed to sit in front of the setup;
here, we show a participant interacting with the Local setup.

were instructed to wear hearing protection and safety glasses
during the study. The task was to identify which of the signals,
Left, Center, or Right, was inflated to the higher pressure.
Two of the degrees of freedom were inflated to a reference
pressure Po (2psi) and one to a high pressure PH (2.75 psi).
Subjects were not told that two degrees of freedom had the
same pressure, they were just instructed to identify the one
inflated to the different pressure. We selected the Po and PH

values based on the findings of the previous pyschophysics
study and taking into consideration that there is an increase in
the complexity of haptic signals for this new study. As reported
in Section IV-C, the average JND found in the previous study
was 0.228 psi. However, some of the participants had JNDs
almost double of the mean. With that in mind, we determined
that a pressure difference between the signals of ∆P = 0.75 psi



9

R 1.88 2.50 95.63

C 1.88 95.63 2.50

L 97.50 1.25 1.25

L C R

S
ig
n
al

Response

LOCAL GLOBAL

R 3.75 2.50 93.75

C 3.13 93.75 3.13

L 90.63 5.00 4.38

L C R

S
ig
n
al

Response

Figure 8. Confusion matrices showing the mean accuracy for each signal
rendered (Left, Center, Right) in both methods (Local and Global).

was large enough so that we could be sure all subjects would
perform to an adequate level in this study.

Each DoF (Left, Center, and Right) was rendered to the
participant as the PH a total of 16 times each, for a total
of 48 trials. The process was performed for both Global
and Local methods. Half of the participants completed the
procedure with Global first and the other half completed Local
first. The study was as follows. Participants were instructed to
sit at the desk in front of the arrangements. They interacted
with a GUI developed in MATLAB to navigate through the
study. The GUI first guided the participants through a demo
to demonstrate the study procedure. The GUI showed a red
light that would turn green to indicate when the participant
was allowed to touch the displays. For each of trial, the GUI
asked the participant to click a “Next” button to continue. Once
clicked, the light would turn green once the displays reached
their corresponding steady-state pressures. The participants
were allowed to touch the displays for an unrestricted period of
time and they could explore the displays using any method,
including using both hands if desired. During this time, the
GUI displayed the question “Which one has the different
pressure?”, and showed options for Left, Center, and Right.
After the participants selected an option and confirmed by
clicking an “Enter” button, the GUI showed whether they
were correct and, if incorrect, what the right answer was.
Note that the GUI was configured to measure the participants’
response time; an internal timer would start when the light
turned green and would stop when the participants answered
the question. To continue with the next trial, the participants
then had to press “Next.” The procedure was repeated until
48 trials were completed for the first method and then for
the second method. Participants were offered a break halfway
through each method and another break in between methods.
After completing the interaction portion of the experiment,
participants answered a post-experiment questionnaire. The
questionnaire asked about how distinguishable the signals
were, if they were often unsure about their answers and if
they were increasingly confident about their answers as the
study progressed. We also asked about the overall experience
during the study (clarity of instructions, sense of safety during
the experiment) and about their previous experiences and
familiarity with haptic technology, robotics, etc. The study was
45 minutes long.

B. Results

We recruited 10 participants (4 female, 0 non-binary, 6
male, average age 22.1 years, age range 19− 25 years) from
the Purdue community. All participants completed the study
after giving informed consent. The Purdue Institutional Review
Board approved the study protocols (IRB #2021-1283). In the
group, 9 participants were right-handed; one was left-handed.

The confusion matrices in Figure 8 summarize the accuracy
of participants. Overall, participants’ accuracy was higher for
the Local method (average x̄ = 96.25%, standard deviation
σ = 3.88) than Global (x̄ = 92.71%, σ = 7.17). Participants
spent an average of 15.09s (σ = 7.55) using the Local method,
and 12.12s (σ = 5.877) for Global. Interestingly, looking at
the complete pool of participants’ responses (whether global
or local), we found that participants had a greater response
time when they responded incorrectly (x̄ = 16.89s, σ = 7.68s)
than when they answered correctly (x̄ = 13.41s, σ = 6.83).
Figure 9 shows the average time spent by each participant for
both Local and Global methods.

C. Analysis

The two quantitative measures that we used to understand
the results are Accuracy and Response Time. To further analyze
the accuracy of participants, a Wilcoxon signed-rank test was
conducted to understand the relation between accuracy and the
methods used. The results showed that there is a significant
association between participants’ accuracy and methods (Z = -
2.335, p < .05). This means that although participants re-
sponded faster to the task while using Global as shown by the
mean response time values, participants were not as accurate at
detecting the higher pressure as when they were using Local.
Figure 9 shows the count of incorrect guesses for both Local
and Global methods. Another Wilcoxon test was conducted
to determine whether the order in which the experiments were
conducted (Local first, then Global, or vice-versa) affected
subjects’ accuracy. The results showed that there was no
significant association (Z = -0.143, p = .886), suggesting
that subjects did not benefit from learning to improve their
accuracy for the second half of the study.

To analyze response time, we used a one-way repeated
measures ANOVA. We found that the method type had a
statistically significant effect on response time. Post hoc anal-
ysis revealed that participants spent less time identifying the
target signal with Global as compared to Local (p < .001).
This observation matches the mean values for the response
time previously mentioned and also the mean response time
for each participant, as shown in Figure 9. Nine out of ten
participants spent more time using Local compared to Global.
We also found that the rendered signal (whether Left, Center,
or Right) had a statistically significant effect on answering time
(p = .047) but with a smaller effect size than the method type.
Data shows that while using Global, participants spent more
time responding when the Left signal was the highest pressure
than when it was Center (p < .01) or Right (p = .078). For
Local, we did not find any statistically significant distinction
between signals and their mean response time. These results
can be observed in Figure 9, where we show the response time
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Figure 9. Experimental results. (Left) Count of incorrect guesses for each of the methods. A Wilcoxon signed-rank test showed that there is a significant
association between participants’ accuracy and methods (Z = -2.335, p < .05). (Center) Mean response time of individual participants for each method. Nine
out of ten participants had a higher response time using the Local method. (Right) Mean response time for both methods, displayed by signal type (Left,
Center, Right). Signal type had a statistically significant effect on response time (p = .047) but to a lesser extent than the method type (p < .001). For Global,
participants spent more time responding the question when the Left signal was the highest pressure than when it was Center (p < .01) or Right (p = .078).

of participants for each signal type (Left, Center, Right) when
using Local and Global methods.

This study shows that the spatial distribution of haptic
displays is an important factor to consider since it has an
effect on both accuracy of detection and response time. Using
the psychometric measures found in the previous study, we
showed that participants were better able to identify the highest
pressure out of a set of three when the signals were spatially
distributed (Local) than when the signals were condensed in
a smaller space (Global). However, the response time for the
spatially distributed signals was higher; this makes sense be-
cause participants moved around a larger space to interact with
the places where the haptic signals were located. Participants
reported the pressure differences were detectable, they were
sure about their answers throughout the experiment, and that
they felt safe interacting with the displays. Some participants
mentioned that during the Local portion of the experiment,
they wished they could place the displays together to make the
exercise easier; this suggests that users consciously thought
that having displays dispersed in different locations was an
inconvenience, even though the results show participants were
slightly more accurate with this method than with Global. To
summarize, the Global method had the faster response time,
but Local had the higher accuracy. These observations show
the trade-off between response time and accuracy when we
increase the complexity of haptic signals in a smaller space or
distribute them in a larger space.

VII. USING MULTI-DOF WRAPPED HAPTIC DISPLAYS TO
COMMUNICATE 3-DOF ROBOT LEARNING

In Section V we demonstrated that robot arms can leverage a
haptic display to communicate with human teachers. However,
this haptic device only had 1-DoF: the same pressure was
rendered along the entire robot arm. One degree-of-freedom
is sufficient when the robot learner wants to convey whether
or not it is uncertain — but what if the robot needs to
communicate more complicated feedback? For instance, the
robot may want to indicate what it is confused about or how
the human teacher could improve their demonstrations.

In our final user study we wrap multiple 3-DoF hap-
tic displays around a Franka Emika robot arm. Participants

physically teach the robot to perform a mock welding task,
and the robot applies multi-dimensional feedback to indicate
what aspects of the task the human teacher must emphasize.
Overall, our goal is to compare the two different feedback
distributions shown in Section VI and understand how they
impact the human’s physical demonstrations. Remember that
we are wrapping haptic displays along the robot arm. One
option is to localize different signals to different parts of the
arm, such that the place where the bags inflate helps indicate
and remind users what the robot is uncertain about. Our second
option is to distribute all three signals along the entire arm;
here the human perceives the same haptic rendering no matter
where they grasp the robot. In this user study we explore how
human teachers perceive and leverage multiple displays that
use both feedback layouts.
Independent Variables. Participants kinethetically guided the
robot arm through a mock welding task. The robot displayed
feedback in real-time to guide the human through the task. We
compared three different types of feedback for communicating
when the robot was uncertain and what motions it needed the
human teacher to emphasize (see Figure 10):

• A GUI baseline where the robot showed its numerical
uncertainty on a computer monitor.

• Three 1-DoF wrapped haptic displays with signals local-
ized to different regions of the robot arm (Local)

• Three 3-DoF wrapped haptic displays with signals dis-
tributed across the entire robot arm (Global)

All conditions provided the same information to the partici-
pants. Similar to Section V, in GUI the robot displayed its
uncertainties as a percentage: values close to 100% meant
that the robot needed assistance. For Local and Global we
actuated three separate wrapped haptic displays with pressures
between 1− 3 psi (6.89− 20.68 kPa). In Local each location
of the haptic display had a single pressure signal; i.e., bags
at the end-effector were one pressure, bags at the base of the
arm were another pressure, and bags in the middle of the arm
were a third pressure. In Global each haptic display location
rendered all three of the potentially different pressures using
three independent degrees of freedom, and all Global displays
rendered those same three pressures — participants could feel
the same feedback at the base, middle, and end of the robot
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Figure 10. Experimental setup and independent variables for the user study from Section VII. (Left) Participants physically demonstrated a mock welding
task to a Franka Emika robot arm. We mounted two lasers to the robot’s end-effector: the robot prompted human teachers to keep the end-effector and lasers
at the correct distance, height, and orientation. (Right) The robot indicated which feature(s) it needed help with using three different feedback modalities:
GUI, Local, and Global. For GUI the robot printed its percentage uncertainty about each feature on a computer monitor placed in front of the workstation.
Both Local and Global leveraged our wrapped haptic displays. In Local we attached three 1-DoF displays, and the location of the display indicated the
desired feature. By contrast, in Global we used three 3-DoF displays such that each row of the displays corresponded to a separate feature.

arm. GUI, Local, and Global each provided a total of 3-DoF
feedback. We emphasize that with Global participants had
to discern which segments of the 3-DoF haptic display were
inflated, while with Local participants needed to determine at
which parts of the robot arm the haptic displays were inflated.

Experimental Setup. Participants physically interacted with a
7-DoF robot arm (Franka Emika) to complete a mock welding
task (see Figure 10). Recall that users interacted with a UR10
robot in Section V — from the user’s perspective, the Franka
Emika robot is smaller, has one more joint, and is easier
to backdrive. We mounted lasers to the robot’s end-effector:
participants kinesthetically guided the robot across a table
while the lasers marked where the robot was “welding.”

The welding task consisted of three features: how close the
end-effector was to the edge of the table, the end-effector’s
height from the table, and the orientation of the end-effector.
When the task started participants would guide the robot arm
towards the fixed goal position. As they moved, the robot
would leverage its feedback to notify the human which feature
they needed to emphasize. For example, during the first third
of the task the robot may prompt the human to keep the
lasers close to the table; in the middle of the task the human
should move the end-effector to the table edge; and during
the final third of the task the human might need to align the
robot’s orientation. Participants had to dynamically determine
what feature the robot currently needed help with and then
modify their motion to emphasize that feature. Note that the
robot asked for assistance with all three features at different
segments of the task — we randomized these segments so that
participants could not anticipate the robot’s feedback.

Participants and Procedure. We recruited 12 participants (5
female, 0 non-binary, 7 male, average age 28, age range 19−
35 years) from the Virginia Tech community. All participants
provided informed written consent consistent with university
guidelines (IRB # 20-755). None of the participants for this
study took part in the previous study from Section V. Three
of the twelve participants reported that they had physically
interacted with robot arms before.

Each user completed the welding task four times. First, we
asked users to demonstrate the task without any feedback from
the robot. We used this initial demonstration as a baseline to

measure their improvement. Next, participants completed the
welding task with GUI, Local, and Global. We counterbal-
anced the order of these feedback conditions: four participants
started with GUI, four participants started with Local, and four
participants started with Global.
Dependent Measures – Objective. We measured the total
time it took for participants to demonstrate the welding task
(Teaching Time). We also measured the Improvement between
the human’s initial demonstration and their demonstration
under each feedback condition. Let f(ξ) ∈ Rk be the feature
counts along trajectory ξ, e.g., the distance, height, and angle.
We define e(ξ) = ‖f(ξ) − f(ξ∗)‖2 as the error between
the human’s demonstration ξ and the ideal trajectory ξ∗.
Improvement captures how this error changes after receiv-
ing robot feedback:

(
e(ξinitial) − e(ξ)

)
/emax · 100, where

emax = ‖f(∅)− f(ξ∗)‖2 is a normalizer (i.e., the error when
the human does not provide any demonstration). Improvement
captures the percentage change in demonstration quality for
each feedback condition: positive Improvement reveals that the
human is demonstrating the task more accurately.

Dependent Measures – Subjective. Participants responded
to a 7-point Likert scale survey after each feedback condition.
Our survey was composed of four multi-item scales and one
single-item scale (see Table I). We asked participants how
easy it was to understand the robot’s feedback, whether they
could focus on the task, how distinguishable was the robot’s
feedback, if the feedback was intuitive for this task, and to
what extent they prefer this condition as a communication
modality. Finally, after participants had finished working with
all the conditions they responded to a forced-choice compari-
son: “Which method did you like the most?”

Hypotheses. We had two hypotheses for this user study:
H3. Distributing multi-DoF haptic feedback along
the robot arm (Global) will lead to improved demon-
strations and lower teaching time.
H4. Participants will prefer distributed feedback
(Global) as compared to localized feedback (Local).

Results – Objective. The results from this user study are sum-
marized in Figure 12. To get a sense of the users’ experience,
we also show participant demonstrations in Figure 11.
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Figure 11. Participant teaching the welding task with GUI, Local, or Global. We show task progress in 5 second intervals. (Top) With GUI users needed to
look at the computer monitor to obtain feedback. The monitor is placed on the near side of the table: this participant is looking at the GUI at times t = 5,
t = 10, and t = 25 seconds. (Middle) With Local, participants must move their hands — and change their grasp — to sense the different wrapped displays.
This participant keeps one hand on the end-effector, and then moves their other hand between the haptic displays at the middle and base of the robot arm.
(Bottom) Finally, with Global the participants receive feedback through 3-DoF Haptic displays. Global helped this user remain focused on the task: notice
that they are continually looking at the welding task, and keep both hands on the end-effector (where a 3-DoF haptic display is located).

Let us start our analysis by looking at the objective results.
Using a one-way repeated measures ANOVA, we determined
that feedback type had a significant effect on Teaching Time
(F (2, 22) = 3.423, p < .05). Post hoc tests revealed that
participants spent less time demonstrating the task with Global
than with GUI (p < .05), while the differences between
Global and Local were not significant (p = .675). To explain
these results we measured the amount of idle time during the
demonstration. We found that with GUI users needed to stop,
look at the monitor, and think about their next action: shifting
attention back-and-forth between the monitor and the welding
task contributed to the increased Teaching Time.

So with Global, participants taught the robot more quickly
— but did they provide accurate, informative demonstrations?
Remember that to measure Improvement we first collected a

demonstration without feedback, and then compared that initial
demonstration to the user’s behavior under each condition. The
type of robot feedback had a significant effect on Improvement
(F (2, 22) = 12.707, p < .001). With both GUI and Global
the participants made similar improvements to their teaching
(p = .769). However, Improvement was significantly lower for
Local as compared to Global (p < .01). When participants
received Local feedback they frequently had to change their
grasp and move their hands across the three haptic displays; by
contrast, in GUI and Global the participants could maintain a
fixed grasp (Figure 11). Overall, our objective results support
H3. Global enabled users to teach robots more seamlessly
than GUI and more accurately than Local.

Results – Subjective. Table I and Figure 12 outline the results
of our Likert scale survey and forced-choice comparison. We

Table I
QUESTIONS ON THE LIKERT SCALE SURVEY FROM SECTION VII. WE GROUPED QUESTIONS INTO FIVE SCALES AND EXAMINED THEIR RELIABILITY

USING CRONBACH’S α. QUESTIONS EXPLORED WHETHER PARTICIPANTS THOUGHT THE ROBOT’S FEEDBACK WAS easy TO INTERPRET, IF THEY COULD
focus ON TEACHING, HOW distinguishable THE ROBOT’S SIGNALS WERE, WHICH METHODS WERE intuitive, AND THEIR OVERALL preferences. FOR

preference WE DID NOT CHECK FOR RELIABILITY SINCE THERE WAS ONLY A SINGLE ITEM. WE THEN PERFORMED A ONE-WAY REPEATED MEASURES
ANOVA ON THE GROUPED SCORES: HERE AN ∗ DENOTES STATISTICAL SIGNIFICANCE.

Questionnaire Item Reliability F (2, 22) p-value

– It was hard to figure out what the robot was trying to convey to me.
.75 1.699 .206– I could easily tell what the robot wanted.

– I could focus on the robot’s feedback without having to look up or move my hands.
.74 6.266 < .01∗– I had to physically go out of my way to get the robot’s feedback.

– It was easy to distinguish the different feedback signals.
.64 1.733 .215– I had to think carefully about what I was seeing / feeling to determine the signal.

– The way the robot provided feedback seemed intuitive to me.
.86 .081 .923– I thought the robot’s feedback was unintuitive and hard to understand.

– Overall, I prefer this communication modality. − 5.189 .191
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Figure 12. Objective and subjective results when communicating multi-dimensional robot feedback. We compared using a computer monitor (GUI), localizing
wrapped haptic feedback to specific parts of the robot (Local), and distributing 3-DoF feedback along the arm (Global). Error bars show standard error of the
mean and an ∗ indicates statistically significant comparisons. (Left) Participants spent less time teaching the robot with Global as compared to GUI: shaded
regions show the amount of time where participants stopped moving the robot to think about their next actions. The human’s demonstrations improved more
with Global feedback as compared to Local feedback. (Middle) Participants perceived the multi-DoF wrapped haptic display as similar to the alternatives,
but indicated that Global enabled them to focus on teaching the robot. (Right) At the end of the experiment users were asked to choose their favorite method.
Of the 12 total participants, 8 selected Global, 4 selected GUI, and none selected Local.

first checked the reliability of our four multi-item scales: easy,
focus, and intuitive were reliable (Cronbach’s α > 0.7) but dis-
tinguish was not. We then grouped each scale into a combined
score and performed a one-way repeated measures ANOVA on
the result. Note that we did not check for reliability in prefer
because we only had one item (i.e., one question) on this scale.

We found that participants perceived GUI, Local, and
Global to be similar along several axes. For instance, users
did not think that any of the feedback types were more
distinguishable (p = .215) or intuitive (p = .923) than the
others. However, users reported that they were better able to
focus on the task with Global than with GUI (p < .05) or
with Local (p < .001). After the experiment was finished
we asked users to select their favorite feedback type: eight
of the twelve participants chose Global, and the remaining
four selected GUI. These subjective results support H4. Given
the results in Section VI, we were particularly interested to
find that participants preferred Global feedback over Local
feedback — this suggests that the convenience of having all
three signal available at each contact point along the arm in
the Global feedback condition outweighed the slight decrease
in accuracy. One participant mentioned that “I liked Local the
least, since it requires repositioning hands to get feedback.”

VIII. CONCLUSION

In this paper we presented a novel approach for commu-
nicating a robot’s internal state during physical interaction.
Specifically, we introduced a class of soft, wrapped haptic dis-
plays that are mounted on the robot arm at the point of contact
between the human and robot; these displays provide real-time
feedback as the robot learns from human demonstrations.

We first designed wrapped pneumatic devices using flexible
pouches that render one or more pressure signals (Section III).
We performed psychophysics and robotics experiments with
(a) 1-DoF displays and (b) N-DoF displays. With the 1-DoF
display, humans could accurately distinguish between different
pressures rendered by the wrapped haptic display (Section IV).
This feedback enabled participants to kinethetically teach
robot arms more rapidly and effectively as compared to the
alternatives (Section V).

We next explored N-DoF haptic displays to communicate
more detailed feedback. We compared two approaches: local-
izing separate 1-DoF haptic displays to different regions of the
robot arm, or distributing identical 3-DoF displays along the
entire arm. From a psychophysics perspective, localized feed-
back resulted in more accurate communication but at slower
speeds, i.e. larger spatially distribution of signals increased
accuracy, but required participants to move their hands to
perceive each region, and recognize the signal (Section VI).
We applied both types of haptic displays to a robot learning
task. Here we found that distributed 3-DoF signals were
preferable to localized 1-DoF signals in terms of teaching
time, demonstration improvement, and subjective responses
(Section VII). We also note that the results of our user studies
were consistent across two different industry-standard robot
arms, suggesting that approach is not tied to one specific arm
type or geometry. Overall, using multi-DoF haptic displays
to concentrate signals into a smaller space resulted in more
seamless communication and teaching.

Future work will focus on further increasing the complexity
of signals that the soft wrapped haptic displays can render. The
stacking of pneumatic pouches developed by Do et al. [39]
may allow better spatial resolution by eliciting separate force
and contact area signals. The integration of sensing technology
to the concept of localized pressure distribution may also allow
us to break down local pressure measurements (i.e. local user
forces) and map them into desired robot motions.
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