Statically Checked Documentation with Design Patterns

Aino Cornils Gorel Hedin
Computer Science Department Department of Computer Science
University of Aarhus Lund Institute of Technology
Denmark Sweden
e-mail: apaipi@daimi.au.dk e-mail: Gorel.Hedin@cs.lth.se
Abstract

Qver the past years, along with the increase in popularity of design patterns, some problems
with the use of design patterns have been identified. The so-called tracing problem describes
the difficulty in documenting software systems using design patterns. Initial approaches to
solving the tracing problem have focused on guidelines for documenting design pattern roles
and rules within a system, but experience has shown that both in the initial design, and
especially in later code revisions, it is all too easy for code and documentation to diverge,
rendering the documentation misleading. In this paper we present a flexible and extensi-
ble tool which enables designers to use design patterns in a safe and efficient way, which
checks the design pattern rules, and which semi-automatically documents, and maintains
the documentation of, a software system.

1: Introduction

Design patterns are descriptions of abstract solutions to often recurring problems. The
most well-known catalogue of design patterns can be found in [Gamma95], hereafter called
the GoF book. In some ways we want to be able to treat design patterns like language
constructs. Both in the sense that they are visible in the code and that we want to be
warned when we misuse them. Actually making language constructs out of all the design
patterns is infeasible, though, for two main reasons. Firstly, as also argued in [Agerbo98],
it can be worthwhile to make new language constructs out of some design patterns, but
certainly not all of them since programming languages should be kept simple. Secondly, we
expect design patterns to evolve, both due to the discovery of new design patterns but also
when it is discovered that some design patterns are alike or applications of one another.
Since we only refer to the type of patterns called design patterns in this paper, we will
hereafter say patterns when we mean design patterns.

In [Hedin97] it is described how it might be possible to create a tool that enables design-
ers to get the benefits of language constructs when using patterns, but without actually
changing the underlying language. The idea is to annotate the program to identify the
program elements that play particular roles in a pattern application and to check that
the pattern rules are followed, i.e. that the roles are applied in the intended way. In the
present work we have implemented this approach in a tool, DPDOC, and we have gone one
step further in reifying the pattern applications by representing them as explicit syntactic
constructs separate from the program, but connected to the program by a kind of links.
The patterns are specified in the same way as language constructs, but separately from the

underlying programming language, and it is easy to extend the tool with support for new
patterns in order to customise it to a designer’s needs. This approach is more elegant and
flexible than the one proposed in [Hedin97]. Our tool uses reference attributed grammars
[Hedin99], which is an extension to attribute grammars that allows attributes of syntax
nodes to be references to other nodes. This mechanism is used to connect the pattern
instantiations to the syntax tree of the program.

Several pattern tools, both commercial and academic, have been developed in the last
few years. The developers of these tools have focused on different characteristics.

The task of making the use of patterns visible in the code, is called the tracing problem
[Soukup95], [Bosch97]. It is desirable for pattern tools to help solve this problem by improv-
ing what we shall call pattern visibility, enabling the user to see the use of the patterns in
the code. Such tools can be helpful in the documentation of the system. Empirical results
from documenting design patterns in code have showed that pattern documentation can
speed up program changes as well as improve their quality [Prechelt et al.97]. These tests
were performed with "static” handwritten documentation of the code with patterns. With
a tool to automatically maintain the documentation, we claim that these results could be
even better. Rule checking is another characteristic found in some tools. The tool develop-
ers have interpreted the abstract solutions in the design patterns to find the rules that must
then be abided by, when the patterns are used and the tools are able to check whether these
rules are followed. These checks can catch a certain class of errors that would otherwise
call for extensive writing of test programs. We expect such checks to result in improved
code quality and increased programmer’s confidence in the code, similar to as reported for
automated testing as in eXtreme Programming [Beck99].

DPDOC helps pattern visibility and performs rule checking and it has a functionality
not found in other tools: Role derivation. The tool is able to, based on a few pieces of
information from the user, automatically bind elements in the program to roles in the
pattern. DPDOC also differs from other tools in its language-based approach to specifying
the patterns which we claim provides a general and precise basis for building this kind of
tools.

The rest of this paper is structured as follows. Section 2 contains an overview of our
approach. Section 3 contains a description of DPDOC seen from the perspective of the end-
user, i.e., the user that uses the tool to design and implement a system. Section 4 describes
the architecture behind the tool, how it is implemented and how it can be extended and
used for other languages. Section 5 reports on the current status of the tool. Section 6 gives
a more detailed account of other pattern tools and how they relate to DPDOC. Section 7
concludes the paper.

2: Overview of the approach

DPDOC helps designers use patterns in a safe and efficient way, almost as if they were lan-
guage constructs. If a user misuses a construct in the programming language, the compiler
answers with appropriate warnings. Similar to this, DPDOC checks whether the program
abides by the rules of the patterns and warns the user if it doesn’t. In a program, language
constructs are easily visible due to keywords and the structure of the code. In contrast,
an applied pattern normally has no explicit visible representation in the program — rather,
it corresponds to a specific combination of classes, methods, and other constructs in the

program. In DPDOC, however, the applied patterns are reified and given an explicit repre-
sentation, making it possible to see which patterns are applied in the program, and which
program elements play the roles of each of these patterns. This approach provides a way of
documenting the code by patterns and supports both visibility and rule checking. DPDOC
proves particularly useful in relation to object-oriented frameworks. Since frameworks are
semi-implemented solutions, applying a framework means specialising its functionality, i.e.,
subclassing the framework classes or aggregating them into application classes. To do this
in the intended way, the user has to follow some rules for applying the framework. These
rules can be expressed as patterns that DPDOC can check.

A program element that participates in a pattern is said to play a certain role in that
pattern. In the GoF book, the class roles are called the participants of the pattern. For
the precise definition of a pattern, any kind of program element can be used for a role:
classes, methods, variables, etc. In our approach we distinguish between two kinds of roles:
defining roles and derived roles. The programmer must supply information about which
elements play the defining roles and the system will then automatically compute which
elements play the derived roles. For example, for class roles, a superclass will typically play
the defining role and its subclasses will play derived roles. For a given pattern, there are
often certain rules that must be abided by. For example, there may be rules for how the
defining roles must relate to each other, or rules for method call delegation, for example
saying that certain method implementations must contain calls to certain other methods.

3: The end user’s perspective

In this section we will describe the system seen from the perspective of the end user, i.e.,
the user that uses DPDOC to develop or document a system with the help of patterns.

Figure 1 shows an example screenshot from the tool. The workspace is separated into two
parts: The program editor where the user writes program code, and the pattern applicator
where the user uses a special-purpose language to document the patterns that are used
in the program. In both parts of the workspace, the development is eased by various
language-based editing support, like structure-oriented editing.

The example used in the figure is that of the Visitor pattern, as described in the GoF
book. The problem of this pattern is how to define new operations on the objects in a
polymorphic tree structure without changing the classes of those objects. The solution is
to add the new operations in a new class in a separate “visitor” class hierarchy, and to
connect to the original classes via an “accept” method.

In the pattern applicator part, the user creates applications (instances) of design patterns
and ties these to the program code. The user selects a pattern from a list of supported design
patterns and a template will then appear in the pattern applicator, showing the name of the
design pattern and the roles of the new design pattern application. In the Visitor example,
the roles are: Visitor, Concrete Visitors, Element, Concrete Elements, Accept methods,
Implementations of Acceptmethods, Abstract Visitmethods and Concrete visitmethods. Some
of these roles are defining roles and the user must tie these to the program by filling out
placeholders with the names of the classes (or methods or variables) that play those roles.
There are two defining roles in this example: Visitor and Element. The user ties these
roles to elements in the program by filling in the corresponding class names: Node Visitor
and Node. The remaining six roles are derived and the tool automatically ties these roles

to the appropriate elements in the program. Often, a derived role is tied to a whole set
of program elements. For example, the derived role ConcreteVisitor is automatically tied
to the classes TypeCheckingVisitor and CodeGenerating Visitor, i.e., to the subclasses of
Node Visitor (the class playing the role of Visitor).

The pattern applicator also supports checking that the user program follows the rules of
the applied patterns. When errors are discovered, the user is warned with a message box
as shown in the bottom of Figure 1. In this example the system has detected an error for
one of the methods playing the derived role of Accept implementations. The message box
makes the user aware that a call to the method playing the role of concrete visit method is
missing in one of these methods. The user can now choose to change the program or ignore
the message, DPDOC will not try to change the code according to the rules of the pattern.

o PrDﬁramTestVisitor

class NodeVisitor { —l &
Program method YizitAssignment {AssignmentNode aéN;) Erolesstring

Vizitor, windowyisitor, Yisitor

editor method YisitVariableRef(variableRefNode aYRN;)

i
class TypeChecking¥izitor extends ModeWisitor {
method YisithAssignment (AssignmentNode aéN;)

method YizitVariableRef{VariableRefMode aWRM;)

i
class CodefeneratingVisitor extends NodeVisitor {
method Yizithssignment (AszignmentNode adN;)

method YizitWariableRef (YariableRefNode aWRN;)

+
clazs Node { .
method accept(NodeMisitor aNyy) —]TFrotesstring

Vigitor, windowvizitor, Abstract accept method

ciass AdzsignnentNode extends Node | L
AssignmentNode thizaN;
method accept (NodeVisitor alV;)
7

i

class YariableRefNode extends Node {
VariahleRefNode thisVREN;
method accept(NodeVisitor aNV;)
ahy YizitWariableRef{thisVRN)

i

Pattern Yigitor: windowvisitor

. Vizitor: NodeYWisitor;
appllcalor Concrete Yisitors; ’ /®DUSL errorl

E1 t: Node;
Cozzﬁgte E?e;énts; Rule 3:411 Concretedccepts must call a visitImplementation

ods;
Coner. Yizitmethods;

Figure 1. The use of Visitor

The program editor can make use of information in the pattern applicator. As an exam-
ple, for each element in the program it is possible to see which roles it plays and in which
pattern applications. This is shown in the top of Figure 1 where the message boxes labelled
“rolesString” shows the roles played by the class NodeVisitor (uppermost box) and the
roles played by the method accept (middle box).

3.1: The Names Facility

DPDOC includes a language-based editing facility called the Names menu: When the user
wants to use the name of a class, method, or variable previously defined, a list is provided
of names that are available at that point in the program. The list is constructed according
to the scope rules of the programming language. The Names facility is also used in the
pattern applicator in order to make it easier for the user to tie the defining roles to names
in the user program. Here, the list of names is generated according to the rules for the
patterns. In the Visitor example, the Names menu for the defining role Visitor would
contain all the names of the classes in the program, since this role, according to the rules
of the pattern, should be played by a class. But the menu could be constrained by more
complicated rules too. Imagine there was an extra defining role in Visitor, that should be
played by a method, and according to the rules, this method should be declared in the class
playing the role of Visitor. Then the Names menu for this defining role, would contain all
the methods found in the class playing the role of Visitor.

4: Behind the Scenes

The main goal for DPDOC is to support pattern applications being explicitly represented
and tied to the code so that they can be used as a means for documentation and error
detection. Additionally, we wanted the tool to be easily extensible with new patterns and
customisable to different object-oriented programming languages.

We have accomplished the customisation to other languages by representing the pattern
applications explicitly as code in a specialised language for pattern applications (see the
pattern applicator in Figure 1). This allows a loose coupling between the patterns and the
underlying object-oriented language. The narrow interface between the implementation
of the pattern application language and the implementation of the programming language
enables the user to change the underlying language easily. This also works the other way
around: the specialised pattern application language can easily be extended to support
new patterns without affecting the underlying object-oriented language. We find it very
important that these pattern definitions can be changed and extended since there are often
variations on how a particular pattern can be implemented.

To implement our approach we needed a way to make the tool act like a compiler for
our design-pattern language together with the compiler for the language. For this we used
an interactive language development tool, APPLAB (APPlication language LABoratory)
[Bjarnason99], as the basis for DPDOC. APPLAB is primarily used to test grammars for
new languages while they are being developed. Users can edit both programs and grammars
at the same time. This makes APPLAB a highly interactive and flexible environment for
language design.

A detailed description of the implementation of DPDOC can be found in a companion
paper [Cornils00].

4.1: Architecture

Figure 1 shows the end user’s view of DPDOC. In addition, DPDOC contains a meta
level where the underlying programming language and the pattern application language
are defined. These definitions are given in two grammars: the program grammar and the

pattern grammar. Each of these grammars is split into several modules, each extending
the tool with a new piece of functionality. For example, the program grammar contains
modules for name analysis, type checking, and so on. The pattern grammar contains
modules for the different patterns, and also general modules constituting a specification
framework for the design patterns. The user can change the program grammar to support
another programming language, or extend or change the pattern grammar to support new
patterns or pattern variations.

The specification technique used is reference attributed grammars, an object-oriented
extension of attribute grammars that models the grammar as an inheritance hierarchy and
permits the use of so called references [Hedin99]. References are attributes of syntax nodes
that can be defined to refer to other nodes in the syntax tree. In DPDQOC, reference
attributes are used for connecting elements in the pattern application code to elements in
the user program code. An example of this is shown in Figure 2 which shows parts of
the syntax trees for the program and patterns of Figure 1 . Here, the pattern syntax tree
contains an application of the Visitor pattern, and the syntax node for the role Visitor has
a reference classref which refers to a ClassDecl node in the program syntax tree, i.e., to the
declaration of the class NodeVisitor. This reference attribute is automatically computed
according to the program and pattern grammars.

All elements in the program contain a textual description of all the roles they play. This
information can be used interactively, or for generating documentation for the code. The
textual description contains a list of strings each carrying three pieces of information; which
kind of pattern they play a role in, what instance of the pattern, and what role played in
that pattern. This is contained in a variable called myRoles as can be seen in Figure 2.

DPWorld

Program syntax tree Pattern syntax tree

Patterninsts
~" (_DecoratorPattern

i VisitorPattern
|
i —~——

VadComnen T | o)\ ot
i \
‘ myRoles: "DecoratorPattern, ' number1’, Component” ‘ i1 -~ myDecoratorPattern
il dasyef ConcreteDecorators

Figure 2. The reference attributes from the pattern applications to the program

Implementations

DecoratedComponent

Some of the grammar modules are shown in Figure 3 in a simplified form. To the left,
part of the program grammar is shown. Module 1 contains a description of the abstract
syntax of the programming language. Module 2 shows an example of a general function
in the semantic analysis where the argument, a name, is looked up in the appropriate
environment and a reference to the corresponding declaration node is returned. Module
3 shows the definition of one of the environment attributes.

To the right in Figure 3, part of the pattern grammar is shown. Module 4 contains
a description of the abstract syntax of the pattern application language. This module
defines what patterns the tool supports and what roles these patterns have. Module 5
shows the definition of the classref attribute of the Visitor role, which is defined using the
lookup function defined in the program grammar in Module 2. Module 6 shows the
definition of an attribute classes in a derived role. It is defined as the set of subclasses

of the Visitor role class. This equation uses a function findBagOfSubclasses which is part
of the pattern specification framework. It computes all subclasses for a given class and is
defined in Module 7. Other modules (not shown in the figure) contain analysis that check
if the rules for using the patterns are followed.

Module 1

Block::=Decls&Stmts
Decls::*Decl
Decl::!ClassDecl!'VarDecl!MethodDecl

Module 2

addto Block
{lookup func ref SEMDecl
(str: string)

"lookup str in this block"

Module 3

addto ClassDecl
{ eq a_Block.env:=
"the static semantic environment of this class"

Module 4

Patterninsts::*Patterninst
Patterninst::!IDecoratorPattern!VisitorPattern
VisitorPattern::=ID&Visitor&Element...
Visitor::=ID

addto Visitor
{ eq classref:=
env.lookup{a_ID.val} }

addto ConcreteVisitor
{ eq classes:=
findBagOfSubclasses(a_Visitor.classref)

Module 7

func findBagOfSubclasses
(class ClassDecl)
"find all subclasses of class"

Figure 3. The grammar modules

It is not coincidental that the grammars are made following the same principles. This
is done since the patterns should be treated as language constructs in this tool. To use a
language construct from the programming language the grammar for that language has to
be followed. Similarly, to apply a design pattern, the grammar for the “language” of the
design pattern applications must be followed.

When the program is edited, DPDOC rebuilds the syntax tree for the program and the
pattern instances. The tool automatically builds the attributes for every point in the code,
according to their definitions in the grammar. For example, for each class in the program,
the environment attribute defined in Module 3 in Figure 3 is built. Likewise, the elements
in the design pattern applications are attributed according to the grammar. For example,
when the user edits the name of an element in a design pattern application, the tool locates
the corresponding class declaration in the program, according to the attribute definition in
Module 5 in Figure 3.

5: Current status and future extensions

DPDOC is a prototype tool. It was (and is being) developed to study how a tool can sup-
port the use of patterns and documentation in the best way. We use it in our research to
experiment and evaluate possible characteristics in pattern tools. DPDOC is currently be-

ing evaluated by students from The University of Aarhus with respect to both functionality
and user-friendliness.

The version of APPLAB that DPDOC is built on uses a subset of the grammar for
Java called PicoJava [Hedin99]. PicoJava includes key object-oriented constructs of Java
like classes, subclassing, and methods, but currently lacks support for, e.g., interfaces and
exceptions. The constructs are, however, sufficient for experimenting with the original
patterns as described in the GoF book. Changes to the underlying language of DPDQOC is
supported by the modularity of the tool, and DPDOC is thus capable of scaling its features
to, e.g., full Java, if need be. However, when changing the underlying language, one might
also want to change the pattern application language in order to take advantage of specific
constructs in the new language. If the underlying language is expanded to full Java, one
might want to change also the pattern application language to use the pattern solutions as
suggested in [Grand98]. Similarly, if the underlying language is changed to Smalltalk, the
pattern variations suggested in [Alpert et al.98] might be desired. These changes can easily
be made in our tool by changing the specification of the pattern application language. In
fact, the tool includes a pattern specification framework for easily specifying new pattern
variations. A detailed description of the range and the implementation of the pattern
specification framework can be found in a companion paper [Cornils00].

Currently DPDOC supports the use of 7 patterns from the GoF book: Decorator,
Observer, Mediator, Composite, Adapter, Factory Method and Visitor. We have
chosen to start with these patterns because some of them are fundamental patterns, ac-
cording to the paper [Agerbo98|, and therefore the most challenging to specify. From the
specifications of these patterns we have factored out the general parts into a pattern spec-
ification framework which supports the common aspects of pattern roles. We will extend
DPDOC with the remaining patterns from the GoF book, and based on our experience
with extending DPDOC, we expect this to be straight-forward. This mostly because of the
pattern specification framework, but also because most of the remaining patterns can be
seen as variations on the ones we have already specified. For instance, extending DPDOC
with Decorator when Composite was already implemented was easily done.

So far, we have focused the development of DPDOC on proving the viability of the
language-based approach to integrating tool support for patterns. An interesting way to
continue the work might be to provide support for a more intuitive and graphical user
interface. We have several ideas for how to do this within the language-based approach.
One idea is to improve the user interface for connecting the pattern applications to the
user program: As we have described in this paper, the connection is currently done by
entering class names, method names, etc. in the pattern application code. A more intuitive
way would be to support user-defined reference attributes that could be set by direct-
manipulation, e.g. by clicking on the appropriate class or method in the user program.

We also intend to support navigation in terms of the pattern applications and roles. A
simple extension to APPLAB to allow navigation along a reference attribute will allow us
to specify navigational links, for example to navigate from the program code to the pattern
application code or vice versa, or between different points in the program code that belong
to the same pattern.

Another way of improving the user interface would be to provide visualisations of the
pattern applications, e.g. in the form of UML-like diagrams similar to the solution diagrams
in the GoF book. Visualisations can be integrated with the APPLAB system as described
in [Magnusson00).

An interesting area to explore would be that of generating design documentation from
programs, similar to how many systems, e.g. JavaDoc [Javadoc] and the Eiffel short mech-
anism [Meyer88] support the generation of API documentation. The strength of DPDOC
in this setting would be that it is easy to specify the generation of different kinds of docu-
mentation from the program, either visual or textual.

6: Related Work

In this section we describe the characteristics of some pattern tools, both commercial and
academic, and relate them to DPDOC. The functionality of the tools range from simple
detection of the use of patterns in a program to rule checking tools with a functionality that
can be compared to that of DPDOC. In these tools, the most interesting aspect to compare
is the way the roles and the rule checking is specified. We also find the issue of extensibility
and flexibility interesting. A thorough survey on tools supporting the use of patterns can
be found in [Viljamaa97]. Some tools, e.g. [Brown96], perform pattern detection by pattern
matching the code with the pattern structures to find instances of patterns in the code.
These tools are not able to tell two patterns with the same structure apart and are little
help in relation to documentation of the system.

Another group of pattern tools focus on code reuse, that is, these tools contain implemen-
tations of patterns, which can be glued into the users code, where they choose it. Examples
are [CodeFarm]|(containing a library of C++ templates), [Modelmaker| (generating code in
Delphi) and [Budinsky96] (which automatically generates code in C++). [Budinsky96] is
a little more sophisticated than the first two, since it is possible to choose between various
trade-offs in the pattern solution before the code is glued to the rest of the system. The
focus in the development of these tools is code reuse, not documentation or rule checking,.

A growing group of tools does perform rule checking, that is, they help the user use the
patterns correctly by checking some rules made by the tool developers from the guidelines
in the design patterns.

In ”Monitoring Compliance of a Software System With Its High-Level Design Models”
[Sane96], Sane et al. describe how their tool, “uchoices”, can confirm whether the C++
implementation of a system maintains its expected design models and rules. The new ap-
proach seen in this paper is that the tool checks both statically and dynamically by both
checking the code and the runtime performance. The static rule checking is specified by
implementation of rules in Prolog. These rules are expressions of the authors’ formalisation
of patterns in positive evidence and violations. When the user claims that certain classes
play certain roles in a pattern, positive evidence that they are in fact following the pattern
is checked. If they are, the implementation is checked for violations of the rules. A Prolog
inference engine matches the program data to the design model rules to produce relations
that can demonstrate whether the rules in the patterns are abided by. By checking dynam-
ically the tool can help to reassure that the rules are followed when the system is run even
if the code appears to allow a deviation from the design. This approach exhibits advantages
and disadvantages similar to those shown by languages with dynamic run-time type check-
ing. There is no immediate support in “uchoices” for changing the underlying programming
language to something else than C++4 or extending the number of patterns, for which rule
checking is supported. It is possible that the system would be able to derive roles in the
program, as DPDOC does it, because of the way the rule checking is implemented, but it

is not described how it could be done.

In [Kim96] Kim and Benner describe a C++-oriented tool, POE (Pattern Oriented En-
vironment), which can help designers implement patterns in the intended way. The design
pattern instances are represented as lists of instances of Class. The Class type contains the
constraints connected to the use of it. Among these, the Properties, which are the relations
and operations connected to the Class instance. When a design pattern is instantiated, the
user can make bindings between the design pattern classes and the user defined classes.
POE implements validation algorithms to ensure that different pattern instances and role
bindings are used properly. It is possible to extend the tool with more patterns using the
Class, Relations and operations types. Thus the means to specify patterns is limited to
these types.

FRED (FRamework EDitor) as described in [Viljamaa98] is a development environment
especially designed for framework development and specialisation in Java. A pattern is
described using templates, which are sets of possible implementations with constraints that
all its instances must conform to. One limitation of FRED is that constraints only apply to
method and field signatures, data types and larger constructs, and thus can not verify that
code within a method body is valid. The implementation of the role binding functionality
is influenced by POE.

In the paper: “Tool Support for Object-Oriented Design Patterns” [Florijn et al.97],
Florijn et al. describe their pattern tool. The tool is built on a fragment model described
in [Meijers96], which allows the elements that can be used in the tool to be fragments and
not just classes and methods. Fragments can represent not only the syntactic elements of
a language, but also associations and inheritance relations and therefore the tool provides
more possibilities for describing relations between roles in patterns and elements of a pro-
gram. The tool specifies the roles and rules of the design patterns as collections of small
fragments, with associations implemented in Smalltalk. The way the tool is extended with
a new pattern is by reusing these fragments to build the patterns with roles and rules using
fragments and associations. To instantiate a pattern found in the tool, the specification of
the pattern (the graph of fragments) is cloned. The rule checking is expressed as composi-
tions of predicates defined on fragment types. Much like in DPDOC some fragments have
query operations, that check whether e.g. a class playing a certain role contains a method
playing a certain role. [Florijn et al.97] provides three different ways of instantiating and
binding patterns to the programs: top-down, where the tool generates all the program el-
ements needed for the application of the pattern, bottom-up, where all the elements that
should play roles from the pattern already exist in the program but must be bound to the
pattern and mixed, where some elements of the design pattern are found in the program and
the rest are generated by the tool. [Florijn et al.97] also supplies support for rule-checking
after the code is glued into the program.

This tool is the one which comes closest in functionality to DPDOC, but nevertheless they
differ in some important points. Firstly, the ability to let other elements in the program
than classes and methods play roles in patterns is mirrored in our tool. But DPDOC
enables the user who adds patterns to let everything that can be represented as a node in
an abstract syntax tree play a role in the pattern. Secondly, DPDOC is developed to be
language-independent, which makes it more flexible than [Florijn et al.97], which can only
be applied to Smalltalk programs. Last, but not least, the rule-checking in [Florijn et al.97]
is only done on the roles that set explicitly by the user. The system is not able to derive
which other roles from the pattern are played by elements in the program, which is an

10

important feature in our tool.

7: Conclusion

DPDOC is a language-based prototype tool supporting documentation of program code
with patterns. The tool supports pattern visibility, rule checking, and automatic role
derivation. Pattern visibility is supported by reifying pattern applications into explicit
language constructs and allowing program elements to be tied to the reified pattern roles.
This allows the user to see explicitly which patterns are applied in the code, and what
roles are played by the different elements. This documentation of the applied patterns is
tied directly to the code, and the documentation does therefore not become out of date
when the program is changed. Automatic rule checking is supported by checking that the
rules for applying each pattern are abided by. This is useful in program evolution in order
to make certain that existing pattern applications are not broken when the program is
evolved. Rule checking is also useful when applying frameworks in order to extend them
as intended, since patterns are often used in providing the variability or hot spots of the
framework. Finally, role derivation is supported by automatically deriving many of the roles
in a pattern application, based on a small set of defining roles. This is useful because it
allows the user to tie the program code to a pattern using only a few key program elements
(the defining roles). In the framework setting, the defining roles are typically located in the
framework whereas the derived roles are located in the framework application code. This
allows the user of the framework to take advantage of pattern visibility and rule checking
without having to explicitly identify any roles in the application code.

The language-based approach for implementing DPDOC has several advantages. It
allows support for new patterns to be added by specifying the roles and rules of those
patterns in a declarative way, thus providing an extensible system. Due to its basis in
reference attributed grammars, it provides the possibility of adding rule checks for literally
anything the user could think of. It is as precise as a compiler, but takes much less work
to build and extend. The object-oriented nature of the grammar formalism allows common
aspects of the specification to be factored out into a specification framework, making the
addition of support for new patterns simple. The language-based approach also provides
language independence: By changing the programming language grammar, the system can
be tailored to different programming languages.

By implementing seven of the most challenging of the GoF patterns in DPDOC, we have
proven the viability of the technique, and we think the approach constitutes a sound basis
for pattern tool support.

8: Acknowledgements

The paper is supported in part by COT (Centre for Object Technology). We would like to
thank Erik Corry, Ellen Agerbo, Jorgen Lindskov Knudsen and all the anonymous reviewers
for the constructive criticism, which we have attempted to follow. We would also like to
thank the students, that are currently testing DPDOC: Tabita Enig, Henrik Kjser Nielsen
and Lars Mellergaard.

11

References

[Agerbo98] Ellen Agerbo and Aino Cornils (1998): How to Preserve the Benefits of Design Patterns. Pro-
ceedings of OOPSLA’98.

[Alpert et al.98] Sherman R. Alpert, Kyle Brown and Bobby Woolf (1998): The Design Patterns Smalltalk
Companion. Addison-Wesley Publishing Company.

[Beck99] Kent Beck (1999): Eztreme Programming Explained: Embrace Change. Addison-Wesley Publish-
ing Company. 1999.

[Bjarnason99] E. Bjarnason, G. Hedin, K. Nilsson (1999): Interactive Language Development for Embedded
Systems. Nordic Journal of Computing 6(1999), 36-55.

[Bosch97] Jan Bosch (1997): Design Patterns & Frameworks: On the Issue of Language Support. Workshop
on Language Support for Design Patterns and Object-Oriented Frameworks (LSDF), ECOOP '97.

[Brown96] K. Brown (1996): Design Reverse-Engineering and Automated Design Pattern Detection in
Smalltalk. www2.ncsu.edu/eos/info/tasug/kbrown/thesis2.htm

[Budinsky96] F.J.Budinsky, M.A. Finnie, J.M. Vlissides, P.S. Yu (1996): Automated code gen-
eration from design patterns. IBM System Journal vol. 35, No. 2, 1996-Object technology.
www.research.ibm.com/journal /sj/budin/budinsky. html

[CodeFarm] www.CodeFarms.com

[Cornils00] Aino Cornils and Goérel Hedin (2000): Tool Support for Design Patterns using Specification with
Reference Attributed Grammars. Submitted to WAGA’00. Third Workshop on Attribute Grammars and
their Applications.

[Florijn et al.97] G. Florijn, M. Meijers, P. van Winsen (1997): Tool support for object-oriented patterns.
Proceedings of ECOOP’97.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1995): Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company.

[Grand98] Mark Grand (1998) Patterns in Java. Vol.1 John Wiley and Sons.

[Hedin97] Gorel Hedin (1997): Language Support for Design Patterns using Attribute Extension. Workshop
on Language Support for Design Patterns and Object-Oriented Frameworks (LSDF), ECOOP ’97.

[Hedin99] Gorel Hedin (1999): Reference Attributed Grammars. WAGA’99. Second Workshop on Attribute
Grammars and their Applications. Amsterdam, The Netherlands, March 26, 1999.

[Javadoc] The Javadoc Tool Homepage hitp://java.sun.com/products/jdk/javadoc

[Kim96] J. Kim et al. (1996): An Experience Using Design Patterns: Lessons Learned and Tool Support.
Theory and Practice of Object Systems (TAPOS), Vol 2, No. 1, 1996, pp. 66-74

[Magnusson00] E. Magnusson and G. Hedin (2000): Program Visualization using Reference Attributed
Grammars. 'To appear in NWPER’2000 (The Ninth Nordic Workshop on Programming and Software
Development Environment Research), Lillechammer, Norway, May 28-30 2000.

[Meijers96] Marco Meijers (1996): Tool Support for Object-Oriented Design Patterns. Master’s thesis, INF-
SCR-96-28, Department of Computer Science, Utrech University, The Netherlands.

[Meyer88] Meyer, B, (1988): Object-Oriented Software Construction. Prentice-Hall.
[Modelmaker] www.modelmaker.demon.nl
[Prechelt et al.97] (1997): Lutx Prechelt, Barbara Unger and Michael Philippsen Documenting Design Pat-

terns in Code Eases Program Maintenance. ICSE-97 workshop on Proces Modeling and Empirical Studies
of Software Evolution pp. 72-76, Boston, MA, May 18. 1997

[Sane96] A. Sane, M. Sefika, R. H. Campbell (1996): Monitoring Compliance of a Software System With
Its High-Level Design Models. ICSE-96 www.choices.cs.edu/sane/patlint. pdf

[Soukup95] Jiri Soukup (1995): Implementing Patterns. Pattern Languages of Program Design. Eds.
Coplien and Schmidt. Addison-Wesley Publishing Compagny.

[Viljamaa97] J. Viljamaa (1997): Tools supporting the Use of Design Patterns in Frame-
works Report C-1997-25, University of Helsinki, Departement of Computer Sci-
ence.http: //www. cs. Helsinki. F1/research/fred/reports. html

[Viljamaa98] J. Viljamaa (1998): Pattern-Oriented Framework Engineering Using FRED Proceedings of
the ECOOP’98 Workshop on Object-Oriented Software Architecture (OOSA’98), Brussels, Belgium, July
1998.

12

