Symbol Table Construction and Name Lookup in ISO C+4++

James F. Power Brian A. Malloy
Department of Computer Science Computer Science Department
National University of Ireland Clemson University
Maynooth, Co. Kildare Clemson, SC 29634
Ireland U.S.A.
james.power@may.ie malloy@cs.clemson.edu
Abstract

In this paper, we present an object-oriented model of symbol table construction and name lookup
for ISO C++ using the Unified Modeling Language (UML). Our use of UML class, activity and
sequence diagrams serves to explicate our model and our use of patterns such as decorator and
facade increase the understandability of the model. Clause three of the ISO C++ standard describes
the procedures and rules for performing name lookup; our activity and sequence diagrams serve to
simulate these procedures in graphical fashion. An advantage of our approach is that our model can
increase C++ understandability for those practitioners with a working UML knowledge.

An important contribution of our work is that our model forms the basis for construction of a
parser front-end for ISO C++. Qur explication of the name lookup problem represents a necessary
first step in this construction and our component approach is independent of the compiler technology
utilized. Our use of the UML in describing parser-driven applications demonstrates how front-end
development can be integrated into an object-oriented framework. Construction of an ISO C++
front-end will help to increase the collection of tools for applications that use this popular language.

1: Introduction

As software developers shift their priorities to the construction of complex, large scale
systems that are robust and easy to extend, traditional approaches and methodologies fall
short. Object orientation makes it possible to model systems that are close to their real
world analogues. The goal of object-oriented design is to accurately identify the principle
roles in a process, assign respounsibilities to these roles and encapsulate them in an object.
The benefits of object technology are extensibility, ease of modification and ease of reuse.

Given the advantages of object technology, it is surprising that some practitioners have
still not adopted the object-oriented approach. The most obvious difficulty is that soft-
ware support for object technology is not uniform or widespread[8, 9]. Software tools are
fundamental to the comprehension, analysis, testing and debugging of application systems.
Tools can automate repetitive tasks and, with large scale systems, can enable computation
that would be prohibitively time consuming if performed manually. In many cases, tool
development requires a parser front-end to recognize the implementation language of the
system under development. The lack of software support for applications using the C++
language is especially noteworthy; in fact, there is no tool available in the public domain
that can accept applications written in ISO C++[1].

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



One explanation for the lack of software tools for C++ is the difficulty in constructing
a front-end for the language, as described in references [3, 6, 7, 12, 13]. This difficulty
results from both the complexity and scale of the language[11]. Many constructs in C++
cannot be recognized through syntactic considerations alone. For example, the difficulty in
distinguishing a declaration from an expression can only be resolved by performing name
lookup. Given the obvious mapping of objects to the roles in front-end construction such
as a parser or scanner, it is unfortunate that the carry-over of object technology to parser
development has been minimal.

In this paper, we present an object-oriented model of the name lookup problem for
ISO C++ using the Unified Modeling Language (UML). Our use of UML class, activity
and sequence diagrams serves to explicate our model and our use of patterns such as
decorator and facade increase the understandability of the model. Clause three of reference
[1] describes the procedures and rules for performing name lookup; our activity and sequence
diagrams serve to simulate these procedures in graphical fashion. An advantage of our
approach is that our model can increase C++ understandability for those practitioners
with a working UML knowledge.

An important contribution of our work is that our model forms the basis for construction
of a parser front-end for ISO C++. Our explication of the name lookup problem represents
a necessary first step in this construction and our component approach is independent of
the compiler technology utilized. Our use of the UML in describing parser-driven appli-
cations demonstrates how front-end development can be integrated into an object-oriented
framework. Construction of an ISO C++ front-end will help to increase the collection of
tools for applications that use this popular language.

The rest of this paper is organized as follows. In the next section we discuss the com-
plexity of the problem that we consider, provide background and introduce terminology
important to our work. In Section 3 we discuss the analysis of clause three of the C++
standard that allowed us to determine the information required for our model and in Section
4 we describe the subsystem of our model that initiates and choreographs name lookup.
Section 5 describes the design of our symbol table and its use in resolving context-dependent
ambiguity. Finally, in Section 6 we draw conclusions.

2: Overview of the Name Lookup Problem

In the next subsection, we define terms and introduce concepts important for understand-
ing the problem that we consider. We then describe some of the difficulty involved in the
construction of a parser front-end for C++-, including the importance of a solution to the
name lookup problem. In the second subsection, we overview our approach for constructing
a symbol table for C++ and the technique that we use to perform name lookup.

2.1: Terminology and statement of the problem

Software developers need tools to facilitate the design, analysis and testing of the system
under development. Many useful tools require a parser front-end to compute and store
information about the program, and to perform the analysis needed. A parser front-end
performs lexical and syntactic analysis, constructs a symbol table, performs semantic anal-
ysis and possibly generates an intermediate representation of the program. A symbol table
is a data structure that stores information about the types and names used in the program.

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



Many programming language constructs have an inherently recursive structure that can
be defined by context-free grammars, or CFGs|[2]. Most of the constructs of languages such
as Pascal and Ada can be specified by CFGs, and parser front-ends for these languages can
base their recognition on syntactic considerations alone. An exception to this easy-parse
rule can be found in the language C, where a declaration may not be easily distinguished
from an expression. Consider the following code segment:

f (x);

Intuitively, the above code segment appears to be an expression involving an invocation of
function £ with parameter x. However, if the context includes the following declaration:

typedef int f;

then the code segment is actually a declaration of x as an integer variable with redundant
parentheses. This declaration/ezpression ambiguity not withstanding, parser front-ends
for the C language have not been difficult to construct. However, a parser front-end for
the C++ language has proven elusive and the difficulties involved have been described in
references (3, 6, 7, 11, 12, 13]. Currently, there is no parser front-end in the public domain
that can parse the language described in the ISO C++ standard[1]. Many constructs in
the C++ language cannot be recognized by syntactic consideration alone; these constructs
not only include the typedef declaration/expression ambiguity of C, but C++ also includes
context-dependent keywords for namespace, class, enumeration and template declarations|[1,
Appendix A].

To illustrate the declaration/expression ambiguity introduced by templates into C++,
consider that for a code segment such as a < b, the name a must be looked up to determine
whether the < is the beginning of a template argument list or a less-than operator [1,
§3.4.5/1]. Thus, the disambiguation of many C++ constructs requires a solution to the
name lookup problem. The name lookup problem is defined as follows: given the use of a
name in the program, find the corresponding declaration of that name.

The GNU Free Software Foundation offers gcc, a public domain compiler for the C++
language. However, it is difficult to de-couple the parser front-end of gcc from the back-end
of the compiler. Even if de-coupling were achieved, low-level access to the internals of gcc
is not easily accomplished. Furthermore, gcc does not parse the language described in the
C++ standard.

2.2: Overview of our approach

Figure 1 summarizes the design of our system to construct a parser front-end for ISO
C++. The figure presents two subsystems, illustrated as tabbed folders and designated by
the < subsystem>> stereotype. The ProgramProcessor subsystem is shown on the left side
and the Symbol Table subsystem is shown on the right side of Figure 1. The ProgramPro-
cessor and Symbol Table subsystems are elaborated in Sections 4 and 5 respectively.

The ProgramProcessor subsystem includes a Scanner and Parser and is responsible for
initiating and directing symbol table construction and name lookup. This responsibility
includes two phases: (1) assembling the necessary information for creation of a NameOc-
currence object, and (2) directing the search for a corresponding NameDeclaration object in
the Symbol Table subsystem.

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



<<enumeration>>
Occur Specifier

convFunction, destructor,
destructorQualifier,
elabEnum, elabClass,
label, namespace,
pseudoDestructor,
qualifier, typename [=.

Sl <<use>

"y NameOccurrence
name : String q =i
<<subsystem>> builds b hasQualifier : Boolean search
Hograrn Processor specifiedAs: OccurSpecifier <<subsystem>>
ignoreUsings : Boolean %/
mbol Table
looksfor P 4 returns
emebedaaion Seope
name : String
kind : Kind
containedin : Scope AN
~<<use>>
S <<enumeration>>
N Kind
class, enum, function,
|abel, namespace,
variable, typedef

Figure 1. System summary. This figure summarizes the design of our system to
construct a parser front-end for ISO C++. The ProgramProcessor subsystem is re-
sponsible for initiating and directing symbol table construction and name lookup
by marshaling information about the name in a NameOccurrence object and directing
the search for a corresponding NameDeclaration in the Symbol Table subsystem.

The NameOccurrence object encapsulates local information relevant to the lookup, in-
cluding the String representation of the name, a boolean to indicate name qualification (by
class or namespace), and an enumeration, OccurSpecifier, that captures lexical informa-
tion about the context in which the name occurred. The NameDeclaration object includes
the String representation of the name, an enumeration indicating the type of name, and a
pointer to the enclosing scope. The NameOccurrence object is discussed further in the next
section.

3: Structural Analysis

In this section we describe the analysis process carried out on clause three of reference
[1] in order to determine the information required for the construction of our model. A
use-case analysis is often employed to guide the design of high-level systems; however, the
relatively low-level nature of designing a C++ front-end required that this approach be
adapted somewhat.

Since the purpose of name lookup is to associate each usage of a name with its cor-
responding declaration, clearly the representation of both the usage and declaration of a
name will be central to the design. The natural modularization of the design into the
ProgramProcessor and SymbolTable subsystem creates a central role for these NameOccur-
rence and NameDeclaration objects as the principal means of communication between these
subsystems.

Clause three of reference [1] describes the various scenarios relevant to name lookup,

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



Attribute Provider | Location | Reference from [1]

elabEnum, elabClass TD NO 3.3.1/5,3.44/3

ignoreUsings CM NO 3.4.2/2,3.4.3.2/6

convFunction P NO 3.4.3.1/1

isDeclarator P LC 3.3.1/5, 3.3.1/6, 3.4.1/10, 3.4.1/12,
3.4.3.2/6, 3.4.4/3

destructor TD NO 3.4.3/5,3.4.5/3

destructorQualifier TD NO 3.4.3/5

isFriend CM LC 3.3.1/6, 3.4.4/3

label TD NO 3.3.4

namespace TD NO 3.4.6

pseudoDestructor TD NO 3.4.3/5

qualifier TD NO 3.4.3/5,3.4.5/4

memberOf TD LC 3.4.3/5,3.4.5/1, 3.4.5/3,3.4.5/4

prevDeclarator CM LC 3.4.1/10, 3.4.1/12, 3.4.3/3

qualifiedBy TD LC 3.3.1/5, 3.4.3/4, 3.4.3/5 343.1/1,
3.4.3.2/6,3.4.4/3, 3.4.5/4

searchWholeClass CM LC 3.4.1/7,3.4.1/8, 3.4.1/12

Table 1. Attributes required for name lookup. This table summarizes the analysis
carried out on the relevant sections of clause three of the C++ Standard in order
to decide on the nature of the attributes required for name lookup. In each case
we specify the provider of the information as either the TokenDecorator (TD) or the
ContextManager (CM), and also the location of the information as either in a NameQOc-
currence object (NO) or in the ContextManager (CM).

both in terms of the structure of sample C++ programs, as well as the context of a given
name occurrence (such as the presence of qualifiers, elaborations etc.). In all, sections 3.3
and 3.4 of reference [1] present 24 pieces of C++ code, containing roughly 65 instances of
name occurrences. Our approach was to analyze each example in order to determine the
information necessary to perform name lookup and, in particular, to distinguish each given
case of name lookup from the others.

The results of this analysis, which determined the structure of the NameOccurrence class,
are summarized in Table 1. In each case, it was necessary to determine whether the re-
quired information could be determined lexically, or whether a more global context was
required. In addition, a distinction was made between the information needed to correctly
initiate name lookup, and the information needed during the lookup process itself. These
results also provided an initial analysis for the construction of classes within the Program-
Processor and SymbolTable subsystems, since these subsystems are responsible respectively
for constructing and for using instances of NameOccurrence.

The scenarios depicted in the examples given in clause three of reference [1] do not, of
course, provide a complete specification of the name lookup process. They do, however,
provide a set of scenarios necessary to both the analysis of the problem and to the validation
of the model. In terms of the number of such scenarios, they provide a reasonable balance
between case coverage and the feasibility of performing manual validation for each case.

It would be possible to construct a comprehensive set of test cases from the rules detailed
throughout clause three. However, given the complexity of the name lookup problem, such
a test suite would be quite large, and probably more suitable as a basis for the validation

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



gets gets tokens

Scanner 4 token TokenDecorator 4 and symbols Parser
from from
—— Simple scanner with —— Decorates identifiers - grammar-bgsed parser,
no semantic functions with symbol table data method calls implement
the semantic actions
Perform Perform
name lookup semantic actions
v v

ActionFacade

—- Provides a unified interface to the name lookup process
by encapsulating the semantics actions of both the
TokenDecorator and Parser

Delegate Delegate
name lookup context maintenance
v v
LookupController ContextManager
lookupUnqualifiedName(String,OccurSpecifier) : NameDeclaration createScope(NameDeclaration) : Scope
lookupQualifiedName(String,OccurSpecifier, Scope) : NameDeclaration enterScope(Scope) : void
lookupArgDependent(NameDeclaration, List<NameDeclaration>) : NameDeclaration leaveCurrentScope() : void
lookupMemberName(String,OccurSpecifier,NameDeclaration) : NameDeclaration getCurrentScope() : Scope

Figure 2. Classes in the Program Processor Subsystem. This figure illustrates the
relationships between the classes in the ProgramProcessor subsystem. The activity
of the system is driven by the Parser, which interacts with the Scanner via the Tok-
enDecorator, and with the LookupController and ContextManager via the ActionFacade.

of a prototype implementation, where automatic testing techniques can be used.

4: The Program Processor Subsystem

In this section we describe the internal structure of the ProgramProcessor subsystem. This
subsystem includes both the Scanner and the Parser, but is also responsible for initiating
and directing name lookup. This task can be divided into two main phases: assembling
the necessary information for the creation of a NameOccurrence object, and directing and
collating the result of the search for a corresponding NameDeclaration object.

The class diagram in Figure 2 shows the main classes in the ProgramProcessor subsystem.
The traditional view of the parsing process is represented by classes for the Scanner and
Parser which communicate here via the TokenDecorator class. The ActionFacade class unifies
the interface between these three classes and those which actually control the name lookup
process, the LookupController and ContextManager.

The Scanner of Figure 2 is a simple lexical analyzer with no semantic content; in particu-
lar, identifiers are presented by a single identifier token, and not by their context-sensitive
counterparts, such as class-name, namespace-name, etc. The task of mapping the iden-
tifiers to their context-sensitive equivalents is handled by the TokenDecorator class. This
implements the Decorator pattern in the sense of reference [5] by “wrapping” identifier to-
kens as symbol table entries before passing them to the Parser. As such it is similar to the
“post-lexical analysis pass” of the processor described in reference [12]. When the parser

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



Parser TokenDecorator Scanner LookupController ContextManager
-
Request token
Scan and return
next token

Buffer token,
check lexical context,

Initiate
name lookup . Work out

™ Return
current scope
| |
hable
e Seope
l . i

v

\l

Perform ’
name lookup
N Collate results
Proceed with

\
!

Figure 3. Activity Diagram for Name Lookup. This figure illustrates the sequence of
high-level actions that take place during name lookup. The role of the ActionFacade
has been omitted here for clarity.

requests a token from the TokenDecorator, it will either receive a non-identifier token passed
directly from the Scanner, or one of the context-sensitive identifier tokens, deduced from
the corresponding symbol-table entry.

In order to match an identifier with the corresponding instance of NameDeclaration from
the symbol table, the TokenDecorator must initiate a name lookup for that identifier. To
do this it must assemble any local information relevant to the lookup, and pass control
to the LookupController which will direct the search. The information collected by the
TokenDecorator is limited to that which can be deduced from a few tokens of lexical context,
as discussed in Table 1 of section 3, and is manifested in the choice of lookup function called.
The sequence of actions involved here is summarized in the first three swim-lanes of the
activity diagram shown in Figure 3.

All messages passed from the TokenDecorator or Parser that deal with symbol-table ac-
cess or maintenance are routed through the ActionFacade. This is an example of the Facade
pattern of [5], and is crucial to the design of our system. The ActionFacade does not deal
directly with the symbol-table itself, but delegates these operations to either the Lookup-
Controller or the ContextManager.

The chief purpose of the ActionFacade is to act as a repository for the semantic actions
of the parser. The actions associated with each grammar rule may vary in complexity, but
can involve a number of different semantic operations. For example, on encountering a new
class definition, we will want to create a new symbol table entry for class name, a new Scope
object for the class, and to inform the ContextManager that any subsequent declarations
belong to this new Scope object. Placing all this information in the parser definition would

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



add complexity to the grammar definition, impede manipulation of the grammar rules and
reduce modularity. Instead, complex series of semantic actions are represented by a single
method in the ActionFacade, and it is a call to this method that is used alongside the
grammar rules.

The use of the ActionFacade here also provides the usual advantage of de-coupling the
Parser from the classes concerned with name lookup. Thus, changes to the parser need
not impact either the LookupController or ContextManager classes. In particular, significant
changes in the parsing algorithm (e.g. from top-down to bottom-up parsing) can be handled
by appropriately sub-classing the ActionFacade class, rather than refactoring the entire
design of the ProgramProcessor.

The ActionFacade class provides one more important function. While it is intended that
a user of the C++ parser would mainly be interested in the output of the system as a
whole, it may be necessary, for certain fine-grained operations, to access the operation of
the system at a lower-level. Since the ActionFacade is at the heart of all significant semantic
operations, a suitable interface to this class should provide a sufficiently low-level access to
the system internals for most purposes.

Behind the ActionFacade are two classes - the LookupController and the ContextManager -
that are responsible for interacting with the Scope hierarchy to perform name lookup. The
ContextManager holds those aspects of the context needed for name lookup that cannot be
determined by the TokenDecorator, as indicated in Table 1 of section 3. One of the most
crucial pieces of information here is maintaining a link to the current Scope object, since
this acts as the starting point for unqualified name lookup, and is the typical location of
new declarations.

Changes to the context information in the ContextManager are directed by the Parser.
The ContextManager is then queried for the relevant information by the LookupController
before the control of name lookup is passed to the Scopes. The two swim-lanes on the right
of the activity diagram of Figure 3 summarize the main activities involved here. For clarity,
the ActionFacade has been elided, since its role is trivial during this operation.

As can be seen from Figure 3, the LookupController first consults the ContextManager and
collects any relevant context information. The LookupController then creates a NameOccur-
rence object, mainly from the information received from the TokenDecorator. Name lookup
is then performed by passing the NameQOccurrence object to at least one relevant Scope -
typically the current Scope returned by the ContextManager, or the specified scope in the
case of qualified or class-member lookup.

Certain more complex cases may involve more than one name lookup call, such as
argument-dependent name lookup [1, §3.4.2], or in the case of a qualified class-member
[1, §3.4.5/3]. In these cases the LookupController has the responsibility of directing each
lookup to the appropriate Scope, and collating the results of these lookups. In all cases
a single NameDeclaration object is returned to the TokenDecorator, which then returns the
appropriate token to the Parser. Should name lookup fail, a new instance of NameDeclara-
tion can be constructed and returned; the Parser then has the responsibility for managing
this object and, where appropriate, initiating the process of inserting it into the symbol
table.

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



Sco pe {abstract}

# findHere(n:NameOccurrence) : NameDeclaration

. + lookup(n:NameOccurrence) : list<NameDeclaration>
containedin
|

1 contains b 0.*

NameDeclaration

NamespaceScope LocalScope PrototypeScope
1 - local variables —= for parameters in
function prototypes
Section 3.3.5 Section 3.3.2 Section 3.3.3
uses
DNox A
FunctionScope ClassScope TemplateScope

—— for lables only —— for template
1 paremters

|
i
i
i
i
|

<<instanceOf>> | Section 3.3.4 Section 3.3.6 Section 14.3
! 0.*

.
globalScope : NamespaceScope derivedFrom

Figure 4. Class Diagram for the Scopes Hierarchy. Each Scope object contains a
list of NameDeclaration instances, along with name lookup functionality. The Scope
class has six subclasses, as detailed in the referenced sections of the ISO standard.

5: The Scope Subsystem

In this section we turn to the second subsystem depicted in Figure 1, the symbol table. In
general, compilers are designed so that the symbol table can store considerable amounts of
semantic information. For our purposes, however, we simply need to be able to determine
the context-dependent keyword that corresponds to a given identifier in order to allow
parsing to proceed. Thus, the standard entry in the symbol table is a NameDeclaration
object, as described in section 3.

ISO C++ has a relatively complex system of scopes when compared to e.g. ISO C.
In addition to the typical nested block structure of local declarations in functions, we
must also consider classes and namespaces, along with the relationships between these via
inheritance and using directives and declarations. Composing these scoping constructs, via
nested namespaces, unnamed namespaces, nested and local classes and, of course, templates
further complicates the process of name lookup.

The complete set of scoping constructs is shown in Figure 4. In addition to represen-
tations of namespace, class and local scopes, there are three other scope constructs for
special cases: FunctionScope for labels, TemplateScope for template parameters, and Proto-
typeScope for the parameters in a function prototype. Each instance of a Scope consists of
a set of NameDeclaration objects, representing the identifiers declared at that scope level.

Because of the complexity of the name lookup process, it would be undesirable to seek
to assign responsibility for all of this functionality to the LookupController. Instead, as
much of the searching and decision-making process as possible is delegated to each kind
of scoping construct, represented here by the lookup method of the Scope class. This has
the effect of reducing the complexity of the LookupController, and decreasing the coupling
between the ProgramProcessor and SymbolTable subsystems. The pragmatics of this design
are discussed further in reference [10].

For each instance of a subclass of Scope we need to specify the lookup procedure to be

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



n : NameOccurence
specifiedAs <> #label
[ n.specifiedAs = #namespace ]

else
s : NameDeclaration
find_here _
= name = n.name
kind <> #function
|
! [ found symbol s]
se

e

search
base classes

[ found or n.hasQuadlifier ]

.
! *
dse J b

I
I
I
I
\L |
search
enclosing scope ] :NameDeclaration

-
.

Figure 5. Activity Diagram for Name Lookup in ClassScope. This is a description
of the lookup method, which is specific to each of the six subclasses of the Scope
class. We provide for a set of returned NameDeclaration objects to allow for function
overloading.

carried out. In each case, the method findHere is called to search the scope in question.
This is a straightforward search, identical for all Scope classes, and takes into account the
preferences expressed in the NameOccurrence object. For example, class or enum names are
normally hidden by variable or function names, except in certain special cases where this
is reversed, such as elaborated type specifiers [1, §3.4.2].

The lookup method is specific to each subclass of Scope, and implements the main
decision-making involved in the name lookup for this kind of scope. As an example, the
lookup method for instances of ClassScope is modeled in the activity diagram shown in
Figure 5. Here we see the basic procedure expressed as: a search in the current scope,
a search through the base classes (if any), followed by a search through enclosing scopes.
In each case where the search is delegated to another instance of Scope, it is the delegate
Scope that then takes control of the lookup process.

An example of the name lookup process is shown in the sequence diagram of Figure
6. This diagram is based on the example from [1, §3.4.5/4] of a class member which is
explicitly qualified by a class name, in this case the expression e.B: :a occurring in a local
scope. In this example, e is an instance of a class E, B is a base class of E, and a is a member
of a base class of B. In this case the qualifier name B must be looked up both in the scope
of class E, and in the context of the whole expression.

The sequence diagram of Figure 6, showing the name lookup for the qualifier B, is partic-
ularly useful in demonstrating the division of responsibilities between the classes involved.
The TokenDecorator is responsible for detecting that B is a qualifier, as well as noting that

10

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



EalseL‘ [ TokenDecarator | [ :Scanner | [ :LookupContraller | [ ContextManager | [curr - Scape|  [:ClassScope]

name="E"
yylex() getToken()
___\dentifier"8" |
;‘ checkContext()
Identifies B as a qualifier
- - | e-NameDeclaration
and detects member access N —
lookupMemberName("B" ,qualifier,e)
new()
getCurrentScope()
g
lookup(n)
{ found B}
S I R
| o lookup(n)
,,,,,,,,,,,,,,,,,,,,,,,,,,,, {fondB} 0 .
collate()
delete() >< o
—_—

Figure 6. Sequence Diagram for Name Lookup in e.B::a. This gives a detailed de-
scription of the interaction between the objects involved in the lookup for the qual-
ifier B, based on an example in section 3.4.5/4 of the ISO standard.

it occurs in the context of member access. The LookupController must then ensure that the
lookup is initiated both in the current scope, and in the scope of the object e, both retrieved
from the ContextManager. As well as creating and dispatching a suitable NameOccurrence
object for the search, the LookupController is also responsible for collating the results of both
searches, checking for consistency, and returning the appropriate NameDeclaration object
to the TokenDecorator, which is then returned to the Parser.

The flexibility of the UML is particularly useful in dealing with the examples from
clause three of the ISO standard. Since the text in the standard is often terse or vague,
the examples play a crucial role in fleshing out the specification, as well as checking the
completeness and consistency of the structural model. The web of interactions between
the scopes in each example can be represented clearly using an object diagram, and each
lookup can be represented as a sequence diagram. The construction of such diagrams
for each example in clause three was of fundamental importance in both enhancing our
understanding of the clause, and in increasing the accuracy and completeness of the model.

6: Concluding Remarks

In this paper we have presented an object-oriented model of the name lookup problem
in ISO C++ using the UML. To do this we have carried out a case-based analysis of clause
three of the ISO C++ standard, and have modeled aspects of this clause using UML class,
activity and sequence diagrams.

The work presented here is similar in focus to that discussed in references [4] and [12],

11

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



although neither of these deal in detail with the object-oriented design of the program pro-
cessor and its interaction with the symbol table. The only formal description dealing with
aspects specific to the C++ programming language is reference [14], but this concentrates
exclusively on aspects of the dynamic semantics of the language. In particular, none of the
above approaches had the advantage of reference to the ISO standard, or deals with more
recently-added features such as namespaces. For an analysis of the ambiguities associated
with parsing C++, both references [6] and [13] are particularly useful.

As well as providing the basis for an implementation of a front-end for C++, we see the
contribution of this work as being in three main areas. First, it provides an explication of
clause three of the ISO standard, presenting a structural rather than purely procedural view
of the issues involved. Second, it demonstrates the use of object-oriented techniques, and
the UML in particular, in modeling semantic aspects of real-world programming languages.
This is particularly relevant for the name lookup problem in C++ where the central issue
is one of complexity and scale, rather than theoretical difficulty. Third, it provides an
example of the use of the UML in describing parser-driven applications, and of how such
applications can be integrated into an object-oriented framework.

References

[1] ISO/IEC JTC 1. International Standard: Programming Languages - C++. Number 14882:1998(E) in
ASC X3. American National Standards Institute, first edition, September 1998.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley,
1986.

[3] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B. Winnicka. Sage++:
An object-oriented toolkit and class library for building Fortran and C++ restructuring tools. In
OON-SKI, pages 122-136, Oregon, USA, 1994.

[4] S.C. Dewhurst. Flexible symbol table structures for compiling C++. Software — Practice and Ezperi-
ence, 17(8):503-512, August 1987.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[6] G. Knapen, B. Lagué, M Dagenais, and E. Merlo. Parsing C++ despite missing declarations. In
Proceedings of the Tth International Workshop on Program Comprehension, Pittsburgh, PA, 1999.

[7] J. Lilley. PCCTS-based LL(1) C++ parser: Design and theory of operation. Ver. 1.5, February 1997.

[8] R. Malan, D. Coleman, and R. Letsinger. Lessons from the experiences of leading-edge object tech-

nology projects in Hewlett-Packard. In Proceedings of the 10th annual conference on Object-oriented
programming systems, languages, and applications, pages 33—46, October 1995.

[9] C.M. Pancake. The promise and the cost of object technology: a five-year forecast. In Communications
of the ACM, volume 38, pages 32—49, June 1995.

[10] J. F. Power and B. A. Malloy. An approach for modeling the name lookup problem in the C++
programming language. In ACM Symposium on Applied Computing, Como, Italy, March 2000.

[11] J. F. Power and B. A. Malloy. Metric-based analysis of context-free grammars. In Proceedings of the
8th International Workshop on Program Comprehension, Limerick, Ireland, June 2000.

[12] S.P. Reiss and T. Davis. Experiences writing object-oriented compiler front ends. Technical report,
Brown University, January 1995.

[13] J.A.Roskind. A YACC-able C++ 2.1 grammar, and the resulting ambiguities. Independent Consultant,
Indialantic FL, 1989.

[14] C. Wallace. The Semantics of the C++ Programming Language. In E. Borger, editor, Specification
and Validation Methods, pages 131-164. Oxford University Press, 1995.

12

Accepted for the 37th International Conference on Technology of Object-Oriented Languages and Systems
Sydney, Australia, November 20-23, 2000



