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Abstract—Computer science researchers in the programming
languages and formal verification communities, among others,
have produced a variety of automated assistance and verification
tools and techniques for formal reasoning. While there have been
notable successes in utilizing these tools on the development
of safe and secure software and hardware, these leading-edge
advances remain largely underutilized by large populations of
potential users that may benefit from them. In particular, we
consider researchers, instructors, students, and other end users
that may benefit from instant feedback from lightweight modeling
and verification capabilities when exploring system designs or
formal arguments.

We describe Aartifact, a supporting infrastructure that makes
it possible to quickly and easily assemble interacting collections of
small domain-specific languages, as well as translations between
those languages and existing tools (e.g., Alloy, SPIN, Z3) and
techniques (e.g., evaluation, type checking, congruence closure);
the infrastructure also makes it possible to compile and deploy
these translators in the form of a cloud-based web application
with an interface that runs inside a standard browser. This makes
more manageable the process of exposing a limited, domain-
specific, and logistically accessible subset of the capabilities of
existing tools and techniques to end users. This infrastructure
can be viewed as a collection of modules for defining interfaces
that turn third-party formal modeling and verification tools and
techniques into plug-ins that can be integrated within web-based
interactive formal reasoning environments.

I. INTRODUCTION

Computer science researchers in the programming lan-
guages and formal verification communities, among others,
have produced a variety of automated assistance and verifica-
tion tools and techniques for formal reasoning: parsers, evalu-
ators, proof-authoring systems, software verification systems,
interactive theorem provers, model-checkers, static analysis
methods, and so on. While there have been notable successes
in utilizing these tools on the development of safe and secure
software and hardware, these leading-edge advances remain
largely underutilized by large populations of potential users
that may benefit from them, including researchers, instruc-
tors, and students working in particular application domains.
The limited use of formal tools and techniques in particular
application domains has been acknowledged and sometimes
addressed (e.g., in the design of distributed systems [1], [2],
software engineering and programming [3], and real-time
systems [4]).

More broadly, we view the issues as falling into the cat-
egories of domain-specific accessibility and integration: (1)
different tools and techniques require different platforms and
infrastructures, and have different syntaxes and semantics that
must be adapted and understood within particular application
domains; (2) practical characteristics make certain tools and
techniques more appropriate for some domain-specific tasks
than others, and many common, even simple tasks may require
the simultaneous or even integrated use of multiple tools and
techniques. The need for accessible integration of existing
tools and techniques has been recognized in general [5]–[8] as
well as within the context of a variety of application domains
[9]–[12].

Practical integration of existing tools and techniques for
application domains does not require only sound theoretical
underpinnings in the form of formal frameworks that can
encompass (or provide interface principles for) existing tools
and techniques. Successful dissemination of integrated systems
will require the creation of infrastructures for implementing
and deploying domain-specific integrated environments that
incorporate existing tools and techniques (as noted in more
ambitious proposals along these lines [8]). In fact, lowering
the bar for creating integrated environments may more im-
mediately contribute to the accessibility of existing tools and
techniques, which may in turn encourage more widespread
utilization thereof. Such an infrastructure would also make
it easier for tool designers to deliver existing or novel tools
to target communities by providing a back-end interface for
integrated environments to which they can connect their tools.

It is worth noting that the work presented in this paper
does not constitute a complete or universal infrastructure for
assembling integrated environments of tools; the authors do
not view a universal framework or interface standard as a goal
that is practical, attainable, or sustainable in the short term.
Researchers specialize and work within particular application
domains, and this naturally leads to the continual creation of
new and distinct vocabularies, standards, languages, represen-
tations, tools, and techniques. Thus, the adopted assumption is
that new tools and techniques with incompatible input/output
representations and interfaces will inevitably be created in
the future; in this work we present a prototype infrastructure
designed to make assembly and deployment of integrated
environments less burdensome under these circumstances.
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Fig. 1. Overall organization of the infrastructure.

II. INFRASTRUCTURE FOR INSTANTIATING ACCESSIBLE
INTEGRATED ENVIRONMENTS

To support rapid assembly and deployment of potential
domain-specific solutions the designs of which take into
account the issues raised in Section I, we introduce Aartifact
[13], an infrastructure for implementing, instantiating, and de-
livering over the web an accessible integrated formal reasoning
environment. This infrastructure is comprised of a collection of
components that support the tasks that must be performed by
three possible user roles (actual users may have more than one
role): (1) formal systems experts who implement automated
formal verification and analysis algorithms or techniques, as
well as translators for underlying formal tools; (2) application
domain expert administrators who instantiate libraries, decide
which components and libraries are available to end users in
the environment at any given time, and author content that may
put into context the tasks in which the end-user may engage
(e.g., homework assignments, tutorials, documentation, and so
on); and (3) end users who use the environment to engage in
formal reasoning tasks. The overall organization is presented
in Figure 1.

A. Formal Systems Experts and Component Implementation

It is the responsibility of formal systems experts to provide
implementations of common formal analysis and verification
algorithms (e.g., evaluation, monomorphic type checking, con-
gruence closure computation, resolution, unification, and so
on), as well as appropriate translations for external systems
or components (e.g., translations from a particular syntax
for network protocols and protocol properties specified in a
particular logic to an appropriate Alloy, SPIN, PRISM, or Z3
syntax). The role of the formal systems expert is somewhat
similar to that of a staff member of a “tool repository”
envisioned in more long-term proposals for integration efforts
[8]. In order to support formal systems experts in this task, it is
necessary to provide a language that: (1) allows them to easily
specify a single definition for syntactic expressions (formulas
and terms) for a particular domain-specific environment’s input
language without having to also define an abstract syntax and
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Fig. 2. An illustration of an abstract syntax tree corresponding to the logical
formula “(∀y ∈ Z, 3 > 1) ∧ (∀x ∈ Z, (x > 0 ⇒ x + 1 > 1))” with
multiple values (produced by different components) for some subexpressions.

implement parsers that transform the concrete syntax into an
abstract syntax and pretty-printers for displaying the abstract
syntax or emitting it as input to underlying or integrated back-
end tools; (2) allows them to specify algorithms using concise
pattern-matching syntax (adopted from functional languages
such as ML and Haskell) that operate on the abstract syntax;
and (3) allows them to define and manage a collection of
algorithms that are interdependent and can invoke one another.

Aartifact depends on a simple, specialized, custom-built
programming language, Informl [14], that can be compiled
to Haskell, Python, PHP, and JavaScript. A parser generator
implemented using Informl makes it possible to concisely
define parsers that can be compiled to any of these target
platforms and languages. This makes it possible to easily
define small domain-specific languages. Informl’s features,
including pattern-matching syntax, make it possible to define
concise translations of abstract syntax instances generated by
the parser.

For a given implementation of a domain-specific environ-
ment that employs the Aartifact infrastructure, all component
algorithms and translations must be transformations that are
defined on a subset of the input language supported by the
environment. Any or all of the algorithms can then be applied
to all subexpressions of any expression tree parsed from the
formal input provided by the end user. Each subexpression
can then be annotated with the results of applying various
components to that subexpression, as illustrated in Figure 2.
Environment implementers can then combine various Aartifact
interface features to display this information to users in
different ways (including formats that are accompanied by
widgets that allow users to explore or filter the results).

Because the definition of any component algorithm is al-
lowed to invoke any other algorithm, it is possible to construct
a dependency graph between component algorithms, such as
the one illustrated in Figure 3. If the dependency graph is a
directed acyclic graph, it is possible to provide an ordering for
algorithms that ensures convergence. Otherwise, it is necessary
to either allow the algorithms to iterate until convergence or
specify a bound on the number of iterations.
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Fig. 3. Example of a component algorithm dependency graph.

B. Application Domain Experts and Instantiation

It is the job of the application domain expert administrator
to instantiate a library of formal facts that will be seen by the
user (and any corresponding definitions that are appropriate
for underlying or integrated tools and techniques). Off-the-
shelf open source content management systems (CMS) such
as Drupal and MediaWiki can be extended to support these
tasks. The current state of these features has been addressed
in earlier work [15], [16].

C. End users and a Web-based Interactive Environment

End users can use any standard browser capable of running
JavaScript applications to run an integrated environment con-
structed using the components of the Aartifact infrastructure.
From the end-user’s perspective, the environment provides
a way to input formal definitions, arguments, and/or algo-
rithms using a domain-specific syntax. Within a particular
environment instantiation, the functionality provided by the
integrated components is exposed using a variety of JavaScript
visualization widgets that include: (1) friendly, formatted
output of the formal argument, including highlighting of
syntactic and logical errors, or other properties derived through
automated analysis; (2) lists of formal expressions, including
the propositions available in a library, facts derived by one
or more component algorithms, and translations of the input
into syntaxes for particular underlying systems and tools;
(3) interactive controls for starting and stopping inference,
evaluation, enumeration, and verification components that have
been implemented to allow reporting of partial results.

III. INSTANTIATING INTEGRATED ENVIRONMENTS

Assembling and instantiating a domain-specific integrated
environment using the Aartifact infrastructure (or components
thereof) usually involves at least the following steps:
(1) installation of the Aartifact and Informl modules and

skeleton files on a web server (that has at least PHP

or Python installed if any server-side tools are being
integrated);

(2) specification of a grammar for the syntax of the domain-
specific input language (using a format supported by
the Informl modules that automatically generate parsers,
abstract syntax data structure definitions, and pretty-
printers);

(3) installation of one or more underlying tools on the server
(unless they are available as web services elsewhere on
the web);

(4) implementation (using Informl) of one or more tech-
niques (i.e., algorithms) that operate on the syntax spec-
ified in step (2) above, or translations from the syntax
specified in step (2) above into either API calls or to the
actual concrete syntax of each underlying tool (in most
cases, API calls that can be made in underlying languages
such as Python could be made in Informl implementations
with little or no modification);

(5) implementation (using Informl) of translations from tool
outputs into domain-specific output, if it is necessary.

The Aartifact and Informl modules are designed to make
steps (2), (4), and (5) above more manageable by requiring
very little redundant work, and by providing abstractions such
as algebraic data types and pattern matching over algebraic
data types, features that are drawn from typed functional
programming languages.

Components of the Aartifact infrastructure have been em-
ployed in assembling accessible integrated environments for
two application domains: classroom instruction [17] and de-
sign of distributed systems [18]. A larger collection of tools,
including SMT solvers [19], have also been integrated to some
degree using the infrastructure.

A. Simple Example

As a simple example illustrating what might be involved
in using the infrastructure to assemble an environment, we
consider a domain with a simple input language: the set of
boolean formulas without quantifiers.

Figure 4 presents an example of a grammar specification
that might be used in this case (corresponding to task (2)
in the enumeration of integration steps above). Unlike some
existing parser and grammar specification formats, the sup-
ported grammar specification format does not require the user
to specify any information redundantly in more than one
place (e.g., terminals, how whitespace is handled, and so
on). The purpose of this design is to support an approach
that makes it possible to quickly define a grammar in one
pass and then immediately begin interactively debugging the
actual environment implementation and making incremental
changes without a lot of overhead. The format provides some
specialized constructs for handling arbitrarily long sequences
of non-terminals, whitespace, indentation, line breaks, and
regular expressions, and delimiters for comments and string
literals. The parser module can automatically generate parsers,
abstract syntax data structure definitions, and pretty-printers
from such a specification.
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Fig. 4. Example of a simple grammar definition.

function assert(s)
if s is Assert(e) | return eval(e)

function eval(f)
if f is And(f1,f2) | return eval(f2) and eval(f2)
if f is Or (f1,f2) | return eval(f2) or eval(f2)
if f is Not(f) | return not eval(f)
if f is True | return true
if f is False | return false

Fig. 5. Simple evaluation algorithm defined using Informl.

Figure 5 presents an example of a very simple evaluation
algorithm for the subset of formulas in the input language
defined in Figure 4 that do not contain variables. Such an
algorithm might be implemented as part of task (4) in the
enumeration of integration steps above. This example illus-
trates the algebraic data types and pattern-matching constructs
available in Informl; these can also be used when defining
translations between the input syntax and the input/output
syntax of integrated tools. Note also that the semantics of this
algorithm implementation (i.e., its behavior when compiled)
is beyond what is customarily expected: at compile time, it is
possible to specify that the result returned by each recursive
call within this implementation should also be automatically
associated with the abstract syntax data structure node on
which the algorithm was invoked.

B. Classroom Instruction

A web-based interactive formal verification environment
that runs in a standard web browser was assembled; it in-
corporates several standard techniques: basic evaluation of
expressions, monomorphic type inference, basic verification
of a subset of logical formulas in propositional and first-
order logic using unification, and an algorithm for computing
congruence closures. The environment can be seamlessly
integrated with a web page of lecture materials and homework
assignments. Lectures and assignments can contain within
them formal arguments (including both complete examples and
problems to be completed) that can be interactively constructed
and automatically verified in the environment. As a student
interactively constructs a formal argument (as in Figure 6), the

Fig. 6. Screen capture of end-user interface being used to assemble and verify
a formal argument in an algebra course.

Fig. 7. Screen capture of end-user interface being used to explore the library
of formal propositions.

environment can provide instant verification feedback based on
the results of one or more underlying integrated verification
algorithms. The environment also provides an explicit library
of logical definitions and formulas that students can utilize to
complete assignments (shown in Figure 7). Implementations
of this environment, as well as individual components such
as management tools for lecture notes, have been deployed in
multiple computer science and mathematics courses on topics
in linear algebra [17] and abstract algebra.

C. Distributed System Design

The aim of the Verificare project [18] is to provide a
language and tools for specifying and analyzing real-world,
formally disparate properties of distributed systems without
requiring prior knowledge of any formal logics or languages.
Verificare provides an integrated environment (as shown in
Figure 8) for which the input DSL is VML, a lightweight mod-
eling language designed to permit rapid, iterative development
of system specifications. A library of formal requirements
that end users may want to check against their models is
also provided. Users can define models using VML, and
then can select which properties they want to verify for that
model. The model definition and the underlying definition of
the properties are then translated into SPIN (i.e., Promela)



Fig. 8. Verificare integrated environment overview.

and PRISM syntax, and fed into instances of these tools
running on a server. Outputs from the underlying tools are
interpreted for the user in terms of the visible properties.
Future plans include implementation of a translator for the
Alloy Analyzer. Verificare has been applied [18] to software-
defined networking examples involving OpenFlow.

IV. RELATED WORK

This work is at least tangent to several areas of research,
including the integration of multiple formal tools and tech-
niques, and the deployment, practical accessibility, and usabil-
ity within application domains of existing tools and techniques.

This work seeks to provide an infrastructure for integrating
and multiple formal tools. There has been substantial interest
in the model checking community in automating the transla-
tion of a model to multiple formal systems. PRISM [20] draws
on numeric methods for linear system solving, as well as both
symbolic and explicit state model checking libraries, to check
properties of probabilistic systems. The Symbolic Analysis
Laboratory (SAL) [21] is a suite of formal methods for check-
ing properties of concurrent systems, including multiple model
checkers, a type checker, and several simulation tools. The
AVVANTSSAR project [22] is a platform for protocol security
analysis, incorporating constraint solving, symbolic model
checking, refinement libraries, and automated interaction with
the Isabelle theorem prover. Cryptol [23] is a domain-specific
language and tool suite that provides automated verification
capabilities for cryptographic algorithms.

This work aims to address the disincentives to utilizing
automated formal reasoning assistance systems by integrating
multiple systems within a web-based accessible environment.
We share motivation with, are inspired by, and incorporate
ideas from related efforts to address practical usability in the
formal systems communities. Some aim to provide interfaces
that have a familiar syntax [24]–[27]; some aim to make op-
tional the need to provide explicit references to the formal facts
being used within the individual steps of a formal argument
[28]–[30]; some aim to eliminate steep learning curves [31]–
[33]; some aim to reduce the logistical difficulties of utilizing
automated formal reasoning assistance systems [32], [34]. We
are inspired by search mechanisms for libraries of formal facts
[35]–[37] and programming language constructs [38], as well
as keyword-based lookup mechanisms for programming envi-
ronments [39], [40]. Providing the functionality of a formal

reasoning environment within a browser is a goal that has
been adopted by some projects [34], though that work focuses
on delivering the look and functionality of a single existing
proof assistant. The rise4fun website [41] provides a simple
web protocol for integrating existing tools into the rise4fun
web interface; the work presented in this paper focuses not
only on providing a web interface for existing tools that can
be made available as a web service, but also on providing
modules for quickly defining new domain-specific languages,
implementing corresponding translations to and from existing
tools, and even implementing techniques and algorithms that
can run directly within a standard web browser.

Our work is distinguished by its focus on the practical
issues of tool and technique integration and deployment as
a way to address the accessibility issues that may affect the
adoption of existing tools and techniques. This can be viewed
as an attempt to provide a general-purpose infrastructure (or
collection of modules) for assembling the kinds of accessible
formal reasoning environments proposed and prototyped in
our earlier work [15]–[17]. Thus, the work is not focused
on providing a rigorous mathematical framework for integra-
tion of techniques, but on developing an infrastructure that
supports and accelerates other integration and deployment
efforts (which may focus on the soundness of their integration
techniques independently of this infrastructure, as is the case
with Verificare [18]).

V. STATUS, AVAILABILITY, AND FUTURE WORK

The current prototype of the Aartifact infrastructure (includ-
ing the underlying Informl modules) is available online [13],
[14]. It is currently available as a collection of modules and
not yet as a self-installing package or toolkit; documentation
is sparse. Efforts to assemble a well-documented package
are ongoing. The modules have not been tested extensively
on a variety of different platforms, and some debugging and
adjustment may be required to make the tools function. A few
instantiated environments have been deployed on web servers
running Linux. Prototype environments assembled and instan-
tiated using the infrastructure are either under development
[18] or have been deployed in the classroom [17].

A more sophisticated infrastructure for creating accessible
integrated environments might provide components that can
collect data that can improve the performance of the inte-
grated environment given the application domain’s distinct
characteristics. For example, a web application deployed on
the cloud and employed by many users simultaneously must
maintain a certain level of responsiveness given the user load.
Actual data showing which underlying tools and techniques are
employed more often (or less often), and their computational
cost and response time might inform how future versions of
the integrated environment are deployed on the cloud (e.g.,
how many instances of a cloud-based virtual server running
each underlying tool must be deployed given an expected user
load).

It is also possible to explore ways to predict and compare
the response time of each of the integrated tools and techniques



on various classes of input. These classes might be defined in
terms of characterization and metric functions (e.g., based on
their syntactic structure and depth, or in the case of logical
formulas, the number of variables and quantifiers, and so on
[42]), and the response time or completeness of the underlying
tools for each submitted input could be recorded. This data can
then be presented to users so that they can make intelligent
trade-offs, or it can be used to automatically choose the most
suitable integrated technique based on the user’s priorities
(e.g., completeness or response time) by incorporating ma-
chine learning techniques, as has been in work on integrating
SMT solvers [42].
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