
A Rigorous Methodology for Analyzing and
Designing Plug-Ins

Marieta V. Fasie
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

marietafasie@gmail.com

Anne E. Haxthausen
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

aeha@dtu.dk

Joseph R. Kiniry
DTU Compute

Technical University of Denmark
DK-2800 Lyngby, Denmark

jkin@dtu.dk

Abstract—Today, GUI plug-ins development is typically done
in a very ad-hoc way, where developers dive directly into
implementation. Without any prior analysis and design, plug-
ins are often flaky, unreliable, difficult to maintain and extend
with new functionality, and have inconsistent user interfaces. This
paper addresses these problems by describing a rigorous method-
ology for analyzing and designing plug-ins. The methodology is
grounded in the Extended Business Object Notation (EBON) and
covers informal analysis and design of features, GUI, actions,
and scenarios, formal architecture design, including behavioral
semantics, and validation. The methodology is illustrated via a
case study whose focus is an Eclipse environment for the RAISE
formal method’s tool suite.

I. INTRODUCTION

Plug-ins, especially in the realm of plug-ins that wrap
existing research command-line tools, are notoriously badly
designed. Academics simply do not have the resources and
expertise to execute on the design and implementation of a
quality plug-in. Partly this is due to the fact that there are
few examples of best practices in the area, and partly it is
because plug-in development is viewed as the dirtiest of the
dirty-but-necessary jobs of “selling” systems technology.

Eclipse plug-in development is a tricky world. Concepts
like features, plug-ins, extension points, windows, views, etc.
abound. Enormous, poorly documented APIs are prolific in
the Eclipse ecosystem. To implement even the most basic of
features sometimes takes hours of digging to find the right
three lines of code, and then those lines must change when a
new major version of Eclipse comes out. This is a frustrating
world for researchers who want to package their demonstrable,
useful tools for the Eclipse IDE.

This work is an attempt to help resolve these issues. We pro-
vide a rigorous step-wise methodology through which one can
do the analysis, architecture design, and user interface (UI)
design of a plug-in for an arbitrary integrated development
environment (IDE).

The methodology used is based upon the Business Object
Notation (BON), an analysis and design methodology pro-
moted by Walden and Nerson in the mid-90s within the Eiffel
community [1]. Ostroff, Paige, and Kiniry formalized parts of
the BON language and reasoned about BON specifications [2],
[3], [4], [5]. Fairmichael, Kiniry, and Darulova developed the
BONc and Beetz tools for reasoning about BON specifications

and their refinement to JML-annotated Java.1 Finally, Kiniry
and Fairmichael have extended BON in a variety of ways to
produce Extended BON (EBON), which permits one to add
new domain-specific syntax and semantics to the core BON
language [6].

For those who have never heard of EBON, think of it as the
subset of UML that might actually have a clear, unambiguous
semantics. EBON’s core features are that it is seamless, insofar
as you use the same specification language for everything from
domain analysis to formal architecture specification and its
behavior, reversible insofar as code generation and reverse
engineering to and from code to EBON is straightforward
and tool-supported, and contracted as formal abstract state-
based contracts (invariants, pre, and postconditions) are the
fundamental notion used to specify system behavior. EBON
has both a textual and a graphical syntax, a formal se-
mantics expressed in higher-order logic, a formal semantics
of refinement to and from OO software, and tool support
for reasoning about specifications, expressing specifications
textually or graphically, generating code from models and
models from code, and reasoning about refinement to code.

The methodology is illustrated on a case study that develops
an Eclipse environment for the RAISE formal method and
specification language (RSL) [7]. The project is called eRAISE
and it is currently under development at DTU. The RAISE
tool suite (rsltc) [8], [9] consists of a type checker and some
extensions to it supporting activities such as pretty printing,
translation to other languages, generation of proof obligations,
and execution of test cases. rsltc has a command-line interface
that exposes different capabilities selected via switches, but is
also used from Emacs using menus and key-binding. However,
although it is easy to use for the user comfortable with
command-line tools or Emacs, we expect that the creation
of a modern Eclipse-based development environment for rsltc
would broaden its appeal to mainstream software engineers
and better enable its use for university-level pedagogy.

II. ANALYSIS AND DESIGN METHOD

The EBON methodology as applied to Eclipse plug-in
development has six steps described shortly in the following.

1See http://tinyurl.com/brgcrzc for more information.

978-1-4673-6288-7/13 c© 2013 IEEE TOPI 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

49



system_chart eRAISESystem
cluster RSLPerspective
description "The Eclipse RAISE perspective. It contains all
components and functionality relevant for a RAISE project"

cluster_chart RSLPerspective
class Console
description "Displays the output of components"
...

class_chart Console
command "Displays informative or error messages",
constraint "Delete content before displaying a new message"

Listing 1. Excerpts of a system chart describing the eRAISE system.

scenario "TypeCheckAllMenu"
description "The user can type check all RSL files in the
workspace. Success or failure messages will be displayed
along with the list of errors in case of a failure"

Listing 2. Scenario for a menu in eRAISE.

These steps can either be performed in sequence or in some
iterative manner. More details on the steps and the full
specification of our case study will be available in a technical
report [10].

Step 1: Domain Modeling. In the first step the most
important entities and high level classifiers related to the
system domain are identified, explained and documented. The
identified notions are documented as classes, which can be
grouped under clusters and all these make up a unique system.
Listing 1 illustrates a caption of the eRAISE System specified
in EBON notation. The domain model also describes how
concepts behave and how their behavior is constrained.

Step 2: User Interface. In this step, for each user action, a
mock-up user interface is drawn, and the requirements for the
actions are documented in EBON scenario chart elements. As
an example, Listing 2 presents the requirements for one of the
menus in the eRAISE case study.

Step 3: Events. This step identifies the external actions that
make the system react and the system’s outgoing responses.
The external actions are captured as incoming events and the
possible responses as outgoing events in EBON event charts.
For the eRAISE case study, one of incoming events is shown in
Listing 3. One of the possible system responses to this action
is captured in Listing 4.

Step 4: Components. This step looks inside the system at
the components that constitute its architecture. The high level
classifiers described in the system domain model captured in
step 1 are transformed into concrete data types.

Step 5: Components Communication. First, by inspect-
ing the events from step 3 and the scenarios from step 2,
it is identified which components interact with each other.
Then component interfaces are described using parameterized
classes that contain formally specified features.

Step 6: Code Generation. In the last step a tool
named Beetlz [11] is applied to automatically generate JML-
annotated, Javadoc documented Java code from the EBON
specifications created in the previous steps.

event "TYPECHECKALL: User clicks RSL menu and then clicks on
Type Check all option or presses Ctrl+Alt+T"
involves TypeChecker, Console

Listing 3. An incoming event in eRAISE.

event "CONSOLEUPDATE: Success or failure messages displayed
in console"
involves Console, TypeChecker

Listing 4. An outgoing event in eRAISE.

III. RELATED WORK

There is little published work that focuses on method-
ologies specific to plug-in development. E.g., Lamprecht et
al. reflect over some simplicity principles elicited by many
years’ experience in plug-in development [12], but do not
provide a methodology. We speculate that there is not much
published work because plug-in development was not the focus
of scientists until recently. Moreover, it is a fair question
whether or not plug-in development is any different from
normal systems development where a GUI is involved. We
believe that plug-in development is different from normal
GUI development as plug-ins must integrate into the larger
framework of the IDE, deal with non-GUI events, and work
in arbitrary compositions.

REFERENCES

[1] K. Waldén and J.-M. Nerson, Seamless Object-Oriented Software Archi-
tecture - Analysis and Design of Reliable Systems. Prentice–Hall, Inc.,
1995.

[2] J. Lancaric, J. Ostroff, and R. Paige, “The BON CASE tool,” Details
available via http://www.cs.yorku.ca/∼eiffel/bon case tool/, Mar. 2002.

[3] J. R. Kiniry, “The Extended BON tool suite,” 2001, available via http:
//ebon.sourceforge.net/.

[4] R. Paige, L. Kaminskaya, J. Ostroff, and J. Lancaric, “BON-CASE: An
extensible CASE tool for formal specification and reasoning,” Journal
of Object Technology, vol. 1, no. 3, 2002, special issue: TOOLS USA
2002 Proceedings. Available online at http://www.jot.fm/.

[5] R. F. Paige and J. Ostroff, “Metamodelling and conformance checking
with PVS,” in Proceedings of Fundamental Aspects of Software Engi-
neering, ser. Lecture Notes in Computer Science, vol. 2029. Springer-
Verlag, Apr. 2001, also available via http://www.cs.yorku.ca/techreports/
2000/CS-2000-03.html.

[6] J. R. Kiniry, “Kind theory,” Ph.D. dissertation, Department of Computer
Science, California Institute of Technology, 2002.

[7] The RAISE Language Group, The RAISE Specification Language, ser.
BCS Practitioner Series. Prentice Hall, 1992.

[8] “RAISE Tool User Guide,” 2008. [Online]. Available: http://www.iist.
unu.edu/newrh/III/3/1/docs/rsltc/user guide/html/ug.html

[9] C. George, “The Development of the RAISE Tools,” in Formal Methods
at the Crossroads. From Panacea to Foundational Support, ser. Lecture
Notes in Computer Science, B. K. Aichernig and T. Maibaum, Eds.
Springer Berlin Heidelberg, 2003, vol. 2757, pp. 49–64. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-40007-3 4

[10] M. V. Fasie, “An Eclipse based Development Environment for RAISE,”
Master’s thesis, DTU Compute, Technical University of Denmark, to
appear May 2013.

[11] E. Darulová, “Beetlz - BON software model consistency checker for
Eclipse,” Master’s thesis, University College Dublin, 2009.

[12] S. Naujokat, A. Lamprecht, B. Steffen, S. Jorges, and T. Margaria,
“Simplicity principles for plug-in development: The jabc approach,” in
Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop on, june 2012,
pp. 7 –12.

50


