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Disparity Analysis of Images

STEPHEN T. BARNARD, MEMBER, IEEE, AND WILLIAM B. THOMPSON, MEMBER, IEEE

Abstract-An algorithm for matching images of real world scenes is
presented. The matching is a specification of the geometrical disparity
between the images and may be used to partially reconstruct the three-
dimensional structure of the scene. Sets of candidate matching points
are selected independently in each image. These points are the loca-
tions of small, distinct features which are likely to be detectable in both
images. An initial network of possible matches between the two sets
of candidates is constructed. Each possible match specifies a possible
disparity of a candidate point in a selected reference image. An initial
estimate of the probability of each possible disparity is made, based on
the similarity of subimages surrounding the points. These estimates are
iteratively improved by a relaxation labeling technique making use of
the local continuity property of disparity that is a consequence of the
continuity of real world surfaces. The algorithm is effective for binocu-
lar parallax, motion parallax, and object motion. It quickly converges
to good estimates of disparity, which reflect the spatial organization of
the scene.

Index Terms-Disparity, matching, motion, relaxation labeling, scene
analysis, stereo.

I. INTRODUCTION
DIFFERENCES in images of real world scenes may be

induced by the relative motion of the camera and the
scene, by the relative displacement of two cameras, or by the
motion of objects in the scene. The differences are important
because they encode information that often allows a partial
reconstruction of the three-dimensional structure of the scene
from two-dimensional projections. When such differences
occur between two images we say that there is a disparity
between the two images, which we represent as a vector field
mapping one image into the other. The determination of dis-
parity has been called the correspondence problem [1], [2].
A contingent problem is the interpretation of disparity into
meaningful statements about the scene, such as specifications
of depth, velocity, and shape.
There is much evidence that disparity is important in human

vision. Gibson discussed the nature of visual perception in a
dynamic environment [3]. He argued that the visual stimulus
is inherently dynamic and that the patterns of change in the
stimulus are important sources for the perception of the spatial
environment. Gibson described the patterns of optical flow
that occur when the observer moves. He argued that binocular
disparity and retinal motion are highly informative stimulus
variables for spatial perception, and that along with other
important visual phenomena, such as texture gradient and
linear perspective, they interact with the kinesthetic "body
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senses" in the perception of a stable, upright, three-dimensional
world.
Julesz's experiments with random dot stereograms (4] sup-

port the contention that the human visual system is able to
process differences between images. A stereogram is a pair of
images that are recorded simultaneously by laterally separated
sensors. A random dot stereogram is artificially constructed
by shifting parts of an image of random dots to the left or
right to form a second image. Both images consist of uncor-
related random dots, but there is a disparity relationship be-
tween the two which specifies the apparent relative depth of
the shifted parts. People with normal stereo vision can easily
achieve a binocular fusion of the two images and perceive the
apparent relative depth of the various "surfaces." Even though
each separate image of a random dot stereogram contains no
depth information, people are able to perceive depth in the
pair of images by measuring the disparity between the shifted
areas.
Disparity analysis may be broadly defined as the determina-

tion of the geometric differences between two or more images
of the same or similar scenes. The differences may be the
result of binocular parallax, motion parallax, object motion, or
some combination of these modes. The goal of the analysis is
to assign disparities, which are represented as two-dimensional
vectors in the image plane, to a collection of points in one of
the images. Disparity analysis is useful for image understand-
ing in several ways. There is information in a disparate pair of
images that is difficult to find or even absent in any single
image. This point is convincingly made by Julesz's random
dot stereogram experiments. Disparity provides a way, inde-
pendent of high-level knowledge, of determining the spatial
relationships between points and surfaces in a scene. The ob-
jects in the scene may be completely unfamiliar, but their
observed disparities will conform to precise rules that de-
pend only on the location and velocity of objects in three-
dimensional space. Disparity is therefore a very general
property of images which may be used in a variety of situa-
tions. The measurement of depth and velocity will certainly
be useful in many applications, but there is a more funda-
mental requirement in image understanding. A system for
understanding dynamic scenes can use observed disparity to
establish conceptual relationships between images that are
invariant over several observations. Visual invariants can be
used to predict future observations, to eliminate noise in any
one observation, and in general to link several observations
into one perceptually coherent whole.

II. MATCHING
Matching is a natural way to approach disparity analysis.

Assigning disparity classifications to points in a sequence of
images is equivalent to finding a matching between sets of
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points from each image. Let S1 = (si, sjY) and S2 = (s I, s Y) be
points in images 1 and 2, respectively. These two points
should be matched if and only if they are image plane pro-
jections of the same real world surface point. Matching SI
with S2 is the same as assigning to SI a disparity with respect
to image 2 of D2 = (SI - s, SY - s >, where Di (S) is a vector
function defined on points of image j, which specifies the
disparity of point S in image j with respect to image k.
A matching approach to disparity analysis must solve two

problems. First, how are points selected for matching? It is
clear that not all points can be matched with equal confidence
because some are located in regions which lack identifying
detail. Some points may not be matched at all because they
may be visible in one image but not in another. To avoid
ambiguous matches, it is advantageous to attempt to match
only points which are easily distinguished from their neighbors.
It is important to select only those points which are projec-
tions of distinct, precisely positioned local features on real
world surfaces, such as spots, corners, and other small local
forms. Interest operators sensitive to local variance, edges,
and other properties of subimages can be used to choose
potentially matchable points [5]-[9]. An alternative to this
strategy is to partially segment each static image indepen-
dently and then use properties of the segments, such as shape
and color, as similarity variables [10], [11]. This is an attempt
to match entire surfaces, not points.
The second problem in matching is to determine the basis

for deciding which matches are correct. The matched points
should have similar properties, of course, because they are
both projections of the same surface point, but in many cases
there will be ambiguity. Many studies have used cross correla-
tion or mean-square difference as a measure of similarity.
Typically, a small region in image 1 surrounding an interesting
point is used as a template, and a search is made for the region
of maximum similarity in image 2. Two problems with this
approach are that the correct match may not be the one of
maximum similarity due to noise or distortion (there are am-
biguous matches), and the cost of searching a two-dimensional
image is high. One way to avoid ambiguity is to increase the
sensitivity of the similarity measurement. Levine, O'Handley,
and Yagi [71 use an adaptive correlation window, the size of
which varies inversely with the variance of the region surround-
ing the point. Mori, Kidode, and Asada [12] use a Gaussian-
weighted correlation window to minimize the errors due to
distortion of the extremities. They also vary the window size
with ambiguity of the match and use a prediction/correction
algorithm, modifying one image to fit the other according to a
predicted matching and iteratively using the error of fit to
improve the prediction. Stochastic matched filtering can
reduce ambiguity by improving similarity detection in the
presence of noise [13] .
Several strategies have been used to limit search in a cross

correlation approach. Studies of stereopsis use a fixed camera
model to constrain the search to one dimension [5], [7], [81,
[12]. Nevatia uses a series of progressive views to constrain
disparity to small values [8]. This also reduces the chance of
ambiguous matches and increases the sensitivity of the simi-
larity measurement by minimizing distortion. Another strategy

is to use a coarse search to approximately locate the matching
points, followed by a fine search to more accurately locate
them [7], [14], [151. Sequential similarity detection can be
used for more efficient matching [16].
Many studies have used heuristics based on real world

models to limit search and to resolve or avoid ambiguity.
Julesz [4] and Gibson [3] observed that disparity varies con-
tinuously across unoccluded surfaces and discontinuously only
at occluding edges. Marr and Poggio [17] used this property,
which they call the adjacency constraint, in an iterative co-
operative matching algorithm which fuses random dot stereo-
grams. Levine et al. [7] use it to limit the range of search of
proximate points, and Mori et al. [12] use it to avoid ambigu-
ity by matching "well-contrasting" regions with high confi-
dence and favoring these disparities for nearby points.
In the studies discussed above we can identify three proper-

ties of image pairs which can strongly influence disparity
classification. The first, which we call discreteness, is a prop-
erty of individual points. Discreteness is a measurement of the
individual distinctness of a point, and is important for select-
ing good candidates for matching. The interest operators
described above are good examples of discreteness measures.
The second property, similarity, is a measurement of how
closely two points resemble one another. Such measures are
usually simple functions of small areas surrounding the points.
The third property, consistency, is a measurement of how
well a particular match (that is, a particular disparity classifi-
cation) conforms to nearby matches. The three-dimensional
spatial continuity of real world surfaces constrains the two-
dimensional spatial distribution of disparity in the image
plane. Disparity is discontinuous only at occluding edges.
The continuity of disparity over most of the image can be
used to avoid false matches based on similarity alone, by sup-
pressing matches in the absence of supporting local evidence.

III. A LOCALLY PARALLEL MODEL FOR MATCHING

This section describes a computational model for analyzing
disparity in a variety of real world situations. Object motion,
stereo, and motion parallax modes of disparity are treated
uniformly. Because the model has the locally parallel, globally
sequential structure of a relaxation labeling algorithm, the
notation in this section follows Rosenfeld, Hummel, and
Zucker [18]. The general approach is similar to matching
models proposed by Julesz [4] and Marr and Poggio [17] for
the fusion of random dot stereograms and to a matching
model proposed by Ullman [21 for retinal motion.
The theory behind the locally parallel model is that the dis-

creteness, similarity, and consistency properties can interact
to enhance the overall performance and rigor of a matching
algorithm. The use of multiple properties reduces the chance
of error by minimizing the dependence on any one property.
The consistency property allows the most obvious classifica-
tions to improve the analysis of the more difficult ones. The
discreteness property is used to minimize expensive searching.
Sets of candidate matching points are selected from each
image, and searching is done between these two relatively
sparse sets instead of between the two gray-valued images.
The emphasis throughout the formulation of the model has
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been on simplicity. We will demonstrate the effectiveness of
this matching approach in even a minimal system.
The first step is to find the points in the two images which

will be candidates for matching. Matchable points should
locate small discrete local features such as spots and corners
which are likely to be detectable in both images. They should
be the centers of highly variable areas, and furthermore the
variance should be high in all directions. (If the variance is
high in general but low along one direction, as would be the
case with a straight line, for example, the point will not be
easily distinguishable from its neighbors along that direction).
A very simple interest operator described by Moravec [19] is
effective in selecting these matchable points. The sums of
the squares of the differences of pixels in four directions
(horizontal, vertical, and the two diagonals) are computed
over a small area (5 X 5 areas are used in all examples pre-
sented here). The initial value of the interest operator for
the center point is the minimum of these variances. A point
will have a high initial value only if there is a high variance
in all four directions. The final values of the interest opera-
tor are obtained by suppressing (i.e., setting to zero) the initial
values of all but the local maxima. Any point with a nonzero
final interest value must be located in an area with a high
variance in all four directions, and the initial value of the point
must be greater than that of any of the point's neighbors.
The interest operator is applied independently to each

image. Points with locally maximal but very small interest
values are rejected by thresholding. The selection of the
threshold is not critical. In the examples shown in this paper
it was set to give a reasonable number of points, expressed as a
percentage of the total number of pixels in each image.
After the two sets of candidate points are found the next

step is to construct a set of possible matches. Ideally, we
would like to match each candidate point from image 1 with
exactly one candidate from image 2 such that the two points
are image plane projections of the same real world point.
However, we can realistically expect to find valid matches for
only some of the points of image 1 because the interest opera-
tor does not perform perfectly, and because some points may
be occluded, shadowed, or not visible in image 2 for some
reason. An initial set of possible matches is constructed by
pairing each candidate point from image 1 with every candi-
date from image 2 within some maximum distance of the
(x, y) location of the point in image 1. This distance r is the
maximum detectable disparity in the x or y direction. The
set of possible matches is organized as a collection of "nodes"
{a}, one node for each candidate point from image 1. Asso-
ciated with each node ai is a tuple (xi, yi) which is the location
of the point in image 1, and a set of labels Li which represents
possible disparities that may be assigned to the point. Each
label in Li is either a disparity vector (lx, lIy), where lx and ly
are integers in [-r, r], or it is a distinguished label 1* denoting
"undefined disparity." A node a1 has undefined disparity if
point (xi, yi) in image 1 does not correspond to any candidate
point in image 2. Every label set Li must initially contain the
element 1*. The point (xi, yi) in image 1 is tentatively matched
to a point at (x',y') in image 2 by entering a label 1= (xi - x',
yi - y') into Li. Note that not every vector with integral coor-

dinates in the square of side 2r + 1 need be represented in the
label set of all possible matches for a node, but that the unde-
fined disparity is always represented.
For every node ai we want to associate with every label

1= (Ix, ly) in Li a number pt(l) which we can interpret as an
estimate of the probability that point (xi, yi) in image 1 has
disparity 1. This requires that pi(l) be in [0, 1] and XI pz(l) = 1.
These probability estimates will be successively improved by
applying the consistency property. If relatively many nearby
points have a high probability of having disparity 1, then pi(l)
will increase. Otherwise, pi(l) will decrease.
The initial probabilities p°(l) are based on the sum of the

squares of the differences between a small window from
image 1 centered on (xi, yi) and a window from image 2 cen-
tered on (xi + Ix,y + lIy). (The window sizes in all examples
presented here are 5 X 5.) Let this sum be si(l) for 1 $ .
When si (l) is small p°() should be large, and vice versa.
Let

(1)Wi(l) =1 t+C *s(l)' 1

be the "weight" associated with the label I of node ai for some
positive constant c. (c = 10 for all examples presented in this
paper.) A disparity label which associates highly similar pairs
of regions will have a large weight value. Note that wi(l) is in
the interval [0, 1] and is inversely related to s (l), but in gen-
eral the sum of the weights is not 1 and wi(l*) is undefmed, so
we cannot use these weights as our probability estimates.
Nevertheless, w1(l) has the proper qualitative behavior for
probability estimates.
We first estimate the initial probability of the undefined

disparity, p° (1*), by observing that in many cases the label of
maximum weight is the correct one. If no label has a high
weight then there is probably no valid match. It may often
be the case that the correct label is not the one of maximum
weight, but if there is a significant correlation between maxi-
mum weight and ground truth the relationship will prove an
adequate initial estimate of the probability that each node is
matchable.
Using this relationship, let

p° (l*) = 1 - max (wi(1)) (2)

be the initial estimate of the probability that the point (xi, yi)
in image 1 corresponds to no point in image 2.
We can apply Bayes' rule to obtain an initial estimate of the

probability that ai should be label I for labels other than 1*.
Let

(3)
where pi(lli) is the conditional probability that al has label I
given that ai is matchable, and (1 - p9°(l*)) is the probability
that ai is matchable. We can estimate pi(l Ii) with

(4)Wi(l)
1'A 1*
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Equations (2), (3), and (4) can be used to calculate the initial
probabilities for every label of every node.
The initial probabilities, which depend only on the similarity

of neighborhoods of candidate matching points, can be im-
proved by using the consistency property. We want a rule for
updating pk(1) which has the following property. The new
probability p"'`(1) should tend to increase when nodes with
highly probable labels consistent with I are found near node a5.
Labels are considered consistent if they represent nearly the
same disparities,

III - I1' <e.
for an appropriate threshold. For the examples used in this
paper the condition for consistency is

III - I'll = max(Il, - IlX, lly - Iyl) S 1.

A node a1 may be considered near ai if

max(lxi - x1l, IyZ -yl) <.R.

That is, the points corresponding to ai and a1 in image 1 are
no more than R rows or columns apart. (R = 15 in all exam-
ples presented here.)
The degree to which the label 1' of ai reinforces pi(l) should

be related to the estimated likelihood that 1' is correct. To
compute the new probabilities pk+`(l) for all I in Li we ex-
amine each node in an area surrounding ai, but not including
ai. Let

qk(l)E p jE p'(l)j, 1/ M1* (5)
j ai I' 3

near a-LIII-I'll.Jjo+i I 1 11

In all cases q'(l) > 0. This quantity is zero if and only if no
nodes surrounding ai have possible matches with disparity
labels similar to 1. It will be large when there are several
nodes with highly probable matches surrounding ai which
have disparity labels similar to 1. In general, qi(l) varies ac-
cording to the consistency of 1 with the current estimate of
the disparities in the local neighborhood of ai. All nodes
surrounding ai are treated uniformly.
We can use the following rule to update the label probabil-

ities of node ai using qi. Let
^k+l) p(l) * (A +B *q()), I l* (6)

and

Pia)-M= P *). (7)

We must normalize the p's to obtain the new probabilities,

plk+
Pi

= k(l) (8)

I' in Li

Parameters A and B are positive constants which influence
the convergence characteristics of the model (A = 0.3 and
B = 3 in all examples presented here). The role of A is to
delay the total suppression of unlikely labels. Even if qi(l) is
zero, the positive A ensures that the new probability does not
become zero. This is desirable because information may
propagate to ai from other nodes which will eventually cause

pi(l) to increase. The role of B is to determine the rate of
convergence. The larger B is relative to A the faster will be
the convergence of the disparity assignments. A and B may
be interpreted as damping and gain parameters. There is an
effective constant correlation for label pairs which are similar,
and a negative correlation for all others. (For a more general
discussion of updating rules in relaxation labeling algorithms
see [181.)
The probability of the label l* (undefined disparity) is

affected only by the normalization step (8). If the net contri-
bution to p'(1), 1I* *, is such that

(9)E Pi l(l) < E P, a),
1*+* * 11*

then the probability that ai has disparity l* increases, but if
this is not the case the probability decreases or perhaps re-
mains the same.
The complete procedure to estimate the most likely dis-

parities for each potentially matchable point in image 1 can
be summarized as follows. First, a network of nodes corre-
sponding to possible matches is constructed. Each possible
match is assigned an initial likelihood using (1), (2), (3), and
(4). These likelihood estimates are iteratively refmed using
(5), (6), (7), and (8). We have observed that after a few itera-
tions most of the possible matches have very low probability.
To increase the efficiency of the algorithm it is effective to
purge these from the set of possible matches after each itera-
tion. (In the examples presented here we purge a tentative
match when its probability falls below 0.01.) If a node a1 loses
all its possible matches, then (x1,yl) is classified as "unmatch-
able." That is, pi(l*) = 1. This procedure may be repeated
until the network reaches a steady state, but in practice we
arbitrarily stop it at ten iterations. Those nodes having a dis-
parity with an estimated likelihood of 0.7 or greater are con-
sidered to be matched. Some nodes may remain ambiguous,
with several potential matches retaining nonzero probabilities.

IV. RESULTS
An interesting and important property of this matching

algorithm is that it works for any mode of disparity and does
not require precise information about camera orientation,
position, and distortion. Disparity in multiple images of the
same scene may be due to translation or rotation of the sensor
or due to motion of objects in the scene. At least three spe-
cific cases are commonly found in real world situations. The
disparity is strictly temporal when a single, stationary camera
records a sequence of images. Temporal disparity specifies
the motion of objects in the image plane. The disparity is
stereoptic when two horizontally displaced cameras simul-
taneously record the same scene. Often the focal axes are also
rotated about a fixation point which has an arbitrary disparity
of (0, OX (If the focal axes are parallel the fixation point is at
infinity.) Another salient mode is forward sensor motion.
While the motion is commonly along the focal axis, camera
rotations and/or off-axis motion may also occur. The com-
putational model described in the previous section was tested
on examples of each of these cases. A precise photogram-
metric model could translate these results into quantitative
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Fig. 1. Stereogram.

(a) (b) (c)

(e)

Fig. 2. (a) Initial probability assignments for Fig. 1. (b) -(f) Iterations
2, 4, 6, 8, and 10.

(f)

measurements of velocity and depth, but we shall only discuss
their qualitative significance.
The first case -is a stereogram (Fig. 1). The candidate match-

ing points selected by the interest operator are superimposed
on the images. Fig. 2 shows the performance of the model
over ten iterations, displaying every second iteration in addi-
tion to the initial state. Each point represents a node and each
line a possible match. Each line is in the direction of the
corresponding disparity vector, and the length is proportional
to the length of the vector. A match of small disparity appears

only as a point because the line is too small to be visible. The
brightness of each point is proportional to the probability that
the point is matchable, (1 p'(l*)), and the brightness of each
line is proportional to the probability of the disparity assign-
ment, pk(l). Initially, there are many possible matches with
relatively low probability, but by iteration 4 [Fig. 2(c)] almost

all of them have been discarded. On iteration 10 [Fig. 2(f)]
only those classifications with probability greater than 0.7 are
shown. The cameras are fixated on the person's head, which
has a disparity of (0, 0). More distant points have disparities
with positive x components and nearer points have disparities
with negative x components. Observe that from the person's
head to his left knee and then to his left foot disparity varies
smoothly, following the smooth transition from far to near
and back to far [Fig. 2(f)]. Between the person and the back-
ground, however, there is a step change in depth at the occlud-
ing edge, and here the assigned disparities exhibit an abrupt
transition from near to far. The nonzero y components of
some of the closer points is due to motion of the subject
between exposures (only one camera was used to record this
stereogram).
The next example illustrates temporal disparity. Fig. 3
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(a)

(a)

(b)

(b)

Fig. 3. Object motion.

shows a sequence in which the truck moves approximately
seven pixels to the right while the camera, and hence the back-
ground, remains stationary. The truck is easily distinguishable
as a cluster of points with disparity of about (7, 0) and the
background as a cluster of points with disparity of about
(0, 0) [Fig. 4(f)]. An error occurs at a point slightly above the
roof of the truck. The point is actually part of the back-
ground but its estimated disparity is characteristic of the truck
surface.
The third example simulates a view from an airplane flying

over a city (Fig. 5). Actually, the subject was a scale model of
downtown Minneapolis which was photographed with an ordi-
nary camera and tripod. As the camera "flies" over the "city"
it rotates downward in the frontal plane to fixate on a point
near the center of the image (Fig. 6). The final disparity vec-
tors diverge from the fixation point which has disparity (0, 0)
[Fig. 7(f)]. Two distinctive features in Fig. 7(f) are the
cluster of points on the large building in the near foregound,
which has a large disparity because it is very close, and the
cluster of points in the far background (upper left corner),
which has mainly vertical disparity because of the rotation of
the camera. The algorithm is susceptible to an aliasing effect
when it encounters a dense cluster of similar points, such as
would occur in a high frequency periodic subimage. An
example of this may be seen at the middle of the right border
of Fig. 7(f), where a number of points have been misclassified.
One way to avoid this problem would be to enlarge the area in
which interest values must be locally maximal to produce
feature points, thereby constraining the density of feature
points to a relatively small value.

(c)

(d)

(e)

(f)

Fig. 4. (a) Initial probability assignments for Fig. 3. (b)-(f) Iterations
2, 4, 6, 8, and 10.
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image
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Fig. 5. Schematic of third example.

to)

Fig. 6. Motion parallax.

V. SUMMARY AND CONCLUSIONS

Disparity relationships between images convey important
information for spatial perception. The conventional cross

correlation approach to matching for disparity analysis is
prone to errors caused by distortion in the imaging process
and the unavoidable occurrence of ambiguous matches. In-
creasing the sophistication of sinilarity detection can reduce

the problem of ambiguity, but the necessary adaptive window-
ing or extensive preprocessing can also reduce the efficiency
and reliability of the matching process. Geometric distortion
may prevent accurate similarity measurement by cross correla-
tion. Constraining the search with a precisely known camera
geometry restricts the process to special cases.
Another way to attack the ambiguity problem is to use in-

formation other than similarity to resolve ambiguous matches.
The continuity of real world surfaces, a very general property
which is independent of camera geometry, constrains disparity
to values which are consistent with the local matching con-
text. The consistency property can be used to iteratively
refine a probabilistic estimate of disparity classification which
allows ambiguous matches. The initial estimate may be ob-
tained from a simple measure of similarity. Expensive search-
ing is minimized by applying a simple interest operator to both
images to find two sets of discrete feature points, resulting in
a greatly reduced search space.
In practice the procedure is effective in a wide variety of

cases, converging quickly to an unambiguous disparity classi-
fication which accurately reflects the large-scale spatial char-
acteristics of real world scenes. It is robust in that it is not
very sensitive to noise and distortion and does not require
careful registration of images. It does not require compli-
cated, carefully tuned updating functions, nor very precise
initial probability estimates. The success of the method
comes in large part from its ability to integrate effectively
different sources of information into a simple procedure.
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