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Recognitive Aspects of Moment Invariants
YASER S. ABU-MOSTAFA AND DEMETRI PSALTIS

Abstract-Moment invariants are evaluated as a feature space for
pattern recognition in terms of discrimination power and noise tol-
erance. The notion of complex moments is introduced as a simple
and straightforward way to derive moment invariants. Through this
relation, properties of complex moments are used to characterize
moment invariants. Aspects of information loss, suppression, and
redundancy encountered in moment invariants are investigated and
significant results are derived. The behavior of moment invariants
in the presence of additive noise is also described.

Index Terms-Circular harmonics, complex moments, feature space,
image analysis, information theory, moment invariants, pattern
recognition.

I. INTRODUCTION
T HE PURPOSE of this paper is to provide an analytic char-

acterization of moment invariants as features for pattern
recognition. Moment invariants were introduced by Hu [1]
as image recognition features which had the desirable property
of being invariant under such variations of the image content
as shift, scaling, and rotation. Since then, they have been
given considerable attention in the literature and reports of
their satisfactory experimental results (e.g., [5] ), inaccuracies
(e.g., [13]), extensions (e.g., [8]), and variations (e.g., [2])
have made it appropriate to settle the question how good are
moment invariants? theoretically. Pattern recognition features
such as moment invariants are considered "good" if their val-
ues are sensitive to the identity of the pattern being recognized
(discrimination) but not to the noise encountered (robustness).
An analytic framework to predict the discrimination and ro-
bustness of moment invariants in any given problem is de-
scribed here.
In order to analyze moment invariants and derive formulas

for different aspects of their performance, we need to define
them in an analytically manageable way that will be the basis
for further derivations. For this purpose, we introduce the
notion of complex moments (CM's) which are very simple
entities and form an intermediate step between ordinary mo-
ments and moment invariants. Through the definition of CM's
and a straightforward derivation, the nature of moment invar-
iants and their relation to the circular harmonic expansion [9]
of the image become apparent. This leads to several results
about the scope of discrimination between patterns provided
by moment invariants and when they shou!d be expected to
perform well. Another formula is derived to relate the second-
order statistics of CM's to those of the image noise and esti-
mate the impact of noise on moment invariants.
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In Section II, CM's are discussed and their relation to the
circular harmonic expansion is established. The intimate re-
lation between CM's and moment invariants is established in
Section III and used to relate moment invariants to the image
function. In Section IV, information properties of moment
invariants are investigated. This section accounts for which
information is lost and which is emphasized when the image
is represented by a few moment invariants. Redundancy in
the information provided by various moment invariants is
also derived. In Section V, the impact of noise is investigated.
The framework for predicting statistical effects of additive
noise in a given problem is given and the analysis is carried
out for white noise. In the conclusion, the question how good
are moment invariants? is addressed through the results of
Sections IV and V.

II. COMPLEX MOMENTS
In this section, we define the complex moments (CM's) and

derive several relationships that will be essential in evaluating
moment invariants as a feature space for pattern recognition
in the following sections. The results of Section I1-B will be
applied in Section IV, and the results of Section II-D will be
applied in Section V.

A. Definitions
We define the complex moment (CM) of order (p, q) for the

two-dimensional function g(x,y) by the following equation:

r+00+ 00

Cpq = f (x+ iy)P (x - iy)q g(x,y) dx dy (2.1)

where p, q are nonnegative integers and i = N/I. If g(x, y) is
real nonnegative, as the gray level function of an image, Cpp
is a real nonnegative number while Cqp is the complex con-
jugate of Cpq.
The CM of order (p, q) is a linear combination (with com-

plex coefficients) of the ordinary moments M,, satisfying

r + s = p + q. (2.2)

Expansion of CM's in terms of ordinary moments is used in
[1] to derive moment invariants, but no closed form similar
to (2.1) is given. In polar coordinates, the CM of order (p, q)
can be written as

21T + G,
Cpq =rP+q ei(p-q)' G(r, 0) r dr dO (2.3)

where G(r, d) = g(r cosO, r sins). From this equation, the
relation between complex moments and Zernike polynomials
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[2], [12] becomes apparent. It can be shown that Z(
polynomials are obtained from the CM kernels rP+q ei(I
by applying the Gram-Schmidt orthogonalization proc
[11] for all p, q having the same value of p - q. An
related approach for deriving moment invariants are
and angular moments [6]. However, CM's are both ver;
ple and quite powerful in providing an analytic charact
tion for moment invariants as will be shown presently.
tion (2.3) also inspires the following definitions. The c
of Cpq is given by p + q while its repetition is given by p -

B. Rotation Properties

If the image g, (x,y) is rotated through a clockwise ar
(or the image plane axes rotated through a countercloc
angle 'F) to become g2(x,y); more formally if g2(x2,
g, (xl,yl), where

xij Cos'F -sinFjx2
IYJlins( Cos@dl2

then, from (2.3) the new set of CM's; namely fCJq}, is r(
to the old set {Cpq} by the relation

Cpq = Cpq e-i(p~q)<

This equation is the basis for derivation of moment i
ants from CM's. In the terminology of algebraic inva
[1], it says that CM's are relative invariants with respect I
transformation (2.4). If we cancel out the exponential I
in (2.5), we get absolute invariants. For instance 1(
ICpq or Cpq Cp = Cpq Cqp.
Some basic properties of CM's can be derived by obs(

that (2.3) can be reduced to a simple form by using tI
cular harmonic expansion of G(r, 6). This expansion has
used in several areas as an analysis tool of two-dimen
data that possesses circular symmetry. It can be simply v
as a Fourier series expansion of G(r, 6) with respect tc
each fixed radius r. The expansion is given by

C. Size Relations

When several moment invariants are used as the coordinates
of a feature space, the relative sizes of their values should be
estimated. This estimate will determine the appropriate scale
for each coordinate in the discriminant function and in space
transformation procedures like the Karhunen-Loeve. More-
over, from a computational point of view, size differences
between coordinates by orders of magnitude must be handled
carefully to prevent rounding errors from degrading informa-
tion content. We shall estimate the size of CM's since they
are directly related to moment invariants.
Equation (2.7) helps estimate the size of Cpq's by means of

the Cauchy-Schwarz inequality. For this purpose, we take
G(r, 6) to vanish outside the unit disk; an assumption that
can be met by scaling down any G(r, 6) of compact support
(bounded domain). In this case, the integration in (2.7) goes
from 0 to 1 and the Cauchy-Schwarz inequality reduces to

(2.4) ICpqLI.<21T Icq.p (r)I12dr\2(p+q)+3J3 (2.8)

The Cauchy-Schwarz inequality is not particularly tight in
this case because of the nature of the function rP+q+l. This

(2.5) function becomes very small for small r as p + q grows. How-
ever, the inequality turns out to be a tight asymptotic estimate

tnvari in the case of white noise as will be shown in Section II-D.
triants Another bound which reflects the mutual dependence of
to the Cpq 's of the same degree isf'irqJ +r

ICpq I< rP+q G(r, f) r drdc. (2.9)

This is true for nonegative G(r, &). Notice that the right-
hand side (RHS) is identically Cmm for (p + q) even and
m = (p + q)/2. Another relation involving CM's of different
degrees for image functions restricted to the unit disk is

IC(n+m)n I.Cnn (m>0). (2.10)

+ o0

G(r, 0) = E cn(r)ein,,. (2.6)
n=-oo

The coefficient cn(r) is a measure of the angular variation of
frequency n cycles/cycle at radius r. Substituting (2.6) into

(2.3), we get the following expression for CM's:

C+of

cp rp+q+ 1 cq_p (r) dr.

Equation (2.7) shows that Cpq depends only on one coeffi-
cient of the circular harmonic expansion of G(r, i); namely
the function Cq_p (r). This fact determines specifically which
features of the image contribute to the value of each CM. On
the other hand, it also identifies the information loss encoun-

tered in representing the image by a finite number of CM's.
This point is discussed further in Section III-C and will guide
the discussion about the quality of the feature space formed
by moment invariants in Section IV.

Inequality (2.10) follows from (2.3) by observing that
G(r, t9) is nonnegative. These inequalities are verified in Table
I which gives numerical values for the CM's of a typical image
(which is an image often used as an example in image process-
ing experiments) with p + q ranging from 0 to 6. Notice how
fast these values decrease as p + q increases and, more severely,
as we move off the main diagonal. If CM's are used as a fea-
ture space for pattern classification by the nearest neighbor
(NN) rule [10], Eucidean distance would obviously be biased
to the diagonal and low degree CM's. Notice the redundancy
in this table due to the fact that Cpq is the complex conjugate
of Cqp.

D. Noise

So far, we have considered CM's of a deterministic image
g(x,y). It is necessary in the noise analysis of moment invari-
ants to study how CM's behave with a stochastic process of
images {n(x,y)} . We shall take n(x,y) to be of zero mean
since we can subtract out the deterministic functionE [n(x,y)]
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TABLE I
REAI ANI) IMAGINARY PARTS OF COMPLEX MOMENTS OF DEGREES

0 THROUGH 6 FOR A SAMPLE IMAGE

q

p\

1

2

3

4

6

0 3 4

10.00165 .39759 -.01626 -.08648 -.00084 .e3240 -.02968
.00000 -. 15785 .08456 .21194 -.05397 -.02711 .06026

.39759 4.91894 .26040

.15785 .00000 -.01555

-.01626 .26040 3.24030
-.08456 .01555 .00008

-.80648 .03860 .19404 2.40598
-.21194 -.09229 -.01519 .00000

-.00084 -. 05970 .05067
.05397 -.15477 -.08586

.03240 -.01669

.02711 .03399

_.02968
-.06026

and treat it seperately. It is immediately obvious in this case
that

E(Cpq) =O (2.11)

as follows from (2.1) and linearity of the expectation function.
From (2.11), we can write the following expression for the

covariance of any two CM's of a process {n(x,y)} in terms of
the autocorrelation function of the process

is real and positive, which means that CM's which are corre-
lated are statistically in phase. Notice that the experimental
data of Table I reflect this correlation between CM's with
the same repetition.
From (2.14), it follows that the variance of Cpq is given by

var (Cpq) = I
p+q+lI (2.15)

:fO JrO iO ?O

(X+iy)p (x iy)q (u- iV)r(U+iu)s

Rnn (X,Y,U, v) dx dy du dv (2.12)

where * denotes the complex conjugate and Rnn (x, y, u, v) is
the autocorrelation function of the process n, which is in
general nonstationary, evaluated at the image plane points
(x, y) and (u, v).
For illustration, let {n(x, y)} be a white noise process with

autocorrelation function

Rnn(x,y,u,v)=Nb(x- u,y v) (2.13)

where (x- u, y - v) is the two-dimensional Delta function
and N is the two-dimensional spectral density of the process.
Suppose also that we restrict ourselves to the unit disk. Sub-
stituting (2.13) into (2.12) and integrating over the unit disk
yields the following expression for the covariance of CM's of
a white noise process:

cov (Cpq pO +q + rN+ s+ 6(p-q) (r-s) (2.14)

where 6(pq) (r-s) is the Kronecker delta function which is
one when p - q = r- s and zero otherwise. In terms of the
repetition of Cpq defined in Section I1-A as p - q, it follows
that in the case of white noise, only moments with the same

repetition are correlated. Observe also that the RHS of (2.14)

which shows that the variance of CM's of white noise goes like
the inverse of their degrees. Variances of real and imaginary
parts of Cpq are both equal to one-half of the RHS of (2.15).
Comparison of (2.15) and the square of (2.8) shows that the

statistical behavior of white noise parallels the bound given
by Cauchy-Schwarz inequality.

III. MOMENT INVARIANTS

In this section, we shall give a brief account of moment
invariants and relate them to complex moments defined in
the previous section. This relation is used to define specif-
ically the image features which affect the values of moment
invariants and establish the basis for their evaluation as pat-
tern recognition features in the following sections.

A. Review

Moment invariants are features of the image which are

calculated in terms of ordinary moments and have the prop-

erty that they retain their exact values (i.e., they are invariant)
when the image is shifted, scaled, or rotated. Moment invari-
ants were originally established from the relation between
moments and the mathematically developed algebraic invari-
ants [1]. Through this relation, moment invariants can be
found up to any order.
Another equivalent set of invariants defined in terms of

moments is the Zernike moment invariants [2] based on

Zernike polynomials [12]. These polynomials obey an equa-

tion similar to (2.5), and thus they are also easier to derive
than ordinary moment invariants.

5 6

.03860 -.05970 -.01669

.09229 .15477 -.03399

.19404 .05067

.01519 .08586

COV (Cpq, Crs) = E(Cpq Cr*)
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The discrimination provided by moments as well as their
vulnerability to noise are crucial factors to the design of mo-
ment-based pattern recognition systems. However, the ana-
lytic treatment of these factors has been given less attention in
the literature than other practical considerations. The justifi-
cation for using moment invariants has been loosely based on
the uniqueness theorem of moments and some experimental
results.
We shall concentrate here on rotational invariance. Other

transformations of the image, like scale and shift, can be readily
dealt with through the use of normalized central moments
[8]. This amounts to centralizing and scaling the image such
that COO is a specified constant, and Co, = CIO = 0. The be-
havior of moment invariants upon reflection of the image is
adequately treated in [1], [2] where "skew-invariants" are
used.

B. Relation to Complex Moments

Upon rotation of the image plane axes through a counter-
clockwise angle F, the new set of CM's is related to the old
set by relation (2.5) which we rewrite here for convenience:

C' = Cpq ei(p-q)FPq p

This means that rotation of the image affects the phase but
not the magnitude of CM's. Hence the absolute values of
CM's are indeed invariant under rotation and can be taken as
our moment invariants. However, since Cpq is the complex
conjugate of Cqp, we get only [n/2J + 1 independent invari-
ants out of n + 1 CM's of degree n. This is a consequence of
the loss of information encountered in taking the absolute
value of a complex number.
Therefore, we should expect to get further invariant func-

tions using the phase information of CM's. Equation (2.5)
suggests that the relative phases of CM's, after we cancel out
the exponential factor in (2.5), will provide invariant func-
tions. For example, C21 C24 is a complex number with invari-
ant magnitude and phase under rotation.
Using this method, we can get as many as (N + 1) (N + 2)/

2 - 1 independent invariants out of the (N + 1) (N + 2)/2 in-
dependent CM's of orders 0 through N. The difference of 1
is inevitable because we lose a degree of freedom by requiring
rotation invariance. A specific method for getting this maxi-
mum number of independent invariants is described in [2].
Such invariants are by no means unique.
For the purpose of our analysis, we consider the so far most

commonly used forms of invariants which can be written in
terms of CM's as

(3.1)(Cpq Cqp) or (Crs Ctku + Csr Cukt)
where the relation between r, s, t, u, k is

(r- s)+k(t- u)= 0.

Notice that the expressions of (3.1) under condition (3.2)
are designed to cancel out the exponential factor of (2.5) and
also be real valued.
In conclusion, we see that moment invariants are simple alge-

braic combinations of CM's. Therefore, we shall now analyze

co (r )

(a)

c2 (r)

(b)

C5(r)

(c)

1.0

Fig. 1. (a) The zeroth circular harmonic coefficient function of a sam-
ple image (absolute value). (b) The second circular harmonic coeffi-
cient function of a sample image (absolute value). (c) The flfth cir-
cular harmonic coefficient function of a sample image (absolute value).

CM's in terms of which image features they are affected by,
and these results carry on immediately to moment invariants.

C. Image Features
If moment invariants are to be used to discriminate between

images, the vital question to ask is which features of the image
contribute to their values. Once these features are determined,
questions regarding the discrimination power and the robust-
ness of moment invariants can be readily answered.
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Equation (2.7) is the basis of this analysis. It defines Cpq in
terms of the (q - p)th coefficient cqp (r) of the circular har-
monic expansion xc (r)} of the image function G(r, J). This
shows that each CM' depends on a single coefficient of this
expansion and is independent of the rest. Circular harmonic
expansion of images has been used in rotation-invariant pat-
tern recognition [71 independent of its relation to moment
invariants. Fig. 1(a)-ic) show three circular harmonic func-
tions of an actual image.
Further inspection of (2.7) shows that even the circular

harnionic coefficient contributing to the value of a certain
CM does so in a special way. This follows from the well-
known relation between moments of a function and its Fou-
rier transform:

F(w) = L ( ) An (3.3)

where iAIn is the nth ordinary moment of the function whose
Fourier transform is F(c). Applying (3.3) to the Fourier
transform of the nth circular harmonic coefficient cn(r) of
the image g(x, y), it follows from (2.7) that Cpq is affected,
directly and solely, by the (p + q + l,)th coefficient of the
Taylor series expansion of the Fourier transform of cq..p(r).
Hence, ordinary moment invariants as well as Zernike mo-
ment invariants can be now written as a finite expression
with terms coming from these coefficients.

It is interesting to observe that although CM's form a com-
plete basis for expanding the image function g(x,y) it seems at
first glance that one cannot reconstruct the circular harmonic
expansion of g(x,y) from them because they do not cover all
the coefficients in (3.3). To see this, we observe that the
Taylor series of the Fourier transform of c,(r) could be re-
constructed from CM's of the form Cm (m+n) only. Letting
m go from 0 to 00, we cover the Taylor coefficients VM+1,
M.n+3iI.s This leaves out all the Mji's up to JMI as
well as MVln+2 "1+4 MW1+16, * which are more than half the
coefficients. However, since cj(r) is an even function for n
even and an odd function for n odd (because cn(r)ein(0+r)
must equal cn(-r)e,n1 ), and by the limiting behavior of the
Fourier transform at infinity, these coefficients can be
determined.

IV. INFORMATION PROPERTIES
Feature selection for discrimination between images is a

dimensionality reduction process which, for pattern recogni-
tion purposes. should retain a sufficient amount of informa-
tion to discriminate between the patterns in question. The
word "information" used here can be taken as the intuitive
meaning of what we think of as information for discrimina-
tion between patterns. However, throughout this section, we
shall use formulas which were actually based on Shannon's
information and are directly related to the probability of error
in pattern classification [4].
CM's play the central role in this section. On the one hand,

they provide a very simple way to define moment invariants.
On the other hand, the information properties are established
through their direct relation to the circular harmonic expan-

sion of the image function. Since moment invariants are actu-
ally computed in terms of CM's, their information is a pro-
cessed version of the information in CM's and therefore will
not provide more discrimination information than CM's them-
selves. We shall be concerned mainly with ordinary moment
invariants. The same approach used here can be adapted to
evaluate other forms of moment invariants as well.

A. Information Loss
Since we are representing an entire image by a few numbers

(of finite accuracy), it is inevitable that some information will
be lost. We now consider which information is lost in the case
of moment invariants and what is the impact of this loss on
discrimination between patterns.
Our finite feature space includes moment invariants through

a certain degree N. In fact, from the point of view of compu-
tation efficiency, once we go to degree N, we might as well
compute all moment invariants through this degree since their
components will be available. However, from the relation be-
tween moment invariants and the circular harmonic expansion
of the image discussed in the previous section, such a feature
space will depend only on the circular harmonic coefficients
c v(r) through cN(r) of the image function g(xy). Features
of the image corresponding to angular variations of N + 1
cycles/cycle or more will be completely lost although the num-
ber of features considered is of the order (N + 1) (+ 2)12.
This loss is encountered when either Zernike moment invari-
ants or ordinary moment invariants are used.
To illustrate the impact of this loss, Fig. 2(a) and (b) show

two images (dc suppressed) for which all moment invariants
through the tenth degree (65 features) are zeros (computed
within a unit circle). The images are synthesized by setting
to zero all circular harmonic coeffilcients which appear in
(2.7) for p, q ranging from 0 to 10 and choosing all other co-
efficients arbitrarily to construct two images which are
"different."

It is essential to observe that the zeroes assumed by moment
invariants in this case are not informative zeros, i.e., they do
not correspond to an accumulation of independent informa-
tive values which happen to cancel out and give the total of
zero. Each pattern of angular variation N + 1 cycles/cycle or
more is simply not sensed at all by any feature in the feature
space used. Insensitivity to specific details of the pattern is
not an inherent property of dimensionality reduction. As an
example, we observe that normalized template matching is
sensitive to every detail of the image although it reduces the
whole image to a single number. Indeed, normalized template
matching gives the value 1 if, and only if, every single pixel of
the pattern checks.
The described loss will evidently degrade a general pattern

recognition problem where the images have useful informa-
tion in the high frequency part of their spectra. On the other
hand, moment invariants' independence of certain angular
variations Can be used in a favorable way if the expected noise
has a known distribution of angular variation frequencies. As
an example, if the images of Fig. 2(a) and (b) are regarded as
additive noise, moment invariants of degrees 0 through 10 will
be optimal in the sense of noise independence.
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(a)

(b)
Fig. 2. (a) An image (dc suppressed) whose moment invariants of
orders 0 through 10 (65 features) are all zero. (b) Another image
(dc suppressed) whose moment invariants of orders 0 through 10
(65 features) are all zero.

B. Information Suppression
We have already used (2.7) to show that even the circular

harmonic coefficients which do affect certain CM's are not
fully represented by a finite number of CM's. We now reach
the same conclusion with more insight into the nature of infor-
mation suppression encountered.
We substitute n = p - q and k = q in (2.7) and restrict the

image to the unit disk to get the following relation:

I

C(n+k)k=22r rn+2k+lc-n(r)dr. (4.1)

We now fix n and study the information contained in each
C(.+k)k about c n(r) for all k>0. The kernel of (4.1),
namely rn+2 k+ I, can be regarded as a weight which extracts
features of c.n(r) depending on where the feature occurs,
i.e., depending on r. The factor of 1 in n + 2k + I is fair
enough; it gives a weight to c-n(r), proportional to r and we

know that the area of the image affected by c.n(r) is also
proportional to r. However, as n + 2k takes the values n,
n + 2, n + 4, * *, the values of c,, (r) is suppressed for small
r and the portion of c n(r) near r= 1 dominates the value of
C(n+k)k-
For example, suppose that the patterns have useful discrim-

inant features in their tenth circular harmonic coefficient.
CM's which depend on this coefficient are C(o) (I 0), C(l ) ( l ),
* *, C(n)(io+n)- The maximum per unit weightgiventothe
region r< 0.25 in the image by any of these CM's is of the
order 10-7 and is likely to be lost in rounding errors.

Unfair emphasis of extracted features on portions of the
image domain has been shown to have a negative impact on

discrimination quality [4]. Roughly speaking, there is gen-
erally some essential discrimination information distributed
over the image domain and when a certain portion is sup-
pressed, its essential information is lost. For example, the
informative variations in the curves in Fig. 1 (a)-(c) are signifi-
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5 10

n + 2k

Fig. 3. Illustration of information suppression of moment invariants.
The 90 percent region is given 90 percent of the kernel weight and
the 10 percent region the remaining 10 percent, which is out of pro-
portion to the region areas.

cant for the whole range of values of r, and suppressing the
part near r = 0 would cause a loss of information. However,
in the case where most of the useful information of the image
is near its boundary, this factor becomes less significant.

Fig. 3 demonstrates information suppression as follows. The
abscissa is n + 2k varying from 0 to 10 and the ordinate is r
going from 0 to 1. The curve now separates the upper part
which is a range of r given 90 percent of the weight of the
kernel (the outer portion of the image) and the lower part
which takes the remaining 10 percent (the central portion of
the image). It is clear that as the degree of the CM (and hence
the moment invariant) goes up, it takes almost all the informa-
tion from a very small part of the image which is near the
image border and severely suppresses central features. We em-
phasize that the issue here is not that a specific extracted
feature suppresses certain information, which is typical of
almost any feature space; the problem is that all extracted
features suppress the same information.
We conclude this discussion by noting that Zernike moment

invariants do not suffer from radial information suppression
as such. However, these invariants should not be obtained by
combining already computed CM's. Instead, Zernike poly-
nomials should be computed and used directly to extract the
invariants from the image function. Otherwise, the finite
register limitation will make their values completely domi-
nated by rounding errors.

C. Information Redundancy

When all features suppress and emphasize the same parts,
one is inclined to suspect that they are correlated or redun-
dant. It has been shown that information-theoretic redun-
dancy and correlation between kernels are directly related
[4]. Considering a fixed circular harmonic coefficient cn(r) in
(2.7), the CM kernels defined in terms of this coefficient are
those CM's of repetition - n and degrees n, n + 2, n + 4,
Therefore, we shall consider the correlation between CM
kernels having the same repetition but differing by two in

their degrees; namely CM's of the form Cpq and C(p+ 1) (q+ 1).
From (2.7), this is equivalent to considering ordinary (radial)
moments whose degrees differ by two. We start with the
following simple identity:

rn+2 =Arn+ rn (r2 - A) for any A. (4.2)

Now we look for the value ofA which makes the two terms
of the RHS of (4.2) orthogonal for r E [0, 11 , i.e., the value of
A satisfying the equation

J (Ar) (rn (r2 - A)) r dr = 0. (4.3)

Excluding the trivial case A = 0, we get the following solu-
tion for (4.3):

(n+l)
(n + 2) (4.4)

We have thus decomposed the kernel of the (n + 2)th mo-
ment into a linear combination of two components; one of
which coincides with the kernel of the nth moment and the
other orthogonal to it. Ideally, the orthogonal part ought to
be dominant, since it is the part that contains new informa-
tion. The ratio between the weights of the informative part
and the redundant part, which we call p (n), is given by

I rl \ 1|2

p(n) =

(4.5)
= ((n+l){n+)) 1/2

\(n+ 1)(n+)
Notice how this ratio becomes very small for large n. This

means that CM's are indeed correlated and that the informa-
tion in C(p+1 ) (q+ 1 ) which was already provided by Cpq dom-
inates the new information. In fact, the ratio of the new in-
formation to the redundant information goes to zero as
p + q = n goes to infinity.

It can be shown that a recursive attempt to decorrelate CM
kernels will yield Zernike polynomials. Therefore, redundancy
properties developed here are avoided in Zernike moment
invariants.

V. ROBUSTNESS
We now consider how CM's (and hence moment invariants)

are affected by the presence of additive noise. We shall first
give the general approach to be followed in order to estimate
the noise impact in any given problem. We then carry out the
analysis in the case of additive white noise and derive the im-
portant result that moment invariants of higher degrees are
more vulnerable to white noise. This result puts a limitation
on che degree of moment invariants that can be useful in the
recognition procedure. A conflicting limitation is that only
moment invariants of higher degrees carry the essential infor-
mation of higher order circular harmonics. These two factors
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together determine an optimal number of moment invariants
in any given problem. Furthermore, the noise impact on C10
and COO, which affects the values of the scale and shift, should
also be taken into consideration since it affects the rest of the
CM's through affecting the scaled central moments (or equiv-
alently the normalized image [3]).

A. General Problem
Suppose that we have a given problem where the classes

(template images) are gl, g2, gk, k * * *, gn. For each
class gk, the nominal values of the (p,q) and (r,s) CM's
namely Cpq (k) and Crs (k), are given by

+00 +00

Cpq (k) = f (x + iy)P (x iy)q gk(x,y) dx dy
00 _ 00

+00 +00

C.s (k) = f (x + iy)r (X - iy)S gk(x,y) dx dy (5* 1)
_0 00

In the presence of a zero-mean independent additive noise
process {n(x,y)} with autocorrelation functionRnn(x, y, u, v),
the covariance of Cpq and Crs is given by (2.12). From (5.1)
and (2.12), we can predict the second-order statistical behavior
of CM's in the problem in question, and hence the behavior
of the moment invariants' feature space.

For example, using (2.12) and (5.1), we can draw a two-di-
mensional scatter diagram [10]. The axes will be Cpq and
Crs and there will be n points corresponding to the n classes
g1, g2, gn,g The coordinates of the point gk are Cpq(k)
and Cry(k). Around each point there is a covariance ellipse
whose area, eccentricity and orientation are determined by
var (Cpq), var (C,,), and cov (Cpq, Cry)

If the a priori probabilities of the classes are known, the
Gaussian approximation can be used to give an explicit esti-
mate for the probability of misclassification. Higher order
statistics can be used to obtain more accurate estimates.
Other performance measures like between-class to within-
class scatter can be readily computed. Hypothesis testing and
other statistical methods can also be used. These are problem-
oriented issues, but the tools are available through the analyt-
ically attractive definition (2.1) of CM's.

B. White Noise
As an illustration example for the analysis of noise impact

on moment invariants, we shall carry out the analysis for a
two-class problem with additive white noise.
Suppose that we have two classes (template images) g1 and

92 - We fix an integer N and consider all CM's having repetition
N. Let us define the (- N)th circular harmonic coefficient of
g, and g2 to be a(r) and b(r), respectively. For our purposes,
we approximate the difference a(r) - b(r) by a (finite) poly-
nomial P(r) for r E [0, 1 ] . The CM's with repetition N have
orders (N+ n, n) with nonnegative integer n. According to
(2.7), the difference in CM's of this form between class g1 and
g2 is given by

'1

A C(N+n)n = 2ir rN2n+l 1(a(r) - b (r)) dr. (5.2)
0

Substituting the polynomial P(r) for (a(r) - b(r)) in (5.2)
and carrying out the integration for each power of r, we get a
finite sum of the form

K Ak
AC(N+n)nl= 2+n+:, 53

where Ak's are constants and Mk's, K are constant integers.
On the other hand, according to (2.15), the standard deviation
of C(N,+n)n due to additive white noise is given by

B
C(N+n)n =(N+2n+ 1)1/2 (5.4)

where B is a constant depending on noise intensity. The last
two equations show that while the difference in value between
the CM of two classes goes like 1/(p + q) (at most), the stan-
dard deviation due to white noise goes like 1b/jpKj . The
ratio of the two, which can be taken as the signal-to-noise
ratio, is proportional to 1 /Ip .
This means that as the degree of the CM goes up, it becomes

more vulnerable to white noise. The result is expected in view
of the nature of the CM kernel rP+ e (P-q). As p + q in-
creases, both the signal and the noise components of Cpq de-
crease. However, since this kernel becomes negligible except
near r = 1, the cancellation effect in the white noise due to
its incoherence goes down and hence the noise part increases
relative to the signal part which is coherent and does not have
cancellations anyway.

VI. CONCLUSION
We have been concerned here with evaluating moment in-

variants as a feature space in a pattern recognition problem
avant projet, i.e., predicting how they will behave given the
classes and noise conditions of the problem. For this pur-
pose, we accumulated enough background to help understand
the nature of moment invariants and derived basic perfor-
mance results in terms of the classes and noise.
We have also been concerned with the general question:

how good are moment invariants? The reason for considering
moment invariants as pattern recognition features in the first
place is their invariance properties. Does this invariance justify
their use for discrimination between patterns? When noise is
present, as it always is, moment invariants will change in value
and therefore will be no longer invariant. Is this change severe
enough to overrule their initial invariance advantage?
We found that moment invariants are not in general good

features. They suffer from information loss, suppression, and
redundancy which limit their discrimination power. However,
there are specific instances when these drawbacks do not es-
sentially degrade the performance. For example, when the
images in question do not have significant information in the
higher order coefficients of their circular harmonic expansion,
nothing is really lost, and when the central parts of the images
have little useful detail, nothing is really suppressed. We also
found that although Zernike moment invariants suffer from
the same information loss problems of ordinary moment in-
variants, they do not have the information suppression or
redundancy as such.
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As far as noise is concerned, the situation is reversed. If the
expected noise is mainly of high angular variation or mostly
centralized, the situation is favorable. Using the second-order
statistics of the noise process, it is possible to estimate a
second-order approximation of the probability of misclassifi-
cation. In the case of white noise, we concluded that higher
order moment invariants were more vulnerable. In a problem
where higher order circular harmonics are essential features
of the patterns, this vulnerability puts a rigid limitation on
how well moment invariants can provide the necessary dis-
crimination information. This factor will determine if mo-
ment invariants are usable in the problem, or else some other
feature space must be sought.
Based on the results of this paper, we suggest that the co-

efficient distribution of the circular harmonic expansion of
interesting pattern recognition objects such as alphanumeric
characters be investigated to determine which moment invari-
ants, if any, are worth consideration as recognition features.
Second-order statistics of commonly encountered noise pro-
cesses can also be used to estimate the noise vulnerability of
moment invariants in these cases. Derivation of Zernike-like
variations of moment invariants to avoid the drawbacks de-
scribed here is also an interesting ground for further work.
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