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3-D MOTION
ESTIMATION, UNDERSTANDING AND PREDICTION 

FROM NOISY IMAGE SEQUENCES

Abstract

This paper presents an approach to understanding general 3-D motion of a rigid body from 

image sequences. Based on dynamics, a locally constant angular momentum (LCAM) model is 

introduced. The model is local in the sense that it is applied to a limited number of image frames at 

a time. Specifically, the model constrains the motion, over a local frame subsequence, to be a super

position of precession and translation. Thus, the instantaneous rotation axis of the object is allowed 

to change through the subsequence. The trajectory of the rotation center is approximated by a vec

tor polynomial. The parameters of the model evolve in time so that they can adapt to long term 

changes in motion characteristics.

The nature and parameters of short term motion can be estimated continuously with the goal 

of understanding motion through the image sequence. The estimation algorithm presented in this 

paper is linear. Based on the assumption that the motion is smooth, object positions and motion in 

the near future can be predicted, and short missing subsequences can be recovered.

Noise smoothing is achieved by overdetermination and a least squares criterion. The frame

work is flexible in the sense that it allows both overdetermination in number of feature points and 

the number of image frames. The number of frames from which the model is derived can be varied 

according to the complexity of motion and the noise level so as to obtain stable and good estimates 

of parameters over the entire image sequence.

Simulation results are given for noisy synthetic data, and images taken of a model airplane.
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1. INTRODUCTION

Perception of three-dimensional motion from images is an integral part of vision. It involves 

estimation of the nature and parameters of 3-D motion, and as a result, prediction of future posi

tions of moving objects. Human vision is adept at using image sequences to understand and predict 

motion [IS]- For example, after a football is kicked off, people can judge whether the football will 

pass through uprights long before it actually reaches there. In computer vision, cameras must be 

continuously reoriented to track a moving object for autonomous image acquisition. The motion of 

a robot arm or a vehicle may have to be estimated and predicted to plan safe motion trajectories. 

Retrieval and repair of satellites in space requires that the spacecraft rendezvous with the target, 

which in turn, requires that the spin and the tumbling motion of the target be detected and 

estimated first. An understanding of the 3-D motion makes it possible to make predictions about 

future locations and configurations of the moving objects. Such prediction capability allows plan

ning of manipulatory actions on moving objects, e.g., capturing a spacecraft.

We try to characterize quantitatively general 3-D motion from image sequences. The general

ity of the problem refers to the lack of knowledge about the structure of the objects undergoing 

motion as well as the type of motion they are undergoing. For example, it may not even be known 

if the objects are translating, rotating or precessing, much less the motion parameters. Under special 

restrictions, the problem may be easier to solve although the solution may be of restricted use. Res

trictions on both allowed motion as well as object structure have been used to simplify the prob

lem, often making the solution inapplicable to real images. Broida and Chellappa [4] discuss the 

inference of 2-D motion from 1-D image sequences under the assumption that the object undergoes 

constant translational and rotational 2-D motion and the structure of the object is known, 

'i asumoto and Medioni [21 ] also assume the motion to be constant through the sequence and esti

mate, through a search in the solution space, the parameters of assumed constant motion from 

image sequence. In the field of astrodynamics, the dynamic information about he object is required
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to be known. For instance, the principal moments of inertia and structures of objects are required 

[5, 11]. Because the Lagrange equations of rigid body motion are nonlinear [8,14], numerical 

methods are necessary to solve the dynamics problem [5.11]. -

Our goal is to understand the motion with as little a priori knowledge as possible. The motion 

of an object is determined by underlying dynamics. By the analysis of the image sequence under a 

general dynamic model, the understanding and description of the motion can be derived. Further

more. based on the motion parameters derived, we can make extrapolations and interpolations 

through image sequences to predict and recover part of the motion. Clearly, we do not in general 

know the forces acting on the object and the object structural response to the forces which would 

otherwise enable us to derive object's 3-D motion from the principles of dynamics. However, it is 

essential to impose a constraint on the object motion to make the inverse problem of 3-D inference 

solvable.

In general, the moving objects exhibit a smooth motion, i.e., the motion parameters between 

consecutive image pairs are correlated. From this assumption and given a sequence of images of a 

moving rigid object, we determine what kind of local motion the object is undergoing. A Zocally 

constant angular momentum model, or LCAM model for short, is introduced. The model assumes 

short term conservation of angular momentum and a polynomial curve as the trajectory of rotation 

center. This constraint is the precise statement of what we mean by smoothness of motion. How

ever. we allow the angular momentum, and hence, the motion characteristics of the object to 

change or evolve over long term. Thus, we do not constrain the object motion by some global model 

of allowed dynamics.

As a result of the analysis presented in this paper, some of the questions that we can answer 

are: whether there is precession or tumbling: what the precession is if it exists: how the rotation 

center of the object (which may be an invisible point ! ) moves in space: what the future motion 

would probably be; where a particular object point would be located in image frames or in 3-D at 

the next several time instants: where the the object would be if it is missing from a image subse-
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quence, and what the motion before the given sequence could be.

As a consequence of being able to predict future locations of feature points, only a neighbor

hood of the predicted position may need to be searched to obtain matching points in successive 

images.

The imposition of local smoothness of motion constraint helps combat the errors due to noise. 

One way to combat the eifect of such noise would be to use a large number of feature points in the 

images. However, a large number of feature points is not desirable, especially in the case where 

very few feature points can be extracted from the objects. The use of image sequences containing a 

large number of frames is a better way to combat the eifect of noise.

Our approach is based on the two-view motion analysis of image sequences consisting of 

either monocular images, or binocular image pairs. The two-view motion estimation problem is as 

follows. Given images of a moving object taken at two different time instants, the problem is to 

estimate the 3-D position transformation of the object between the two time instants. The rotation 

and translation components of such transformation are referred to as two-view rotation and two- 

view translation. Generally, they do not represent actual continuous motion undergone by the 

object between the two time instants. The physical location of the rotation axis is not determined 

by such two-view position transformation. Two-view motion estimation has been discussed exten

sively in the literature. Many researchers [6,13,15,16,17,24] have used point correspondences 

between two image frames to solve this problem. Linear algorithms for two-view motion analysis 

from point correspondences have been developed by Longuet-Higgins [13], and Tsai and Huang [17]. 

Line correspondences can also be used to solve the problem (Yen and Huang [22]). An alternative 

approach is to compute the optical flow field and then estimate motion parameters from optical flow 

[1,19,20,23]. Zhuang and Haralick [23] give a linear algorithm for such estimation using optical 

flow. All these motion estimation techniques use monocular images, taken by a monocular sensor 

such as a single video camera. With such an arrangement the 3-D translation and the range of the 

object can be determined up to a scale factor. If binocular images are used, we can determine the
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absolute translation velocities and ranges of object points. An algorithm to find the rotation and 

translation given 3-D correspondences has been discussed in Huang and Blostein [10]. An algorithm 

of Faugeras and Hebert [7] can be used to find the least squares solution of the motion parameters 

in the presence of noise. A review of recent results in motion analysis is given in [9].

The approach presented in this paper can use either feature points or optical flow to solve 

two-view motion parameters. We use feature points in the discussion here. We assume that there is 

a single rigid object in motion, the correspondences of points between images are given, and the 

motion does not exhibit any discontinuities such as those caused by collisions.

In Section 2 we first present the LCAM model based on dynamics. Then the solutions of the 

model parameters are discussed and the relationship between continuous motion and discrete two- 

view motion is described. The approach to estimating these parameters in the presence of noise is 

discussed in Section 3. Section 3 also deals with the local understanding, prediction and recovering 

of the motion. Some particular properties of monocular vision are discussed in Section 4. Section 5 

gives the results of simulations. Section 6 presents a summary.
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2. THE LCAM MODEL

This section consists of four subsections. Subsection 2.1 deals with the general motion of a 

rigid body in 3-D. Subsection 2.2 is devoted to the motion of the rotation center. The trajectory of 

the rotation center is approximated by a vector polynomial as a function of time. Subsection 2.3 

discusses the solution of these coefficient equations. The relationship between the continuous preces

sion of the LCAM model and the discrete two-view motion is investigated in Subsection 2.4.

2.1 Motion of a Rigid Body in 3-D

All external forces acting on a body can be reduced to a total force F acting on a suitable point 

Q. and a total applied torquer N about Q. For a body moving freely in space, the center of mass is 

to be taken as the point Q. If the body is constrained to rotate about a fixed point, then that point is 

to be taken as the point Q. This point may move with the supports. Let m be the mass of the body, 

the motion of the center of mass is given by

F = > V )  (1)

Let L be the angular momentum of the body. The torque N and the angular momentum L  

satisfy [8,14] :

N = d L
n r (2)

The rotation is about the point Q, which will be referred to as the rotation center. In the remainder 

of this subsection, we concentrate on the rotation part of the motion. The motion of the center of 

mass will be discussed in the next subsection.

In matrix notation, the angular momentum L can be represented by

L =/<o
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or writing in components:

L x 1  xx ly x  1  zx tox

L y = 1  xy l y y  1  zy

L z I x z  l y z  l z z toz

where

l Xx ~ f  (y 2+ z 2)dm l yy = J (z 2+ x 2)dm l zz - J ( x 2+ y 2)dm

Izx Ixz S d m  Iyx Ixy —  —J x y  dm Izy — Iyz —  J*zy dm

and where a> is angular velocity. The above integrals are over the mass of the body.

If the coordinate axes are the principal axes of the

diagonal form:

I x x 0 0
/  = 0 i „ 0

0 0 l z z

Referred to a coordinate system fixed on such a rotating body, (2) becomes

N x Ixx ^  toy toz (dZz dyy )

Ny =Iyy Q)y +(Oz (tix Uxx -lzz  ) (3)

N Z  l z z  ^ z  +°>x toy ( l y y  l \ x  )

where (Nx ,Ny ,NZ )= N . These are known as Euler’s equations for the motion of a rigid body. These 

equations are nonlinear and have generally no closed-form solutions. Numerical methods are 

needed to solve them.

Clearly the motion of a rigid body under external forces is complicated. In fact even under 

no external forces, the motion remains to be complex. Perspective projection adds further complex

ity to the motion as observed in the image. However, in a short time interval, realistic 

simplifications can be introduced. One simplification occurs if we ignore the impact of the external 

torque over short time intervals. If there is no external torque over a short time, there is no change
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in the angular momentum of the object. Thus, if we have a dense temporal sequence of images, we 

can perform motion analysis over a small number of successive frames under the assumption of 

locally constant angular momentum. Another simplification occurs if the body possesses an axis of 

symmetry. The symmetry here means that at least two of Ixx , Iyy . I zz are equal. Cylinders and 

disks are such examples. Most satellites are also symmetrical or almost symmetrical in this sense.

Fig.l The precessional motion of a torque-free symmetrical rigid body

Under the above two simplifications, Euler’s equations are integrable [8,14]. The motion is 

such that the body rotates about its axis of symmetry m, at the same time it rotates about a spa

tially fixed axis 1. The motion can be represented by a rotating cone that rolls along the surface of a 

fixed cone without slipping as shown in Fig.l, where the body is fixed on the rolling cone, the axis 

of symmetry coincides with that of rolling cone, and the center of mass or the fixed point Q of the 

body coincides with the apices of the cones. Then, the motion of the rolling cone is the same as the 

motion of the body. Fig.l gives three possible configurations of the rolling cone and the fixed cone.
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Let o>l be the angular velocity at which the rolling cone rotates about 1 . Let <*>,„ be the angu

lar velocity at which the rolling cone rotates about its own axis of symmetry In. Then the instan

taneous angular velocity a) is the vector sum of at/ and 0)m as shown in Fig.l. The magnitudes of 

a)/,, and (o, are constant. So the magnitude of the instantaneous angular velocity is also constant. 

This kind of motion about a point is called precession in the following sections and it represents the 

restriction imposed by our model on the allowed object rotation.

A special case occurs when m is parallel to 1. Then o> is also parallel to 1. So the instantaneous 

rotation axis does not change its orientation in motion. This type of motion is called motion 

without precession.

i
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2.2 Motion of Rotation Center

In the rest of this paper column vectors and matrices will be used very often and will be gen

erally denoted by italics. Column vectors will also denote column matrices. So dot and cross opera

tions as well as matrix multiplications will be applied to column vectors. Ft will denote an image 

frame taken at time i , . i =0. 1. —.

The location of rotation center is changed with time. Assume the trajectory of the rotation 

center is smooth, or specifically, it can be expanded into a Taylor series:

Q (f )=Q U 0)+ ~ Q  '(oXt - t  0)+ij-<2 "(0)(t - t  0)2+ -  (4)

If the time intervals between image frames are short, we can estimate the trajectory by the 

first k terms. We get a polynomial of time t . The coefficients of the polynomial are 3-vectors. Let

ting , i =1,2,3.—, we have

Qi b l+b2(ti t 0')+b3(ti i 0)2+ .....+bk (ti—t 0)* 1 (5)

For simplicity, we assume the time intervals between image frames are constant c , i.e..

t, —ci +t 0. From (5) we get

Qi i 2i +c 2b 3i 2H— Vc k i k 1 (6)

Letting d j= c j ~1b j , j =  1.2. -, we get

Qi -a  !+ a2i +<Z3*2+ ‘"+aA i k -1 (7)

Equation (7) is the model for the motion of rotation center. The basic assumption we made is 

that the trajectory can be approximated by a polynomial. If the motion is smooth and the time 

interval covered by the model is relatively short. Equation (7) is a good approximation of the tra

jectory.

Together with the precession model presented in the previous subsection, we have the com

plete LCAM model. Therefore, the model is characterized by locally constant angular momentum,
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i.e., the angular momentum of the moving object can be treated as constant over short time inter

vals. Though we derive this model from the assumption of constant angular momentum and object 

symmetry, the condition leading to such motion is not unique. In other words, the motion model 

we derived applies to any moving objects whose rotation can be locally modeled by such motion: 

the rotation about a fixed-on-body axis that rotates about a spatially fixed axis, and whose transla

tion can be locally modeled by a vector polynomial.

Our goal here is to understand 3-D motion of an object over an extended time period using the 

two-view motion analysis of images taken at consecutive time instants. Thus we would first esti

mate the two-view motion parameters of the moving object.

The image sequence can be either monocular or binocular. In the binocular case, at each time 

instant we take a pair of images using two cameras in certain configuration. From one such image 

pair, we can find the 3-D coordinates of a point assuming its locations in the two images are known. 

The 3-D coordinates of an object point at two time instants define a point correspondence. At least 

three point correspondences are needed to uniquely determine the relative displacement of a rigid 

body between these two time instants. The displacement can be represented by a rotation about an 

axis located at the origin of a world coordinate system, and a translation [2], We will call this dis

placement as two-view motion. In the monocular case, only one camera is used. At each time 

instant, one image is taken which is a perspective projection of the object at that time instant. The 

image coordinates of an object point at two time instants define a point correspondence in the 

monocular case. At least eight point correspondences are needed to uniquely determine rotation and 

translation direction of two-view motion using linear algorithms [17.24]. The magnitude of trans

lation vector can not be determined generally from monocular images. More point correspondences 

are needed to improve accuracy in the presence of noise.

Let the column vector P 0 be the 3-D coordinates of an object point at time i 0. P \ be that of 

the same point at time t R 2 be the rotation matrix from time 10 to 11, and T l be the corresponding 

translation vector. Then. P 0 and P l are related by
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Pi~R \Po+T, (8)

where R x represents a rotation about an axis through the origin.

Given a set of point correspondences, R j and T j can be determined by two-view motion 

analysis. In the case of monocular vision, the translation vector can only be determined up to a 

positive scale factor, i.e. only the direction of T , T —T /  II T II, can be determined from the perspec

tive projection.

In equation (8) letting P 0 be at the origin, it is clear that T x is just the translation of the point 

at origin. For any point Q0. we can translate the rotation axis so that it goes through Q0 and rotate 

P o about the axis at the new location. Mathematically, from (8) we have

P\=R ¿Po-Q o)+(R iQ o+TX) (9)

Compared with (8), (9) tells us that the same motion can be represented by rotating P 0 about

Qo by R i, and then translating by RiQo+P i- Because Q() is arbitrarily chosen, there are infinitely 

many ways to select the location of the rotation axis. This is an ambiguity problem in motion 

understanding from image sequences. If we let the rotation axis always be located at origin, the tra

jectory described by Rj and Tt i = l,2,3"* would be like what is showed in Fig.2, which is very 

unnatural.

In Fig.2 the real trajectory of the center of the body is the dashed line. However, neither the 

rotation nor the translation components show this trajectory. As we discussed in Subsection 2.1. 

the center of mass of a body in free motion satisfies Newton s equation of motion of a particle (1). 

Rotation is about the center of mass (or fixed point if it exists). So motion should be expressed in 

two parts, the motion of the rotation center (the center of mass or the fixed point), and the rotation

about the rotation center.
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Fig.2 Trajectory described by Ri and T, 
if rotation axis is always located at origin

Let Qi be the position vector of the rotation center at time t , . Pt be another point at time f, . 

Rj be the rotation matrix from t, to t-,, Tt be the translation vector from t i„1 to t t . From (8) we 

have

Q i~R  iQ o+ ^ i ( 10)
Substituting (10) into (9) we get

P X=R ¿ P 0-Qo)+Qi (11)
From (10) we have

R iQ o+(2 i—T i

Similarly we get equations for motion from r , t o  t , . i =1.2.—./  :

\Q (& Q \-T !
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~^2Q 1+Q 2—1*2 (12)

—Rf Qf -1+0/ -T f

Equations (12) give the relationship among locations of rotation center, the two-view rotation 

matrices and two-view translation vectors. The equations (12) will be referred to as center motion 

equations.

Substituting (7) into (12), we get 

(7 ~R \ )a i+a2+a3+---+cz£ —T j

( /  - R  2)a j+(27 - R 2)a 2+(47 - R 2)a 3+ -+ (2 A ~lI  - R 2)ak =T2 (13)

U - R f  )a !+(/7  —( /  - 1 ) * ,  )a 2+ ( / 27 - ( /  - l ) 2̂  )a3+ - + ( / A _17 - ( /  - l ) k~lRf )ak =Tf

Vector equations (13) are referred to as the coefficient equations. Both sides of the equations 

are 3-vectors. There are /  equations in k unknown 3-vectors. Let A =(a lt a 2 , ••• , ak )' , 

T = ( r  1( T 2, — , Tf  y  , D be the coefficient matrix of the unknowns in (13). The element of D at i- 

th row and j-th column is d,j , i.e.. D =[diji ]f xk . We have

We can rewrite the coefficient equations (13) as

DA = r  (14)

D and T are determined by two-view motion analysis. The problem here is to find A , the 

coefficients of the polynomial in (7).



15

2.3 Solutions of Coefficient Equation

Let /  —k . then the matrix Z) is a square matrix. We wish to know whether the linear equa

tions (14) have a solution. If a solution exists, is it unique ? If it is not unique, what is the general 

solution ?

The solution of the coefficient equations depends on the types of motion, or the rotation 

matrices and the translation vectors Tt . Let us first consider a simpler case, where k =2. This 

means that the trajectory of the rotation center is locally approximated by a motion of constant 

velocity. Three frames are used in this case. The coefficient equations become

U — R\)a i+a2=T1 (15.1)

( /  —Æ2)a i+ (2 /— R 2)a2—T 2 (15.2)

Solving for a 2 in (15.1) and substituting it into (15.2), we get

( I - 2 R l+R2R l)a l= ( 2 I - R 2)T 1- T 2 (16)

If I —2R i+ R 2R 1 is nonsingular, a j can be uniquely determined from (16) :

a != (/ -2 R  ,+R 2R 1)_1((27 - R  2)T x- T 2) ( 17)

Then a 2 is determined from ( 15.1 ) :

a. 2—T j ( /  R j)û |

Appendix 3 shows that ( /  —2R X+R2R 2) is nonsingular if and only if the following two condi

tions are both satisfied: 1) the axes of rotations, represented by R x and R 2, respectively, are not 

parallel. 2) Neither rotation angle is zero. Condition 2) is usually satisfied if the motion is not pure 

translation. If condition 1) is not satisfied, the solution of equations (15) is not unique and have 

some structure. To show this, assume the rotation axes of R { and R 2 are parallel. Let w be any 

vector parallel to these axes. Because any point on the rotation axis remains unchanged after rota

tion, we have R jw =w , R 2w —w . For any solution a  ̂ and a 2, a^+cw and a 2 is another solution,
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where

c is an arbitrary real constant. So there exist infinitely many solutions.

The following theorem presents the results for the general case. 

THEOREM 1. In coefficient equations, let f=k. Define Sj to be a 3 by 3 matrix

k~ j rkV =  z ( - O ' ( * ) £ * Rk -,-1-Ri =0.1 . 2. k

Define number u,

Then

/ =o

Uij = j —i +1, i +2. —, k
m =1

S f a ^ - Z S I T ,
1=1 

-1
““ =V c = r j \ ( L s r -  + stv .)

^  -1 C Ir _-) \i ( X  Sk'-kTm+V -2a l+ u* -2 * at )

* - 3

~ 2 ~  0 F - - 3 ) !  ^ ^  + S x°_3<2 1 + ^ x- _ 3  <2* +W * - 3  k - 1  a k - l )

-1
a  3— ~2l“ ( Z  + ^2°a l + w 2 i  + w 2 * - l a * - H ------^ 2 4 ^ 4)/•?? =1

_| 1
a 2=^rT-( Z ^ T i + 5  fa i+ u u  a* + !/n  - 1q - 1+ - + a 13a 3)

A- m =1

Proof. See Appendix 1.

If S,° is not singular, the first equation given by Theorem 1 uniquely determines a 3. Then ak ,

ak -i. ^2 can be determined, sequentially, by the second, third..... and last equations in Theorem

1. So if St° is not singular, solution is unique.
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THEOREM 2. In the case of rotation without precession, let w be any column vector parallel 

to the rotation axes. Then.

S*°w= 0 " (18)

and for any vector a

(Sk° a ) - w  = 0 (19)

Proof. See Appendix 2.

From Theorem 1. we have

S fr ^ - t s iT , (20)
/ =1

In the case of rotation without precession, equation (18) implies Sk° is singular. From (19). the 

left-hand side of (20) is orthogonal to w . However if the real trajectory of the rotation center is 

not exactly a y-th  degree polynomial with j  ^ k  -1  in (7), the right-hand side of (20) can be any 

vector, which may not be orthogonal to w . This means that no solution exists for equation (20). If 

the real trajectory is a j-th degree polynomial with j  ^ k - 1, then equation (20) has a solution by 

our derivation of (20). Since equation (7) is usually only an approximation of the real trajectory, 

a least squares solution of (20) can serve our purpose. Let a 2 be the least squares solution of (20) 

which is solved by using independent columns of Sk°. If the rank of Sk° is 2, which is generally true 

for motion without precession, the general solution is then a. j==£Zj+cw , where c is any real 

number. All general solutions [a j+cw } form a straight line in 3-D space. From equation (7), this 

line gives the location and direction of the two-view rotation axis of the motion between time 

instants t 0 and t x. From Theorem 2 we have =0, S*0_2w =0, 5fw  =0. Then Sk0̂ a  x =Sit0_1a

Sk°-2a i=Sk-2? 1» 5 fa fa i. By the equations given by Theorem 1, the unknowns ak , ak •••,

a 2 are determined without knowing the undetermined scale c .

If the motion is pure translation without rotation, all the rotation matrices R, . i =1,2, ••• , k , 

are unit matrix / .  Sk° is zero matrix. The first three columns of D are zero, a j can not be deter

mined by coefficient equations. From Theorem 1, a 2, a 3, . o-k > can still be determined bv coefficient
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equations. Because no rotation exists, any point can be considered as a rotation center. Equation (7) 

can be used to approximate the trajectory of any object points.

Thus the solutions of the coefficient equations can be summarized as follows. ~

1. In the case of rotation with precession, the solution of the coefficient equations is generally 

unique. The trajectory of the rotation center is described by (7).

2. In the case of rotation without precession, the general solution of a. j gives the two-view 

rotation axis of the first two-view motion. All other coefficients a 2. a 3. —, ak are generally deter

mined uniquely by Theorem 1. So the two-view rotation axes of all two-view motions are deter

mined by (7). Because no precession exists, any point on the rotation axis can be considered as the 

rotation center. This is the meaning of the general solution Oj. Once a particular point on the rota

tion axis is chosen as the rotation center, its trajectory is described by equation (7). Fig.3 shows the 

possible parallel trajectories of the rotation center depending on which point on the axis is chosen 

as the rotation center.

Fig.3 The possible trajectories of rotation centers 
when rotation axes are parallel.
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3. In the case of pure translation without rotation, cl 2, Aj, , c l can still be determined by 

coefficient equations. However a 1 can not be determined by coefficient equations, a x can be chosen 

to be the position of any object point at time 10. Then equation (7) describes the trajectory of this 

point.

In the presence of noise, both a large number of point correspondences and a large number of 

image frames provide overdetermination. Faugeras and Hebert [7] present an algorithm which can 

be used for the least squares estimation of two-view motion parameters. To use overdetermination 

based on a large number of frames, we let /  >k in the coefficient equations (13). In fact, the 

coefficient matrix St° is essentially a high order deference. This is shown in Lemma 1 of Appendix 

1. S£ tends to be ill-conditioned when k gets large. This means f  >k is more important when k is 

large. If /  >k  , equation (14) can be solved by a least squares method. We find a solution A such 

that

II DA —T II —min (21)

In the case of motion with precession, all the columns of D are generally independent. The 

least squares solution is

A —{Dl D )~XDT (22)

In the case of motion without precession, the column vectors of D are linearly dependent. 

This can be shown by letting a 1 in equation (13) be a non-zero vector parallel to the two-view 

rotation axes. Then the first three columns of D linearly combined by a x is zero vector. To get the 

least squares solution of the coefficient equations (13), the largest set of independent columns of D 

should be found or tolerance-based column pivoting should be made [12]. Theorem 1 solves 

a 2. a 2. • ak • This means the last 3£ —3 columns of D are always independent. In the presence of

noise the columns of D are very unlikely to be exactly linearly dependent even in the case of 

motion without precession.



20

2.4 Continuous Precession and Discrete Two-View Motion

The LCAM model we discussed is based on continuous precessional motion. We must find the 

relationship between continuous precession and two-view motion, before we can estimate the pre

cession parameters of our model based on discrete two-view motions.

As we discussed in Subsection 2.1, a precession can be considered as a rolling cone which rolls 

without slipping upon a fixed cone. The angular frequency at which the symmetrical axis of the 

rolling cone rotates about the fixed cone is constant.

Assuming at time t lt an edge point A ' on the rolling cone touches an edge point A on the fixed 

cone as shown in Fig 4 . After a certain amount of rolling, the touching points become B' on the 

rolling cone and B on the fixed cone. Let 0 be the central angle of points A ' and B ', and 0 be that 

of A and B . Let r  and r ' be the radii of circles O and O ', respectively. The arc length between A

and B is equal to that between A ' and B So 0 r  —9 r ' or 0sina=0sin|3, where a  and $ are generat

ing angles of the fixed cone and the rolling cone respectively. We get

9 _ sina 
0  sin(8 (23)

The precession consists of two rotational components. One is the rotation of the rolling cone 

about its own symmetrical axis. The other is the rotation of the rolling cone about the fixed cone. 

From Fig.4 it can be readily seen that the relative position of the rolling cone and the fixed cone is 

uniquely determined if the touching points of the two cones are determined. Or alternatively, 

starting from the previous position, the new position of the rolling cone is determined if the two., .h .
angles 0  and 9 are determined. So no matter how we order these two rotational components, the 

final positions are identical as long as the angle 0  and 9 are kept unchanged. We can first rotate the 

rolling cone about its axis m and then rotate the rolling cone about l , or vice versa.



21

time t

Fig.4 The relation between rotation angles 9 and 0

We hope to find the equivalent two-view rotation axis of this continuous motion between two 

frames at time 11 and time 12. respectively in Fig.4. If we can find two fixed points which stay in 

the same positions before and after the motion, then the two-view rotation axis must go through 

these points. One trivial fixed point is the apex Q of the cones. Another fixed point can be founded 

as follows: In Fig.5 let the midpoint of arc AB  touch the rolling cone (at time ( i 1+ i2)/2). Extend 

line OB so that it intersects the plane containing Q .O '  and B '  at a point P Extend line OA so 

that it intersects the plane containing Q , O and A at a point P 2. Draw a circle centered at O and 

passing through P j and P 2. Then the midpoint P of arc P jP 2 is a fixed point. This can be seen by 

noting that the rolling cone can also reach its position at next time instant i 2 in an alternative 

manner as follows. First, rotate the rolling cone with slipping about l by angle 0/2, thus rotating 

P to its new position at P and axis m reaches the position shown in Fig.5. Then rotate the rolling 

cone with slipping about its own axis m by angle 9. Point P now reaches position P 2. Finally, 

rotate the rolling cone with slipping about l again by angle 0/2, taking the rolling cone to the posi

tion at time instant t 2. This takes the point P back to its starting position. So the two-view
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rotation axis w found by two-view motion analysis from two image frames, goes through Q and 

P . Notice that the angular frequency, at which the symmetrical axis of the rolling cone rotates 

about the fixed cone is constant. From the way of finding P , it is clear that the two-view rotation 

axis also rotates about l by a constant angle between consecutive frames. So we have the following 

theorem:

THEOREM 3. For a body undergoing the precessional motion of the LCAM model, the two-view 

rotation axis between constant time intervals changes by rotating about the precession vector by a 

constant angle.

Without loss of generality, we assume the time intervals between consecutive image frames 

are of unit length. We define the precession vector to be a unit vector l parallel to the symmetrical 

axis oi the fixed cone, define the precession angular frequence (f> to be the angular frequency at

\

Fig.5 Finding fixed points for two-view rotation
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which the symmetrical axis of rolling cone rotates about precession axis, define the i-th body vector 

m, to be a unit vector parallel to the symmetrical axis of the rolling cone at time t t , and define the 

body rotation angular frequency 9 to be the angular frequency at which the rolling cone rotates 

about its symmetrical axis.

From image sequences we find estimates of two-view motion parameters. They are the i-th 

two-view rotation axis vector, n , , a unit vector parallel to the two-view rotation axis between time 

instants i,_i and t t ; the corresponding i-th rotation angle ^  and i-th translation vector T,. Fig.6 

shows the parameters of continuous motion and discrete two-view motion.

Fig.6 Parameters of continuous precession and discrete two-view motion

Let R (n ,9 )—[r^ ] denote the rotation matrix representing a rotation with axis unit vector 

n —(nx, ny , nz ) and rotation angle 9. i.e. [2] :

i R (n  .9)=
(n x2—l) ( l—cos 9)+ 1 
ny nx (1— cos 9)+nz sin0 
nz nx (1— cos 9)—ny sin0

nx ny (1— cos 9)—nz sin0 nx nz (1— cos 9)+ny sin0 
(n}2~T )(l—<cos 0 )+ l nY nz ( l — cos 9)—n x sin0
nz ny (1 —cos 9)+nx sin# (nz2—1)(1— cos 0)-Fl

(24)

THEOREM 4. The continuous precession parameters and discrete two-view motion parameters are
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R (Z ,<j>)R (mi^ 1.9)=R (n; ,0 ,) (25)

R (m, ,0)7? (Z ,0)=i? (n, .0, ) (26)

Proof. From time to time Z,. the body moves from its previous position to a new position. 

From Fig. 6 the new position of the rolling cone ( or the body ) can be reached in the following 

way! First, the rolling cone rotates about its body vector m(_i by angle 0. Then, the rolling cone 

rotates about the precession vector Z by angle 0. The two-view motion combines these two motions 

into one. which is the rotation about the two-view rotation axis vector n, by angle 0 ,. We get 

equation (25). Similarly if we change the order of these two rotational components we get equation 

(26).

From Theorem 3, the two-view rotation axis rotates about the precession vector. So the pre

cession vector Z is perpendicular to nt —n, _j and nt- 2- The sign of Z is arbitrary. So Z can be 

determined by

II U, — n/_1)x(ni _1—n, _2) II 27

The precession angular frequency 0  can be determined by finding the angle by which n 

rotates about Z to reach n , . The projections of and n, onto a plane that is perpendicular to Z 

are ^¿-i” (n.j_1Z )Z and n, — (n; Z )Z, respectively. The angle between these two projections gives the 

absolute value of 0:

, . _! (rti-r-Otj^-Z )Z ) • U; -(rt; -Z )Z )9  I =cos 1 —-------- t -̂---------- - ,__
II /ij- i—(n.;_1 -Z )Z II II nt — (n, -Z )Z II (28)

The sign of 0  is the same as the sign

(29)

After Z and 0  are found by equations (27), (28) and (29), R (Z ,0) can be calculated by (24). 

R (m, -].^) and R (m, ,0) can be determined by (25) and (26):
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^ (m , _1, 0)=j? *(/ , <f))R (n, , \f/,)

R(mi,e)=R(ni.xf/i)R-Kl.<f>) (31)

(30)

We can determine mi _ i, mt- and 9 by (30) and (31), because n and 9 can be determined from 

R( n. O)  [2]:

So we get the following

THEOREM 5. The precession vector, precession angular frequency, body axes and body rotation 

angular frequency which define the precession part of the LCAM model can all be determined from 

three consecutive two-view motions, or four consecutive image frames.

In addition to these basic parameters which uniquely determine the motion of the model, 

some other parameters can also be determined from these basic parameters. For example, the gen

erating angles a  and ft of the fixed cone and the rolling cone, respectively, in Fig.4 can also be deter

mined from l , <f>, m , , 9 and equation (23).

(32)

 ̂ _  ( r 32 r 2 3 * r 13 r  31* r  21 12^

N ( r  3 2 ~ r 23* r  13 r  31* r  2 l “ r  12^ ^
(33)
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3. ESTIMATION, UNDERSTANDING AND PREDICTION

The LCAM model is applied to subsequences recursively. The parameters of the model 

describe the current local motion. The following questions can be answered. Is there precession? If 

so, what are the precession parameters? What are the current or previous body vectors? What is the 

body rotation angular frequency? What is the probable motion for the next several time intervals? 

What are the probable locations of the feature points at the next several time instants? If the mov

ing object were occluded in some of the previous image frames, what are the motion and the loca

tions of these feature points during that time period?

The number of frames covered by a LCAM model can be made adaptive to the current 

motion. The number can be changed continuously to cover as many frames as possible so long as 

the constant angular momentum assumption is approximately true during the time period to be 

covered. The value of the number of frames chosen can be based on the accuracy with which the 

model describes the current set of consecutive frames. The residuals of least squares solutions and 

the variances of the model parameter samples indicate the accuracy. The noise level also aifects the 

residuals and the variances of parameter samples. However, the noise level is relatively constant or 

can be measured. The resolution of cameras and the viewing angle covering the object generally 

determine the noise level. The noise can be smoothed by determining the best time intervals and the 

number of frames covered by the model, according to the current motion. Because the LCAM 

model is relatively general, the time interval a LCAM model can cover is expected to be relatively 

long in most cases.

The following part deals with the estimation of model parameters using overdetermination.

After finding two-view rotation axis vectors n n 2, —, rif , precession vector l should be 

orthogonal to n 2—n x, n 3—n 2, ", nj —rtf _3. However, because of noise, this may not be true. So we 

find l such that the sum of squares of the projections of l onto n 2—n j ,  n 3—n 2, —, nf —nf _ j  is the

smallest. Let
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A =

(n 2- n  !)r 
(n 3- n 2)r

(nf —n f _!>
(34)

We are to find unit vector l , such that

Al II = min (35)

Or equivalently,

V A 1 Al -  min (36)

The solution l of (36) is the unit eigenvector corresponding to the smallest eigenvalue of 

A 'A  [3].

Let the precession angular frequency determined from (28) and (29) be <j>t . The precession 

angular frequency of the model <f> can be estimated by the mean

J 1 ¿=2
(37)

Let the body rotation angular frequency determined by (31) be 0,. Body rotation angular 

frequency of the model can be estimated by mean

J ¿=1 (38)

Body vectors are estimated by averaging two consecutive two-view motion using (30) and 

(31), respectively.

Two-view angular frequency can also be estimated by mean

j i=i (39)

According to the motion model, the f+ ls t two-view rotation axis vector nj +1 is 

’ ( f  +1 )<p)nt for any 1 ^  i ^  /  . In the presence of noise, we use the weighted sum over all

previous two-view motions to predict the next two-view rotation axis vector:
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(40)
<=i

From (11) the next position of point X f  in frame Ff  is predicted by

X f +i~F (nf  +1. \f/XXf — Qf  )+Qf +1 (41)

where Qf and <2/ +i are determined by (7). The prediction can be made for more than p ^2  frames 

by using the following equations recursively

The variances of samples in the summations of (37). (38) and (39) as well as the residuals in 

(35) and (14) indicate the accuracy of the model for the current set of frames. They also depend on 

the noise level.

If the object was occluded in parts of image sequences, the positions and the orientations of 

the object as well as the locations of the feature points on the object can be recovered by interpola

tion similar to the prediction procedure discussed above. For the motion of the rotation center, 

occlusion just means that some rows in the coefficient equations are missing. The solution can still 

be found if we have enough rows. For the precession part of the motion, the interpolation can be 

made in a way similar to prediction or extrapolation. When making interpolation we use both the 

history and the “future” of the missing part. For prediction, only the "history” is available. 

Furthermore, we can also extrapolate backwards to find history” , i.e., to recall what has not been 

seen before. The essential assumption is that the motion is smooth.

nf +p R U * 0)*1/ +p — l

Xf +p =R (nf +p , ift)(Xf +p-i -Q f +p-i)+Qf +p

(42)

(43)
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4. MONOCULAR VISION

For the monocular case, 3-D positions can be predicted only up to a scale factor. However the 

image coordinates of a point can be predicted without knowing the scale factor.

For simplicity, we assume the model covers four frames. Let (X  ̂ ,Y, ) be the image coordinates 

of a 3-D point Pt —(x ;, y t , z,- )f , at time instant i ; i =0, 1, 2, 3. Without loss of generality, assume 

that the focal length of the camera is unity. The image coordinates and 3-D coordinates are related

by

(44)

Let P and P-t be the corresponding points at time t t_x and t , , respectively. From (11) we have.

A -t + r ,  (45)

where R, —i.rjy 0, T, = (Ax,- ,Ay, ,Az-, )r . Let T, =(Ax, ,Ay,- ,Az t y —T, /  Il T, II. In the monocular case, R, 

snd T\ can be determined from image frames and Ft . The range z,-_j is given by [17] r

Ax,- - X, Az,-
Z" ‘ X, ~rii %-i+r & %  _ ,+r Ü » M r j j %  _ ,+r E_,+ r Jp)

_  || j  || i
Xi (r ü  >X,-i+r ty, _j+r & > M r  >X, _ ,+r >Y, _ ,+ r }$> )

= 11 T> 11 A i (46) 

where A-, are function of X,_lt . Y j ^ ,  Rt and T, .

z i ~ r  i i - i + r  &  V;  - i + r  Ü  )z, _ !+ A z ,-

=2,_1(r3(i )X,_1+r3^)r ,_ 1+ r 3̂ ) +A z-JA,)  (47)

~z> -3 n  (r  ii  ]Xj -i+r ii }Yj _!+r 3y } +Az; M,- )
j  =i -2

where G, is function of X,_3"-X, ^<-3"’L; • Ri-2 '"Ri • Ti- 2--Tl . It can be determined from F^_3 to

F, . So



x i z i Xj —zt _3 G, Xj

y-i ~ zi Y , - z l _3Gz Y, (48)

z i  z i —3 G i

From equations (48) it is clear that the 3-D coordinates of a point in image frame F, can be 

determined up to a scale factor z,_3. This is also true for points in F i_3-.F ,_1. From (45), all 

translation vector Tk can be determined up to a scale factor z,_3. From (13) all coefficient vectors 

can be determined up to the same scale factor z,_3. So the rotation center can be predicted up to the 

same scale factor. There is no ambiguity about predicted rotation. Finally, from (44), in the 

predicted image coordinates, this unknown scale factor is canceled out. In other words, we can

assume z, _3 to be any arbitrary non-zero number, in particular. 1. to predict the image coordinates 

of points.

One point should be mentioned here. In the binocular case the set of corresponding points may 

be different for different consecutive image frame pairs. This means that the point set used in point 

correspondences in some images are allowed to be invisible in other images. The same is still true 

for the monocular case. In (47), we are tracing the same point all the way back to Ft^ .  This is 

only for simplicity. If we choose a point Pc whose range is c. Applying this point to (46) and let- 

ting z, _! to be c. Equations (47) mean the length of translation II Tt II is proportional to c. Using 

image coordinates to rewrite (45), we have

Xi * ,-i
Yi Z/ - R , Y i - 1
1 1

The above equation means the ranges (z, and Z;_j) of other points are proportional to the 

length of translation vector HZ’, II which is proportional to c. So, the range of the other points can 

communicate the constant c to other image frames to determine the ranges of the points in those 

frames as zi_l does in equations (47).
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5. SIMULATIONS

Two simulation experiments to test the analysis were performed on a VAX 11/780. In the 

first case the image data were computer generated. In the second case, binocular image sequences of 

a model airplane undergoing a smooth motion were recorded using video cameras.

In the first experiment, a sequence of 3-D coordinates of points on a moving cube were gen

erated by a program. The motion of the rotation center is characterized by coefficient vectors a, in 

(7). By Theorem 3, the rotation of the body is about the two-view rotation axis n by angle 9 

between consecutive frames. The two-view rotation axis rotates about a fixed precession vector l 

by angle <f>. The object is assumed to be a transparent cube of side length 10cm. Simulated cameras 

are 100cm away from the object. The viewing lines from the two cameras to the object form an 

angle of 45°. The cube covered about half of the image. The feature points used for point 

correspondences are the vertices of the cube. As the object is undergoing motion, these points gen

erate a sequence of 3-D coordinates. These 3-D coordinates are digitized by simulated cameras of 

resolution from 64 by 64 up to 512 by 512. Because of digitization errors, the set of points no 

longer satisfy the rigid body constraint. To find the best two-view motion parameters, a least 

squares solution is obtained [7].

In the experiments presented, the following motion parameters are used. Precession vector: 

Z=(0, 0, l ) f ; Precession angular frequency: 0=0.4; Two-view rotation axis of first two-view

motion: n 1=-^L_-(1, 0, 4 ) '. Coefficient vectors: a i= (-2 , — 3, -1 ) ' . a 2=(0.5. 0.5, 0.25)' .

a 3=(5~3- 5“3> 2.5~3) ' . The results given are the mean values from 20 trials, each of which randomly 

chooses the original orientation of the cube.

Fig.7 describes the estimation errors of l and <f>. The errors of l are defined as the length of 

the difference of the estimated and the real unit vectors. The errors approach zero very fast as the 

number of two-view motions /  increases. Based on the estimated model parameters, the predic

tions of the 3-D coordinates of each point at the next several time instants are made. The predicted
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and the actual digitized positions are compared. Their distances are considered as prediction errors. 

The relative errors are defined as the prediction errors divided by the length of the diagonal of the 

cube. The results of predicting more frames are presented in Fig.8. Fig.9 shows the mean relative 

prediction errors at time 1 5 as a function of image resolution. Fig.9 indicates also the errors as the 

function of the number of point correspondences. Fig. 10 shows the mean relative prediction errors 

as function of image resolution and the number of two-view motions covered. Fig.11 gives the 

mean relative prediction errors as the function of the number of point correspondences and the 

number of two-view motions covered.

Data for the second experiments were taken from a model airplane. The setup of the real cam

eras is the same as that in the simulation experiment discussed above. Without translation, the 

model airplane rotates about a vertical line by about 15° per frame. Simultaneously it also rotates 

about its head-tail central line by about 8° per frame as shown in Fig.12. The feature points used 

for point correspondences are at the tip of the wings. The feature points and their correspondences 

are determined manually. The number of point correspondences is 4. Starting from the fourth 

frame, the prediction is made for the 3-D coordinates of the feature points at the next time instant. 

The relative maximum prediction errors are shown in Fig. 12. The relative errors are defined by the 

error divided by the maximum distance between feature points. The camera resolution is 512 by 

512. Comparing with the synthetic data case, the additional error source is lens distortion. The 

relative errors in this experiment are close to the synthetic data case.
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Fig.7 Errors of l  ( precession vector ) and (f> ( precession angular angular frequency ) 
as function of number of two-view motions covered

number of point correspondences : 3 
frame predicted : next 

image resolution : 256 by 256
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i

Fig.8 Maximum relative prediction errors (%) as function of 
number of two-view motions covered and number of frames predicted (p).

frame predicted : next p-th frame 
number of point correspondences : 3 

image resolution : 512 by 512 
degree of polynomial k-1 in equation (7): 2
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Fig.9 Mean relative prediction errors (%) as function of 
image resolution (n by n) and number of point correspondences (npts)

frame predicted: next frame
number of two-view motions covered: 5 

degree of polynomial k-1 in equation (7): 2
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Fig.10 Mean relative prediction errors ( % )  as function of 
image resolution (n by n) and number of two-view motions covered (mt)

frame predicted: next frame 
number of point correspondences: 3 

degree of polynomial k-1 in equation (7): 2
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Fig.11 Mean relative prediction errors (%) as function of 
number of point correspondences (npts) and number of two-view motions covered

frame predicted: next frame 
image resolution: 128 by 128 

degree of polynomial k-1 in equation (7): 3
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2.65%

1.30%

2.32%

3.97%

2.92%

Fig. 12 Image Sequence of a model 
airplane

left column: left view; right
column: right view. (From the 
fifth frame, the maximum relative 
prediction errors are shown to the 
left of the corresponding frame 
pairs.)
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6. SUMMARY

We have described an approach to modeling and estimating general 3-D motion of an object 

from image sequences. The dynamics of the moving object is modeled by two components. First, 

the rotation of the object is assumed to be a precession which can be modeled by such motion: the 

rotation about a fixed-on-body axis that rotates about a spatially fixed axis. One of the conditions 

of object dynamics leading to such motion is that the object under motion is symmetric and its 

angular momentum is constant. Second, the object is assumed to undergo a smooth translational 

motion. In particular, we assume that the location of the rotation center of the object can be 

represented by a vector polynomial in time. The motion of any points on the object can be 

expressed by the superposition of these two components. The problem of modeling motion then 

amounts to estimating the parameters of precession with respect to the rotation center, and the 

parameters of translation of the rotation center. This estimation can be performed from either point 

correspondences or optical flow over a sequence of image frames. We use the former to discuss. 

Using the technique of two-view motion analysis, estimates of two-view rotational and transla

tional parameters can be derived. To reduce the sensitivity to noise, least squares estimates are 

obtained from multiple features in two-view motion analysis. Based on the parameters of two- 

view motion, the parameters of LCAM model are estimated so as to understand the local motion 

and predict the future motion. Again, least squares method is used for model parameter estimation 

from multiple image frames to combat noise.

We have presented a linear algorithm that implements our approach. The experiments have 

been performed on image sequences obtained from simulated as well as actual moving objects. To 

test the accuracy of the model, the predictions of the locations of object points were obtained and 

the errors between the predicted and actual locations were measured. The errors of estimated model 

parameters have been presented for different numbers of image frames. The prediction errors have 

been shown for different image resolutions, different numbers of object points, different numbers of 

image frames covered, and different numbers of frames predicted.
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APPENDIX 1.

THEOREM 1. Let f=k. Define S / to be a 3 by 3 matrix :

Sd -  -i- \'"Rj+\I }  =0. 1 .2 . —, k
1=0

Define number utj :

ui) = ¿ ( - 1  j - i  +1. i +  2, - . i t
AW =1

Then

V « , = - Z s (' r (
/ =i

= 7 ^ j r ( + stV ,)

a< - 1=XF=27T( +^°-2a i+ “* -2 1 °t )

“ 1 * “3
~2~ —3)!  ̂ ^  ~3a -3 i -3 I- - la/t - l)

_ j  2
a 3= -^j-( Z  + S 2°a i+ w2i- a* + u 2k _ia| _XH— hu2 4u 4)

w =i 

i
a 2=~n-( Z  5 lX , + 5 1 a ! + u l t  ak +u l k _xak _l+ - + u  Y 3a 3)

m= 1

1 o prove Theorem 1. we first prove some lemmas.

LEMMA 1. Define

— L ^ y  ( i -/ +i •••^;+2/  Sk —1
i =o

Then.

40
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s , ° - K i - V = s A i

Proof.

/ =0 / =0 L

= ( £ > * * « • •  ^ 2 - R i / + Z ( - i y ( ^ w + i  - • / ? 2 i ? 1 / - i 1 ( - i y ( * ) i j i W  • • • / ? , / - < - i ) * ( * ) y
/=i /=o L *

=<-k n X)Ri + i  / ? 2 ^ 1 /  +  t ( - i y ( > t - , + 1  -  , /
/ =1 1

+ Z (-i)'" +i ■■ * i/ +(-i y +k£ t ! >/
/?? =1 T  X

Using (^)+(^ ^ ). (A .l) becomes

( *  o + •  -  * 7 + ±  c - 1  y  c *  + 1 ) * ,  w + i  -  « 2«  i  /  + ( - i  y  + 1 ( ^ } ) /

= z ’( - D ' ( * f 1)^ tw+1 - ^ 2 ^ , /
/ =o

= c °
A t +1

LEMMA 2.

s r ‘-sy=s/+1

Proof.

s/ "-v= v-, = Z +1(-1  y (;)^ +, - R;+,/- z '(-i)' -< - R j ^ i
1=0 1=0 L

=(k0)Rt + l - R J+li +  £  ( ~ i y  (k )Rt + l  ■■■ R j +li  + ~£,(-i)m(m k_ l )Rt -m+1

Using ( ^ ) + ( ^ |) = ( ^  (A.2) becomes

J 1) ^  +1 -  +1/  + Z V l ) ^  +1-/ -  Rj +l/
/=1

(A .l)

□

(A.2)
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= z ' ( - i  )*t _(+1 -  r j +1i
l =o

= ^ +1

LEMMA 3. Let k ^ 2 , 1 ^ k  —1. Then

¿ ( - 1 ) * - ;  ym(*.)=0
j =i 7

£ ( -l )* - ' j k (*.)=*!
j =i 7

Proof. From the binomial equation

(l+ x  ) '= £ ( * ) * '
j =0 7

By differentiating both sides, then multiplying by x, we have

(1 +x )*-1/:x = £ ; (^.)xj 
j =i 7

Differentiating both sides and then multiplying by x again, we get

(1 +x )* - 2U  (* -1  )x 2+k (1 +x )x )= £  j  2(k )x j
j =i 7

Generally, doing this m times. 1 . we get

D

(1+* y  [* (* -1  )•••(* -m +1 )xm +(l+x )/>(x )]= 2  j ' "  (k ) x J
j =i

(A.3)

(A.4)

where /*(x:) is an (m 1) th degree polynomial. This can be readily proved by induction on m . Let 

x ~ 1. For 1 ^ m  —1, (A.4) gives

o= z  r(*-x—iv = z  c-D‘ r  (k )
J =  i 7 j =1 7

Let m —k . (A.4) gives
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*!(-i)* = £ (-i y  j m(k )
i =1 1

Multiplying both sides by (-1)* . Lemma 3 is proved.

LEMMA 4. From equation (14). let D =[<y ].

dtj
Define

Then
dij 1 )*-%

L s j d j  l +l=k \i
7 =1

h s / d ) t+ l=ku
j =1

+1

□

Proof. We need only prove the first equation. The difference between the first equation and the 

second one is that the subscripts of rotation matrices R, are all incremented by 1 in the second 

equation.

L ^ d j  , +1
j =i

j =i

*Bt . ) k S i - ' Z ( j - l Y s i R ]7 =1 7 =2
= Z7tV-Z1mtSf+1J?m+17 =1 /» =1

* i -i x- -¿_-i ,
= Z 7* V- Z 7* Z7=1 7=1 /=0 " ̂ 7 +2̂y +1

= Z 7* v - z V  [ ' f t - 1  y ••7=1 7=1 / =0 7̂ +2̂7 +1̂ ‘

=k* j  + 22 y  5 / -  £  y  s /+  £  c—iy  y  (*.)/
7=1  7=1  7=1 1



44

= ( - D ‘ * ' (* )+ z 'c - i y  -> /  (*.)/
y =1 J

= £ ( - 1 ) * " '  ( -̂)7
y=i J -  -

By Lemma 3 the above equation is equal to k \1

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We first prove

■S«0a i = - Z
j  =1

by induction on k .

Let k =1.

S,° =*,-/
-  Z sir, =-s i‘t  ,=-/r ,=-r,

j  =1

Equation

sia,=-Zsir,
y = l

means (Z? i~ /  )a i= —TV This is Z)A =T when k «1. So, the equation (A.5) is true when k =1.

Assume (A.5) is true up to k . Let D be k +1 by k +1 matrix (whose elements are : 

matrices ). From first k equations of DA = T . we have

d n a ¡+d 12a 2+ - + d  u  ak ~ T x- d  x k +lak +1 

d 21a x+d  22a 2+ - + d  2k ak - T 2- d  2 k +lak +1

dk \a i +dk 2a 2+--+dkk ak =Tk - d k k +1ak +1

□

(A.5)

by 3

By induction hypothesis, we have
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From (7), let

¡= i

(2 (i ) o. i+ û 2i + •" +<z* i k +1i k 

Consider another polynomial P(i  ) with 11 as initial starting time. i.e.

P{i )= P ( i+ l)

Q (i )=(2 \+a2i + ”■ +ak i k ~l+ak +1i k

We have

¿i+ a2i + a3i 2+ ••• +ak +li k 

—a 2+a 2(i + l)+ a  3(i +1)2+ ••• +a; +1(i +1)*

From (A.7), (A.8) and (A.9), the coefficient of variable i should be equal. We have

a 1= a 1+ a 2+ ••• +a*+1. <**+i=a* +1

(A.6)

(A.7)

(A.8) 

(A.9)

(A .10)

For the Polynomial in (A.9). we get the coefficient equations :

DA = f

where

D ~[dtj ]* X(k +1) 

l/  (i 1V kRi+i K i

A =(a j. — , ak y

T = iT 2' r k+1y

The equation DA = f  can be derived directly from DA - T . The difference of DA -  f  from DA =T 

is that the unknowns have hat. and other subscriptions are incremented. Using the induction 

hypothesis on DA - T . we have
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^k  ̂i Z  (Tj +1 dj +1 k +làk +1) (A.ll)
; =i

From (A.IO) and thè first equations in (13), we get

a x=a j+a 2+ — +ak +1=R ka 1+7’ 1

So.

We get

R ia x—a X—T 2

Sk°R ia ^ S t\ a  1- T 1)=St°a Sk°T x

From (A .10) and (A .ll) . (A.13) becomes

£  1<Z 1—  22 +i+ Z  s id j  k +1ak +!-Sk T l
j =i j =i

—  Z  5 A y  + i+  Z  * + ia k +1
y = o j =1

From Lemma 4, we have

From (A.6), we get

(A.12)

(A.13)

(A.14)

k̂ a i Z  S/F; + Z  Sf[dj k +lak +1
j =1 y=1

By Lemma 4. we have

V a i = - Z S / r ; + * !a i+1
y =1

Using Lemma 1. (A. 14) and (A.15), we get

SL̂ la x={StaR l- S it’) a l

=St Ri12 i V °  ì

(A.15)
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= - t ^ T J+i+ Z S ^ T j
j =0 j =1
it +1 A / _  ,  *

=“ Z ^  Tt + Z s j T j
1=1 7=1

j =1 
X' +1

A- +1

= - Z S ^ i T j
J =1

(A.16)

So, equation (A.5) is true for & +1, Thus, (A.5) is proved for all £ ^ 1 .

Then let us prove the rest of the equations. Let 2 ^ i  ^ k — 1. Considering the first i equations 

in (13), we move a, +i. ••• ,â  to the right side. Using (A.5) to solving a j, we get

S'°a 1=~ Z ~  Z dmj aj ) = -  Z -  Z ( Z Sindmj )<2j (A.17)
7 = i + l  m =1 7  = 1 + 1  nt =1

Evaluate the term

£  = £  S/"(m* -*/ - (m  - 1  y  ~ 'R m )
»? =1 rn =1

¿-1
= L mJ ~ls r -  Z -i v - x  +* ' -1/

»» =1 m—2
i ~ 1 i —rn . j j —m

= Z m7_1 Z (-lHp-R.w - ̂ m+i/- Z (m-iy-1 Z(~iy(5)i?iw ••• i?w+i^/+^~1/
"» =1 /=0 /?) =2 /=()
' — 1 i —m —1 .= !> '-' £  (-iyc‘)/fiW -i?m+1/-Z(v-i)i-i £ (-iydxRiW •• •
/»=1 / =0 v =2 / =o 6

+ Z  1 ) /+ i^ ~ 1/. i —mm =1

/-1

m =1

=[ Z (—i)'~/n̂ i-'~1(̂ -)]/
m  =1  7

=W/77

So, (A. 17) becomes
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Or,

By Lemma 3,

m =1

k
-  L  ua ° j

j  =i +1

u i i +ia i +1— ( 52 S [ "T m + S i ° a !+  £  u tj a } )
m =1 j  =i +2

¿i ¡+i=i!. So we have

a i  + i = T T (  E  SrT'» + S ‘ ° a  1+ £  U U  a J  >• m =1 j  =, +2
(A.18)

Letting i — k 1 , k  —2, — ,2 ,1 ,  we get the equations in Theorem 1.

□
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APPENDIX 2

THEOREM 2. In the case of rotation without precession, let w be any vector parallel to the rota

tion axes. Then,

Sk°w=0 (A.19)

and for any vector a

(Sk°a ) • w =0 (A.20)

Proof. We prove (A.20). The proof of equation (A.19) is very similar. We are to prove another 

equation at the same time: Under the same condition, for any vector b the following equation holds

{Sk b ) • w =0 (A.21)

We use induction on k.

Let k =1. (S i°a ) • w = ( ( /— R x)a ) • w =(a —R Ya ) • w . R l is rotation matrix with rotation axis 

w . So the difference of the original vector a and the rotated vector R xa is orthogonal to the rota

tion axis, i.e., (a — R jcz ) • w =0. Similarly (5^6 ) • w =0.

Assuming (Sk°a ) ■ w =0 (Sk°b ) • w =0 for k > n . Let From Lemma 1,

Sn°+ ia =Sn R iS n°. We have

w ~(Sn°R id —s n°a ) • w =(Sn°R xa ) ■ w ~(S„°a ) • w =0+0=0  

Similarly (A.21) holds for k =n +1.

□
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APPENDIX 3

Let /?! and R 2 be rotation matrices with rotation axes n y and n 2, rotation angle 9X and 02, 

respectively. R 2R X—2R x+7 is nonsingular if and only if n y * n 2 and 0 ^ 0 ,  O2̂ 0 .

Proof. Let R 2R {-2 R  j+7 - A  . A is nonsingular if and only if there exist three vectors U0. V0. W0 

such that AU 0. A V 0 A W 0 are independent. Notice that

AU 0=(R 2R iU 0—R yU0)—(R XU 0—U 0)

Let R \Uq~U i, R 2R \U 0=U2. i.e.: U y is a vector rotated by R x from U0. U 2 is a vector rotated 

from U j by rotation matrix R 2. Let S 1 be the plane perpendicular to n j. S 2 be the plane perpendic

ular to n 2. The two planes intersect each other at an angle <f> as shown in Fig.13. Construct a Carte

sian coordinate system as shown in Fig.13.

Fig.13 Two rotation planes and coordinate systems
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The X-axis lies in the intersection line of Sj with S 2. The Z-axis is in the same direction as n S* 

then lies in X-Y plane. Let

i?1f /0=(l,0 .0)r . i?1V0=(0 ,l,0 )r . R XW 0=(0.0.1)'

Fig.14 Vectors rotated from U 0

As shown in Fig.14, the vector U x-U 0 lies in the X-Y plane. The angle from V X- U 0 to the 

Y-axis is — . The length of U¡—U 0 is 2sin — . Similarly, in plane S 2. let Y’ be the axis correspond

ing to projection of Y axis on to the plane S 2. U2—(J i—R 2U i —U i lies in S 2. The angle from Y’ axis

Q
to U2- U x is 02/2. The length of U 2- U  x is 2 s in J i. Let the italics X ,Y ,Y ' be unit vectors on the 

coordinate axes. We have

U i —U 0—2sin2—i-X +2sin— cos— Y 
2 2 2

0 0, 0,
U 2~U i~ —2sin2—-X  +2sin— cos— Y '

(A.22) 

(A.23)

Similarly we have
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01 01U i~U o— 2sin — cos—- X  +2sin2— Y 
^ 2 2

6? 9o 0~
v 2~ v  i=-2cos0 sin— cos—-X -2 co s0  sin2— Y '

2 2 2

AV  0=( V 2—V i)—(V 1—V 0)

W j-W 0=0

0 0 A
W£'2- W !=—2sin0 sin—icos^ -X  -2sin0  sin2_ i y '

A W 0=(W 2- W l)-(.W l-  

Using (A.22)-(A.29) we have

AU  o 
AV0 
AW0

=—2

—-2 M
X
Y
Y '

• 2®1 j. ■ 2sinz — +sim —  2 2
. 0ism— cos- 2

02 02 0i 0i • 2 0i sin —n — cos— —sin— cos—2 2 2 2 2
e, 9,

sin0 sin— cos— 0

2 -sin 0:02 w2
—  C O S — - 
2 2

cos <f> 

sin <f>

sm,2 0 2

sin2^2

X
Y
Y '

I M I =sin0

flisin2 — +sin2 02
T

. 01 01sin— cos— 
2 2

! i
2

02 02 . 01 01— COS — - sin—-cos sin2-2 2 2 2
. 02 02sin-—COS 02 T

. 02 02—sin— cos—  
2 2

j ? 02

sin^ 02

Multiplying the third row by cos0 and adding the result to the second row. we get

0 0
I M  I =2sin0 sin2— sin2 —  

2 2

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

Assume 0 ^ 9 l <2rr. O^02<27t.

If M  is singular, 0=0 or 0X=O or 02=O.

If 0 ^ 0 , 0 j ^ 0, 02^O, X  , Y , and Y ‘ are independent. So A is not singular.
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