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AbstractÐAn adaptive image segmentation scheme is proposed employing the

Delaunay triangulation for image splitting. The tessellation grid of the Delaunay

triangulation is adapted to the semantics of the image data by combining region

and edge information. To achieve robustness against imaging conditions (e.g.,

shading, shadows, illumination, and highlights), photometric invariant similarity

measures, and edge computation is proposed. Experimental results on synthetic

and real images show that the segmentation method is robust to edge orientation,

partially weak object boundaries, and noisy, but homogeneous regions.

Furthermore, the method is robust to a large degree to varying imaging conditions.

Index TermsÐImage segmentation, adaptive splitting, integrating region and

edge information, photometric color invariance, noise robustness.
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1 INTRODUCTION

IN this paper, image segmentation is considered as the process of
partitioning an image into constituent regions of the same surface
albedo, i.e., independent of the imaging conditions (e.g., shading,
shadows, illumination, and highlights). In the past, to achieve
robustness against varying imaging conditions, segmentation
methods have been proposed that account for the process of
image formation as represented by the contributions collected by
Wolff et al. [1]. One of the first methods based on physics
considerations is Klinker et al. [2] based on the dichromatic
reflection model proposed by Shafer [3]. Bajscy et al. [4] developed
a similar image segmentation method using the H ÿ S color space
instead of the RGB-color space. Healey [5] proposed a method to
segment images on the basis of normalized color.

The above described methods are based on two basic properties
of pixels in relation to their local neighborhood: Discontinuity or
similarity. However, segmentation based only on discontinuity often
fails when a portion of the edge has a small value difference or when
regions are homogeneous but very noisy. Further, segmentation
based only on similarity allows for reliable computation of region
statistics but often fails to localize region outlines accurately. To this
end, segmentation methods have been proposed to combine region
and boundary information [6], [7], [8]. Tabb and Ahuja [6] proposes
a method of multiscale image segmentation. Chakraborty and
Duncan [7] use a game-theoretic approach to integrate information
for the segmentation of MRI images. Wu [8] proposes a segmenta-
tion method in which splitting of a nonuniform region is performed
along the strongest edge in it. However, these segmentation
methods do not account for the process of image formation.
Consequently, intensity edges or region outlines may appear in
the scene without an albedo transition to support them.

Therefore, in this paper, an adaptive image segmentation
scheme is proposed which is robust against varying imaging
conditions. The segmentation scheme is based on the Delaunay
triangulation for image splitting. The novelty of the paper is that

the tessellation grid of the Delaunay triangulation is adapted to the
structure of the image data by combining photometric invariant
region and edge information. To this end, new computational
models are proposed to obtain photometric invariant similarity
measures and edges.

The paper is organized as follows: The adaptive image
segmentation scheme is introduced in Section 2. Image segmenta-
tion on gray-value and color images is proposed, respectively, in
Sections 3 and 4. Experimental results are given in Sections 5 and 6.

2 ADAPTIVE IMAGE SEGMENTATION

Although for neighborhood referencing the quad-tree is simple to
implement and computationally efficient, its major drawback is
that the segmentation process is unable to adapt the quadtree
tessellation grid to arbitrary shaped region outlines. Therefore, in
this paper, we consider the Delaunay triangulation as the
geometric datastructure for image segmentation. The Delaunay
triangulation maximizes the minimum angle, minimizes the
maximum circumscribing circle, and minimizes the maximum
smallest enclosing circle for each triangle [9]. Therefore, the
Delaunay triangulation of a set of points tends to generate
regularly shaped triangles and is preferred over alternative
triangulations for image segmentation [10], [11].

The adaptive image segmentation method is proposed as
follows:

Initialization. Let Dj denote the incremental Delaunay trian-
gulation after j insertions of points in R2. Let dji be the ith triangle
of the jth triangulation. Further, consider the function g : R2 ! R
defining an image surface g�x; y�. gji�x; y� is a compact area of g
which is bounded by the vertices of triangle dji . Because it is
assumed that the image data points are limited to a rectangular
image domain, the image segmentation method starts with the
construction of the initial triangulation D0 consisting of two
triangles d0

i for i � 1; 2 whose vertices are the corners of g.
Splitting. After the construction of D0, the algorithm succes-

sively examines triangles dji by computing the similarity predicate
H��. The similarity predicate is defined on gji denoting the
underlying image data of triangle dji . If the similarity predicate is
false, edge pixels in gji are classified topographically based on their
local neighborhood by the difference function D��. Then, the
splitting function S�� assigns a transition error to every edge point.
The goal to adapt the image tessellation grid properly to the
underlying structure of the image data. As a consequence, the edge
point with the lowest transition error is taken and entered into Dj
to generate the next triangulation Dj�1. The splitting phase
continues until all triangles satisfy H��.

Merging. Let Ri be a point set in R2 forming the ith polygon
with corresponding ri � R2 which is a compact area of the plane
by merging triangular areas of the final Delaunay triangulation
�DN �. In fact, ri � gN1 [ gN2 [ . . . gNn , where all n triangular image
regions are adjacent. The merging phase starts with the triangula-
tion produced by the splitting phase Ri � dNi for all i. Function H��
provides the criterion by which two adjacent polygons are merged
into one.

The algorithm is determined by functions H�� (HI�� for
intensity images and HC for color images), D�� (i.e., DI�� and
DC��) and S��. They are discussed in Section 3 for gray-value
images and in Section 4 for color images.

3 GRAY-VALUE IMAGES

In this section, we focus on gray-value images. The goal is to get to
image segmentation robust to varying imaging conditions. There-
fore, a fitting model is proposed which approximates shading and
illumination characteristics. The assumption is that the image data
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exhibits surface coherence within object regions meaning that the

image data can be interpreted as a (noisy) piecewise-smooth

surface function. Hence, our model is not suited to textured

surfaces.

3.1 Similarity Predicate HI��
We consider the similarity predicate of a region to be true if all

image pixels in the region can be modeled by an approximating

(fitting) function. We follow the assumption that (simple) shading

characteristics can be approximated, to a large extent, by low-order

bivariate polynomial functions [12]. In this way, uniformly colored

regions are approximated by planar, quadric, or cubic surfaces

making the segmentation scheme more robust against the imaging

conditions. Consequently, we concentrate on bivariate polynomials

up to order m � 3 mathematically specified as:

fm�x; y� �
X

i�j�m
aijx

iyj;m � 3: �1�

A least-square solver calculates vector ~a and mean fitting error for

an arbitrarily shaped image region T defined as:

Hm�T � �

�����������������������������������������������������
X

x;y2T

�g�x; y� ÿ fm�x; y��2
N

;

vuut �2�

where g�x; y� is the image surface and N is the total number of

surface interior pixels of T contributing to the sum.
If the mean noise standard deviation � in T is estimated,

Hm�T � can be compared to this. If the noise is additive,

stationary, and has zero mean, an estimate of � is obtained by

a local least-square linear fit to an approximately constant

image patch (e.g., 5x5 mask), where edge pixels are discarded

from contributing to the sum. Then, the functional homogeneity

predicate defined over image region T , to return a Boolean

value, is as follows:

HI�T � � true; if Hm�T � � �
false; otherwise:

�
�3�

3.2 Difference Function DI��
When the homogeneity predicate HI�gji�, defined over a region

given by the vertices of dji , is false, the image data in gji deviates

from the fitting function and should be broken at surface salient

points into two or more regions. Surface salient points are defined

to be on locations where the image data exhibit significant changes

of pixel values causing dji to be heterogeneous. To classify pixels in

gji by their topographic characterization, the output of the

difference function DI�� is an edge type image t�x; y� : R2 ! R
consisting of:

Edges. Edges are found by differentiating the image region

domain. Canny's edge detector is used to compute edges.
Corners. Corners are defined on locations where the image

surface g exhibits high values of isophote. We use the corner

detector of [13] which employs Gaussian-based fuzzy derivatives.

3.3 Splitting Function S��
For each edge point in tji , a transition error is computed. The

transition error expresses the mean fitting error induced by the

next triangulation Dj�1. Let p̂l 2 R2 be the location �x; y� of an edge

pixel in tji�x; y� � l, where l denotes the edge type (i.e., edges or

corners). Triangles dji of Dj, for which the circumcircle contains p̂l,

form a region Rr in the plane which is called the influence region of

p̂l. Edges not shared by any two of the triangles in Rr compose the

influence polygon of p̂l in Dj and is denoted by Rp. Then, we have the

following [9]:

1. The insertion of a new vertex in Dj modifies triangle dji in
Dj if and only if dji is in Rr.

2. Let Dj�1 be the Delaunay triangulation obtained from Dj
by the insertion of p̂l. Dj�1 is obtained from Dj by deleting
all edges and triangles that are internal to Rp and by
connecting all vertices of Rp to p̂l.

Let the newly created triangles of Dj�1 within Rp be denoted by

dj�1
i0 . We want the fitting errors over all triangles dj�1 2 Dj�1 to be

small. Therefore, the transition error is defined as follows:

�p̂lt � jjgj�1
i0 ÿ fi0 jjdj�1

i0
; �4�

where dj�1
i0 are the newly created triangles of Dj�1 obtained by the

insertion of p̂l in Dj, and fi0 is the approximating function

evaluated over gj�1
i0 which is the image surface bounded by

vertices of dj�1
i0 . In other words, �p̂lt is the fitting error of Dj�1

computed over the newly defined triangles. To minimize the fitting

error, for location p̂l for each edge point in tji�x; y�, transition error

�p̂lt is computed and p̂l yielding lowest transition error

�min � min
p̂l
�p̂lt �5�

is taken to generate Dj�1. This is done by erasing from Dj all

triangles dji whose circumcircle contains p̂l. Then, for each triangle-

edge which is not shared by any two of the erased triangles, a new

triangle is created with p̂l and added into Dj to obtain Dj�1.

3.4 Merging Function M��
The merging stage consists of the following steps at each iteration.

First, the largest triangular region Ri � maxRk2DN ��Rk�, where �

denotes the triangle size, is selected as a seed for growing. Let Rj,

j � 1; ::;M be a neighboring polygon of seed Ri. The functional

homogeneity predicate H�Ri

S
Rj� (i.e., merge score) is computed.

If H�Ri

S
Rj� is below the mean noise standard deviation � (i.e.,

merge threshold), Rj is merged with the seed. The merging

continues with this newly merged region Ri

S
Rj as seed until all

merge-scores of neighbor triangles are larger than the merge

threshold. Then, the next largest unmerged triangle is taken as a

new seed to grow for the next iteration. This process continues

until there are no unmerged triangles left.

4 COLOR IMAGES

In this section, we focus on color images. First, in Section 4.1,

photometric color invariance is briefly reviewed. Then, in

Section 4.2, the similarity function is given. In Section 4.3, color

invariant edges are proposed.

4.1 Color Invariance

To provide robustness against imaging conditions (e.g., illumina-

tion, shading, highlights, and interreflections), photometric color

invariants have been introduced [14], [15], [16]. For example,

effective illumination-independent color ratio's have been pro-

posed by Funt and Finlayson [14] and Nayar and Bolle [16].

Further, for the dichromatic reflection model, Gevers and

Smeulders [15] showed that normalized color rgb (c1c2c3) is to a

large extent invariant to a change in camera viewpoint, object pose,

and for the direction and intensity of the incident light. In addition,

the hue color space H (l1l2l3) is insensitive to highlights under the

restriction of white illumination or a white-balanced camera.
In this paper, we focus on:

c1�R;G;B� � arctan
R

G

� �
; �6�
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c2�R;G;B� � arctan
R

B

� �
; �7�

c3�R;G;B� � arctan
G

B

� �
; �8�

where R, G, and B are the red, green, and blue channels of a color

camera. c1c2c3 is insensitive to a large extent to a change in camera

viewpoint, object pose, and for the direction and intensity of the

incident light [15]. Further, when shadows correspond to a change

in intensity, which is often the case, then c1c2c3 is also insensitive to

shadows. When shadows are strongly colored, then c1c2c3 is not

shadow-invariant.
Further, we focus on:

l1�R;G;B� �
jRÿGj

jRÿGj � jBÿRj � jGÿ Bj ; �9�

l2�R;G;B� �
jRÿBj

jRÿGj � jBÿRj � jGÿ Bj ; �10�

l3�R;G;B� �
jGÿBj

jRÿGj � jBÿ Rj � jGÿBj �11�

also insensitive to highlights under the restriction of white

illumination or a white-balanced camera [15].

4.2 Similarity Predicate HC��
We define region R to be homogeneous when the observed color

invariant values of the region can be approximated in the color

invariant space by a Gaussian distribution with mean and

standard deviation due to noise. If the standard deviation is below

a predefined threshold, regionR is considered to be homogeneous.

Again, the mean noise standard deviation �̂ in the image is

estimated by applying a least-squares fit to a uniformly colored

region (e.g., derived from a 5x5 mask). A more detailed study on

noise and instability of color invariants is given by Gevers [17].

Then, the similarity predicate HC��, returning a Boolean value, is

given by:

HC�R� � true; if � � �̂
false; otherwise;

�
�12�

where region R is considered to be homogeneous if the color

invariant values of R form a Gaussian distribution, which falls

within the limit of the noise standard deviation.

4.3 Difference Measure DC��
In this section, the principled way is taken to compute gradients in

vector images as described by di Zenzo [18] and further used in

[19], which is summarized as follows.
Let ��x1; x2� : <2 ! <m be a m-band image with components

�i�x1; x2� : <2 ! < for i � 1; 2; . . . ;m. For color images, we have

m � 3. Hence, at a given image location the image value is a vector

in <m. The difference at two nearby points P � �x0
1; x

0
2� and Q �

�x1
1; x

1
2� is given by 4� � ��P � ÿ��Q�. Considering an infinitesi-

mal displacement, the difference becomes the differential

d� �
X2

i�1

@�

@xi
dxi

and its squared norm is given by:

d�2 �
X2

i�1

X2

k�1

@�

@xi

@�

@xk
dxidxk � dx1

dx2

� �T
g11 g12

g21 g22

� �
dx1

dx2

� �
; �13�

where gik :� @�
@xi
� @�
@xk

and the extrema of the quadratic form are

obtained in the direction of the eigenvectors of the matrix �gik�
and the values at these locations correspond with the

eigenvalues given by:

�� �
g11 � g22 �

��������������������������������������
�g11 ÿ g22�2 � 4g2

12

q

2
�14�

with corresponding eigenvectors given by �cos ��; sin ���, where

�� � 1
2 arctan 2g12

g11ÿg22
and �ÿ � �� � �

2 . Hence, the direction of the

minimal and maximal changes at a given image location is

expressed by the eigenvectors �ÿ and �� respectively, and the

corresponding magnitude is given by the eigenvalues �ÿ and ��
respectively. Note that �ÿ may be different than zero and that the

strength of an multivalued edge should be expressed by how ��
compares to �ÿ, for example by subtraction �� ÿ �ÿ as proposed

by [19].
Then, the color gradient for RGB is as follows:

rCRGB �
����������������������������
�RGB� ÿ �RGBÿ

q
�15�

for

�� �
gRGB11 � gRGB22 �

��������������������������������������������������������
�gRGB11 ÿ gRGB22 �2 � 4�gRGB12 �2

q

2

gRGB11 � @R

@x

����
����
2

� @G

@x

����
����
2

� @B

@x

����
����
2

gRGB22 � @R

@y

����
����
2

� @G

@y

����
����
2

� @B

@y

����
����
2

gRGB12 � @R
@x

@R

@y
� @G
@x

@G

@y
� @B
@x

@B

@y
;

where the partial derivatives are computed through Gaussian

smoothed derivatives.
Further, we propose that the color invariant gradient (based on

c1c2c3) for matte objects is given by:

rCc1c2c3
�

������������������������������
�c1c2c3
� ÿ �c1c2c3ÿ

q
�16�

for

�� �
gc1c2c3

11 � gc1c2c3

22 �
������������������������������������������������������������
�gc1c2c3

11 ÿ gc1c2c3

22 �2 � 4�gc1c2c3

12 �2
q

2
;

where

gc1c2c3

11 � @c1

@x

����
����
2

� @c2

@x

����
����
2

� @c3

@x

����
����
2

;

gc1c2c3

22 � @c1

@y

����
����
2

� @c2

@y

����
����
2

� @c3

@y

����
����
2

;

gc1c2c3

12 � @c1

@x

@c1

@y
� @c2

@x

@c2

@y
� @c3

@x

@c3

@y
:

Similarly, we propose that the color invariant gradient (based

on l1l2l3) for shiny objects is given by:

rCl1l2l3 �
���������������������������
�l1l2 l3� ÿ �l1l2l3ÿ

q
�17�
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for

�� �
gl1l2l311 � gl1l2l322 �

��������������������������������������������������������
�gl1l2 l311 ÿ gl1l2l322 �2 � 4�gl1l2l312 �2

q

2
;

where

gl1l2l311 � @l1
@x

����
����
2

� @l2
@x

����
����
2

� @l3
@x

����
����
2

;

gl1l2l322 � @l1
@y

����
����
2

� @l2
@y

����
����
2

� @l3
@y

����
����
2

;

gl1l2l312 � @l1
@x

@l1
@y
� @l2
@x

@l2
@y
� @l3
@x

@l3
@y

:

5 EXPERIMENTS ON GRAY-VALUE IMAGES

In Section 5.1, we focus on the sensitivity of the method to various
object edge orientations and positions. Further, the segmentation
method is tested on a real image with respect to shading and
illumination variations. Finally, in Section 5.2, robustness of the
method is tested with respect to partially weak object edges and
noisy homogeneous regions.

5.1 Sensitivity to Edge Orientations and Positions

A polynomial image has been synthesized, see Fig. 1a. The size of
the image is 128x128 with 256 gray levels. The image consists of a
background of quadratically varying brightness and randomly
placed geometric shapes with different constant brightness
including a variety of circles and polygons. To simulate ramp
edges obtained by a camera, Gaussian smoothing with �g � 1:0 has
been performed on the image. In Fig. 1b, the result is shown of the
splitting phase. The method is effective in the correct adjustment of
the tessellation grid to low-level image statistics where vertices of
the tessellation grid neatly correspond to topographically most
promising edge pixels. In Fig. 1c, the image segmentation result is
presented. Although the test image consists of varying background
brightness and objects with different boundary orientations and
positions, the method yields a geometrically good and topologi-
cally sound image segmentation result. The number of split
operations was 110 resulting in a run time of 1.6 seconds on a
Ultra 10 Sparc station.

Further, we illustrate the segmentation method for a real image,

see Fig. 2a. The image consists of three objects on a background.

Objects consist of plastic material and painted wood. The objects

are painted homogeneously. Note that, in this paper, image

segmentation is considered as the process of partitioning an image

into constituent regions of the same surface albedo. Therefore, our

method is not suited to textured surfaces. Objects were recorded

with the aid of a SONY XC-003P camera. The digitization was done

in 8 bits. Two light sources of average day-light color were used to

illuminate the objects in the scene. The size of the image was

256x256 with 256 gray levels. The order of the polynomial

approximating criterion was set to m � 3. Hence, we considered

the case where the shading and illumination variations can be

approximated by a polynomial function up to order 3. The

measured mean noise standard deviation is � � 3:84 and used

for the surface fitting process defined by HI��.
In Fig. 2b, the splitting result is superimposed on the original

image. As one can see, proper conformation is established between

tessellation grid and low-level image characteristics, where grid

vertices correspond to corners placing grid edges along region

borders. The method is efficient where the number of split

operations is 85 yielding a run time of 0:9 seconds.

5.2 Robustness to Noise

Two basic sets of synthetic images are generated to simulate objects

of different shapes and sizes [20]. The size of the images are 128x128

with 256 gray values. The first set of images is composed of centered

squares of different sizes s. The object value is vo � 144 and the

background value is vb � 112. Images have been created for

s 2 f60; 40; 30; 12g, where the area of the rectangular objects varies

approximately from 20 percent of the image area, through

10 percent, 5 percent down to 1 percent. The second set consists of

centered circular discs with different radii r with object value vo on

the middle of a homogeneous background vb. Images of discs of

radii r 2 f32; 22; 16; 7g are generated to obtain disc objects with areas

from approximately 20 percent, 10 percent, and 5 percent to 1 percent

of the image area. Again, to simulate ramp edges obtained by a

camera, Gaussian smoothing with �g � 1:0 has been performed on

the images.
The effect of noise is produced by adding independent zero-

mean additive Gaussian noise with � � �n to the images. The

Signal-to Noise Ratio (SNR) is defined as:

SNR � vo ÿ vb
�n

� �2

: �18�

We use SNR 2 f100; 64; 16; 4; 2; 1g in the experiments.
To quantify the geometric precision of the segmentation

method, an error measure E is defined. Let X be the image raster

and a a binary image containing the ºtrueº shape A defined by

A � f~x 2 X : a�~x� � 1g. Further, let b be a binary image, called the

segmented image, containing the image segmentation result

B � f~x 2 X : b�~x� � 1g. Evaluation measure E compares B with

A to return a numerical measure of discrepancy. Let d�~x;A� denote

the shortest distance from pixel ~x 2 X to A � X, then Pratt's figure

of merit FOM [20], is defined as follows:
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Fig. 1. (a) Synthetic image composed of randomly placed geometric shapes on a

background of quadratically varying intensity. (b) Splitting result superimposed on

the image. (c) Final result of the segmentation method.

Fig. 2. (a) Real image consisting of three homogeneously colored objects on a

homogeneously painted background. (b) The splitting result superimposed on the

image. (c) The final segmentation result.



EPRATT �A;B� �
1

max � ���A�; ��B��
X

~x2B

1

1� �d�~x;A�2

 !
; �19�

where � is usually set to 1=9 and we will follow suit. We prefer to
use EFOM�A;B� � 1ÿ EPRATT �A;B� for the ease of graphical
illustration.

For each SNR level, we have generated N � 10 images. In other
words, independent Gaussian noise has been added separately at
level SNR 2 f100; 64; 16; 4; 2; 1g, for each noise-free image 10 times.
Then, after segmentation, for each of the 60 realizations, EFOM is
computed over the largest region and the average value over N �
10 is taken as the final result. In Figs. 3 and 4, accuracy graphs are
shown for respectively rectangles and circles of different sizes for
the SNR values. First, we concentrate on the quality of the
segmentation results with respect to different SNR levels. For
SNR < 4, results show a rapid decrease in the performance of the
method with respect to the noise. For SNR > 16, the results get
close to 0 (for rectangles) or to a constant value (for circles), an
artifact caused by the ill-defined representation of the object's
boundary on the rectangular grid. In conclusion, the method gives
good results up to considerable amounts of noise �SNR � 2�,
where object boundaries are on average within two pixels from the
reference boundary, even for the smallest object. Second, attention
is focused on the performance of the method for objects of different
sizes in response to noise. Obviously, the method performs better
on images containing larger objects. Finally, the performance of the
method is studied for objects of different shapes with respect to the
noise. The shape and slope of the curves for rectangles and circles
do not differ significantly except for the error introduced by the ill-
defined representation of the circular image objects on the
rectangular grid. Apart from this bias, the performance of the
method is approximately the same for the two different geometric
shapes.

6 EXPERIMENTS ON COLOR IMAGES

Fig. 6a is an image of several objects against a background

consisting of four squares. The size of the image is 256x256. The

image has been recorded by the SONY XC-003P and the Matrox

Magic Color frame grabber. The digitization was done in 8 bits per

color. Two light sources of average day-light color are used to

illuminate the objects in the scene. The image is clearly

contaminated by shadows, shading, highlights, and inter-reflec-

tions. Inter-reflections occur when an object receives the reflected

light from other objects. In Fig. 5a, edges are shown obtained from

the RGB image with nonmaximum suppression with �g � 1:0 used

for the Gaussian-based fuzzy derivatives. Clearly, edges are

introduced by abrupt surface orientations, shadows, inter-reflec-

tions and highlights. In contrast, computed edges for c1c2c3 and

l1l2l3 defined by rCc1c2c3
and rCl1l2l3 , respectively, shown in Fig. 5b

and 5c, are insensitive for shadows, surface orientation changes,

and highlights (only for rCl1l2l3 ).
To avoid edge grouping, to obtain proper region outlines with

closed contours, the l1l2l3 edge map is used as the input of the

region-based segmentation method. Again, in Fig. 6a, the recorded

color image is shown. The mean noise standard deviation is

estimated by applying a least-squares fit to a uniformly colored

region (5x5 mask). The measured mean noise standard deviation is

�̂ � 3:1 and used as the threshold for the similarity predicate HC��.
The splitting result is shown in Fig. 6b. The final segmentation

result is shown in Fig. 6c. Despite the various radio-metrical and

geometrical variations caused by the imaging process, region

outlines correspond neatly to material boundaries.

7 CONCLUSION

In this paper, an adaptive image segmentation method has been

proposed based on Delaunay subdivision. The method is robust to

various object edge orientations and positions, a favorable
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Fig. 4. The average value of EFOM differentiated for circles corresponding to

20 percent, 10 percent, 5 percent, and 1 percent of the image size against the

Fig. 5. Edge maps of the various color models computed from the first recorded
color image shown in Fig. 6a. (a) Edge map based on RGB gradient field rCRGB
with nonmaximum suppression. (b) Edge map based on c1c2c3 gradient field
rCc1c2c3

with nonmaximum suppression. (c) Edge map based on l1l2l3 gradient
field rCl1 l2 l3 with nonmaximum suppression.

Fig. 6. (a) First recorded color image. (b) Splitting result based on Delaunay
splitting. (c) The final segmentation result of the region-based segmentation
method.

Fig. 3. The average value of EFOM differentiated for rectangles corresponding to

20 percent, 10 percent, 5 percent, and 1 percent of the image size against

the SNR.



property over quadtree-based split and merge strategies. Further,
the method gave robust results even with considerable amounts of
noise. Experiments on real images indicates that the method yields
geometrically good and topologically sound image segmentation
results robust to the varying imaging conditions. The segmentation
method is restricted to white illumination or a white-balanced
camera.
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