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Robust Factorization

Henrik Aanes, Rune Fisker,
Kalle Astrém, Member, IEEE Computer Society, and Jens Michael Carstensen

Abstract—Factorization algorithms for recovering structure and motion from an image stream have many advantages, but they usually
require a set of well-tracked features. Such a set is in generally not available in practical applications. There is thus a need for making
factorization algorithms deal effectively with errors in the tracked features. We propose a new and computationally efficient algorithm for
applying an arbitrary error function in the factorization scheme. This algorithm enables the use of robust statistical techniques and arbitrary
noise models for the individual features. These techniques and models enable the factorization scheme to deal effectively with
mismatched features, missing features, and noise on the individual features. The proposed approach further includes a new method for
Euclidean reconstruction that significantly improves convergence of the factorization algorithms. The proposed algorithm has been
implemented as a modification of the Christy-Horaud factorization scheme, which yields a perspective reconstruction. Based on this
implementation, a considerable increase in error tolerance is demonstrated on real and synthetic data. The proposed scheme can,

however, be applied to most other factorization algorithms.

Index Terms—Robust statistics, feature tracking, perspective reconstruction, Euclidean reconstruction, structure from motion.

1 INTRODUCTION

HE reconstruction of structure and motion of a rigid object

from animage stream is one of the most studied problems
within computer vision. A popular way of addressing this
problem is to extract and track features through the image
sequence and then limit the problem to estimating the
structure and motion of these tracked features. A family of
effective and popular algorithms for solving this estimation
problem are the so-called factorization algorithms, see, e.g.,
(6], [71, [16], [171], [18], [20], [22], [28].

These factorization algorithms work by linearizing the
camera observation model and give good results rapidly and
without an initial guess for the solution. Hence, the factoriza-
tion algorithms are good candidates for solving the structure
and motion problem, either as a full solution or as an
initialization to other algorithms such as bundle adjustment,
see, e.g., [25], [30].

The factorization algorithms assume that the correspon-
dence or feature tracking problem has been solved. The
correspondence problem is, however, one of the most
difficult fundamental problems within computer vision. No
perfectand truly general solution has yet been presented. For
most practical purposes, one must deal with erroneously
tracked features as input to the factorization algorithm. This
fact poses a considerable challenge to factorization algo-
rithms, since they implicitly assume independent identically
distributed Gaussian noise on the 2D features (the 2-norm is
used as error function on the 2D features). This noise
assumption based on the 2-norm is known to perform rather
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poorly in the presence of outliers induced by such erroneous
data. These errors typically arise from mismatching 2D
features or from a 2D feature being absent due to occlusion. It
is common for badly tracked features to disturb the
estimation of structure and motion considerably.

Previous attempts have been made at addressing this
problem. Irani and Anandan [16] assume that the noise is
separable in a 3D feature point contribution and a frame
contribution. In other words, if a 3D feature point has a
relatively high uncertainty in one frame, it is assumed that it
has a similar high uncertainty in all other frames. However,
large differences in the variance of the individual 2D feature
points is critical to the implementation of robust statistical
techniques that can deal with feature point noise, missing
features, and feature mismatch in single frames. Morris and
Kanade [20] propose a bilinear minimization method as an
improvement on top of a standard factorization. The bilinear
minimization incorporates directional uncertainty models in
the solution. However, the method does not implement
robust statistical techniques. Tomasi and Kanade [28] and
Jacobs [17] address the problem of missing data points by the
use of heuristics. Attempts at solving similar linear problems,
in the presence of missing and erroneous data, have also been
made, e.g., [24].

Here, we propose a combined approach that deal effec-
tively with missing features and is robust towards errors in
the matching of the 2D features in a factorization framework.
This is achieved by allowing for an arbitrary noise model on
the 2D features—i.e., we are not restricted to a Gaussian
model. Hereby, the proposed approach is capable of dealing
effectively with mismatched features or outliers by the use of
robust statistics. Arbitrary noise models also deal with
missing 2D features by emulating them as being located
arbitrarily in the image with very high noise variance.

The proposed approach is implemented as an improve-
ment to the factorization algorithm of Christy and Horaud [6].
The Christy-Horaud algorithm has the advantage that it
assumes a perspective camera model as opposed to a
linearized version, e.g., [28]. The Christy-Horaud algorithm

0162-8828/02/$17.00 © 2002 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 10:24:08 EST from IEEE Xplore. Restrictions apply.



1216

with the proposed approach incorporated deals efficiently
with real and simulated data containing large feature errors.

The presentation is organized by giving an overview of the
factorization algorithms in Section 2 followed by a discussion
of how to deal with erroneous data in Section 3. In Section 4, a
new numerical algorithm for estimating the optimal subspace
of a matrix with weighted entries is proposed. In Sections 5
and 6, schemes improving the robustness of the factorization
approach are presented, followed by experimental results in
Section 7.

2 FACTORIZATION OVERVIEW

As a courtesy to the reader and to introduce notation, a short
overview of the factorization algorithm is presented. For a
more thorough introduction, the reader is referred to [5]. All
the factorization methods cited utilize some linearization of
the pinhole camera with known intrinsic parameters:

Tij aé LL;: P.
sij|yij | = | b, T [ 1]} (1)
1 ct t;

(3

where the 3D feature, P}, is projected in frame i as (z;j, yi;),
t; = [t7,1!,t:)" is the appropriate translation vector and a’,
b!, and c! are the three rows vectors of the rotation matrix.
The used/approximated observation model can thus be

written as:

] e, 2
Yij
where M, is the 2 x 3 “linearized motion” matrix associated
with frame 1.

When n features have been tracked in k frames, i € [1...k]
and j € [1...n], the observations from (2) can be combined to:

S = MP, (3)

where M is a 2k x 3 matrix composed of the M; and P is a
3 x n matrix composed of the P;. Thus, the elements of S
are given by:

i1 0 Tin

S — Tkl Tkn

yin o Yin
LYkt Ykn |

The solution to this linearized problem is then found as
the M and P that minimize:

N =S - MP, (4)

where N is the residual between the model, MP, and the data,
S. The residuals, N, are usually minimized using the
Frobenius norm. This is equivalent to minimizing the squared
Euclidean norm of the reprojection error, ie., the error
between the measured 2D features and the corresponding
reprojected 3D feature. Thus, the objective function is:

i — MP||% = mi _ MP.|I?
g 1S — MPIlr =i D _[18; - MPil, )
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Linearized Solution
to Structure and Motion

If Not
Stop

Modify Data to Approx.
Perspective Camera

Fig. 1. Overview of the Christy-Horaud factorization algorithm. A
linearized—e.g., paraperspective-solution—is iterated into a perspective.

where S; and P; denote the jth column of S and P,
respectively. In this case, the solution to M and P can be
found through the singular value decomposition, SVD, of S.
It is noted that, for any invertible 3 x 3 matrix, A:

MP = MAA'P = MP. (6)

Hence, the solution is only defined up to an affine
transformation. In [6], Euclidean reconstruction is achieved
by estimation of an A such that the rotation matrices,
[a; b; cl-]T, are as orthonormal as possible. Further details
and an improved approach are presented in Section 6.

2.1 Christy-Horaud Factorization

The factorization algorithm that the proposed method
extends on is that of Christy and Horaud [6], see Fig. 1. The
Christy-Horaud algorithm is an extension to the work in [22],
[28] partly by incorporating the work of [8]. The algorithm has
the advantage of iteratively achieving a solution to the
original nonlinearized problem, thus achieving perspective
reconstruction. This is achieved by iteratively solving a
linearized version of the problem and then modifying the
data to approach the perspective camera. The update formula
for the data, i.e., S or x;;, y;; is [6]:

2] = ([#5] [ ]\ e, g
o (R )
where (Z;;, §;;) is the updated data, (z,,, ys,) is the object origin
projected onto frame 4, and ¢;; is the scaled depth defined as:

(®)

Ei]' =

For further details, the reader is referred to [5], [6].

3 DEALING WITH IMPERFECT DATA

3.1 Types of Errors

A framework for dealing with imperfect data should be
geared toward the types of errors expected. Three types of
errors have beenidentified, the first two originating from [31].

e Bad Feature Locations. The locations of a 2D feature is
distorted. If this distortion is anisotropic and/or the
covariance structure varies, the Frobenius norm is
suboptimal. Thisis the problem addressed in [16], [20].

e False Matches. There has been a mismatch of 2D
features, i.e.,, two 2D feature originating from
different 3D features have been matched as originat-
ing from the same 3D feature.
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e Missing Feature. The projection of a 3D feature can
not be found or matched, e.g., due to occlusion or
simply by “breakdown” of the feature matching
algorithm. This is addressed in [17], [28].

Our proposed method deals with all these types of errors
by attaching an uncertainty to the individual 2D features. It
is implemented by associating a weighting structure to S.
This mainly effects the solution of (5), but, in the case of
Christy-Horaud, it also effects the object frame origin (see
Section 5). When weights are introduced, (5) becomes:

. n 9
g > IV,(S, - MP) (9)
Jj=

where V; is a 2k x 2k weighting matrix representing the
weights of the jth column of S. The minimization of (9) is
the subject of Section 4. The VJTVJ- is seen to be the inverse
covariance structure of S; and (9) is equivalent to minimiz-
ing the Mahalanobis distance. The variance, 3, of the noise
on §; is incorporated by:
-1 T
2 =VIV; (10)
An approach with this uncertainty formulation is seen to
deal with the three types of identified errors:

e Bad Feature Locations. Assuming Gaussian noise, the
weights can be constructed to incorporate the un-
certainty structure of the 2D features as shown above.
This approach can even deal with arbitrary Gaussian
noise. With the presented formulation of the weights-
one V; matrix per column-covariance between the
and y coordinates can be expressed. An extension to
general covariance between all features would require
a 3D tensor formulation of the weights.

o False Matches. A mismatched 2D feature can be
down weighted, even approaching zero, leaving it
out of the optimization to any desired extent.

e MissingFeatures. Thisis equivalent to predicting that
the missing 2D feature is located somewhere in the
image, but that the uncertainty of the prediction is
very high.

The information of missing features should be apparent
from the feature matching algorithm and should be directly
expressed in ¥;. If prior knowledge about the distribution of
bad featurelocation is present, this can alsobe expressed in 3.
However, this not a requirement. False Matches are almost by
nature unknown a priori so robust statistical techniques are
employed to deal with these errors. Note that, in the absence of
prior knowledge, the 3, is initialized as the identity matrix.

3.2 Adaptive Weighting

As described in [14], [29], and [31], among others, false
matches give rise to outliers in the data. Here, outliers are
understood as 2D features, where the residual, i.e., the
distance between the original 2D feature and it’s reprojected
counterpart, is large. If the percentage of false matches is
relatively low (considerably lower than 50 percent), false
matches canbe dealt with effectively by diminishing the effect
of outliers. In practice, this is done via a robust error function.
Popular robust functions are the truncated quadratic and
Huber M-estimator (sometimes called Huber Norm), see
Fig. 2. For a detailed discussion, the reader is referred to [2].
The use of robust error functions efficiently deals with the
problem of false matches.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 10:24:08 EST from IEEE Xplore. Restrictions apply.
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Fig. 2. Three popular error functions with k=3 for the truncated
quadratic and the Huber M-estimator.

These error functions are implemented via Iteratively
Reweighted Least Squares (IRLS). IRLS works by iteratively
fitting the model to the data by minimizing the weighted
least squares of the residuals. These weights are then
altered such that the residuals are reweighted according to
the desired error function and not the 2-norm. In this
approach, the weights, w;;, from the IRLS are collected in:

(11)

Wnk

and incorporated by letting:
VIV, =WIW,

In case of a Gaussian prior on the 2D features with covariance
¥;, the Vj; are given by:

VIV, =W/sj'W,

As an example, the reweighting formula for the truncated
quadratic is:

INijlly,, <k

INylls, > k. (12)

1

Wij = { \/k:z

v

where N;; is the residual on datum ij, w;; is the

corresponding weight, and k is a user-defined constant

relating to the image noise. Here, |||z, ~denotes the

Mahalanobis distance induced by ;. If no prfor is available,

the 2-norm is used. The parameter k is an indication of the

general image noise in the image. For a detailed discussion

of how to choose k, refer to [13]. It is noted that the

experimental results (see Fig. 20) show that the proposed
method is rather robust toward the choice of k.

It is also noted that almost arbitrary error functions can be

implemented via the IRLS approach. This allows an arbitrary
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Christy—Horaud Factorization
with Weights

Project 3D Structurc
On Estimated Camcra
Positions

If Not Stop

Calculate Residuals and
Reweight

Fig. 3. Overview of the proposed reweighting scheme. This is employed
to deal effectively with false matches.

noise model on the bad feature locations by enabling the
implementation of the induced error function. The scheme
for combining IRLS with the weighted factorization is
illustrated in Fig. 3.

4 SEPARATION WITH WEIGHTS

The main computational problem in the proposed approachis
to determine a solution to the weighted least squares problem
(9). The solution to (9)is M and P given S and V ;. Note thatan
SVD cannotbe applied as for (5). Tosolve (9), amethod similar
to theideain the Christy-Horaud factorization algorithm [6] is
proposed. This method is generally known as surrogate
modeling, see, e.g., [3]. Surrogate modeling works by
applying a computationally “simpler” model to iteratively
approximate the original “hard” problem.

The best known example of surrogate modeling is
probably the Newton optimization method. Here, a second
order polynomial is approximated to the objective function
in each iteration and a temporary optimum is achieved.
This temporary optimum is then used to make a new
second order approximation and, thus, a new temporary
optimum. This is continued until convergence is achieved.

Here, (5) is used to iteratively approximate (9), getting a
temporary optimum, which in turn can be used to make anew
approximation. The approximation is performed by modify-
ing the original data, S, such that the solution to (5) with the
modified data, S, is the same as (9) with the original data. By
letting”denote modified data, the goal is to obtain:

O 2
Iﬁ}};; IV5(8); = MP))]l; =

n

: T~ T def

1121}31 El Nj Vj V;N; =
j=

n
i S; — MP|;
lj{;}g;\l j = MPj[;,
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ape
B

Modify Data

(244
P;

Fig. 4. A geometric illustration of how the data is modified in Steps 3 and
4 of the proposed algorithm for separation with weights.

where N = [N;N,,] denotes the residuals:
N, =S, - MP;.

Hereby, the subspace, M, can be found via SVD and P
via the normal equations once M is known. Let ¢ denote the
iteration number, then the algorithm goes as follows:

1. Initialize. S =S, ¢=1.

2. Estimate Model. Get M? by the singular vectors
corresponding to the three largest singular values of
S9!, via SVD. Get P? from:

—1
i PI=[MUIVIV;MY| MV s

bhad

Calculate Residuals. N7 =S — M¢? . P4,
4. Modify Data.

v; :NY=V;N!
S = MP? + N

5. If Not Stop. ¢ = ¢+ 1, go to 2. The stop criteria is:
|INY — N9t < tolerance.

Asillustrated in Fig. 4 the data, S, is modified such that the
Frobenius norm of the modified residuals, Ng, are equal to the
norm of the original residuals, NY, in the norm induced by the
weights, V. The last part of Step 2 ensures that the residual,
Nj, is orthogonal to M in the induced norm since MP¥ is the

projection of S; onto MY in the induced norm.

4.1 Separation Performance with Given Weights
A quasi-Newton method could also be used to solve (9).
One of the most effective quasi-Newton methods is the
Broyden [4], Fletcher [10], Goldfarb [11], and Shanno [23]
method (BFGS). However, this is not recommended since
the proposed method is faster and more reliable partly
because with a “standard” optimization method, the
problem is very likely to become ill-conditioned due to
the potentially large differences in weights.

To illustrate this, the proposed method and the BFGS
were tested against each other, see Table 1. The S matrix
was formed by (3) with noise added from a compound
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TABLE 1
Computational Time Comparison of the Proposed Algorithm
with MatLab’s BFGS (fmunu()),—Denotes that the Optimization
Did Not Converge Due to Ill-Conditioning

S Noise | Proposed  BFGS Flop

k xn | Level | Method Ratio
20x40 | 0.02 | 1.20e+07 2.32e+08 | 19.33
20x40 | 0.10 | 1.58e+07 5.81e+08 | 36.73
20x40 | 0.50 | 5.50e+07 4.22e+08 | 7.67
40x40 | 0.02 | 7.20e+07 1.99e+09 | 27.58
40x40 | 0.10 | 1.15e+08 3.64e+09 | 31.73
40x40 | 0.50 | 3.59e+08 - -
80x40 | 0.02 | 5.17e+08 1.78e+10 | 34.41
80x40 | 0.10 | 8.00e+08 7.08e+10 | 88.52
80x40 | 0.50 | 2.30e+09 8.74e+10 | 37.93

The computational time is measured in Flops.

Gaussian distribution. The compound distribution con-
sisted of two Gaussian distributions, one with a standard
deviation 10 times larger than the other. The fraction of the
larger varying Gaussian is the Noise Level. It is seen that the
proposed method performs better than BFGS and that the
BFGS approach did not converge for S =40 x40 and
Noise Level = 0.5, due to ill-conditioning.

A formal proof of convergence seems to be infeasible.
However, this is a common problem for most numerical
optimization schemes. The convergence has been followed
closely during the tests of the algorithm. These empirical
results show that the convergence has been very good.

A thorough investigation of the numerical properties of
the algorithm is presented in [21]. Here, the proposed
method for separation is also compared to other alternatives
besides BFGS with favorable results. Among these are the
types of algorithms where M is estimated given P and vice
versa in an iterative manner, like the one presented in [24].

5 THE OBJECT FRAME ORIGIN

In order to achieve robust factorization, the calculation
scheme of the object frame origin, (z,,, ¥, ), applied in the
Christy-Horaud algorithm needed to be improved. The
object frame origin is the point around which the camera
model is linearized and errors here will propagate to the
rest of the estimation. Making the estimation origin robust
is essential to dealing efficiently with erroneous data. In the
Christy-Horaud algorithm, the 2D features corresponding
to an arbitrary 3D feature are chosen. This scheme is error
prone, with erroneously tracked features, e.g., if the chosen
feature corresponds to a false feature match.

A natural alternative, would be to iteratively calculate
the center of mass from the estimated structure and
reproject it onto the estimated camera positions. This
however turns out to be unstable.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 10:24:08 EST from IEEE Xplore. Restrictions apply.
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Christy—Horaud Factorization
with Weights

Project 3D Structure
On Estimated Camera
Positions

If Not Stop

Calculate Residuals and
Reweight

Re-estimate Object Frame
Origin

Fig. 5. Overview of the proposed approach. This approach also deals
with estimating the object frame origin robustly.

We still choose to use the center of mass, but calculated
from the 2D features and the reprojected 3D features in a
similar manner as (7). Combining 2D features and the
reprojected 3D features allows us to diminish the influence
of the 2D features with high uncertainty, while stabilizing
the estimation with the reliable 2D features. The formula for
the object frame origin of frame i is given by:

T
o Th| e
T yz;}
|: ' :| = n s (14)
Yo, n+ ijleij

where ¢;; is defined in (8) and (Z;;, ;) is a weighted mean
between the 2D feature and the reprojected 3D feature

defined by.
Tij | — o 10| g — oy | B
{gi,j] %J|:yij:| T %")[@u}

Here, ~;; denotes the weight. This weighted mean ensures
robustness toward outliers since outliers are partly replaced
by the estimate of the model. If V]TV]- is diagonal, then the
weight v;; is given by: '

(15)

Vij = %arctan(a(wj = %)) + %, (16)
where v;; is the ith diagonal element of V;. The “cutoff”
value k' serves the same function as k in the truncated
quadratic and the Huber M-estimator. It is seen that (16) is a
smooth version of the step function around §, where o
controls how smooth this approximation is.

If V]TVj is not diagonal, then its principal components are
used. So, instead of v;;, the eigenvalues of V]TV‘,,- and a linear
combination of (z;;, y;;), are used in (14) and (15). This linear
combination corresponds to the eigenvectors of VJTV‘,-. With
this modification to the approach, the final flow chart is see in
Fig. 5.
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Fig. 6. A sample frame from the Hotel sequence with 197 tracked
features some of these are mismatched.

6 EucLIDEAN RECONSTRUCTION

The objective of Euclidean reconstruction is to estimate A in
(6) such that the estimated a;, b;, and c¢; of (1) are as
orthonormal as possible. In the paraperspective case [22],
which is the linearization used by Christy and Horaud [6], the
M;s composing M are given by:

1lal —z -c-] [I-T}
M, =— i 0iCi | _ i,
t7 |:b1T ~ YoiCi JzT

where (., y,i) is the object origin projected in frame 3.

Since the paraperspective approximation is obtained by
linearizing Lcf - Pj, the orthonormal constraints are re-
stricted to a; and b;. With Q = AAT these constraints can be
formulated as [6], [22]:

Vi aQa; =b]Qb; =
QL  J7QJ: _
L+ag 1+yy

l‘mtym:(IjTQIi) _ xoiyoi(J;QJi) -
2(1 +a3) 201 +42)

With noise, this cannot be achieved for all 7 and a least
squares solution is sought. In order to avoid the trivial null-
solution, the constraint alTQal = blTle =1 is added [6],
[22] and the problem is linear in the elements of Q.

Unfortunately it is impossible to reconstruct A if Q has
negative eigenvalues. This problem indicates that an
unmodeled distortion has overwhelmed the third singular
value of S [22]. This is a fundamental problem when the
factorization method is used on erroneous data.

To solve this problem, we propose to parameterize Q as:

Vi 0

vi 1'QJ; —

A00
Q(e,)) =R(e) | 0230 [R(e)",
00 A

(17)

where R(e) is a rotation matrix with the three Euler angles,
denoted by e. The term al Qa; = b] Qb; = 1 is replaced by
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IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO.9, SEPTEMBER 2002

Fig. 7. A section of the Hotel sequence illustrating where feature 64 is
mismatched. The correct position of feature 64 is at the end of the
residual vector (bottom left of the image).

Fig. 8. A section of the Hotel sequence where feature 64 is not
erroneous. Notice how little effect the false match error has with the
proposed method.

det(A) =1 such that the overall scale of A is much more
robust and less sensitive to noise in a particular frame.

Hence, the estimation of Q is a nonlinear optimization
problem in six variables, with a guaranteed symmetric
positive definite Q. Our experience shows that this
approach to the problem is well-behaved with a quasi-
Newton optimization method.

7 EXPERIMENTAL RESULTS

In order to illustrate the proposed algorithms ability to deal
with the errors identified, it has been applied to a set of real
images. To provide amore systematic test, it was then applied
to a set of simulated data, where arbitrary errors could be
induced.

7.1 Real Data

The proposed approach was run on three sequences,
demonstrating different properties. The first sequence was
thehotel sequence [19] with accompanying features, see Fig. 6.
Some of these features were mismatched. To illustrate the
handling of mismatched features, notice the different position
of feature 64 in Fig. 7 and Fig. 8. The lines in the images denote
the residual between the tracked 2D features and the back-
projected 3D estimates. The correct position of a feature is
determined by the location with the greatest support.

The proposed approach with the truncated quadratic
error function was applied to the hotel sequence (k =3,
K =2, o = 20). The result is shown in Fig. 7 and Fig. 8. Two
things should be noted here. First, the mismatched feature
64 does not effect the estimate of the other features. Second,
the back-projections of the 3D estimate of feature 64 are
located correctly in all images (including seven where the
2D feature itself is mismatched).
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TABLE 2
Comparison of the 95 Percent Smallest Residuals

s 1
Error Function: + 2% | Res|;

Truncated Qudratic (robust) | 1.94 pizels?

2—Norm (non—robust) 3.40 pizels®

It is noted that, without subpixel feature location, this number is highly
unlikely to be lower than 1.

Fig. 9. Same section and frame as Fig. 8., but with the Christy-Horaud
method. Notice the increased effect of the errors.

Iteration

Fig. 10. Weight evolution for feature 64 plotted as a function of frame
and iteration

Comparing with the Christy-Horaud approach, Fig. 9, it
is seen that the mismatch error in Fig. 7 effects the overall
estimation of feature 64’s 3D position. To give a more
quantitative evaluation, the residuals of the nonerroneous
features were summed up—it is assumed that there were no
more than 5 percent errors. It is seen from Table 2 that, due
to the capability if implementing a robust error function, the
fit to the nonerroneous data is improved significantly.

To illustrate the reweighting process, the evolution of the
weights off the mismatched feature 64 is depicted in Fig. 10.
After the firstiteration, all the 2D features are down weighted
since only an erroneous 3D estimate exists due to the
mismatch features and the uniform weighting. In the
following iterations, the correctly located features obtains
increasing weights, whereas the weights of the mismatch
feature decrease toward zero. The plot directly shows how the
proposed method can be used to detect mismatched features.
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Fig. 11. A sample image from the kitchen sequence.

Fig. 12. Close up on the kitchen sequence. Notice the location of feature 5.

To demonstrate the proposed approach’s ability to deal
with missing features, it was run on the kitchen sequence [19],
see Fig. 11. Here, some of the accompanying features were
missing, e.g., feature 5in Fig. 13. Note that the back-projection
of feature 5 in Fig. 13 is located correctly, indicating that the
3D estimate is correct. From the depicted residuals, which are
hardly visible, it is seen that the missing features does not
disrupt the structure and motion estimation. Thus giving the
desired result in dealing with missing features.

The proposed modification to the Christy-Horaud algo-
rithm should not considerably decrease its ability to deal with
perspective reconstruction. To validate this, both approaches
were applied to a sequence with considerable depth, see
Fig. 14. The 2D features were carefully hand-tracked to ensure
that the algorithms were directly comparable. The results
wereevaluated by comparing the twoestimated structures via
the standard shape distance measure from statistical shape
analysis, the Procrustes distance [9], [12]. The Procrustes
distance is obtained by normalizing the two structures and
then applying the similarity transform [14] such that the mean
squared error is minimized. The remaining mean squared
error is then the Procrustes distance. The resulting Procrustes
distance was 0.03. This implies that the Christy-Horaud
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Fig. 13. Closeup on the kitchen sequence. A circle around a feature
denotes it is the estimated location. The reason being that the respective
feature is missing in this frame. Not that the estimated position of feature
5 correspond to it's position in figure 12.

Fig. 14. A sample frame from an image sequence of Thorvaldsens
Museum in Copenhagen with 20 hand tracked features through eight
frames.

12,

8 -7 -6 -5 -4 -3

Fig. 15. The setup for the simulated data. A box with 100 features is
“photographed” from eight views. These views are marked on the
trajectory curve.

method with the proposed enhancement maintains its ability
to deal with perspective data.

7.2 Simulated Data

To perform a more systematic test of the proposed algorithms
ability to deal with errors in the tracked data, a simulated data
set was created, see Fig. 15. Several kinds of errors were
introduced into this data set, hereby testing the approach with
respect to the three identified types of errors. The Huber
M-estimator and truncated quadratic error functions were
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Fig. 16. Errors for the simulated data corrupted with a compound
distribution of two Gaussians. The abscissa denotes the likelihood,
[0...1], that samples are obtained from the higher varying Gaussian.
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Fig. 17. Errors for corrupting the simulated data by removing the
2D features at random. The abscissa indicates how many percent of
the data has been removed. No difference is seen between the two
error functions.

applied with the parameters settings k = 0.02"'and ¥ = 2and
we set o = 20. The results were evaluated by the Procrustes
distance [9], [12]. In the extreme cases where an estimation
process did not converge, this is denoted by a missing
measurement.

The first experiment consists of corrupting the 2D features
of the simulated data by a compound distribution of two
Gaussians, one with a standard deviation of 0.005 and the
other 10 times larger. Two different error functions were
applied: the Huber M-estimator and the truncated quadratic.
For comparison, the Christy-Horaud algorithm was also
applied. From Fig. 16, it is seen that the choice of error
functions has a considerable effect on the result and that the
proposed approach is capable of implementing them.

1. It should be noted that k£ depends on the image noise and, hence, also
on the image size. In this simulated data, the image size was unnaturally
small (0.25 x 0.25) and, as such, k& = 0.02 should not be seen as a guide line.
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Fig. 18. Errors for the simulated data with swapped features emulating
mismatched features. The data set upon which features were swapped
was the original uncorrupted. The abscissa denoted the percentage of
altered features.

In the second experiment, an increasing number of the 2D
features were removed from the data set. These missing
features were emulated as being located in the center of the
frame in question with a weight equal to 1079 of the weight of
the normal 2D features. From the results, it is seen that the
proposed approach is highly robust toward this type of error
since up to 40 percent missing features corrupts the estimated
structureby less than 1072, see Fig. 17. The approach of Christy
and Horaud could notwork on this data and was notincluded.

To test the tolerance to mismatched features, we emulated
these by swapping 2D features of the simulated data. The
results in Fig. 18 illustrate that the proposed approach also
deals efficiently with mismatched features and has been
shown to be robust toward the identified types of errors.

To challenge the proposed approach, all the experiments
on the simulated data are performed with up to 35-40 percent
errors. It should be noted that the algorithm works very well
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TABLE 3
Results with Noise Exclusively on the Feature Christy-Horaud
Uses as Object Frame Origin

Factorization Percent Mean Procrustes
Approach Convergence Distance
Christy—Horaud 60% 0.0153
Proposed Approach 100% 0.0055

This amounts to 1 percent of the data being erroneous.

with up to 10-20 percent errors. This is the amount of errors
that the proposed approach is expected to work on.

To evaluate the effect of the proposed approach for
estimating the object frame origin, noise was added exclu-
sively to the feature that Christy-Horaud uses as object frame
origin. The evaluation was performed on the simulated data
and the noise was Gaussian with a standard deviation of 0.05.
Five experiments were conducted comparing the Christy-
Horaud approach to the proposed approach. The results are
shown in Table 3. It is seen that significant improvement is
obtained with respect to error as well as convergence. For
validation purposes the same experiment was made, but, this
time, noise was added to a different feature than the one used
as the object origin by Christy-Horaud. In this case the two
approaches gave similar results. Note also that the original
approach for estimation of the object frame origin could be
problematic to use with missing features since the 2D feature
chosen as the object frame origin is likely to be missing in at
least one frame.

In order to demonstrate the benefits of the proposed
method for Euclidean reconstruction, the experiments with
mismatched features were repeated without the proposed
approach. Instead, the original method for Euclidean
reconstruction proposed in [6], [22] was applied. The number
of runs that did not converge has been summed up with and

m Original Method

| | OProposed Method

Number of Non-Convergence

2
| I
0 ; I .

0-4 59 10-14 15-19

20-24 2529 30-34 35-40

Bins of Percent Error

Fig. 19. The number of non-converging runs on the experiment of Fig. 18, using the Huber M-estimator as error function. The experiment was made
with and without the proposed method for Euclidean reconstruction. The runs are pooled in bins of five to give a better overview.
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Fig. 20. The experiment of Fig. 18 repeated with different parameter
settings for k in the truncated quadratic error function.

without the proposed method. The change is dramatic, as
seen in Fig. 19.

To illustrate, that the proposed method is not overly
sensitive to the choice of error function and the involved
parameters, these were varied. This was done with the
truncated quadratic error function in the experiments with
mismatched features, see Fig. 18. The k parameter was altered
with £50 percent. From the results in Fig. 20, it is seen that the
proposed approach is not overly sensitive to the choice of
parameters in the error function.

8 CONCLUSION AND DISCUSSION

An approach for applying arbitrary error functions in the
factorization algorithms for structure and motion has been
presented. This ability hasbeen exploited toimplementrobust
statistical techniques, whereby errors in the 2D features have
been dealt with effectively. The algorithm has been imple-
mented as an extension to the Christy-Horaud factorization
algorithm [6], whereby perspective reconstruction is
achieved. The core of the approach is, however, so general,
thatit can alsobe applied to most other factorization schemes,
like [1], [15], [26], [27], [22], [28]. This approach has been
applied to both simulated and real data, where it is
demonstrated that the algorithm deals well with all the
expected types of errors, thus making the proposed approach
a robust factorization method.

To further investigate the possibilities of the proposed
approach, we aim at implementing it with other factorization
algorithms, e.g., [15], hence making a robust factorization
algorithm with uncalibrated cameras. The proposed method
also allows for more elaborate noise structures incorporating
covariance within and between images. This covariance
structure has been implemented with the algorithm of
Section 4 and sparsely tested, but should be thoroughly
tested on real image data in order to evaluate its robustness.
This is the goal of ongoing research.
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