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Oriented Structure of the Occlusion
Distortion: Is It Reliable?

Weichuan Yu, Member, IEEE, Gerald Sommer,
Steven Beauchemin, Member, IEEE, and
Kostas Daniilidis, Member, IEEE

Abstract—In the energy spectrum of an occlusion sequence, the distortion term
has the same orientation as the velocity of the occluding signal. Recent works
claimed that this oriented structure can be used to distinguish the occluding
velocity from the occluded one. Here, we argue that the orientation structure of the
distortion cannot always work as a reliable feature due to the rapidly decreasing
energy contribution. This already weak orientation structure is further blurred by a
superposition of distinct distortion components. We also indicate that the
superposition principle of Shizawa and Mase for multiple motion estimation needs
to be adjusted.

Index Terms—Optical flow, occlusion, motion discontinuities, spectral analysis.
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1 INTRODUCTION

THE motivation of studying multiple motions (including occlusion
and additive transparency) in the spectral domain is mainly due
to the inadequacy of spatial motion models [3]. The spectrum of
multiple motions was first analyzed by Fleet [8]. Beauchemin and
Barron [2], [3], [4] formulated an explicit model of occlusion in the
frequency domain. They claimed that the distortion term in the
occlusion spectrum can be used to distinguish the occluding
velocity from the occluded one because this distortion term has
the same orientation as the occluding velocity. In this paper, we
show that the orientation of the distortion term cannot be used to
reliably identify an arbitrary occluding velocity. We start with the
spectral analysis of a 1D occlusion sequence. The conclusion of
Beauchemin and Barron [3] is proven to be a special case of our
analysis in the sense that their analysis uses only a few spectral
components, while the number of spectral components in real
signals is arbitrary. Then, we discuss the 2D occlusion spectrum
and the spectrum of the additive transparency. We further
indicate that the superposition principle of multiple motions
proposed by Shizawa and Mase [15] needs to be adjusted. Finally,
this paper discusses other related work as well as the merits and
shortcomings of frequency-based motion models.

2 THE SPECTRAL ANALYSIS OF OCCLUSION AND
TRANSPARENCY

The spectrum of occlusion was first analyzed by Fleet and Langley

[8], [9]. They used a characteristic function x(x) and modeled the

occlusion in the spatial domain as
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I(x,t) = x(x = vit) [1(x — vit) + [1 — x(x — v18)] Lo (x — vat), (1)
where I} (x) is a 2D occluding signal moving with a velocity v; =
(vig,v1,)" and I(x) is a 2D occluded signal moving with a velocity
vy = (vay, ’L)zy)T. This equation is the seed of all other occlusion
models appeared in the later part of this paper. For simplicity, in

this paper we focus on constant velocity models.

2.1 1D Occlusion Spectrum
Beauchemin and Barron [3] gave a detailed spectral analysis of a
1D occlusion sequence. They replaced the vectors in (1) with scalars

and used a 1D Heaviside unit step function u(x) for x(z) yielding
I(z,t) = uw(z —nit) 1 (x —vit) + [1 — u(z — vit)| Lo(z —vat)  (2)

with

0 otherwise.

) ={y b 3)

The Fourier transform of (2) reads

f(wl,,wt) =
W(we)8(wrvr +wp) * I (we)8(wevr 4 wy) + T(we)8(wevs +wy)  (4)
— i(wy)8(wevr + wp) * Iy (we)8(wavy + wy),
where
i{ws) = 76(ws) + % (5)

Here, * means convolution and ~denotes the Fourier transform of

the corresponding signal.
Equation (4) (the same as (7) in [3]) is valid for an arbitrary

signal which satisfies the Dirichlet conditions. Substituting (5) into

(4) and using the product property of the impulse function yield
Hwe,wy) =

N 1 . -
7TII(W.T) + E * Il (WT) 6(W1:v1 + Wf,) + (1 - 7'r)IQ(W.7:)6(W.7:v2 + Wf,)
g

+ wié(wm + w) * I (wy)6(wrv2 + wt).

©

(6)
The first two terms in (6) are two oriented lines (for generality, we
assume v; # v) passing through the origin of the spectral space.
Note that the additional convolution % % I (w,) in the first term does
not disturb the orientation. Instead, it strengthens the corresponding

spectral line. Thus, we do not consider it as distortion.
The distortion comes from the third term in (6). This term is a

convolution of two spectral lines which indicate the occluding
velocity v; and the occluded velocity v,, respectively. To obtain a
clear geometric interpretation of this convolution, we decompose
the static spectrum Ir(w,) of the occluded signal into Dirac

components
j? (wr) = Z Cm&(wx - Wm)v (7)

where m indexes the different frequency components and c,
denotes the corresponding coefficients. After this reformulation,

the distortion term then reads
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Fig. 1. (a) One-dimensional random dot occlusion sequence windowed by a Gaussian. The occluding velocity is 1 [pixel/frame] and the occluded velocity is —1 [pixel/
frame]. (b) The energy spectrum of the occlusion sequence. For display purposes, we delete the DC component. The occluding and the occluded signal are clearly
characterized by two oriented lines passing through the origin. The zipper-like structure along the occluded line is caused by the distortion. Each distortion line has the
same orientation as the occluding signal. lts amplitude decreases hyperbolically after leaving the occluded spectral line. (c) In order to display the superposition effect of
distortion lines, we set a threshold equal to 1 percent of the maximal value of the occlusion spectrum. All values above this threshold are reduced to be equal to the
threshold. The more distortion lines we have, the less distinct the distortion structure is.

7
— §(wav1 + wp) * Io(wy)6(wyvg + wy)

T

1 Cm (®)
= Zié(wmvl +wp — wp (v1 — v2)).
W — W
It is clear that each Dirac component §(w, —wy,) in fz(w,.) will
cause an oriented distortion line §(w,v1 + wr — wy (v1 — v2)) after
the convolution.

The orientation structure formed by the distortion lines
characterizes the occlusion spectrum and many approaches (e.g.,
[9], [3]) have tried to use this structure in occlusion analysis. But
unfortunately, this structure is not a robust feature. For example, if
L(w,) has many Dirac components with significant energy
contribution, which is common for typical real signals, this kind
of orientation may disappear due to the superposition (see Fig. 1).
More importantly, after leaving the intersection point with the

occluded spectral line, the distortion line decreases rapidly in
1

Wr—Wmn

amplitude because its weight is a hyperbolic term In most
spectral regions, the distortion is too weak to be useful.

Theorem 1 in [3] (cf. (11) in [3]) is correct with respect to the
orientation of the distortion term using two different cosine
functions as occluding and occluded signal. However, the property
of Theorem 1 cannot reliably hold for an arbitrary signal because the
specific orientation of the distortion may vanish after the super-
position of cosine/sine signals. Theorem 2 in [3] did not account for
this superposition effect and turned out to be a specific conclusion
only. We may explain this point by demonstrating that (11) in [3] is
only a special case of (6). Using the same cosine functions as in
Theorem 1 in [3] for the occluding and occluded signal:

{Il(x — i)

12(1’ — 'L)Qt)

crcos(wy (x — vit))
cacos(wa(x — vat))’

we obtain the corresponding spectra

I (wy)6(wevr + wy)

2 [5(ewn = ) + 8w + 1) + wy01)

:%5(% —wl,wt+w1v1)+%5(wa-+w1,wt — wiv1) )
I (wz)6(wav2 + wi)

= 2[5l = wa) + 8(wr + wn)]8wr + o)

C C:
525(% — wo,w; + wovn) + 526(%- + Wy, wp — wy).

Substituting (9) into (6) yields

™
I{wy, wy) =50 [6(we — wi,wr +wiv1) + 8(wy + wi, W — wivy)]

i
—Zq

5 S(wyvr +wt)}

! 8( +wi) + :
— 0 Wy V W, —
Wy — W1 o ! Wy + w1

-7
Co[8(wy — wa,wr + wov) + 8wy + wa, wr — wava)]

1
+7CQ

1 .
5 {mb(wxvl + wr — wa(v1 — v2))

4 S(wav1 + wr + wo(vy — UZ))} .

Wy + ws

(10)

This equation is exactly the same as (11) in [3]. Here, we do not
consider the second term in (10) as distortion because it strengthens
the spectral line of the occluding signal. Note that the distortion lines
also partially contribute to the occluded spectral line (just evaluate
the fourth term in (10) by setting w, = wy or w, = —w»).

In Fig. 1, we display a 1D random dot occlusion sequence
smoothed by a Gaussian window and the corresponding energy
spectrum. The spectrum is characterized by two dominant spectral
lines with distortions crossing the occluded spectral line. The
amplitude of distortion decreases rapidly after leaving the
occluded spectral line. In order to display the superposition effect
of the distortion, we set a threshold equal to 1 percent of the
maximal amplitude in the occlusion spectrum. All values above
the threshold are reduced to be equal to the threshold. Though the
orientation of a single distortion line still can be recognized in the
right image, there is no dominant orientation structure due to the
superposition of many distortion lines. Note that the gray-value
difference among different distortion lines is below 1 percent of the
maximal value of the spectrum. If we raise the threshold to
10 percent, the energy contribution of the oriented distortion
structure is hardly observable and we get an energy spectrum
similar to that in the middle image. Moreover, this structure will be
further disturbed by noise. Thus, the distortion cannot be used to
reliably identify the occluding velocity.

Fleet and Langley [9] also stated that the orientation of the
distortion is only dominant when there is a small number of

frequencies with significant power either in the occluding or in the
occluded signal. They followed the theta motion model [17] and
assumed that the occlusion window moves independently of both
occluding and occluded signal (cf. (15) in [9]). In this paper, we
follow the idea of Beauchemin and Barron [3] and assume that the
occlusion boundary moves consistently with the occluding signal
(cf. (2)). This difference is why the orientation of the distortion in
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Fig. 2. (a) and (b) The first and 16th frame of the occlusion sequence. The white window in the 16th frame is centered at (122, 137). Centered at this point, we cut out a
cube with 32 x 32 x 32 pixels from the sequence. (c) The epipolar slice of the sequence along row 122. The first frame is at the top of the slice. The occlusion is
characterized as two overlapping structures. Both motions are nearly constant (about (1, 0)[pixel/frame] for occluding signal and (-1,0)[pixel/frame] for occluded signal).

our model does not depend on the static spectrum of the occluding
signal (i.e., fl(wz)). In addition, the shape of the characteristic
function x(x) is not explicitly described in [17], [9] (cf. (12) in [9]),
while Beauchemin and Barron modified this function into a step
function (cf. (4) in [3]). We believe that our specification describes
the occlusion boundary more explicitly and provides an easier
geometric interpretation. It is worth mentioning that Fleet did
develop the case of a step function in his earlier work (see (3.17) in
[8]). But there is a derivation error in his equation (cf. (13) below).

2.2 2D Occlusion Spectrum

In this section, we extend the above analysis to a 2D occlusion
sequence [16]. We only need to replace the x(x) in (1) with a
2D Heaviside unit step function U(x)

1 xTi>0
Ulx) = {0 otherwise,

(11)

where x denotes 2D spatial Cartesian coordinates and 7 is a unit
vector normal to the occluding boundary.

We denote the spatial frequency vector as k = (w,, wy)T and the
temporal frequency as w;. Then, the Fourier transform of the image
sequence reads

I(k,wy) = U(k)S(K vy +w;)* I1 (k)8 (K vi+w) + L (k)8 (kT va + w;)
- U(k)é(kTvl + wt) * fQ(k)é(kTvz + wt)
(12)
with
§(k"h1)

U(k) = 2 | d(k|) + =72 13

(1) w{wu ) ikTﬁ} (13)

Here, 7, denotes a unit vector perpendicular to 7. Note that this

equation is different from (3.17) in [8], where the coefficient 27 and

the Dirac term §(k”7, ) are missing due to a derivation error.
Substituting (13) into (12) yields

I(k,w;) = [27°T1 (k) + A(K)]6 (k" vi + w;)

+ (1 =27 L(k)6 (k" v2 + wy) + Bk, wy) s
with
Ak) =gk, ) « Li(k)
Bk,w) =76(k"7)8(k vi+w) * L(k)s(k vs +w). (15)

The first two terms in (14) are two oriented spectral planes passing
through the origin. Their normal vectors (ui,vi,1) and (ug,vs,1)
denote the occluding and the occluded velocity, respectively. The
occluding velocity plane is additionally strengthened by the term
A(k). The distortion term B(k,w;) is a convolution between a 3D line

and a 3D plane. To get a manifest interpretation of the distortion
term, we extend the 1D decomposition used in (7) to 2D space

Lk) = cmb(k — k). (16)
The distortion term is then reformulated as
B(k7 wt)
127 R
= kTﬁé(kT”]L)é(kTVI + wt) * ; cmé(k — Kk, kT vy + wt)
. Cm T A T T
=27 Ol (k — kg JKkivi 4w =k (v —va) ).
(17)

Now, it is clear to see that B(k, w;) consists of a set of 3D distortion
lines with the same orientation formed by 6(k”#,)6(k"v; + w;). By
setting k =k, in (17), we can prove that each distortion line
intersects the occluded plane at k,,. This oriented structure varies
with the number of Dirac components in I»(k) and is therefore not
stable. More importantly, the amplitude of each distortion line
decreases rapidly after leaving the occluded plane due to the
hyperbolic behavior of the term (kiﬁ As a result, we cannot use
the distortion orientation reliably.

In Fig. 2, we display a real occlusion example, in which a right
moving box is covering a left moving picture. Both horizontal
motions are nearly constant, as shown in the epipolar slice. The
section planes of the spectrum in Fig. 3 also indicate only two
horizontally constant motions. The structure of the distortion is
indistinct.

In summary, the oriented structure of the distortion in the
occlusion spectrum is only observable if the occluded signal has
very few spectral components. For occluded signals with many
spectral components, this structure is blurred after the super-
position of differently located distortion lines. In this sense, we can
say that the conclusion of Beauchemin and Barron [3] is a special
case of our analysis. Moreover, the influence of the oriented
distortion with hyperbolic form is in most spectral regions
negligible or only comparable to the influence of noise. The main
energy of the occlusion spectrum is still contributed by two
spectral lines (in 1D) or planes (in 2D). This fact indicates clearly
that we are not able to use the distortion to reliably distinguish the
occluding velocity from the occluded one.

2.3 Spectral Multiple Motion Model

Though the oriented structure of the distortion is not a suitable
feature to identify the occluding velocity in occlusion analysis, we
can still detect and analyze the orientation of dominant energy
planes to estimate occluding and occluded velocity. The exception
is at low frequencies where the determination of the orientation of
spectral planes is more susceptible to distortion than at high
frequencies. The recipe we learn from our analysis is that we have
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Fig. 3. The (w.,w;) sections of the 32 x 32 x 32 spectral cube. We only display one of every two section planes. The origin of each section lies in the middle of the image.
In row 1 are the 1st, 3rd, 5th, and 7th section (from left to right) and the 9th, 11th, - - -, 31st (w,,w;) section are arranged similarly in row 2, row 3, and row 4. Two dominant
spectral planes indicate two horizontal constant motions vividly. The oriented structure of distortion is indistinct. However, the disturbance of distortion in low frequency

regions (see Sections 15, 17, and 19) is apparent.

to consider the spectrum only above a lower bound of the
frequency to improve the robustness of motion estimation.
Another advantage of the above knowledge is that we may treat
a different kind of multiple motion, namely, additive transparency,
in the same manner. We may construct an additive transparency
sequence by simply substituting x(x —vit) in (1) with a real
constant a(a € (0, 1)) [3]. The corresponding spectrum is then
characterized by two oriented planes without distortion

I(k,w;) = al,(K)8(kTv) +w) + (1 — a)L(K)§(kTvy +w,).  (18)

The additive transparency is therefore very related to the occlusion
in the sense that both occlusion and additive transparency are
characterized by two dominant spectral planes. Taking into account
that the distortion in the occlusion spectrum is negligible or only
comparable to noise, we may model both occlusion and additive
transparency in the spectral domain as multiple planes passing
through the origin. It is known that the corresponding flow vectors
are obtained from the normal vectors of these planes. This model can
be viewed as a generalization of the spatiotemporal energy model of
single motion [1], [10]. This spectral model seems similar to the
superposition principle proposed by Shizawa and Mase [15].
However, we would like to mention two noticeable differences:

e Shizawa and Mase proposed that multiple motions are
characterized as multiple planes both in the (I,,1,,1I;)

derivative space and in the frequency domain. We argue
that, even though the model is correct in the (I, I,,, I;)-space,
it is not realistically applicable in the case of transparency.
According to the additive transparency model, the deriva-
tive of the intensity profile in a transparency scene is a
superposition of two component derivatives derived from
functions I, and I, (cf. (1)). As we cannot decompose the
sum of derivatives into two components properly, the
estimation of transparency speeds is infeasible in the
(I, I, I;) derivative space.

e  Inthe case of occlusion, the spectral planes of the occluding
and occluded signals are disturbed by the distortion at low
frequencies. We have to truncate low-frequency compo-
nents in order to fit multiple planes robustly.

3 DiscussIiON

Related Multiple Motion Models. Chen et al. attacked the problem
of multiple motion estimation using the Harmonic retrieval framework
[6]. In this framework, occlusion is also treated as noise in the
recovering of multicomponent frequencies corresponding to multi-
ple motions. The equivalence between multiple motions and
multiple spectral planes was pointed out as well. The authors did
not, however, study the explicit structure of the occlusion distortion.

Recently, Langer and Mann [13] categorized image motions
according to the dimensionality of both image points and
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velocities. They specifically studied one category termed optical
snow, in which the speeds at each image point form a 1D curve.
Occlusion and additive transparency are regarded as a special case
of optical snow because each image point at the occlusion
boundary or in the transparency has two velocities. If all speeds
in the optical snow category happen to have the same direction, the
spectral planes corresponding to these motions form a bow tie
structure in the spectral space

QUwy + avywy + wy = 0, (19)

where o € R and (v,,v,) denote horizontal and vertical motion
parameters.

This categorized analysis provides an interesting point of view
of image motions. But, as the authors correctly pointed out, it does
not give a detailed description of occlusion and additive transpar-
ency. Besides, though the spectral bow tie structure in the optical
snow category is similar to the multiple plane structure of
occlusion or transparency, the motions in the optical snow are
constrained to have the same direction. For occlusion analysis, this
constraint is too strong.

Numerical Limitations. The good performance of a motion
estimation algorithm relies on correct motion modeling. Never-
theless, an ideal model does not guarantee feasibility of the model.
In practice, there exists a severe problem in obtaining the energy
spectrum of an image sequence due to the block effect of the
discrete Fourier transform (DFT). This is an important problem in
frequency-based techniques. In order to avoid the block effect of
DFT, we take a local Fourier transform (LFT), i.e., a DFT windowed
by a Gaussian. According to the convolution theorem in Fourier
analysis, a DFT of the image sequence windowed by a spatio-
temporal Gaussian is equivalent to a convolution between the
spectrum of the image sequence and the spectrum of the Gaussian
function, which is also a Gaussian. Consequently, the spectrum is
blurred and frequency resolution decreases. For compensation, we
have to enlarge the window size so that we can improve the
frequency resolution. In the enlarged window, however, we may
not be able to approximate the actual motion robustly with a
simple motion model, as we can in a smaller window. Moreover,
using a larger window means including more time frames in the
estimation. On one side, using multiple frames improves the
robustness of the optical flow estimation algorithm (e.g., [12]). On
the other side, if we include a very long sequence in the estimation,
the motion is less likely to be constant over so large time interval.

One possible solution to this problem may be to use motion
models with higher order, which still remains a challenging topic
[5]. Another promising alternative is to use Gabor-based or
wavelets-based approaches (e.g., [7], [11], [14]). An elegant solution
to the prohibitive computation cost of these approaches remains to
be found.
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