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Abstract—This paper proposes a new cost function, cut ratio, for segmenting images using graph-based methods. The cut ratio is defined

as the ratio of the corresponding sums of two different weights of edges along the cut boundary and models the mean affinity between the

segments separated by the boundary per unit boundary length. This new cost function allows the image perimeter to be segmented,

guarantees that the segments produced by bipartitioning are connected, and does not introduce a size, shape, smoothness, or boundary-

length bias. The latter allows it to produce segmentations where boundaries are aligned with image edges. Furthermore, the cut-ratio cost

function allows efficient iterated region-based segmentation as well as pixel-based segmentation. These properties may be useful for

some image-segmentation applications. While the problem of finding a minimum ratio cut in an arbitrary graph is NP-hard, one can find a

minimum ratio cut in the connected planar graphs that arise during image segmentation in polynomial time. While the cut ratio, alone, is not

sufficient as a baseline method for image segmentation, it forms a good basis for an extended method of image segmentation when

combined with a small number of standard techniques. We present an implemented algorithm for finding a minimum ratio cut, prove its

correctness,discuss its application to image segmentation, and present the results of segmenting a number of medical and natural images

using our techniques.

Index Terms—Graph partitioning algorithms, cut ratio, cycle ratio, perfect matching, perceptual organization, edge detection, image

segmentation, machine vision.
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1 INTRODUCTION

THERE has been significant interest in graph-based
approaches to image segmentation in the past few

years [1], [2], [3], [4], [5], [6], [7], [8], [9]. The common theme
underlying these approaches is the formation of a weighted
graph where each vertex corresponds to an image pixel or
region and each edge is weighted with some measure of the
desire for the pixels or regions connected by that edge to be
in the same segment. This graph is partitioned into
components in a way that minimizes some specified cost
function of the vertices in the components and/or the
boundary between those components. One way of parti-
tioning a graph into more than two components is to
recursively bipartition the graph until some termination
criterion is met. Often, the termination criterion is based on
the same cost function that is used for bipartitioning.

Wu and Leahy [1] were the first to introduce the general
approach of segmenting images by way of optimally
partitioning an undirected graph using a global cost function.
They minimized a cost function formulated as a boundary-
cost metric, the sum of the edge weights along a cut boundary.
They used minimum cut, a polynomial-time algorithm for
finding optimal bipartitions with this cost function. This cost
function, however, has a bias toward short boundaries. Cox
et al. [2] attempted to alleviate this bias by normalizing the
boundary-cost metric. They proposed a cost function, ratio
regions, formulated as a ratio between a boundary-cost metric
and a segment-area metric. They also gave a polynomial-time

algorithm for finding optimal bipartitions in an undirected

graph with this cost function. Shi and Malik [3], [7] and Sarkar

and Soundararajan [6], [9] adopted different cost functions,

normalized cut and average cut, formulated as sums of two

ratios between boundary-cost and segment-area-related

metrics, also in undirected graphs. Ratios between boundary

costs and segment areas have a bias toward larger rounder

areas and shorter smoother boundaries. Jermyn and Ishikawa

[4], [5] were the first to adopt a cost function formulated as a

ratio of two different boundary-cost metrics in a directed

graph. They gave polynomial-time algorithms for finding

bipartitions that minimize the ratio of the sums of two

different edge-weight functions in such a directed graph.

Cost functions formulated as the ratio of two boundary-cost

metrics can alleviate area-related biases in appropriate

circumstances. In this paper, we present a new cost function,

cut ratio, namely, the ratio of the corresponding sums of two

different weights associated with edges along the cut

boundary in an undirected graph. Cut ratio generalizes the

mean cut cost function introduced by Wang and Siskind [10],

namely, the mean edge weight of the cut boundary in an

undirected graph. We also generalize the polynomial-time

algorithm presented by Wang and Siskind [10] for minimiz-

ing the mean-cut cost function to yield a polynomial-time

algorithm for finding a cut that minimizes the cut-ratio cost

function. This generalization allows us to perform efficient

iterated region-based segmentation.
The approach discussed in this paper exhibits the

following collection of properties:

1. It allows the image perimeter to be segmented.
2. It guarantees that the components produced by

bipartitioning are connected.
3. It does not introduce a size, shape, smoothness, or

boundary-length bias. The lack of bias allows it to
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produce segmentations where boundaries are
aligned with image edges.

4. An optimal bipartition can be found in polynomial
time.

These properties may be useful for some image-segmenta-
tion applications. We illustrate many of these properties by
way of real images in Sections 5, 6, and 8.

Let us elaborate on the first of the above properties. By the
ability to segment the image perimeter, we mean that our
method can not only segment an image into segments where
the image perimeter lies totally within one segment, as
illustrated in Fig. 1a, it can also segment an image into
segments where the image perimeter lies in one or more
segments,as illustratedinFigs.1aand1b.Thisability isshared
by some other approaches to graph-based image segmenta-
tion, for example, minimum cut [1], normalized cut [3], [7],
average cut [6], [9], and Jermyn and Ishikawa [5]. This ability
allows a segment to correspond to an object that is partially
occluded or partially outside the field of view. It is also
important when recursively bipartitioning an image because
one step of recursive bipartitioning may partition a pair of
objects as one segment and a subsequent step may separate
these two objects. The boundary between these two objects in
the later bipartitioning step might touch the perimeter of the
segment produced in the earlier bipartitioning step. The fact
that our approach can segment an image into segments where
the image perimeter lies in one or more segments follows from
the reduction that will be discussed in Section 3.1.

Let us elaborate on the second of the above properties.
The fact that components produced by bipartitioning are
guaranteed to be connected is shared by some other
approaches to graph-based image segmentation, for exam-
ple, minimum cut [1] and Jermyn and Ishikawa [4], [5]. We
prove that our method has this property in Section 3.1.

Let us elaborate on the third of the above properties. By
lack of size bias, we mean that our method has no preference
for larger-area segments over smaller-area ones or vice versa.
By lack of shape bias, we mean that our method has no
preference for segments with specific shape, such as rounder
segments over elongated ones. By lack of smoothness bias, we
mean that our method has no preference for boundaries with
low average curvature over those with high average
curvature. For example, our method will exhibit no pre-
ference between the segments in Figs. 1c, 1d, 1e, 1f, 1g, and 1h.
This lack of bias is shared by some other approaches to graph-
based image segmentation, for example, the method of
Jermyn and Ishikawa [4], [5] when the intensity gradient is
consistently oriented inward or outward. The fact that our
approach lacks such biases follows from the formulation of
our cost function: It does not incorporate any area metric and
incorporates only a normalized boundary-length metric.

Finally, let us elaborate on the fourth of the above
properties. The ability to find an optimal bipartition in
polynomial time is shared by some other approaches to
graph-based image segmentation, for example, minimum cut
[1], ratio regions [2], and Jermyn and Ishikawa [4], [5]. We
present our polynomial-time algorithm for finding a global
minimum ratio cut in Section 3.

Throughout this paper, we use the term ratio cut to refer
generically to the cut-ratio cost function and the associated
optimization methods. We present two methods for image
segmentation using the cut-ratio cost function. The baseline
method, presented in Section 5, forms graphs where the
vertices correspond to pixels and weights are taken to be some
decreasing function of the intensity difference between
adjacent pixels. This method recursively bipartitions an
image along the minimum ratio cut, terminating when the
segments are sufficiently homogeneous. We use the cut-ratio
cost function as a measure of segment homogeneity. While the
baseline method exhibits the properties discussed above, it
has certain disadvantages. It is sensitive to salt-and-pepper
noise and blurry edges, it can produce spurious cuts, and it
can be slow in practice even though we use a polynomial-time
algorithm. Sensitivity to noise and blurry edges, as well as the
spurious-cut problem, result, in part, from the fact that our
edge weights are pixel-based rather than region-based. To
address these disadvantages, we present an extended method
in Section 6. This method adds the following extensions: First,
we postprocess the result to merge very small segments into
neighboring segments, as discussed in Section 6.1. Second, we
use the same cut-ratio cost function to partition a graph whose
vertices correspond to image regions instead of image pixels
to incorporate region information into the edge weights. This
process can be iterated, performing an initial segmentation
based on pixels and having subsequent iterations use the
segments produced by the previous iteration as the vertices in
the graph. This is discussed in Section 6.2. Finally, we show a
blocking heuristic for quickly segmenting a large image by
combining the segmentation results for subimages. This is
discussed in Section 6.3. While this heuristic compromises the
provable optimality of the solution, in practice, we find that it
does not appreciably reduce the quality of the resulting
segmentations.

The remainder of this paper is organized as follows:
Section 2 presents a definition of the cut-ratio cost function.
Section 3 presents a polynomial-time algorithm for finding a
minimum ratio cut in a connected planar graph. Section 4
shows that the problem of finding a minimum ratio cut in an
arbitrary graph is NP-hard. Section 5 discusses the baseline
method for using ratio cut for image segmentation. Section 6
discusses the extended method. Section 7 discusses some of
the details of our implementation. Section 8 presents the
results of applying the extended method to various images
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Fig. 1. Various two-segment image segmentations. (a) The image perimeter lies within a single segment. (b) The image perimeter lies within both

segments. The segments in (c) and (d) differ in size though they exhibit similar shape and smoothness. The segments in (e) and (f) differ in shape

though they exhibit similar size and smoothness. The segments in (g) and (h) differ in smoothness though they exhibit similar size and shape. Our

method adopts no prior preference between these alternate segmentations.



and compares these results to normalized cut [11].1 Section 9
summarizes the main contributions of this work.

2 BACKGROUND

We formulate 2D image segmentation as a process of
bipartitioning a weighted undirected graph G ¼ ðV ;EÞwith
nonempty sets of vertices and edges. G will correspond to
the image, the vertices will correspond to regions, and the
edges will correspond to adjacency relations between these
regions. We perform iterated region-based segmentation
where the regions in the first iteration contain individual
pixels and may contain multiple pixels in subsequent
iterations. We refer to the graph used in the first iteration
as the underlying graph. Each vertex in the graphs used in
subsequent iterations corresponds to a set of vertices in the
underlying graph. If G is a graph in a subsequent iteration,
then UðGÞ denotes the graph underlying G. If u is a vertex
in G, let UðuÞ denote the subset of vertices in UðGÞ that
corresponds to u.

A cut ðA;BÞ of G is a partition of V into two disjoint
nonempty setsA andB. A cut corresponds to a segmentation
while A andB correspond to segments. We refer to the set of
edges between A and B as the boundary of ðA;BÞ. This
corresponds to the segmentation boundary in the image. A
path is an alternating sequence of vertices and edges,
beginning and ending with a vertex, such that each edge
connects the preceding vertex to the following vertex. A cycle
is a path that starts and ends at the same vertex. A cycle is
simple if it does not contain a vertex more than once, except for
the starting and ending vertices. A cycle is degenerate if it
contains an edge more than once. For the remainder of this
paper, we use the term “cycle” without a qualifier to mean
simple nondegenerate cycle. For simplicity, we treat a cycleC
as a sequence or set of edges, implicitly omitting the vertices
and possibly ignoring the order.

The graphs that we construct have a pair of weights
w1ðu; vÞ and w2ðu; vÞ > 0 associated with each edge ðu; vÞ.
We refer to w1ðu; vÞ as the (first) (edge) weight, to w2ðu; vÞ as
the second (edge) weight, and to w1ðu;vÞ

w2ðu;vÞ as the (edge-) weight
ratio. Let us adopt the following notation:

c1ðA;BÞ ¼
4 X

u2A;v2B;ðu;vÞ2E
w1ðu; vÞ

c2ðA;BÞ ¼4
X

u2A;v2B;ðu;vÞ2E
w2ðu; vÞ

c1ðCÞ ¼4
X
ðu;vÞ2C

w1ðu; vÞ

c2ðCÞ ¼4
X
ðu;vÞ2C

w2ðu; vÞ:

We refer to c1ðA;BÞ as the (first) boundary cost, c2ðA;BÞ as
the second boundary cost, c1ðCÞ as the (first) cycle cost, and
c2ðCÞ as the second cycle cost.

The first edge weight denotes the affinity between two
regions, some measure of the desire for those two regions to be
in the same segment. Thus, the first boundary cost corre-
sponds to the total affinity between the regions in one segment
and the regions in another segment. In the first iteration, we
take the second edge weight to be unity since each vertex
corresponds to a single pixel. In subsequent iterations, we
take the second edge weight betweenuand v to be the number
of edges between UðuÞ and UðvÞ in UðGÞ. Thus, the second
edge weight corresponds to the length of the boundary that
separates the two regions and the second boundary cost
corresponds to the length of the segmentation boundary. The
edge-weight ratio thus corresponds to the average affinity per
unit boundary length between the two regions.

We seek a bipartition that minimizes the cut-ratio cost
function formulated as follows:

RcutðA;BÞ ¼4 c1ðA;BÞ
c2ðA;BÞ

:

We refer to a cut with the smallest cut ratio as a minimum
ratio cut and to the cut ratio of such a cut as the minimum cut
ratio. The cut-ratio cost function generalizes the mean-cut
cost function, McutðA;BÞ, presented in Wang and Siskind
[10]. McutðA;BÞ is the same as RcutðA;BÞ when
w2ðu; vÞ ¼ 1. Wang and Siskind [10] presented a polyno-
mial-time algorithm for finding a minimum mean cut. In
this paper, we generalize that algorithm to find a minimum
ratio cut in polynomial time.

We use the greater generality of the cut-ratio cost function
to perform iterated region-based segmentation as discussed
in Section 6.2. The mean-cut cost function corresponds to the
average affinity per element of the cut boundary. In the first
iteration, but not subsequent iterations, this is the average
affinity per unit length of the segmentation boundary. The
cut-ratio cost function normalizes the first boundary cost by
the second boundary cost. Since the second boundary cost
corresponds to the length of the segmentation boundary, the
cut-ratio cost function always corresponds to the average
affinity per unit length of the segmentation boundary.

3 A POLYNOMIAL-TIME ALGORITHM FOR FINDING

A MINIMUM RATIO CUT IN CONNECTED

PLANAR GRAPHS

We now present a polynomial-time algorithm for finding a
minimum ratio cut of a connected planar graph. In Section 4,
we show that the problem of findinga minimum ratio cut of an
arbitrary graph is NP-hard. Our method, limited to connected
planargraphs,consistsof threereductions:minimumratiocut
to minimum ratio cycle, minimum ratio cycle to negative-cost
cycle, and negative-cost cycle to minimum-cost perfect
matching. The above reductions all operate on undirected
graphs. The second reduction, from minimum ratio cycle to
negative-cost cycle, uses the same binary and linear search
techniques, discussed by Ahuja et al. [13, pp. 150-157], where
they are used to find the minimum ratio cycle in a directed
graph. The third reduction, from negative-cost cycle to
minimum-cost perfect matching, was also motivated by a
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1. Fig. 8 compares baseline implementations of ratio cut and normalized
cut where both techniques use their respective cost functions for recursive
bipartitioning and the termination criterion with the same edge-weight
functions and no further enhancements. Figs. 15 and 16 compare extended
implementations of both ratio cut and normalized cut. This is not strictly an
apples-to-apples comparison because each implementation has different
extensions. In particular, the implementation of extended normalized cut
that we use [12] incorporates techniques from Malik et al. [11], such as
texture, that go beyond finding cuts that minimize the normalized-cut cost
function. We chose to compare our extended method to this work because it
is commonly viewed as reflective of the current state of the art.



similar reduction, discussed by Ahuja et al. [13, pp. 496-497],
that is used to find shortest paths in undirected graphs.

3.1 Reducing Minimum Ratio Cut to Minimum Ratio
Cycle

Let us define the cycle ratio of a cycle C as the ratio of the
first and second cycle costs:

CRðCÞ ¼4 c1ðCÞ
c2ðCÞ

:

We refer to a cycle with the smallest cycle ratio as a minimum
ratio cycle and to the cycle ratio of such a cycle as the minimum
cycle ratio. We reduce the problem of finding a minimum
ratio cut to the problem of finding a minimum ratio cycle.

The reduction from minimum ratio cut to minimum ratio
cycle requires that G be a connected planar graph. Initially,
we construct a graph corresponding to the entire image using
methods that we will describe in Section 5. This initial graph
will be connected and planar by construction. However,
recursive application of the bipartitioning algorithm, as will
be described in Section 5.1, applies this algorithm recursively
to components produced by a single application of the
bipartitioning algorithm. These components correspond to
image segments. In order to use our algorithm to recursively
bipartition a graph, we need to show that the components
produced at each step in the recursion are connected and
planar. The preservation of planarity is obvious. The
following lemma proves the preservation of connectivity:

Lemma 1. There exists a minimum ratio cut ðA;BÞ of every
connected graph G that satisfies the condition that both A and
B are connected.

(Proofs of all lemmas have been omitted to conserve
space. The proofs are available in [14] and in the
supplemental material in the Digital Library http://
computer.org/publications/dlib.)

We say that a cut ðA;BÞ is connected when components A
and B are both connected. There may be multiple minimum
ratio cuts ðA;BÞ. Some of these cuts may be connected while
others may not be. By the above lemma, at least one of these
cuts will be connected. The algorithm that we present in this
section finds a connected minimum ratio cut. By induction,
recursive application of this algorithm preserves planarity
and connectivity.

The reduction from minimum ratio cut to minimum ratio
cycle constructs a dual graph ĜG ¼ ðV̂V ; ÊEÞ from G. The dual ĜG
is constructed from a planar embedding of G by taking each
face in G as a vertex in ĜG and constructing an edge êe in ĜG
for every pair of faces in G that share an edge e. Note that
there can be different duals of G, each corresponding to a
different planar embedding of G. This is illustrated in Fig. 2.

Each edge êe in ĜG crosses exactly one edge e in the planar
embedding of G used to construct ĜG and vice versa. Thus,
there is a one-to-one correspondence between the edges in
G and the edges in any dual ĜG of G. We take the weights of
the edges in ĜG to be the same as the weights of the
corresponding edges in G. Furthermore, for any cycle ĈC ¼
fêe1; . . . ; êelg in ĜG, removing the edges fe1; . . . ; elg from E
bipartitions G into two connected components and vice
versa. Thus, there is a one-to-one correspondence between
connected cuts ðA;BÞ of G and cycles ĈC in any dual ĜG of G.
Additionally, if the cut ðA;BÞ of G corresponds to the cycle

ĈC in ĜG, then RcutðA;BÞ ¼ CRðĈCÞ. Thus, we have the
following lemma:

Lemma 2. For every dual ĜG of G, there is a one-to-one
correspondence between the connected minimum ratio cuts in
G and the minimum ratio cycles in ĜG.

3.2 Reducing Minimum Ratio Cycle to
Negative-Cost Cycle

In the previous section, we reduced the problem of finding
a minimum ratio cut to the problem of finding a minimum
ratio cycle in an undirected graph. Jermyn and Ishikawa [4]
use a dynamic-programming method introduced by Karp
[15] for finding a cycle in a directed graph with minimum
mean edge weight. Jermyn and Ishikawa [5] use a method
from Ahuja et al. [13] to solve a more general problem,
namely, finding a cycle in a directed graph with minimal
cycle ratio. The methods of Karp [15] and Ahuja et al. [13]
guarantee that the cycles found will be simple but those
methods alone may yield degenerate cycles. The particular
graphs constructed by Jermyn and Ishikawa [4], [5] further
guarantee that the resulting cycles are nondegenerate.

On the surface, it might appear that we can solve our
problem, namely, finding a (simple nondegenerate) cycle
with minimum cycle ratio in an undirected graph, using the
techniques that Jermyn and Ishikawa [5] present for directed
graphs. However, this is not the case. Clearly, one cannot
solve the problem for undirected graphs using the method
used by Jermyn and Ishikawa [5] simply by assigning an
arbitrary direction to each edge. One might consider
reducing the problem for undirected graphs to one for
directed graphs by constructing two directed edges ðu; vÞ
and ðv; uÞ in the derived graph for each undirected edge
ðu; vÞ in the original graph, assigning the weights of the two
derived edges to be the same as the corresponding original
edge, applying the method used by Jermyn and Ishikawa
[5] to the derived graph, and mapping edges in the
minimum ratio cycle found in the derived graph to the
corresponding edges in the original graph. However, the
result prior to mapping back will always consist of the
single pair of derived edges that correspond to the original
edge ðu; vÞ with minimal edge-weight ratio. This maps to a
degenerate cycle in the original undirected graph.

We now reduce the problem of finding a minimum ratio
cycle in an undirected graph to the problem of finding a
negative-cost cycle. We first show the following:

Lemma 3. Transforming the first edge weights of an undirected
graph by the linear function w01 ¼ aw1 ÿ bw2 of the original
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Fig. 2. Different duals of the same planar graph with different planar

embeddings.



edge weights w1 and w2 with a > 0 does not change its
minimum ratio cycles.

A corollary of this lemma is that such a transformation of
the edge weights does not change the minimum ratio cuts of
the original graph G. A second corollary of this lemma is
that the problem of finding a cut ðA;BÞ that minimizes
McutðA;BÞ or RcutðA;BÞ is well-defined even when we
allow the first edge weights to be negative.

Let us refer to a cycle with the smallest cycle cost as a
minimum cost cycle and to the cost of such a cycle as the
minimum cycle cost. The above lemma, along with the
following lemma, can be used to reduce the problem of
finding a minimum ratio cycle to the problem of finding a
negative-cost cycle. The reduction, adapted from Ahuja et al.
[13, pp. 150-57], relies on the following lemma:

Lemma 4. Let ĜG0ðbÞ denote ĜG with edge weights w01 derived from
the edge weightsw1 in ĜG by the transformationw01 ¼ w1 ÿ bw2.
A graph ĜG has a minimum ratio cycleC with cycle ratio b� if and
only if the minimum cycle cost of ĜG0ðb�Þ is zero.

If ĜG0ðbÞ has a negative-cost cycle, then b� < b. Likewise, if

ĜG0ðbÞ does not have a negative-cost cycle, then b� � b. If we

have an algorithm for determining whether a graph has a

negative-cost cycle, b� can be found by binary search. Let rand

r be the smallest and largest edge-weight ratios in ĜG,

respectively. Initialize b to r and b to r. We know that

b � b� � b. Repeatedly, letbbethemean ofbandb. If ĜG0ðbÞhasa

negative-cost cycle, then set b to b. Otherwise, set b to b.
We have not been able to prove that binary search must

terminate with real-valued edge weights. Limiting edge

weights to integers, however, guarantees termination in

(pseudo)polynomial time. Given integral edge weights, the

cycle ratio will be rational with a denominator in the range

1; . . . ;W2, where W2 ¼
P
ðu;vÞ2E w2ðu; vÞ. Thus, the denomi-

nator will always be a factor of W2!. By Lemma 3, we can

multiply all first edge weights by W2! without changing the

minimum ratio cycles or minimum ratio cuts. Under such a

scale transformation, the minimum cycle ratio of ĜG and the

minimum cut ratio of G will be integers. Since the search

range is now from W2! � r to W2! � r, and since W2! < WW2

2 ,

binary search is now guaranteed to terminate in at most

W2 lgW2 þ lgðrÿ rÞ iterations. Since our application uses

edge-weight functions that are bounded by a polynomial

function of the size of the graph, the above is also a

polynomial function of the size of the graph.
The above binary-search algorithm yields only b�, the

minimum cycle ratio, but not a minimum ratio cycle itself.
To recover a minimum ratio cycle, we can find one
negative-cost cycle for ĜG, when its edge weights are
transformed by w01 ¼W2! � w1 ÿ ðW2! � b� þ 1

2Þw2, using the
algorithm discussed in Section 3.3. This negative-cost cycle
is a desired minimum ratio cycle.

Since, as shown in Section 3.3, the negative-cost cycle can
be reduced to minimum-cost perfect matching, which is
polynomial time [16], [17], the above binary-search algorithm
yields a polynomial-time algorithm for minimum ratio cut.
While this is true in theory, it might not be practical because
W2! can be large. Accordingly, our implementation uses a
different technique, adapted from Ahuja et al. [13, pp. 150-
157], for finding b� and a corresponding minimum ratio cycle.

Our implemented technique works as follows: Like the
binary-search algorithm, we start by initializing b to r. We
know that b� � b. We use the algorithm discussed in
Section 3.3 to find a a negative-cost cycle C in ĜG0ðbÞ, i.e.,
c01ðCÞ < 0. Recall that the first edge weights w01 in ĜG0ðbÞ were
derived from the edge weights w1 and w2 in ĜG by the
transformation w01 ¼ w1 ÿ bw2. Since w2 > 0, c2ðCÞ > 0.

b� � c1ðCÞ
c2ðCÞ

¼ bþ c
0
1ðCÞ
c2ðCÞ

< b:

We thus update b with bþ c01ðCÞ
c2ðCÞ , reconstruct a new ĜG0ðbÞ, and

repeat this process until no negative-cost cycle is found. This
last b is b�. Note that this last b is the cycle ratio of the cycle C
detected in the penultimate iteration. Therefore, the desired
minimum ratio cycle is the C that was found in this
penultimate iteration. Since the algorithm discussed in the
next section can find more than one negative-cost cycle, we
obviously chooseC to be the one with smallest

c01ðCÞ
c2ðCÞ . Also, note

that no more than jV j cycles can be detected in each iteration
because, using the technique to be described in Section 3.3, the
detected cycles cannot share vertices and edges.

The following argument shows that this linear-search
technique also converges in (pseudo)polynomial time for
integral edge weights. Given integral edge weights, the cycle
ratio will be rational with a numerator in the range 1; . . . ;W1

and a denominator in the range 1; . . . ;W2, where W1 ¼P
ðu;vÞ2E w1ðu; vÞ and W2 ¼

P
ðu;vÞ2E w2ðu; vÞ. Note that no

more than W1 �W2 iterations are needed, since each iteration
must reduce the cycle ratio of the detected cycle. We also
find that this linear-search technique works well in practice,
typically converging in a few iterations. Of all 192,316 at-
tempts to find a minimum ratio cycle for the experimental
runs illustrated in Figs. 8, 10, 12, 15, and 16, we find that
22,307 (11.60 percent), 69,686 (36.24 percent), 64,551
(33.57 percent), 29,241 (15.20 percent), 6,072 (3.16 percent),
452 (0.24 percent), and 7 (0.00 percent) take 2, 3, 4, 5, 6, 7, and
8 iterations of negative-cost–cycle detection, respectively.
None require more than 8 iterations.

Both the binary and linear search techniques described
above were used in Ahuja et al. [13, pp. 150-157] to find a
minimum ratio cycle in a directed graph. To apply these
techniques to undirected graphs, we need a method for
finding negative-cost cycles in undirected graphs. It is this
problem that we address in the next section.

3.3 Reducing Negative-Cost Cycle to Minimum-Cost
Perfect Matching

We can determine whether a graph ĜG ¼ ðV̂V ; ÊEÞhas a negative-
cost cycle by asking whether a new graphG0 ¼ ðV 0; E0Þ has a
negative-cost perfect matching. A perfect matching in a graph is
a subset of the edges such that each vertex has one incident
edge from that subset. The cost of a perfect matching is the sum
of the weights of the edges in that perfect matching. The
reduction, adapted from Ahuja et al. [13, pp. 496-497] and
illustrated in Fig. 3, constructs G0 from ĜG as follows:

1. For each vertex u in ĜG, G0 contains two correspond-
ing vertices, u1 and u2, and one corresponding zero-
weight edge ðu1; u2Þ.

2. For each edge ðu; vÞ in ĜG,G0 contains two correspond-
ing vertices, uv and vu, and five corresponding edges

WANG AND SISKIND: IMAGE SEGMENTATION WITH RATIO CUT 679



with weights as follows: wðu1; uvÞ ¼ wðu2; uvÞ ¼
wðv1; vuÞ ¼ wðv2; vuÞ ¼ 1

2w1ðu; vÞ and wðuv; vuÞ ¼ 0.

A graph has a negative-cost perfect matching if and only

if its minimum-cost perfect matchings have negative cost.

Edmonds [16], [17] gives a polynomial-time algorithm for

finding a minimum-cost perfect matching. We can show that

G0 always contains a perfect matching by constructing a

trivial perfect matching containing all the edges of the form

ðu1; u2Þ and ðuv; vuÞ for each u 2 V̂V and ðu; vÞ 2 ÊE. Since the

cost of this perfect matching is zero, the minimum-cost

perfect matchings in G0 must have nonpositive cost. The

next lemma, adapted from an argument in Ahuja et al. [13,

pp. 496-497], addresses the relation between the existence of

a negative-cost cycle in ĜG and the existence of a negative-

cost perfect matching in G0.

Lemma 5. ĜG contains a negative-cost cycle if and only if G0 has a

negative-cost perfect matching.

Fig. 4 illustrates the correspondence between a cycle and
a perfect matching using this reduction. The proof for
Lemma 5 not only shows how to determine whether ĜG has a
negative-cost cycle, by a reduction to minimum-cost perfect

matching, it also shows how to construct a set S of negative-
cost cycles from a minimum-cost perfect matching M.

4 NP-HARDNESS OF FINDING A MINIMUM RATIO

CUT IN GENERAL GRAPHS

We now show that the problem of finding a minimum ratio
cut of an arbitrary graph is NP-hard. We do this by a reduction

from the commodity-cut-ratio2 problem. In the commodity-cut-
ratio problem, one is given an undirected graph G ¼ ðV ;EÞ
with nonnegative real-valued capacities cðeÞ on the edges and
a set of k commodities fðs1; t1; D1Þ; . . . ; ðsk; tk;DkÞg. Each Di

denotes a demand from source vertex si to target vertex ti. The

problem is to find a subset S � V that minimizesX
e2E\ðS�SÞ

cðeÞ

Xk
i¼1

ðsi;tiÞ2ððS�SÞ[ðS�SÞÞ

Di

:

Aumann and Rabani [18] state that this problem is

NP-hard. Our minimum-ratio-cut problem is a special case

of this problem where w1ðu; vÞ corresponds to the capacities

and ðu; v; w2ðu; vÞÞ corresponds to the commodities. The only

difference is that commodity cut ratio allows demands

between arbitrary pairs of vertices while minimum ratio cut

allows second weights only on edges. We reduce an instance

of the commodity-cut-ratio problem to an instance of the

minimum-ratio-cut problem as follows: We add edges for all

demands for which there do not exist edges in the original

graph and set the capacities of these new edges to zero. We

add a demand of zero for each edge ðu; vÞ for which there does

not exist a demand between u and v in the original graph.

Furthermore, if the commodity-cut-ratio problem contains

two commodities ðu; v;DuvÞ and ðv; u;DvuÞ, we set the

demand Duv to Duv þDvu and eliminate the commodity

ðv; u;DvuÞ. Now, we take w1 to be the capacities and w2 to be

the commodities. This will reduce any commodity-cut-ratio

problem to a minimum-ratio-cut problem. Thus, finding the

minimum ratio cut of an arbitrary graph is also NP-hard.
The only remaining difficulty is that the minimum-ratio-

cut problems produced by the above reduction may contain
edges whose second edge weight is zero. The algorithm
presented in Section 3 only supports problems where edges
do not have zero second edge weights. It might be the case
that such a limitation would allow the problem on arbitrary
graphs to be solved in polynomial time as well. The
following lemma shows that this is not the case:
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2. Aumann and Rabani [18] call this problem minimum cut ratio. We
change the name here since we use the term “minimum cut ratio” to mean
something different in this paper.

Fig. 3. An illustration of the method for constructing G0 from ĜG to reduce negative-cost cycle to minimum-cost perfect matching. Adapted from

Fig. 12.22 of Ahuja et al. [13].

Fig. 4. An illustration of the correspondence between a cycle, the thick edges in (a), and a perfect matching, the thick edges in (b), using the

reduction from Fig. 3.



Lemma 6. For any graph G with integral w1 and nonnegative
integral w2, where all cuts ðA;BÞ satisfy c2ðA;BÞ > 0, there
exists a rational � > 0 such that the minimum ratio cuts of G,
when replacing all w2ðu; vÞ ¼ 0 with w2ðu; vÞ ¼ �, are also
minimum ratio cuts of G with the original w2.

This lemma shows that any minimum-ratio-cut problem
with nonnegative second edge weights can be reduced to a
minimum-ratio-cut problem with positive second edge
weights. If the original problem has only integral first and
second edge weights, the new problem has only integral
first edge weights but might have nonintegral rational
second edge weights. However, Lemma 3 shows that a
minimum-ratio-cut problem with rational first and second
edge weights can be reduced to a minimum-ratio-cut
problem with integral first and second edge weights by
scaling the weights. This scaling factor is the denominator
of � and is a polynomial function of the original edge
weights. Thus, the problem of finding a minimum ratio cut
of an arbitrary graph remains NP-hard even under the
constraint that all second edge weights are positive.

5 THE BASELINE METHOD FOR USING RATIO CUT

FOR IMAGE SEGMENTATION

One can use ratio cut to segment images at the pixel level.
Because the algorithm presented in Section 3 is limited to
planar graphs, we construct grid graphs from images where
vertices correspond to pixels and edges correspond to
Manhattan-neighboring pixel pairs. We take some decreas-
ing function of the intensity difference between neighboring
pixels as the first edge weights. We will describe the various
edge-weight functions that we have used in greater detail in
Sections 5.2 and 6.2. We first discuss a method for
partitioning an image into multiple segments by recursively
bipartitioning the image. We refer to the image-segmenta-
tion method that recursively bipartitions an image using the
edge-weight functions and termination criterion discussed
in this section as the baseline method.

5.1 Recursive Bipartitioning

The algorithm presented in Section 3 bipartitions a graph into

two components. For image segmentation, we may wish to

partition the corresponding graph into more than two

components. We do this by recursively bipartitioning the

graph, terminating the recursive bipartitioning when the

segment corresponding to a component is sufficiently

homogeneous. A natural question arises: What is a good

measure of the homogeneity of a segment or component? One

popular definition is the variance of the pixel intensity within

the segment or component. Because this method ignores the

spatial relations between pixels, it may not agree with human

perceptual judgment. A simple example is shown in Fig. 5.

Figs. 5a and 5b have the same intensity variance; however, the

image shown in Fig. 5a is perceptually more homogeneous

than that in Fig. 5b. The main reason for this is that the pixel

intensities in Fig. 5a vary gradually, without any abrupt

changes due to edges. Thus, pixel-intensity variance is not a

suitable homogeneity measure.
We propose, instead, using the minimum cut ratio of a

graph G as a measure of its homogeneity. We refer to this
homogeneity measure as HðGÞ. This homogeneity measure

will correctly determine that Fig. 5a constitutes a single

homogeneous segment while Fig. 5b does not.
A desired property of a recursive segmentation process

is that, at each step, the child segments be more homo-
geneous than their parent. The following lemma shows that
using HðGÞ as the homogeneity measure and ratio cut as
the segmentation method has this desired property:

Lemma 7. If ðG1; G2Þ is a minimum ratio cut of the connected
planar graphGand ðG11; G12Þ is a minimumratio cut ofG1, then

RcutðG1; G2Þ � RcutðG11; G12Þ:

Fig. 6 illustrates the cases that arise when proving this
lemma. From this lemma, it follows that HðG1Þ � HðGÞ and
HðG2Þ � HðGÞ when ðG1; G2Þ is a minimum ratio cut of G.
Thus, it makes sense to select a homogeneity threshold HT

and terminate the recursive bipartitioning when segment
homogeneity is larger than this threshold.

5.2 Edge-Weight Functions

In principle, one can use numerous different methods for

computing edge weights for G that incorporate a variety of

image features such as intensity, color, texture, depth, or

even higher-level knowledge. In this paper, we limit our

discussion to one particular class of edge-weight functions

based on intensity difference. We take some decreasing

function g of the intensity difference fðu; vÞ between

neighboring pixels that correspond to the vertices u and v

as the first edge weights.3 Let fðu; vÞ ¼ jIðxðuÞ; yðuÞÞ ÿ
IðxðvÞ; yðvÞÞj be the absolute intensity difference between

the pixels that correspond to the vertices u and v in image I,

where ðxðuÞ; yðuÞÞ denotes the image coordinates of the

pixel corresponding to vertex u. Two possible candidates

for g are a Gaussian decreasing function:

gðzÞ ¼ eÿ
z2

�2

and a linear decreasing function:

gðzÞ ¼ ÿz:

Since the former has a free parameter �, it is less desirable
than the latter. We take w1ðu; vÞ ¼ gðfðu; vÞÞ.
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3. Because our implementation uses integer-valued edge weights, it
linearly normalizes the output of the edge-weight functions to integers in
the range ½0; 3� 255�.

Fig. 5. An illustration of why pixel-intensity variance is ill-suited as a
measure of segment homogeneity. The intensity of image (a) varies
uniformly from 0, at the left, to 255, at the right. The intensity of image (b)
varies uniformly from 0, at the left, to 128, in the center, then abruptly
changes to 255, and finally varies uniformly from 255 to 129, at the right.
While the sets of pixel intensities in these two images have the same
statistical properties, (a) appears to contain a single segment, while
(b) appears to contain two segments.



Previous authors [1], [2], [3], [8] have noted that graph-

based image segmentation is often sensitive to the choice of

edge-weight function. Prior work typically adopts a Gaussian

edge-weight function. One reason for this is that, with some

cost functions, Gaussian edge-weight functions tend

to produce fewer spurious cuts than linear edge-weight

functions. We find that this is not so with the baseline method.

Furthermore, with Gaussian edge-weight functions, segmen-

tation can be sensitive to the choice of �.

Our baseline method is less sensitive to the choice of

decreasing function g. This is illustrated by the synthetic

binary image in Fig. 7. With the baseline method, setting

w1ðu; vÞ ¼ gðfðu; vÞÞ andw2ðu; vÞ ¼ 1, where fðu; vÞ is defined

as above, choosing any decreasing function gwill result in the

proper segmentation, as shown in Fig. 7.

To further illustrate the relative insensitivity of the

baseline method to the choice of decreasing function g, we

processed the five images shown in column 1 of Fig. 8 with the

baseline method using both a Gaussian decreasing function g,

as shown in columns 2 and 3, and a linear decreasing function

g, as shown in columns 4 and 5. This illustrates that the

baseline method produces similar results with both decreas-

ing functions. This is in contrast to performing recursive

bipartitioning with the normalized-cut cost function. Col-

umns 6 and 7 of Fig. 8 show the results of processing the same

input images with a baseline method based on the normal-

ized-cut cost function. Note that this is not the implementa-

tion of normalized cut due to Tal [12] that is used in Figs. 15

and 16. It does not include texture and is our own

implementation of the baseline technique from Shi and Malik

[7]. This baseline normalized-cut method recursively biparti-

tions an image using the normalized-cut cost function for

both bipartitioning and the termination criterion and uses the

same edge-weight functions as our baseline ratio-cut method.

We use analogous recursive bipartitioning methods, edge-

weight functions, and termination criteria for both ratio cut

and normalized cut to focus the comparison on the cost

functions of the corresponding baseline methods without

possible extensions. For this experiment, we used the same

value of � when using a Gaussian decreasing function for all

images. For each image, a different value of �, sometimes

higher sometimes lower, can yield a better segmentation

using normalized cut. However, we wish to compare the

methods with a uniform set of parameters. Thus, we have

chosen a single value for � that yields the best aggregate

segmentations on all images according to informal human

judgment. Note that, while the baseline normalized-cut

method yields dramatically different results depending on

the choice of decreasing function g, the results of the baseline

ratio-cut method do not vary as widely. Since the linear

decreasing function has fewer free parameters than the

Gaussian decreasing function and is thus more desirable, the

fact that the baseline method works well with a linear

decreasing function gives some indication that it might form

the basis of a good method for low-level image segmentation.

6 THE EXTENDED METHOD FOR USING RATIO CUT

FOR IMAGE SEGMENTATION

While the baseline method exhibits the properties discussed
earlier, it has certain disadvantages. It is sensitive to salt-
and-pepper noise and blurry edges, it can produce spurious
cuts, and it can be slow in practice even though we use a
polynomial-time algorithm. Sensitivity to noise and blurry
edges, as well as the spurious-cut problem, result, in part,
from the fact that our edge weights are pixel-based rather
than region-based. To address these disadvantages, we
extend the baseline method with a number of extensions.

First, we postprocess the result to merge very small

segments into neighboring segments. Second, we use the

same cut-ratio cost function to partition a graph whose

vertices correspond to image regions instead of image pixels

to incorporate region information into the edge weights. This

process can be iterated, performing an initial segmentation

based on pixels and having subsequent iterations use the

segments produced by the previous iteration as the vertices in

the graph. Finally, we show a blocking heuristic for quickly

segmenting a large image by combining the segmentation

results for subimages. While this heuristic compromises the

provable optimality of the solution, in practice, we find that it

does not appreciably reduce the quality of the resulting

segmentations. We refer to the image segmentation method

that incorporates these extensions into the baseline method as

the extended method.
The baseline method can produce segmentations that

contain spurious cuts that do not correspond to image

edges. The cause of this phenomenon is illustrated in
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Fig. 6. The relations between the cut boundaries during recursive bipartitioning.

Fig. 7. Applying the baseline method to a synthetic binary image.
(a) Input image. (b) Segmentation after the first bipartitioning step.
(c) Segmentation after four bipartitioning steps.



Fig. 9. Suppose that the desired cut, that corresponds to

image edges, is ðA;B [ CÞ. Suppose that the cut ðB;CÞ,
that does not correspond to image edges, has a large cut

ratio. In this case, the minimum ratio cut of A [B [ C
may be ðA [ C;BÞ, when RcutðA;BÞ < RcutðA;CÞ and

c2ðB;CÞ � c2ðA;CÞ < c2ðA;BÞ. In other words, the cut

ratio of the spurious cut ðA [ C;BÞ

c1ðA;BÞ þ c1ðB;CÞ
c2ðA;BÞ þ c2ðB;CÞ

can be less than the cut ratio of the desired cut ðA;B [ CÞ

c1ðA;BÞ þ c1ðA;CÞ
c2ðA;BÞ þ c2ðA;CÞ

even though the boundary betweenA andC has greater total

image intensity difference than the boundary betweenB and

C (i.e., c1ðA;CÞ < c1ðB;CÞ, because c1 measures the negation

of the total image intensity difference) when c2ðB;CÞ, the

length of the boundary between B and C, is much smaller

than c2ðA;CÞ, the length of the boundary between A and C.
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Fig. 8. Applying the baseline method to five images. The results are depicted both by the segmentation boundaries (columns 2 and 4) and by painting
each segment with the average intensity in that segment (columns 3 and 5). We use � ¼ 80 for ratio cut with a Gaussian decreasing function. This is
not excessively large given that we normalize pixel-intensity values to the range ½0; 3� 255�. For comparison, we show the results of an analogous
baseline method using the normalized-cut cost function instead of the cut-ratio cost function. Following Shi and Malik [7], our baseline normalized-cut
implementation normalizes fðu; vÞ to ½0; 1�, thus our values of � and HT for normalized cut are different than those used for ratio cut. Images (a), (b),
(c), and (d) are the same as those in Figs. 16c, 16d, 16e, and 15c except that they have been subsampled by a factor of 2 to allow them to be
processed by our baseline normalized-cut implementation.



Nonetheless, subsequent recursive bipartitioning will likely

segment regionA [ C intoAandC. The iterated region-based

segmentation method introduced in Section 6.2 mitigates the

problem of spurious cuts to a large extent by incorporating

region information into the edge-weight functions.

6.1 Removing Very Small Segments

The baseline method is overly sensitive to salt-and-pepper
noise in the input image. Because the cut-ratio cost function
does not include a bias against small segments, salt-and-
pepper noise leads to many such segments. Not only does
this affect the quality of the segmentations produced, it also
negatively impacts the running time of the algorithm.
Furthermore, the effectiveness of the baseline method is
reduced when the input image has blurry edges. Again,
because of a lack of bias against small segments, this leads to
many such segments along the blurry edge boundaries. One
simple way of mitigating this problem is to postprocess the
output of the baseline method to remove very small
segments. We repeatedly search for the smallest segment
Ai, with fewer than AT pixels, and merge it with the
neighboring segment Aj, with the largest cut ratio. Note that
such postprocessing uses the cut-ratio cost function.
Following Wu and Leahy [1], all experimental results for
the remainder of this paper use AT ¼ 5. This postprocessing
approach to dealing with salt-and-pepper noise and blurry
edges does not address the running time of the algorithm.
This aspect of the problem is mitigated, to a large extent, by
the iterated region-based segmentation method and the
blocking heuristic introduced in Sections 6.2 and 6.3.

6.2 Iterated Region-Based Segmentation

So far, we have been segmenting images at the pixel level and
taking the affinity between neighboring pixels to be some
decreasing function of the absolute intensity difference
between those pixels. This is a very local affinity measure.
Incorporating information about the region around a pixel
can give a better measure of affinity and lead to better
segmentation results. One way to do this is to perform an
initial segmentation using only the local affinity measure and
then use this segmentation to remeasure the affinity between
segments and use these segments and associated affinities for
subsequent resegmentation. Such iterated region-based
approaches have been investigated by Sharon et al. [19],
[20] for normalized-cut–like cost functions.

So far, we have been using ratio cut in the restricted case
with unity second edge weights applied to grid graphs whose
vertices correspond to pixels in the input image. This
corresponds to the mean-cut method of Wang and Siskind
[10]. Generalizing mean cut to ratio cut, however, allows us to
perform iterated region-based segmentation where graph
vertices in subsequent iterations correspond to image regions
instead of pixels. These regions are derived from segments
produced by earlier iterations and lead to nongrid graphs.

More specifically, we perform an initial segmentation
using mean cut. We then repeatedly derive a new segmenta-
tion from the previous segmentation. In this iterated process,
we take the segments from the previous segmentation as
vertices in a new graph and construct edges between vertices
corresponding to neighboring segments. One can use any
region-similarity measure to derive the first edge weights of
this new graph. Like before, we define w1ðu; vÞ ¼ gðfðu; vÞÞ
and retain the same decreasing functions g as before. We
generalize the definition of fðu; vÞ to be a region difference
instead of a pixel intensity difference as follows: First, let
RðuÞ denote the region corresponding to vertex u, AðuÞ
denote the set of vertices in the previous iteration that has
been condensed into vertex u in the current iteration, IðRÞ
denote the average pixel intensity of region R, and
hðu; vÞ ¼ jIðRðuÞÞ ÿ IðRðvÞÞj. Note that hðu; vÞ is the absolute
difference between the average intensities of the regions
corresponding to vertices u and v. We take fðu; vÞ ¼
�hðu; vÞc2ðAðuÞ; AðvÞÞ þ ð1ÿ �Þc1ðAðuÞ; AðvÞÞ We then take
c2ðAðuÞ; AðvÞÞ in the previous graph as thew2ðu; vÞ in the new
graph. This maintains the invariant that w2ðu; vÞ in any
iteration corresponds to the length of the boundary that
separates RðuÞ and RðvÞ. The blending factor � governs the
relative importance of information gained during a previous
segmentation in constructing a new segmentation. When
� ¼ 0, the first edge weights are preserved from one iteration
to the next. In this case, the segmentation of this new graph
will be the same as the segmentation of the previous graph.
When 0 < � � 1, information gained in a previous segmen-
tation influences the new segmentation process. All experi-
mental results in this paper use � ¼ 0:5. Fig. 10 illustrates the
results of applying the baseline method augmented with
removal of segments with fewer than five pixels and iterated
region-based segmentation to the same images as in Fig. 8.
This experiment, and all remaining experiments in this
paper, use four iterations, with the termination criteria
HT ¼ 740, HT ¼ 720, HT ¼ 700, and HT ¼ 680, respectively.

Note that iterated region-based segmentation makes use of
two properties that ratio cut generalizes over mean cut. First,
in all but the first iteration, the second edge weights may not
be unity. Second, in all but the first iteration, the graph may
not be grid-like.

6.3 Heuristics for Speeding Up the Implementation

In practice, the running time of our method appears to be
dominated by the time needed to compute minimum-cost
perfect matchings. Gabow [21] gives an upper bound of
OðjV j

3
4jEj logNÞ for computing minimum-cost perfect match-

ings on arbitrary graphs with integral edge weights, whereN
is the maximal edge-weight magnitude. In practice, we find
that a bounded number of iterations of minimum-cost perfect
matching are needed to compute a minimum ratio cut. (See
Section 3.2 for statistics.) Furthermore, in the graphs that we
construct, jEj is bounded by a constant times jV j. Thus, in
practice, our method takes OðjV j

7
4Þ to find a minimum ratio

cut. Since, in the first iteration of region-based segmentation,
jV j is the number of pixels in the image, our method scales
with approximately the fourth power of the image resolution.

While, in theory, we have a polynomial-time algorithm for
finding a minimum ratio cut, in practice, recursively
bipartitioning a large image with ratio cut using the
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Fig. 9. An illustration of the cause behind spurious cuts.



techniques described above can be slow. Nonetheless, the

iterated region-based technique described in Section 6.2 can

be used to derive a faster approach. The first iteration of the

region-based technique is slow because it operates on a large

graph containing vertices for all pixels in the input image. But,

subsequent iterations are fast because the graphs contain

vertices only for image regions that correspond to segments

produced by earlier iterations. Thus, we replace the first

iteration with the following method:

1. Divide the input image into overlapping subimages
that cover the input image as shown in Fig. 11.

2. Segment each subimage using mean cut, setting the
termination criterion to intentionally oversegment
the subimage.

3. Form the set of all segments produced in Step 2.
Whenever there are two overlapping segmentsR1 and
R2, replace them with the set of connected components

of fR1 \R2; R1 nR2; R1 nR2g. This will produce a
disjoint partition of the input image into regions.

We then perform subsequent iterations using the same
region-based technique as described in Section 6.2. Sharon
et al. [19], [20] have employed a similar blocking heuristic for
speeding up image segmentation with normalized-cut-like
cost functions.
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Fig. 11. An illustration of the blocking heuristic for computing the first
iteration of an iterated region-based segmentation using overlapping
subimages. The solid and dashed lines indicate the boundaries between
two different overlapping sets of subimages.

Fig. 10. An illustration of the results of applying the baseline method, augmented with removal of segments with fewer than five pixels and iterated
region-based segmentation, to the same images as in Fig. 8. Subsequent iterations are shown from left to right. Since subsequent iterations can only
contain boundaries that appear in earlier iterations, the leftmost (first) iteration intentionally oversegments the input image to avoid missing potential
boundaries.



This new first iteration is substantially faster than the
original technique since it operates on small subimages
rather than the whole image. We divide the image into
overlapping subimages and choose to intentionally over-
segment these subimages to reduce the chance that we fail to
include some image edge in the input to subsequent
iterations. The artifacts introduced by the subimage bound-
aries and oversegmentation will be eliminated in subsequent
iterations. While this may lead to suboptimal partitions in
theory, in practice, it yields results that are very similar to
those produced by the original technique. Fig. 12 illustrates
the results of repeating the same experiment as shown in
Fig. 10, where the first iteration has been modified to use this
blocking heuristic and all other parameters remain un-
changed. This experiment, and all remaining experiments in
this paper, use a block size of 32� 32. This constitutes our full

extended method that incorporates removal of segments
with fewer than five pixels, iterated region-based segmenta-
tion, and the blocking heuristic.

7 IMPLEMENTATION

We have implemented the techniques described in this
paper.4 Our implementation of ratio cut uses the blossom4
implementation of minimum-cost perfect matching [22]. We
use a special-purpose method, limited to grid graphs, for
computing the dual graph of the graph corresponding to the
input image. This method, illustrated in Fig. 13, is summar-
ized as follows:
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Fig. 12. A repetition of the same experiment as shown in Fig. 10 where the first iteration has been modified to use the blocking heuristic. The CPU
times (in seconds) for the full segmentation process are shown. Note that the method is significantly faster than the method illustrated in Fig. 10, yet
the results are similar.

4. The source code for our implementation and images and scripts for
producing all of the examples in this paper are available from ftp://
ftp.ecn.purdue.edu/qobi/ratio-cut.tar.Z.



1. For every grid inG, ĜG contains a corresponding vertex
located in the center of this grid. These vertices are
called basic vertices and form a new grid system.

2. ĜG contains a distinct vertex for each border of G.
These vertices are called auxiliary vertices.

3. Each nonborder edge e 2 E is mapped to a corre-
sponding edge êe 2 ÊE, with the same weights, that
crosses e, in the grid system of ĜG, as shown in Fig. 13.

4. Each border edge e 2 E is mapped to a correspond-
ing edge êe 2 ÊE, with the same weights, that crosses e
and connects a border vertex to the auxiliary vertex
for that border, as shown in Fig. 13.

Since this method is applicable only to grid graphs, we use

LEDA [23] for computing the dual of nongrid graphs.
Nominally, we need to compute the dual graph at every

recursive bipartitioning step. However, we have developed a

technique for deriving the dual graphs of the child compo-

nents produced by minimum ratio cut from the dual graph of

the parent. This eliminates the need to compute the dual at

recursive bipartitioning steps. With this technique, the first

iteration of a region-based segmentation requires the com-

putation of a single dual of a grid graph using our special-

purpose method. Each subsequent iteration requires the

computation of a single dual of a nongrid graph using LEDA.
Our method for deriving ĜG1 and ĜG2 from ĜG, after ratio cut

bipartitionsG intoG1 andG2, is illustrated in Fig. 14 and can
be summarized as follows:

1. Remove edges in ĜG that are in the minimum ratio
cycle C that corresponds to the cut ðG1; G2Þ.

2. Label each edge êe 2 ĜG with i 2 f1; 2g, if the

corresponding edge e from G is in Gi.
3. Merge all vertices mentioned in C into a single new

auxiliary vertex a. Replace any edge that is incident
on a vertex mentioned in C with an edge of the same

weights and label that is instead incident on a.
4. Label each vertex in ĜG with the same label as its

incident edge. Note that it is not possible for a vertex

to have two incident edges with different labels.
5. Split a into new auxiliary vertices a1 and a2, labeled 1

and 2, respectively. Each edge labeled i that is

incident on a is replaced with an edge of the same

weights and label that is incident on ai.
6. ĜGi is the collection of vertices and edges with label i.

The following lemma shows that this technique is correct.

Lemma 8. The graphs ĜG1 and ĜG2 produced by the above
algorithm are the duals of G1 and G2.

8 EXPERIMENTAL RESULTS

An accurate and thorough comparison of the performance of

ratio cut relative to the other graph-based image segmenta-

tion techniques discussed in Section 1 is beyond the scope of
this paper. Nonetheless, it is instructive to illustrate the

performance of our extended ratio-cut method on a

collection of images and informally compare the results

with those produced by another current state-of-the-art
image-segmentation program. For this comparison, we have

chosen the implementation of normalized cut due to Tal [12]

which implements the techniques of Malik et al. [11].
We have processed 10 images with our extended ratio-cut

method and compared the results to normalized cut. This
image set includes five medical images, shown in Fig. 15, and
five natural images, shown in Fig. 16. Our extended ratio-cut
method was run with the same parameters on all 10 images.
All extended-method results illustrate the last iteration of a
four-iteration segmentation using a linear decreasing func-
tion for all iterations. Normalized cut was also run with the
same parameters on all 10 images, namely, the default
parameters given in the file ncuts_params.txt included
in Tal [12]. These default parameters specified the use of a
Gaussian decreasing function.

These images illustrate some of the important properties of
ratio cut. Most, if not all, of the images require the image
perimeter to be segmented. This is most clearly visible in
Figs. 16c, 16d, and 16e, where image edges extend to the
image perimeter. The lack of a size bias proves useful in
segmenting the facial features of the bear in Fig. 16a and the
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Fig. 13. An illustration of the special-purpose method for constructing the
dual ĜG of a grid graph G. The mapping from ei to êei illustrates the
transformation of border edges, while the mapping from ej to êej
illustrates the transformation of nonborder edges.

Fig. 14. Illustration of the algorithm for splitting ĜG into ĜG1 and ĜG2.



young woman in Fig. 16d as well as the small windows and
doors in Fig. 16e. The lack of a shape, smoothness, or
boundary-length bias proves useful in segmenting the gray
matter regions of the brain images in Figs. 15a and 15c.
Finally, most of the images illustrate the fact that ratio cut
produces segmentation boundaries that are well-aligned
with image edges. This is particularly evident in Figs. 15b,
15d, 15e, and 16b.

9 CONCLUSION

We have presented cut ratio, a new cost function for graph-

based image segmentation, and ratio cut, a new algorithm

for finding a cut that minimizes this cost function. Using

this cost function for graph-based image segmentation has

several properties. It allows the image perimeter to be

segmented. It guarantees that the components produced by

bipartitioning are connected. It does not introduce a size,

shape, smoothness, or boundary-length bias. The lack of

bias allows it to produce segmentations where boundaries

are aligned with image edges. An optimal bipartition can be

found in polynomial time. These properties may be useful

for some image-segmentation applications. We have pre-

sented two methods for segmenting images using ratio cut.

One, a baseline method, recursively bipartitions an image at

the pixel level using ratio cut with an edge-weight function

defined as some decreasing function of the absolute
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Fig. 15. A comparison between the extended ratio-cut method and normalized cut on five medical images.



intensity difference between neighboring pixels and a

homogeneity measure based on cut ratio as the termination

criterion. The other, an extended method, adds several

extensions to the baseline method: removal of very small

segments, iterated region-based segmentation, and a block-

ing heuristic. We have implemented the methods described

in this paper and make our implementation available to

other researchers. Finally, we have illustrated that our

methods produce results that are comparable with current

state-of-the-art graph-based image-segmentation methods

on a set of medical and natural images. These results lead us

believe that the cut-ratio cost function is a promising

approach to image segmentation.
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Image Segmentation with Ratio Cut—Supplemental Material
Song Wang1 Jeffrey Mark Siskind2

that both A and B are connected.

Proof: Let (A,B) be a minimum ratio cut of G. Let A1, . . . , Am be the connected components of A. Let Bi
denote B ∪

⋃
j 6=i

Aj . We will show that for some k

Rcut(Ak, Bk) ≤ Rcut(A,B)

Since
m∑
i=1

c1(Ai, Bi)

m∑
i=1

c2(Ai, Bi)

=
c1(A,B)
c2(A,B)

we have

min
i

c1(Ai, Bi)
c2(Ai, Bi)

≤ c1(A,B)
c2(A,B)

Choose k such that
c1(Ak, Bk)
c2(Ak, Bk)

= min
i

c1(Ai, Bi)
c2(Ai, Bi)

According to the premise that (A,B) is a minimum ratio cut, we get

c1(Ak, Bk)
c2(Ak, Bk)

=
c1(A,B)
c2(A,B)

Thus (Ak, Bk) is also a minimum ratio cut for which Ak is connected. Symmetric application of the above
reasoning will yield a cut where both components are connected. 2

Lemma 2 For every dual Ĝ of G, there is a one-to-one correspondence between the connected minimum
ratio cuts in G and the minimum ratio cycles in Ĝ.

Lemma 3 Transforming the first edge weights of an undirected graph by the linear function w′1 = aw1− bw2

of the original edge weights w1 and w2 with a > 0 does not change its minimum ratio cycles.

Proof: Let c′1(C) =
∑

(u,v)∈C

w′1(u, v). Assume Cmin is a minimum ratio cycle. Then, for any other cycle C,

we have
c1(Cmin)
c2(Cmin)

≤ c1(C)
c2(C)

Then we have
c′1(Cmin)
c2(Cmin)

= a
c1(Cmin)
c2(Cmin)

− b ≤ ac1(C)
c2(C)

− b =
c′1(C)
c2(C)

Thus Cmin is still a minimum ratio cycle. 2
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This supplemental material contain the proofs from [1] that were omitted from [2].

Lemma 1 There exists a minimum ratio cut (A,B) of every connected graph G that satisfies the condition



Lemma 4 Let Ĝ′(b) denote Ĝ with edge weights w′1 derived from the edge weights w1 in Ĝ by the trans-
formation w′1 = w1 − bw2. A graph Ĝ has a minimum ratio cycle C with cycle ratio b∗ if and only if the
minimum cycle cost of Ĝ′(b∗) is zero.

Lemma 5 Ĝ contains a negative-cost cycle if and only if G′ has a negative-cost perfect matching.

Proof: To prove the forward direction, assume Ĝ has a negative-cost cycle C. Select an arbitrary direction
for this cycle and direct the edges according to this cycle direction. We can construct a perfect matching M
in G′ from C as follows:

1. M contains the two edges (u1, uv) and (vu, v2) for each directed edge (u, v) ∈ C. Note that the total
weight of these edges is the same as that of C.

2. M contains the zero-weight edge (uv, vu) for each edge (u, v) 6∈ C.

3. M contains the zero-weight edge (u1, u2) for each vertex u that is not mentioned in C.

M is thus a perfect matching with the same (negative) total cost as C.
To prove the converse, we show a mapping from a minimum-cost perfect matching M in G′ with negative

cost to a set of negative-cost cycles S = {C1, . . . , Cl} in Ĝ. S contains those edges (u, v) for which M
contains either (u1, uv) or (u2, uv). First, we show that S is a set of simple cycles. M can contain at most
one of (u1, uv) and (u2, uv). If M contains either (u1, uv) or (u2, uv), it must also contain either (v1, vu)
or (v2, vu) and must not contain any of (uv, vu), (u1, u2), and (v1, v2). If M contains neither (u1, uv) nor
(u2, uv), it must contain (uv, vu) and must not contain any of (v1, vu) and (v2, vu). If M contains (u1, uv),
it must also contain (u2, tu), for some other vertex t. Likewise, if M contains (u2, uv), it must also contain
(u1, tu), for some other vertex t. This means that every vertex that appears in S must have precisely two
incident edges in S and thus the connected segments in S must be cycles. Finally, we show that the cycles
in S must have non-positive cost. The sums of the edge weights in S and M are the same. If S contains
some C that has positive cost, we can remove C from S to yield a corresponding perfect matching in G′

with lower cost and thus M is not a minimum-cost perfect matching. 2

Lemma 6 For any graph G with integral w1 and nonnegative integral w2, where all cuts (A,B) satisfy
c2(A,B) > 0, there exists a rational ε > 0 such that the minimum ratio cuts of G when replacing all
w2(u, v) = 0 with w2(u, v) = ε are also minimum ratio cuts of G with the original w2.

Proof: Let Rcut(A,B) and Rcut′(A,B) denote the cut ratio of the cut (A,B) using the original and modified
second edge weights respectively. The proof proceeds as follows. First, we derive an upper bound δ1 on the
difference between Rcut(A,B) and Rcut′(A,B) for any cut (A,B). Next, we derive a lower bound δ2 on
the difference between Rcut(A1, B1) and Rcut(A2, B2) for any two cuts (A1, B1) and (A2, B2) whenever
Rcut(A1, B1) 6= Rcut(A2, B2). Finally, we find an ε such that δ1 < 1

2δ2. Such an ε guarantees that the
partial order of all cuts induced by the cut ratio is preserved, i.e. that, for any two cuts (A1, B1) and
(A2, B2), if Rcut(A1, B1) < Rcut(A2, B2), then Rcut′(A1, B1) < Rcut′(A2, B2), Thus any cut (A,B) that
minimizes Rcut′(A,B) also minimizes Rcut(A,B).

Let us now derive δ1. Let Z(A,B) denote the number of edges (u, v) between A and B with w2(u, v) = 0,
Z(G) denote the number of edges (u, v) in G with w2(u, v) = 0, c1+(G) =

∑
(u,v)∈E

|w1(u, v)|, and w2(G) =

min
(u,v)∈E,w2(u,v)>0

w2(u, v).

|Rcut(A,B)− Rcut′(A,B)| =
∣∣∣∣c1(A,B)
c2(A,B)

− c1(A,B)
c2(A,B) + εZ(A,B)

∣∣∣∣ (1)

= |c1(A,B)|
(

1
c2(A,B)

− 1
c2(A,B) + εZ(A,B)

)
(2)

≤ |c1(A,B)|
(

1
c2(A,B)

− 1
c2(A,B) + εZ(G)

)
(3)



≤ c1
+(G)

(
1

c2(A,B)
− 1
c2(A,B) + εZ(G)

)
(4)

= c1
+(G)

(
εZ(G)

c2(A,B)[c2(A,B) + εZ(G)]

)
(5)

≤ c1
+(G)

(
εZ(G)

w2(G)[w2(G) + εZ(G)]

)
(6)

4
= δ1 (7)

Step (3) holds because Z(A,B) ≤ Z(G). Step (4) holds because |c1(A,B)| ≤ c1+(G). Step (6) holds because
c2(A,B) ≥ w2(G).

Let us now derive δ2. Let c2(G) =
∑

(u,v)∈E

w2(u, v).

|Rcut(A1, B1)− Rcut(A2, B2)| =
∣∣∣∣c1(A1, B1)
c2(A1, B1)

− c1(A2, B2)
c2(A2, B2)

∣∣∣∣ (8)

=
|c1(A1, B1)c2(A2, B2)− c1(A2, B2)c2(A1, B1)|

c2(A1, B1)c2(A2, B2)
(9)

≥ 1
c2(A1, B1)c2(A2, B2)

(10)

≥ 1
c2(G)2

(11)

4
= δ2 (12)

Since Rcut(A1, B1) 6= Rcut(A2, B2) and all edge weights are integers

|c1(A1, B1)c2(A2, B2)− c1(A2, B2)c2(A1, B1)| ≥ 1

This allows step (10) to hold. Step (11) holds because c2(A1, B1) ≤ c2(G) and c2(A2, B2) ≤ c2(G).
Now let us constrain δ1 <

1
2δ2.

c1
+(G)

(
εZ(G)

w2(G)[w2(G) + εZ(G)]

)
<

1
2c2(G)2

Thus

ε <
w2(G)2

Z(G)[2c1+(G)c2(G)2 − w2(G)]

Take ε to be half the above value. Note that this value is rational. 2

Lemma 7 If (G1, G2) is a minimum ratio cut of the connected planar graph G and (G11, G12) is a minimum
ratio cut of G1, then

Rcut(G1, G2) ≤ Rcut(G11, G12)

Proof: Let Ĝ and Ĝ1 be duals of G and G1 respectively. Let C and C1 be the minimum ratio cycles in Ĝ
and Ĝ1 that correspond to the minimum ratio cuts (G1, G2) and (G11, G12) respectively. There are two cases
to consider. In the first case, C and C1 do not share any vertices. This case is illustrated in figures 6(a)
and 6(b). Since C1 is also a cycle in Ĝ, it cannot have lower cycle ratio than C and thus the cut ratio of
(G11, G12) must not be less than the cut ratio of (G1, G2).

In the second case, C and C1 share vertices. This case is illustrated in figures 6(c) and 6(d). Breaking C
where it meets C1 bipartitions C into two paths Ca and Cb. Assume the desired conclusion does not hold,
namely Rcut(G1, G2) > Rcut(G11, G12). By lemma 2, CR(C) > CR(C1). Since

c1(Ca) + c1(Cb)
c2(Ca) + c2(Cb)

= CR(C)



without loss of generality, we assume that

CR(Ca) =
c1(Ca)
c2(Ca)

≤ CR(C) ≤ c1(Cb)
c2(Cb)

= CR(Cb)

From this we have

CR(Ca ∪ C1) =
c1(Ca ∪ C1)
c2(Ca ∪ C1)

<
c1(C)
c2(C)

= CR(C)

Since Ca ∪ C1 is a cycle in Ĝ, this breaks the premise that C is a minimum ratio cycle in Ĝ. 2

Lemma 8 The graphs Ĝ1 and Ĝ2 produced by the above algorithm are the duals of G1 and G2.

Proof: Removal of the edges in G that correspond to C in Ĝ bipartitions G into G1 and G2. There are three
possibilities for edges ê in Ĝ: either ê ∈ C, ê 6∈ C but ê is adjacent to some edge in C, or ê 6∈ C and ê is not
adjacent to any edge in C. Case one: it is obvious that the edges ê ∈ C correspond to the edges between G1

and G2 and thus are not contained in either G1 or G2. Case two: all edges ê 6∈ C that are adjacent to some
edge in C will become adjacent after splitting since the corresponding edges in G form a new face and thus
require a new auxiliary vertex a as created in step (4). Case three: any face in G containing an edge e where
ê 6∈ C and ê is not adjacent to some edge in C will be retained unchanged in either G1 or G2 and thus the
vertices in Ĝ corresponding to these faces will also be retained in Ĝ1 or Ĝ2. The reason for this is that if e1

and e2 are two edges shared by the same face in G, the corresponding edges ê1 and ê2 are adjacent in Ĝ.
Finally, note that bipartitioning G yields two disjoint graphs G1 and G2. Thus the corresponding duals Ĝ1

and Ĝ2 must also be disjoint and cannot share the same auxiliary vertex a. Splitting a into a1 and a2 in
step (6) separates the dual of G into Ĝ1 and Ĝ2. 2
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