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Introducing a New Problem:
Shape-from-Silhouette When the Relative
Positions of the Viewpoints Is Unknown

Andrea Bottino and Aldo Laurentini, Member, IEEE

Abstract—3D shapes can be reconstructed from 2D silhouettes by back-projecting them from the corresponding viewpoints and
intersecting the resulting solid cones. However, in many practical cases as observing an aircraft or an asteroid, the positions of the
viewpoints with respect to the object are not known. In these cases, the relative position of the solid cones is not known and the
intersection cannot be performed. The purpose of this paper is introducing and stating in a theoretical framework the problem of
understanding 3D shapes from silhouettes when the relative positions of the viewpoints are unknown. The results presented provide a
first insight into the problem. In particular, the case of orthographic viewing directions parallel to the same plane is thoroughly
discussed, and sets of inequalities are presented which allow determining objects compatible with the silhouettes.

Index Terms—Shape-from-silhouette, volume intersection, visual hull, computer vision, object reconstruction.
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1 INTRODUCTION

Acentral problem in computer vision is understanding
the shape of 3D objects from various image features.

Many algorithms are based on occluding contours or
silhouettes. In the latter case, only the contours that occlude
the background are considered. The rationale of this
approach is that silhouettes can usually be obtained with
simple and robust image processing techniques, especially
with controlled background, and silhouette-based techni-
ques do not require finding correspondences between
images. It is worth noting that the problem of reconstruct-
ing an object from its silhouettes is equivalent to the
problem of reconstructing the object from the shadows cast
by point light sources located at the viewpoints.

Two main approaches to recovering shape from silhou-
ettes can be identified [20]. According to one approach, the
surface of the object is estimated, usually from a sequence of
images obtained under known camera motion (see, for
instance, [4], [6], [20], [21]). Curved surfaces are usually
considered. In several cases, the motion is circular and the
object lies on a turntable ([16]). Related problems are
estimating camera motion ([2], [16]) and registering a set of
images [14]. Epipolar geometry plays a basic role in this
approach.

The second approach is volumetric and consists of
building the volume R shared by the regions Ci (Fig. 1)
obtained by back-projecting each silhouette Si from the
corresponding viewpoint.R approximates the objectOmore
or less closely, dependingon the viewpoints andon the shape
ofO itself. This simple reconstruction technique,which holds
for any kind of object and for any set of camera positions, is
called Volume Intersection (VI) (see [1], [4], [15], [17], [18]).

This approach requires the 3D positions of silhouettes
and viewpoints. This is easy to obtain for an object on a
turntable or for a mobile camera in a fixed environment,
but, in several practical situations, this information is not
available. Consider, for instance, objects such as an aircraft,
a vehicle, or an asteroid. In all of these cases, we do not
know the position and orientation of the camera in a
coordinate system fixed with respect to the object. Then, the
relative position of the cones produced by back-projecting
each silhouette from its viewpoint is unknown and VI
cannot be performed. Even if this simple reconstruction
technique is not possible, we would like to get the best of
the available information.

On the ground of these considerations, this paper is aimed
at introducing and exploring the problem of understanding
the3Dshapeof anobject fromasetof silhouettes (or shadows)
obtained from viewpoints (or point light sources) whose
relative position is not known. To the authors’ knowledge,
this problem has not been tackled before.

The rest of this paper is organized as follows: In the next
section, we review some relevant concepts. In Section 1.2,
we introduce the main questions that we will investigate. In
Section 2, we deal with the problem in 2D. In Section 3, we
discuss the compatibility of two parallel silhouettes of
3D objects. In Section 4, we formulate a general condition
for a set of silhouettes to be compatible. In Section 5, we
discuss the case of three silhouettes obtained from ideal
viewpoints parallel to a plane, and present sets of inequal-
ities that must be satisfied for constructing compatible
objects. In Section 6, we discuss how to extend the approach
to four or more silhouettes. Techniques for computing
feasible VI parameters are outlined in Section 7, together
with the simplification introduced by polygonal silhouettes.
Section 8 contains open problems and concluding remarks.

1.1 Visual Hull and Hard Points

In this section, we briefly review some relevant definitions
for our problem. First, the concept of visual hull of an object
[8], [9], [10] allows answering questions such as: Can the
shape of an object be fully understood from its silhouettes?
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If not, which is the closest approximation that can be
obtained? Can an object be distinguished from another
using silhouettes only? The visual hull is the object that can
be obtained by VI using all the viewpoints that belong to a
viewing region completely enclosing the original object
without entering its convex hull. It is also the largest object
that produces the same silhouettes as the given object.

The answers to the previous questions are as follows: An
object can be reconstructed from its silhouettes iff it is
coincidentwith its visual hull. The closest approximation that
can be obtained is the visual hull. We can tell an object from
another using silhouettes iff their visual hulls are different.

Another tool for the shape-from-silhouette approach is
the concept of hard point [9]. A point of the surface of the
reconstructed object R from a set of silhouettes and
viewpoints is hard if it belongs to any object that produces
the same silhouettes from the same viewpoints. The concept
of hard point allows stating a necessary condition for the
reconstruction to be optimal, i.e., the visual hull, and is at
the basis of interactive VI algorithms [3].

1.2 The Main Questions

In the following, for brevity, we will use the expression “set
of silhouettes” to specify a set of silhouettes together with
the position of the corresponding viewpoint with respect to
each silhouette. These data, corresponding to the pinhole
camera model, allow constructing a solid cone for each
silhouette, but not positioning the cones in the 3D space.

For understanding how the 3D shape is related to such a
set of silhouettes, two main questions can be considered:

The first question is: Given a set of silhouettes, does an
object exist able to produce them? For instance, does an
object exist able to produce the three orthographic silhou-
ettes (or shadows) of Fig. 2?

Wewill call compatible a set of silhouettes if the same object
can generate them.An object able to produce a compatible set
of silhouettes will be said to be compatible with the set.

The second question is the main practical issue: How can
we find one or more compatible objects given a compatible
set of silhouettes, as that produced by a real object?

Let us recall that shape-from-silhouettes, at most, allows
constructing the visual hull of an object. Infinite objects can
have the same visual hull. In the following, when not
otherwise explicitly stated, we will use the expressions
“object” and “compatible object” referring to an object

reconstructed by VI. The reconstructed object could be the
visual hull of the real object and, in any case, satisfies the
propertiesofavisualhull (see[8]).For instance, in2DbyVI,we
can only construct convex objects. Equivalently, in 2D, all
visual hulls are convex, or consist of convex parts if not
connected.

Although we have not been able to find completely
general answers to the previous questions, we will present a
set of results that provide a first insight into the problem.

2 THE PROBLEM IN 2D

The problem of reconstructing 2D objects from one-
dimensional parallel or perspective silhouettes with com-
pletely known viewpoints has been analyzed in the research
area known as geometric probing. Optimal interactive
strategies for reconstructing convex polygons (or, using
the concept of visual hull, the visual hull of general
polygons) have been presented in [11] and [12]. For a
survey of geometric probing problems and results, the
reader is referred to [19].

Now, let us consider the case of unknown relative
position of the viewpoints for both perspective and parallel
projections in 2D. In the following, we will restrict ourselves
to consider only connected objects.

Perspective projection. A perspective projection of a
2D object is essentially an angle. If we neglect the facts that
a real object cannot lie too close toa real camera, and the image
size is limited, any convex object can produce any angle
between 0 and � (Fig. 3). Vice-versa, a set of such angles does
not provide any information about the originating objects. It
is easy to answer the questions raised in the Introduction. It is
clear that any set of silhouettes is compatible. We can very
easily construct compatible objects: any object will do. In
other words, such silhouettes provide no information at all.

Parallel projections. In this case, the silhouettes are line
segments (Fig. 4), which can be sorted by length from Smin

to Smax. It is easy to see that:

Proposition 1. If a connected object produces two parallel
silhouettes of lengths S0 and S00ðS0 < S00), it can also produce
any silhouette of length S such that S0 < S < S00.

Weomit a formalproofof thisobviousstatement. It follows
that only Smin and Smax are significant. It is easy to construct
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Fig. 1. The volume intersection technique.

Fig. 2. Are these orthographic silhouettes compatible? (See Section 4
for the answer.)

Fig. 3. Two-dimensional perspective projections.



compatible objects. First, let us choose at random the angle �
between the viewing directions (Fig. 5a). The parallelogram
obtained by intersection is a possible compatible object.
Infinitely, many other compatible objects, enclosed by the
parallelogram, exist. Examples are shown in Fig. 5b.

The two rightmost objects of the figure are not visual hulls
(as already noted, all connected 2D visual hulls are convex)
and cannot be generated by volume intersection. It is clear
that all the compatible objects must share at least one point
with each edge of the parallelogram. If we consider, as we
currently do in this paper, only visual hulls, a compatible
object is any convex object enclosed by the parallelogram and
sharing at least one point with each edge. Any such object is
able to produce, with suitable viewing directions, any
silhouettes between Smin and Smax. Clearly, this simple
construction is possible for any pair (Smin, Smax). It follows
that any set of silhouettes is compatible.

We can conclude that, without any other shape clue,
2D silhouettes supply very little shape information without
the relative position of the viewpoints!

3 COMPATIBILITY OF TWO ORTHOGRAPHIC

SILHOUETTES OF 3D OBJECTS

In the rest of this paper, we will restrict ourselves to
consider simply connected 3D objects and their ortho-
graphic projections. This approximates the practical case of
objects small with respect to their distance from the camera.

First, we will investigate the compatibility of two silhou-
ettes. Let S be a 2D orthographic silhouette of a 3D object. Let
us project orthographically S along a direction in the plane of
S. The 1D silhouette obtained depends on the angle � that the

chosen directionmakeswith the x axis of a coordinate system

fixed with respect to S (Fig. 6).
Let LðS; �Þ be the length of the 1D silhouette of S. By

rotating the projection direction from 0 to �, we obtain all

possible values of LðS; �Þ. The following statement holds:

Proposition 2. A necessary and sufficient condition for two

orthographic silhouettes S1 and S2 to be compatible is that two

angles �1 and �2 exist such that LðS1; �1Þ ¼ LðS2; �2Þ.
Proof. Let us consider the parameters required for intersect-

ing in 3D the cylinders obtained by back-projecting S1 and

S2. First, we must select the angle � between the viewing

directions, or, which is the same, the angle between the

planes of the silhouettes. Next, we must locate both

silhouettes in these planes. Let L be the intersection of the

planes. For positioning S1, it is sufficient to select the angle

between its coordinate system and L. Positioning S2
requires to choose: 1) the angle of its coordinate system

with respect to L and 2) the distance with respect to S1
measured along L. Translating S2 along the direction

orthogonal to L does not affect the intersection result.
Now, let us show that the condition is sufficient.

Fig. 7a shows how to perform the VI for each pair (�1, �2)
that satisfies this condition. The two cylinders must be
positioned as follows:

. The 2D viewing directions that produce LðS1; �1Þ
and LðS2; �2Þ must both be orthogonal to L.

. Both cylinders must be supported by the same
plane P orthogonal to L.

It is clear from the figure that the object obtainedbyVI is
compatible with both silhouettes. This reconstruction is
possible for any angle � between the viewing directions.

Let us show that the condition is necessary. Let again
LðS1; �1Þ and LðS2; �2Þ be the 1D silhouettes obtained
with viewing directions normal to L. They are different
for any possible choice of �1 and �2. Without loss of
generality, assume LðS1; �1Þ > LðS2; �2Þ. Fig. 7b shows
that, whatever the distance along L between S1 and S2,
the object obtained by VI cannot be compatible with S1.
At most, it is compatible with S2, as in the case shown in
the figure. Since this happens for any choice of the
intersection parameters, the condition is also necessary.tu
Observe that the necessary part of the statement could be

also obtained considering epipolar tangency.
In general, the reconstruction can be performed for an

infinite number of pairs (�1, �2). This means that, if the

condition is verified, 12 compatible objects can be
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constructed. The number of objects reduces to 11 if the
1D projections are equal for only one pair (�1, �2).

4 COMPATIBILITY OF THREE OR MORE

ORTHOGRAPHIC SILHOUETTES

We have shown that verifying if two orthographic silhou-
ettes are compatible, and constructing compatible objects, is
easy. But, how can we find if three or more silhouettes are
compatible? Clearly, we have that:

Proposition 3. A necessary condition for a set of silhouettes to be
compatible is that all pairs of silhouettes of the set are
compatible.

Is this condition also sufficient? In the example of
Fig. 8, three silhouettes satisfying this condition can be
combined—in one way only—to produce a compatible
object, a cylinder cut by two skew planes (the plane P is
normal to both S1 and S2). However, another example
will show that, in general, the condition is not sufficient.

Let us go back to the three orthographic silhouettes of
Fig. 2. The exact sizes of S1, S2, S3 are shown in Fig. 9.

The silhouettes are pairwise compatible. In addition, they
only share one value, that is L, of their 1D projections, since:

L � LðS1; �1Þ � L
ffiffiffi
2

p

L=2 � LðS2; �2Þ � L

LðS3; �3Þ ¼ L:

Let us intersect first the cylinders produced by back-
projecting the square S1 and the triangle S2 (Fig. 10)
according to the rules of Fig. 7a. In this case, we can choose
at random the angle � only.

Let us consider the third cylinder produced by the circular
silhouette. To satisfy the conditions of Fig. 7a with respect to
both S1 and S2, the same plane must support the three
cylinders (see Fig. 10). Let E be the upper edge of the
polyhedron resulting from the first intersection. The
intersection with the third cylinder should cut away some
parts of this polyhedron, but the edgeEmust not be affected,

otherwise a silhouette smaller than S1 would be obtained
from V1. We can say that, for each �, the corresponding E is
hard. But, the only way for this edge to not be affected by the
second intersection is to choose V3 ¼ V2, and to locate the
third cylinder so as to superimpose the lineswhichproject the
top points of S2 and S3. This preserves the edge E, but
produces a contradiction, since, obviously, an object cannot
produce two different silhouettes with the same viewpoint.
Then, in general, to be compatible in pairs is not sufficient for
a set of silhouettes to be compatible.

For a closer insight into the problem of silhouette
compatibility, it will be helpful to consider one property
of the object R reconstructed by VI. Let us consider one of
the silhouettes involved in the process, the corresponding
viewing direction V and the cylinder circumscribed to the
object O made of lines parallel to this direction (Fig. 11).

Each line of this cylindrical surface must share with the
surface ofO at least one point. These points form a curveCV.
This curve belongs to an annular surface homeomorphic to a
closed curve, a stripSTðVÞof variablewidth (measuredalong
a line of the cylinder), which is what is left of the original
circumscribed cylinder after the various intersections. Dur-
ing the reconstruction process, this annular strip cannot be
interrupted (i.e., become homemorphic to an open curve); at
most, it can reduce to a curvewith zerowidth. In this case, the
curve consists of hard points. In fact, this is the general
condition we have implicitly applied discussing the example
of Fig. 10, since the edge E belongs to the strip STðV1Þ.

Then, we can formulate the following condition for the
VI algorithm to be feasible:

Proposition 4. A necessary and sufficient condition for a set of
silhouettes to be compatible is that it be possible to find
viewpoints such that no annular strip of the reconstructed
object is interrupted.

In the next sections, this condition will be used for
constructing algorithms both for verifying the compatibility
of a set of silhouettes and reconstructing compatible
3D objects.

5 THREE SILHOUETTES WITH VIEWING DIRECTIONS

PARALLEL TO A PLANE: COMPATIBILITY AND

RECONSTRUCTION

In this section, we deal with a particular case of the general
problem, where all viewing directions are parallel to the
same plane (Fig. 12). This case idealizes some practical
situations, as observing a vehicle on a planar surface, or a
ship on a calm see. Clearly, all silhouettes have the same
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Fig. 6. The 1D silhouette LðS; �Þ of a 2D silhouette.

Fig. 7. In (a) it is shown how to find an object compatible with two silhouettes having two equal 1D projections. If this condition is not satisfied, the
silhouettes are not compatible (b).



height and the same plane must support all cylinders

obtained by back-projection. We will show that applying

the condition of Proposition 4 allows writing sets of

inequalities that determine feasible VI parameters. We will

also see that the number of sets of inequalities, as well as the

number of inequalities in each set, quickly increases with

the number of silhouettes.
First, we consider the compatibility of three silhouettes

S1, S2, and S3. Let us introduce some notation (see Fig. 13).

Each planar silhouette Si is defined, for 0 � y � ymax by two

curves SilðyÞ and SirðyÞ. For simplicity, let us consider mono-

valued functions. Also, let SiðyÞ ¼ SirðyÞ � SilðyÞ.
Three cases, related to the shape of the silhouettes, will

be considered. The first case is more general and requires

three intersection parameters. The second and third are

subcases of the first, involving two and one parameter,

respectively. For all of them, the condition of Proposition 4

will produce various sets of inequalities involving the

intersection parameters.

5.1 Silhouettes with a Flat Top and Bottom

This case, depicted in Fig. 14, refers to silhouettes such that

Sirð0Þ 6¼ Silð0Þ and SirðymaxÞ 6¼ SilðymaxÞ8i:

Let us consider a horizontal plane corresponding to a
value of y between 0 and ymax, and its intersection with the
three cylinders obtained by back-projecting the silhouettes.
Let us consider in this plane the arrangement of the
2D silhouettes S1ðyÞ; S2ðyÞ; S3ðyÞ and of the viewpoints
V1;V2;V3 shown in Fig. 15a. Other arrangements of
viewpoints and silhouettes that could satisfy the condition
of Proposition 4 are possible, and will be discussed at the
end of this section.

It is not difficult to see that, in the case in Fig. 15,
Proposition 4 requires that the two lines projecting the
endpoints of S3ðyÞ along the direction V3 must lie inside the
two areas highlighted in Fig. 15a. For the whole silhouettes
to be compatible, this must hold for all y.

This means that, if we project orthographically onto the
plane ofS3 for all y the vertices of theparallelogrammarked 1,
2, 3, and 4 in Fig. 15a,we should obtain a layout as that shown
inFig. 15b.For the reconstruction tobepossible,S3lðyÞmust lie
between the two leftmost curves, in this case, the projections
of the vertices 3 and 4, and S3rðyÞ must lie between the two
rightmost curves, the projections of the vertices 1 and 2.

To derive the set of inequalities that define for this case
feasible intersection parameters, let us inspect in more
detail the intersection in a horizontal plane (Fig. 16). Let O1,
O2, and O3 be the intersections of the axes y of the
coordinate system of each silhouette with this plane.
Intersecting S1ðyÞ and S2ðyÞ requires fixing an angle, let it
be �1. Intersecting also S3ðyÞ requires choosing two more
parameters: the angle �2 and a distance, let it be d (see
Fig. 17). d is the distance between two points lying on the
line projecting O1 along the direction V1. The first point is
the intersection of this line with the line projecting O2 along
V2, and the second is the intersection with the line
projecting O3 along V3. Thus, to find feasible solutions,
we must search the 3-dimensional space ½�1; �2; d�.

Let P1ðyÞ, P2ðyÞ, P3ðyÞ, and P4ðyÞ be the distances fromO3

of the orthographic projections of the vertices of the
parallelogram onto the line supporting S3ðyÞ. The compat-
ibility condition for the three silhouettes is expressed by the
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Fig. 8. In this case, S1, S2, and S3 determine only one compatible object.

Fig. 9. Three silhouettes that are pairwise compatible.

Fig. 10. The silhouettes of Fig. 9 are not compatible.



following inequalities, which can be worked out from the
figure:

S3rðyÞ � P4ðyÞ ¼ ðdþ d0Þ cosð�2 � �=2Þ
S3rðyÞ � P3ðyÞ ¼ P4ðyÞ þ ðS2ðyÞ= cosð�1 � �=2ÞÞ

cosð�2 � �=2Þ
S3lðyÞ � P2ðyÞ ¼ P4ðyÞ � ðS1ðyÞ= cosð�2 � �=2ÞÞ

cosð�2 � �1 � �=2Þ
S3lðyÞ � P1ðyÞ ¼ P2ðyÞ þ ðS2ðyÞ= cosð�1 � �=2ÞÞ

cosð�2 � �=2Þ
P4ðyÞ � P1ðyÞ;

ð1Þ

where

d0 ¼ S21ðyÞ cosð�=2� �1Þ � d00

d00 ¼S11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= cos2ð�=2��1Þþ1= cos2ð�=2��2Þþ2

cos2ð�2��1Þ
cosð�=2��1Þ cosð�=2��2Þ

q
:

In (1), the purpose of the fifth inequality is to characterize

the case just analyzed, let it be Case 1. Seven other cases are

possible, each producing different sets of inequalities. The

cases are determined by the direction of V3 with respect to

V1, V2, and the directions of the diagonals V14 and V32 of

the parallelogram, as shown in Fig. 17.
Case 1 refers to an ideal viewpoint V3 that, for each y, is

enclosed between the directions opposite to V14 and V1. In

Case 2,V3 lies betweenV2 and thedirectionopposite toV14; in

Case 3, between V32 and V2, and so on. For each case, a

possible orthographic projection onto the plane of S3 of the

edges of the object produced by the first intersection is shown

with thick lines. The boundaries of S3 are the thin lines.

Observe that cases where the directions ofV3 are opposite, as

Case 1 and Case 5, in general, produce different sets of

inequalities. The inequalities turnout tobe equal only ifS1,S2,

and S3 are symmetric with respect to a vertical central axis.
The inequalities corresponding to the various cases are

easily written. For instance:

Case 2

S3rðyÞ � P3ðyÞ
S3rðyÞ � P1ðyÞ
S3lðyÞ � P4ðyÞ
S3lðyÞ � P2ðyÞ
P1ðyÞ � P4ðyÞ:

ð2Þ

The expressions of PiðyÞ; i ¼ 1; . . . 4, are as those in
inequality (1). We omit, for brevity, the inequalities
corresponding to the other cases.

It is important to observe that, in general, the directions
of the diagonals V14 and V32 depend on y. This means that,
for a given vector of intersection parameters, two of the
previous cases could take place for different values of y for
the same object. An example is shown in Fig. 18. For y < y�,
we have Case 2, for y > y�, Case 1.

Then, the eight cases can be grouped into four sets of two
cases each. The sets are: (1,2), (3,4), (5,6), (7,8). The two cases
of each set can take place for the same object. For each y, the
parameters of a feasible intersection should satisfy the
inequalities corresponding to either case of one set.

5.2 Silhouettes with One Flat End

In this subcase, we have (Fig. 19):

Sirð0Þ 6¼ Silð0Þ and SirðymaxÞ ¼ SilðymaxÞ8i:

This is, for instance, the case of a ship, whose silhouettes
have a flat bottom and one upper point, the top of the mast.
We have that:

. The intersection only depends on two parameters, �1

and �2, since d is uniquely determined by these
angles. In particular, if the vertical axis y passes
through the upper points of each silhouette as in
Fig. 19, we obtain d ¼ 0 (see Fig. 16).

. The eight sets of inequalities of the previous section
(with d ¼ 0) hold, and they can be grouped into four
sets of two cases each as before.

5.3 Silhouettes without Flat Ends

Let us assume:

Sirð0Þ ¼ Silð0Þ and SirðymaxÞ ¼ SilðymaxÞi:

This is a subcase of the case of the previous section. Let us
again assume that, for each silhouette, the origin of the axes is
coincident with the upper point. Also, let li; i ¼ 1; 2; 3, be the
abscissas of the lower points (Fig. 20). It is easily seen that the
intersection only depends on �1, which determines two
possible pairs of values of �2.

In fact, let us consider the plane y ¼ 0, containing the
three lower points of the silhouettes (Fig. 21). The two
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Fig. 11. The strip STðVÞ and the curve Cv.

Fig. 12. Viewing directions parallel to the same plane.



possible viewing directions V0
3 and V00

3 are those which

project exactly onto l3 the segment l in the figure. V0
3 and V00

3

form the angles �0
2 and �00

2 with V1.
From the triangle whose vertices are marked a, b, and c in

the figure, we obtain:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=sin2 �1ðl21 þ l22 � 2l1l2 cos�1Þ

q

� ¼ arccosððsin �1=2ll1Þðl2 þ ðl21=sin2 �1Þ � ðl22=sin2 �1ÞÞ:

We also have:

l3 ¼ l sin �:

It follows that the two possible values of �2 are:

�0
2 ¼ � þ �1 þ arcsinðl3=lÞ þ �: ð3Þ

�00
2 ¼ � þ �1 � arcsinðl3=lÞ: ð4Þ

Concluding, 16 sets of inequalities depending on one

parameter only result. They are obtained by substituting the

two previous expressions of �2 in each set of inequalities of

Section 5.1.

6 THE INEQUALITIES FOR MORE THAN THREE

SILHOUETTES

This section deals with the set of inequalities that define

feasible intersection parameters for more than three

orthographic silhouettes with viewpoints parallel to the
same plane.

6.1 Silhouettes with Flat Top and Bottom

Let us consider any of the eight cases described in
Section 5.1, for instance, Case 1, and let us add a fourth
silhouette S4. In each horizontal plane, S1ðyÞ, S2ðyÞ, and S3ðyÞ
produce a polygon with six vertices and three pairs of
parallel edges (see Fig. 22). The new intersection is defined
by two more parameters, the angle �3 between V1 and V4

and the distance d1, measured, as d, along the line that
projectsO1 fromV1. Satisfying the condition of Proposition 4
requires, in each horizontal plane, to cut away two opposite
vertices, without eliminating completely the edges that meet
at these vertices. For instance, let us select the opposite
vertices 7 and 5. In this case, we cannot cut away completely
the edges 17, 78, 65, and 54.

By orthographically projecting the six vertices onto the
plane of S4, we obtain six curves. For the new intersection to
be feasible, the boundaries S4lðyÞ and S4rðyÞ of S4 must lie in
the areas bounded by the two leftmost and the two
rightmost curves, respectively.

Various sets of inequalities result, depending on the
direction of V4 with respect to V1, V2, V3, V18, and V64. First,
let us distinguish two cases (case (a) and (b) of Fig. 22)
related to the directions ðV56;V54Þ and ðV17;V78Þ, which
determines the leftmost and rightmost vertices (respec-
tively, 5 and 7 for case (a) and 7 and 5 for case (b)). In each
case, we have four subcases for the leftmost and rightmost
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Fig. 13. Notations used for a silhouette.

Fig. 14. Silhouettes with flat top and bottom.

Fig. 15. (a) A case where S3ðyÞ is compatible with S1ðyÞ and S2ðyÞ in a
horizontal plane. (b) The condition for the compatibility of the whole
silhouettes.

Fig. 16. The intersections in a horizontal plane.

Fig. 17. The eight intersection cases.



strips where S4 and S4r must lie (see Fig. 23). The
inequalities corresponding to each subcase are easily
written. For instance, for the subcase a1 it is:

P5ðyÞ � S3lðyÞ S3lðyÞ � P4ðyÞ
P1ðyÞ � S3rðyÞ S3rðyÞ � P7ðyÞ
P4ðyÞ � P6ðyÞ P8ðyÞ � P1ðyÞ;

where PiðyÞ are the projections of the points iðyÞ onto the
plane of S4. The first four inequalities states that the
boundaries of S4 lies into the areas bounded by the two
rightmost (P5ðyÞ and P4ðyÞ) and leftmost (P1ðyÞ and P7ðyÞ)
curves. The last two inequalities guarantee that the inner
boundaries of these areas are actually P6ðyÞ and P8ðyÞ.

For brevity, we will not report here the expressions of
PiðyÞ as functions of the five parameters �1, �2, �3, d, and d1.

Let us observe that the directions of the diagonals, which
determine the various subcases are, in general, different for
different values of y. This means that the subcases can be
grouped into two sets, ða1; a2; a3; a4Þ and ðb1;b2;b3;b4Þ. Each
of the cases in either set can take place for the same object at
different y.

Summarizing, each set of inequalities that defines
feasible intersection parameters for four silhouettes contains
11 inequalities:

1. the five inequalities of Section 4 and
2. six new inequalities also referring to S4.

As for the number of sets of inequalities, we have eight
cases for three silhouettes, three pairs of opposite vertices,
and eight cases for each pair and, thus, 192 sets each
containing 11 inequalities.

6.1.1 Five or More Silhouettes

The previous discussion about the fourth silhouette does
hold for any further silhouette. In fact, we must always cut a

pair of opposite vertices without deleting completely the
edges converging at these edges. It follows that:

. Each new silhouette adds two parameters, seven
inequalities for each case. Thus, for n silhouettes, the
number of parameters is 2n� 3, and the number of
inequalities 6ðn� 3Þ þ 5ðn � 3Þ.

. Each silhouette adds eight subcases for each pair of
opposite vertices. For the nth silhouette, the pair of
vertices are n� 1. Let NcðnÞ be the number of sets of
inequalities for n silhouettes. For n > 3, it is:
NcðnÞ ¼ 8ðn� 1ÞNcðn� 1Þ. Therefore, we must face
an exponential growth of the number of cases.

6.2 Silhouettes with One Flat End

The sets of inequalities are similar to those described in the
previous section. The only difference is that each new
silhouette introduces only one new parameter, an angle,
since all distances di are zero if, for each silhouette, the axis y
passes through the upper point. Therefore, for n silhouettes
the parameters are n� 1.

6.3 Silhouettes without Flat Ends

In this case, the inequalities depend on one parameter only,
the angle �1. Let N

0
cðnÞ be the number of sets of inequalities.

For each new silhouette Sn, two intersection parameters are
possible, determined by (3) and (4) with ln substituting l3. It
follows that N0

cðnÞ ¼ NcðnÞ2ðn�2Þ.

7 SOLVING THE INEQUALITIES

The inequalities discussed in the previous section allow us
to answer, in a particular case, both questions raised in the
Introduction: finding objects compatible with a set of
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Fig. 18. An example where, for the same V3 and different y, two different

cases take place (a). The orthographic projection onto the plane of S3 is

shown in (b).

Fig. 19. Silhouettes with flat bottom.

Fig. 20. Silhouettes without flat ends.

Fig. 21. The plane y ¼ 0.



compatible silhouettes, and understanding if an (artificial)
set of silhouettes is compatible.

Developing computer algorithms able to deal with these

nonlinear inequalities is outside the scope of this work, and

will be the object of future development. However, we will

briefly discuss how this problem can be addressed.
A technique for finding the feasible solution set S of a set

of nonlinear inequalities is presented in [13]. This technique,
which also takes into account data uncertainty, is based on
paving the parameter space with boxes whose dimensions
are related to data uncertainty, and has been implemented
and tested.

This technique can be used for finding feasible parameter
sets for one value of y between 0 and ymax. Each feasible
parameter set corresponds to a group of inequalities that can
take place for the same object. If one of the parameter set is
empty, the corresponding group of inequalities can be
discarded. Otherwise, we could perform an incremental
computation, adding each time (or subtracting) a small �y,
related to data uncertainty and to the shape of the silhouettes,
to the previous y. For each group of inequalities, the new
feasible parameter set at yþ�y must be a subset of the
feasibility set at y so each time the computation should be
reduced.

7.1 Polygonal Silhouettes

Reconstruction with polygonal silhouettes results in a
substantial simplification of the computation. In this case,
using horizontal lines passing through all vertices of the
silhouettes, we obtain a set of horizontal strips such that in
each strip each slice of silhouette is bounded laterally by
two segments (see Fig. 24).

Consider the inequalities for N silhouettes and a given
vector I� of intersection parameters. It is easy to see that both
sides of each inequality depends linearly on the silhouettes
boundariesSil andSir; i ¼ 1; . . . :N.As amatter of fact, both the
coordinates of the 2N� 2 vertices of the polygondue to the
first N� 1 silhouettes and their projection Pj along a fixed
direction onto a line normal to Vn depend linearly on Sil and
Sir; i ¼ 1 . . . N� 1. It follows that, if the inequalities hold at
both theminimal andmaximal y values of a strip for the same
intersection parameters I�, they also hold for I� for any value
of ywithin the strip. This statement holds even if I� belongs to
the feasibility setsof twodifferent setsof inequalities.This can
be easily seen considering the example in Fig. 25. Fig. 25a
refers to case a1 of Fig. 23 at both ends of the strip. In Fig. 25b,
wehavecasea1 at the topanda3 at thebottom. It is clear that, if
Sil and Sir satisfy the inequalities (in other words, they lie in
the rightmost and leftmost intervals between the points
projections of the vertices) at the top and the bottom of the
strip, they also satisfy the inequalities for any y in between.

Concluding, finding the feasibility set for polygonal
silhouettes only requires finding the intersection of the
feasibility sets computed at the y of the vertices.

8 CONCLUSIONS AND OPEN PROBLEMS

We have introduced and explored the problem of under-
standing the shape of 3D objects from silhouettes when the
relative position of the viewpoints is not known, which
happens in several practical cases.

In particular, the questions addressed are finding if a set of
silhouettes is compatible with a real object and constructing
compatible objects. After discussing the problem in 2D, we
have presented a necessary and sufficient condition for two
orthographic silhouettes of 3D objects to be compatible. We
have shown that pairwise compatibility is not sufficient for
the compatibility of n silhouettes. Considering the object
reconstructed has suggested a necessary and sufficient
compatibility condition. This condition has been applied to
the particular case of orthographic projections with viewing
directions parallel to a plane. For this case, we have been able
to work out sets of inequalities, involving the volume
intersection parameters, which allow computing feasible
solution sets. These inequalities allows to answer the two
questions addressed: finding if a set of silhouettes is
compatible with a real object, and, in this case, constructing
compatible objects The number of the sets of inequalities, as
well as the number of inequalities in each set, quickly
increases with the number of silhouettes. For practical
applications, efficient computer algorithms for solving the
sets of inequalities should be studied.

Several problems are open. Among them, the case of
orthographic projection with unrestricted viewing direc-
tions, and the case of perspective projections. Other results
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Fig. 22. Intersection of four silhouettes in a horizontal plane; the two
cases determining the leftmost and rightmost vertices.

Fig. 23. Cases (a) and (b) and the eight subcases.

Fig. 24. Dividing the silhouettes into horizontal strips.



could be obtained by dropping the restrictions of simply
connected objects or monovalued functions for defining the
silhouettes. A practical algorithm could benefit by the shape
of several real objects, which could allow finding corre-
spondences between points of various silhouettes. This
would restrict the degrees of freedom of VI, as in the cases
of Sections 6.2 and 6.3. Finally, silhouette data and surface
features could be integrated in practical algorithms.

Another question is worth considering. Except for
special cases, as that of Fig. 9, we expect that infinite
compatible objects exist, specified by a region in the space
of the intersection parameters. Simple ways for describing
the shape of the compatible objects seem desirable. For
instance, is it possible to find hard points, that is, points
belonging to any compatible object? Another idea could be
finding the maximum enclosed volume and the minimum
finite bounding volume for all these objects.

Finally, at first glance, it could seem that questions, as
those discussed, could be raised for sets of silhouettes
without the corresponding viewpoints. This would be the
problem to face if we were given a set of images of an object
taken with cameras with unknown parameters. In fact,
these questions are neither practical nor fruitful. It is easy to
see that any such set is compatible since infinite different
compatible objects can be constructed for any set. For doing
this, it is sufficient to create, on the surface of a convex
object, protrusions with appropriate shapes, each able to
produce one silhouette of the set from a close viewpoint.

REFERENCES

[1] N. Ahuja and J. Veenstra, “Generating Octrees from Object
Silhouettes in Orthographic Views,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 11, pp. 137-149, Nov. 1989.

[2] K. Astrom and F. Kahl, “Motion Estimation in Image Sequences
Using the Deformation of Apparent Contours,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 21, no. 2, pp.114-
126, Feb. 1999.

[3] A. Bottino, L. Cavallero, and A. Laurentini, “Interactive Recon-
struction of 3D Objects from Silhouettes,” Proc. Ninth Int’l Conf. in
Central Europe on Computer Graphics, Visualization, and Computer
Vision, vol. 2, pp. 230-236, 2001.

[4] E. Boyer and M.O. Berger, “ 3D Surface Reconstruction Using
Occluding Contours,” Int’l. J. Computer Vision, vol. 22, no. 3,
pp. 219-233, 1997.

[5] C.H. Chian and J.K. Aggarwal, “Model Reconstruction and Shape
Recognition from Occluding Contours,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 11, pp. 372-389, Nov. 1989.

[6] R. Cipolla and A. Blake, “Surface Shape from the Deformation of
Apparent Contours,” Int’l. J. Computer Vision, vol. 9, no. 2, pp. 83-
112, 1992.

[7] D. Dobkin, H. Edelsbrunner, and C.K. Yap, “Probing Convex
Polytopes,” Proc. 18th ACM Symp. Theory of Computing, pp. 424-
432, 1986.

[8] A. Laurentini, “The Visual Hull Concept for Silhouette-Based
Image Understanding,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, no. 2, pp. 150-162, Feb. 1994.

[9] A. Laurentini, “How Far 3-D Shapes Can Be Uunderstood from 2-
D Silhouettes,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 17, no. 2, pp. 188-195, Feb. 1995.

[10] A. Laurentini, “How Many 2D Silhouettes it Takes to Reconstruct
3D Objects,” Computer vision and Image Understanding, vol. 67,
pp. 81-87, 1997.

[11] S.Y.R. Li, “Reconstructing Polygons from Projections,” Information
Processing Letters, vol. 28, pp. 235-240, 1988.

[12] M. Lindenbaum and A. Bruckstain, “Reconstructing a Convex
Polygon from Binary Perspective Projections,” Pattern Recognition,
vol. 23, no. 12, pp. 1343-1350, 1990.

[13] L. Jaulin and E. Walter, “Guaranteed Nonlinear Set Extimation via
Interval Analysis,” Bounding Approaches to System Identification, M.
Milanese et al., eds., pp. 363-381, New York: Plenum Press, 1996.

[14] M. Jones and J.P. Oakley, “Registration of Image Sets Using
Silhouette Consistency,” IEE Proc. Vision, Image and Signal
Processing, vol. 147, no. 1, pp. 1-8, 2000.

[15] W. Matusik et al., “Image Based Visual Hulls,” Proc. ACM
Siggraph, pp. 369-374, 2000.

[16] P.R.S. Mendonca, K.K. Wong, and R. Cipolla, “Epipolar Geometry
from Profiles under Circular Motion,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 23, no. 6, pp. 604-616, June 2001.

[17] H. Noborio et al., “Construction of the Octree Approximating
Three-Dimensional Objects by Using Multiple Views,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 769-782,
Nov. 1988.

[18] M. Potemesil, “Generating Octree Models of 3D Objects from
Their Silhouettes in a Sequence of Images,” Computer Vision,
Graphics, and Image Processing, vol. 40, pp. 1-29, 1987.

[19] S. Skiena, “Interactive Reconstruction via Geometric Probing,”
Proc. IEEE, vol. 80, no. 9, pp. 1364-1383, 1992.

[20] R. Vaillant and O. Faugeras, “Using Extremal Boundaries for 3D
Object Modeling,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp.157-173, Feb. 1992.

[21] J.Y. Zheng, “Acquiring 3D Models from Sequences of Contours,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 2,
pp. 163-178, Feb. 1994.

Andrea Bottino received the master degree in
computer science engineering and the PhD
degree from Politecnico di Torino in 1995 and
2000. He is currently a teaching assistant of
computer science in the Dipartimento di Auto-
matica ed Informatica at the same university. He
is the author of several journal and conference
papers. His current research interests include
computer graphics, computer vision, motion
capture systems, andobject-oriented technology.

Aldo Laurentini received the degree of ingeg-
neria elettronica from the Politecnico di Milano in
1963. In 1965, he joined the Politecnico di
Torino, where he is now a professor of computer
science in the Dipartimento di Automatica ed
Informatica. He is a member of the IEEE and the
ACM, and author of more than 50 scientific
papers. His current research interests include
computer vision, computer graphics, and com-
putational geometry.

BOTTINO AND LAURENTINI: INTRODUCING A NEW PROBLEM: SHAPE-FROM-SILHOUETTE WHEN THE RELATIVE POSITIONS OF THE... 1493

Fig. 25. Case a1 at both ends of the strip (a). Case a1 at the top and a3 at the bottom (b).
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